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AN LP-APPROACH FOR THE STUDY OF DEGENERATE
PARABOLIC EQUATIONS

RABAH LABBAS, AHMED MEDEGHRI, BOUBAKER-KHALED SADALLAH

Abstract. We give regularity results for solutions of a parabolic equation in
non-rectangular domains U = ∪t∈]0,1[{t} × It with It = {x : 0 < x < ϕ(t)}.
The optimal regularity is obtained in the framework of the space Lp with

p > 3/2 by considering the following cases: (1) When ϕ(t) = tα, α > 1/2 with a
regular right-hand side belonging to a subspace of Lp(U) and under assumption

p > 1 + α. We use Labbas-Terreni results [11]. (2) When ϕ(t) = t1/2 with a

right-hand side taken only in Lp(U). Our approach make use of the celebrated
Dore-Venni results [2].

1. Introduction

Statement of the Problem. We study the autonomous parabolic equation

Dtu(t, x)−D2
xu(t, x) + λm(t, x)u(t, x) = f(t, x), (t, x) ∈ U

u
∣∣
∂U−Γ1

= 0,
(1.1)

with a positive spectral parameter λ and some positive weight functions m(·) which
will be specified below. The right-hand term f is taken in Lp(U) with

p >
3
2
. (1.2)

Here, Γ1 = {1}×]0, 1[ and U is a non-cylindrical domain of the form

U = ∪t∈]0,1[{t} × It,

where
It = {x : 0 < x < ϕ(t)},

and ϕ : [0, 1] → R is a given continuous function such that ϕ(0) = 0. The non-
cylindrical space-time of the boundary

∂Uϕ = {(t, ϕ(t)) : 0 < t < 1}
can be considered as an approximation of a flame front; so that, equation (1.1) is
of interest in combustion theory.

On the other hand, the analysis of (1.1) with a spectral parameter λ and with
a weight multiplier m(·) plays an important rôle since it arises naturally from
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nonlinear diffusion equations when they are linearized [7, 8]. The function m(·) can
also model the exchange coefficient with the exterior environment.

In Savaré [17], parabolic problems in non cylindrical domains are considered in
the Hilbertian case. The author obtains some regularity results under assumption
on the geometrical behavior of the boundary which cannot include our triangular
domain.

Hofmann and Lewis [9] have also considered some boundary value problems for
the heat equation in non cylindrical domains satisfying some conditions of Lips-
chitz’s type. They showed that the optimal Lp regularity holds for p = 2 and the
situation gets progressively worse as p approaches 1.

In the work [13], the Authors have studied existence, uniqueness and regularity of
the solutions in general mixed semilinear parabolic problems set in a non-cylindrical
domain U . They proved the existence of a weak solution u in some anisotropic
Hölder continuous functions space Cγ/2,γ(U) with continuity of ∇u in U and in
∂Uϕ under the assumption that the second member f is hölderian.

We will see below that, after some change of variables, Problem (1.1) is trans-
formed into a degenerate parabolic equation set in a cylindrical domain.

In this paper we have considered the unidimensional case in x as a model to
exemplify parabolic problems set in non rectangular domains. Our study can be
naturally extended to an upper dimension in x, such as, for example, the following
problem

Dtu(t, x)−∆xu(t, x) + λm(t, x)u(t, x) = f(t, x)

in the domain

{(t, x1, x2) : t ∈ (0, 1), x1, x2 > 0 and (x1/ϕ1(t), x2/ϕ2(t)) ∈ D},

where D is some given cylindrical domain in R2
+ and ϕi, i = 1, 2 are similar to ϕ.

The change of variables (t, x) 7→ (t, y) = (t, x/ϕ(t)) transforms U into the rec-
tangle Ω =]0, 1[×]0, 1[. Putting u(t, x) = w(t, y) and f(t, x) = g(t, y), Problem
(1.1) is transformed, in Ω into the degenerate evolution problem

ϕ(t)2Dtw(t, y)−D2
yw(t, y)− ϕ′(t)ϕ(t)yDyw(t, y) + λM(t, y)ϕ(t)2w(t, y)

= ϕ(t)2g(t, y)

w
∣∣
∂Ω−Γ1

= 0.

(1.3)

with Γ1 = {1}×]0, 1[ and M(t, y) = m(t, x).
It is easy to see that f ∈ Lp(U) if and only if ϕ−2+1/ph ∈ Lp(Ω) which implies

that h ∈ Lp(Ω), since

h = (ϕ−2+1/ph)ϕ2−1/p

and 2 − 1/p > 0. Then the function h = ϕ2g lies in the closed subspace of Lp(Ω)
defined by

Eϕ = {h ∈ Lp(0, 1;Lp(0, 1)) : ϕ−2+1/ph ∈ Lp(0, 1;Lp(0, 1))}.

This space is equipped with the norm

‖h‖Eϕ = ‖ϕ−2+1/ph‖Lp(0,1;Lp(0,1)).

We can find in the Favini-Yagi book [5] an important study of abstract problems
of parabolic type with degenerate terms in the time derivative. In particular, these
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authors have given an alternative approach to the study of Equation (1.3), when it
takes a particular following form

tlDtw(t, y)−D2
yw(t, y) = tlg(t, y)

w
∣∣
∂Ω−Γ1

= 0.

The authors of this article have considered the three cases l > 1, l = 1 and l < 1, see
[5, p. 111.]. They used the notion of multivalued linear operators and constructed
fundamental solutions when the right-hand side has a Hölder regularity with respect
to the time.

In this work, we are especially interested in the question: What conditions the
functions ϕ and m must verify in order that Problem (1.1) has a solution with
optimal regularity, that is a solution u belonging to the anisotropic Sobolev space

H1,2
p (U) = {u ∈ Lp(U) : Dtu,D

j
xu ∈ Lp(U), j = 1, 2}?

Our approach is different from that used in the previous methods : it is based on
the direct use of the sum theory of operators in Banach spaces. This is naturally
suggested by Equation (1.3).

We will prove that the answer to the previous question is positive in the following
two cases.

1. When f is regular, the function t 7→ ϕ′(t)ϕ(t) is Hölderian and the weight
multiplier coefficient m is function of the parabolic boundary in the sense that

m(t, x) = m(t) = (ϕ(t))−2.

It corresponds for instance to the model case ϕ(t) = tα, with α > 1/2 and m(t) =
t−2α. The approach uses Labbas-Terreni results [11].

2. When f is taken only in Lp(U), ϕ(t) =
√
t and m(t, x) = t−1. Here, we use

a celebrated Dore-Venni Theorem given in [2].
This work is also an extension of the Hilbertian case (p = 2) studied in Sadallah

[16]. The author has considered the cases λ = 0, m = 0.

Assumptions and main results.

First case. Let ϕ(t) = tα, with α > 1/2, m(t) = t−2α and assume that

p− 1 > α. (1.4)

For σ ∈]0, 1[, we introduce the following subspace of Lp(U) (with a slight abuse)

Lp
ϕ2σ (0, 1;W 2σ,p

ϕ )

= {f ∈ Lp(U) :
∫ 1

0

ϕ(t)2σp

∫ ϕ(t)

0

∫ ϕ(t)

0

|f(t, x)− f(t, x′)|p

|x− x′|2σp+1
dx dx′ dt <∞}.

The main result regarding this case is the following.

Theorem 1.1. Assume (1.4). Let σ ∈]0, 1[ such that 0 < σ < 1/2p. Then, there
exists λ∗ such that ∀λ > λ∗ and for all f ∈ Lp

ϕ2σ (0, 1;W 2σ,p
ϕ ), Problem (1.1) has a

unique solution u ∈ H1,2
p (U) fulfilling the regularity properties: u, Dtu, Dxu and

D2
xu belong to Lp

ϕ2σ (0, 1;W 2σ,p
ϕ ).
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Second case. For ϕ(t) =
√
t and m(t) = t−1, we will prove the following statement.

Theorem 1.2. For f ∈ Lp(U) and λ > 1/2p, Problem (1.1) has a unique solution
u ∈ H1,2

p (U).

Note that in the second case, we obtain maximal results for any λ > 1/2p.

2. On the sum of linear operators

Definitions. Let Λ be a closed linear operator in a complex Banach space E.
Then, Λ is said sectorial if

(i) D(Λ) and Im(Λ) are dense in E,
(ii) ker(Λ) = {0},
(iii) ]−∞, 0[⊂ ρ(Λ) and there exists a constant M > 1 such that

‖t(Λ + tI)−1‖ 6 M

for all t > 0.
We recall that for a sectorial operator Λ, the complex powers Λz, z ∈ C, are well
defined but not necessarily bounded, see Komatsu [10]. When Λis ∈ L(E) for any
s ∈ R and

sup
s∈[−1,1]

‖Λis‖ <∞,

we say that Λ ∈ Bip(E), see Prüss-Sohr [15].
In general, the knowledge of Λis is important for the determination of the domain

of Λz, see Triebel [18].
Consider two closed linear operators A and B with domains D(A) and D(B) in

E. Their sum is defined by

Sv = Av +Bv, v ∈ D(S) = D(A) ∩D(B).

First approach. Let us assume that A and B satisfy the following assumptions:
(LT1) There exists r, CA, CB > 0, εA, εB > 0 such that

(i) ρ(−A) ⊃
∑

εA
= {z : |z| ≥ r, |Arg(z)| < εA}

and for all z ∈
∑

εA
, ‖(A+ zI)−1‖L(E) 6 CA/|z|,

(ii) ρ(−B) ⊃
∑

εB
= {z : |z| ≥ r, |Arg(z)| < εB}

and for all z ∈
∑

εB
, ‖(B + zI)−1‖L(E) 6 CB/|z|,

(iii) εA + εB > π,
where ρ(−A) and ρ(−B) denote the resolvent sets of (−A) and (−B) respectively.

We suppose that there exist C > 0, λ0 > 0 (with λ0 ∈ ρ(−A)), τ and ρ such
that
(LT2) (i) For all λ ∈ ρ(−A) and all µ ∈ ρ(−B),

‖(A+ λ0)(A+ λI)−1[(A+ λ0)−1; (B + µI)−1]‖L(E) 6
C

|λ|1−τ .|µ|1+ρ
,

(ii) 0 6 τ < ρ 6 2.
For any σ ∈] 0, 1[ and 1 6 p 6 +∞, let us introduce the real Banach interpolation

spaces DA(σ, p) between D(A) and E (or DB(σ, p) between D(B) and E) which
are characterized by

DA(σ, p) = {ξ ∈ E : t 7→ ‖tσA(A+ tI)−1ξ‖E ∈ Lp
∗},
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where Lp
∗ denotes the space of p-integrable functions on (0,+∞) with the measure

dt/t. For p = +∞,

DA(σ,∞) =
{
ξ ∈ E : sup

t>0
‖tσA(A+ tI)−1ξ‖E <∞

}
.

Then the main result proved in Labbas-Terreni [11] is

Theorem 2.1. Under Assumptions (LT1) and (LT2), there exists λ∗ such that ∀λ
> λ∗ and ∀h ∈ DA(σ, p), Equation Aw + Bw + λw = h, has a unique solution
w ∈ D(A) ∩D(B) with the regularities Aw,Bw ∈ DA(θ, p) and Aw ∈ DB(θ, p) for
any θ verifying θ 6 min(σ, ρ− τ).

Second approach. Here, we assume that E is an U.M.D complex Banach space
(Unconditional Martingales Differences Property). It means that for all p ∈]1,∞[,
the Hilbert transform is bounded on Lp(R, E), (see Burckholder [1]). In concrete
terms, any space built on Lp is U.M.D if p belongs to (1,∞).

We suppose that A and B satisfy
(DV1) (i) D(A) and D(B) are dense in E

(ii) ρ(A) ⊃] −∞, 0] and there exists MA > 1 so that for all λ > 0, ‖(A +
λI )−1‖L(E) 6 MA/(1 + λ)
(iii) ρ(B) ⊃] − ∞, 0] and there exists MB > 1 such that for all λ > 0,
‖(B + λI)−1‖L(E) 6 MB/(1 + λ).

(DV2) There exist K > 0, θA, θB ∈ [0, π[ such that
(i) Ais ∈ L(E) and for all s ∈ R, ‖Ais‖ ≤ Ke|s|θA ,
(ii) Bis ∈ L(E) and for all s ∈ R, ‖Bis‖ ≤ Ke|s|θB ,
(iii) θA + θB < π.

(DV3) For all ξ ∈ ρ(−A) and all η ∈ ρ(−B),

(A+ ξI)−1(B + ηI)−1 = (B + ηI)−1(A+ ξI)−1.

In general, Hypothesis (DV2) is hard to check in concrete cases.
We shall use the following Dore-Venni Theorem (see [2]).

Theorem 2.2. Assume (DV1), (DV2), (DV3). Then A + B is closed, invertible
and (A+B)−1 ∈ L(E).

3. Proof of Theorem 1.1

Let ϕ(t) = tα with α > 1/2, m(t) = t−2α and assume

p > 1 + α. (3.1)

Set X = Lp(0, 1) and w(t) = w(t, .), then (1.3) is equivalent to the abstract degen-
erate Cauchy problem

t2αw′(t) + L(t)w(t) + λw(t) = t2αg(t), t ∈ (0, 1),

w(0) = 0,
(3.2)

where the family (L(t))t∈[0,1] is defined by

D(L(t)) = {ψ ∈W 2,p(0, 1) : ψ(0) = ψ(1) = 0}
([L(t)]ψ)(y) = −ψ′′(y)− αt2α−1yψ′(y) for a.e. t ∈ (0, 1).

(3.3)

Observe that
D(L(t)) = X. (3.4)
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Then we must solve
t2αw′(t) + L(t)w(t) + λw(t) = h(t), t ∈ (0, 1)

w(0) = 0,
(3.5)

where h belongs to the space

E1 =
{
h ∈ Lp(0, 1;X) : t−2α+α/ph ∈ Lp(0, 1;X)

}
.

Equation (3.5) can be written in the form

Bw +Aw + λw = h,

where
D(A) = {w ∈ E1 : t−2α+α/pw ∈ Lp(0, 1;W 2,p(0, 1) ∩W 1,p

0 (0, 1))}
(Aw)(t) = L(t)w(t), t ∈ (0, 1),

(3.6)

and
D(B) = {w ∈ E1 : tα/pw′ ∈ Lp(0, 1;X) and w(0) = 0}

(Bw)(t) = t2αw′(t), t ∈ (0, 1).
(3.7)

Note that the trace w(0) is well defined in D(B). In fact, we have

tα/pw ∈ Lp(0, 1;X), tα/pw′ ∈ Lp(0, 1;X),

and α/p + 1/p < 1 in virtue of (3.1). Then w is continuous on [0, 1], (see [18,
Lemma, p. 42]).

Now, to apply Theorem (2.1), we will verify Assumptions (LT1) and (LT2).

Proposition 3.1. The operators A and B are linear closed with dense domains in
E1. Moreover, they satisfy Assumption (LT1).

The properties of operator B are based on the solvability of the spectral equation
Bw + zw = h. Fix some positive µ0 and let z such that Re(z) > µ0. Then the
problem

t2αw′(t) + zw(t) = h(t)

w(0) = 0,

admits the solution

w(t) =
(
(B + zI)−1h

)
(t)

= exp
( z

(2α− 1)t2α−1

) ∫ t

0

σ−2αh(σ) exp
( −z
(2α− 1)σ2α−1

)
dσ

Let us check that this formula is well defined on [0, 1] and gives w(0) = 0. Set
µ = z/(2α− 1), then

‖w(t)‖ 6 exp
( Reµ
t2α−1

) ∫ t

0

‖σ−2α+α/ph(σ)‖σ−α/p exp
(−Reµ
σ2α−1

)
dσ

6
( ∫ t

0

‖σ−2α+α/ph(σ)‖pdσ
)1/p( ∫ t

0

σ−αq/pdσ
)1/q

6
( 1
1− αq/p

)1/q
t1/q−α/p‖h‖E

where 1/p+ 1/q = 1. Hence w(t) is defined and w(0) = 0 since

1/q − α/p = 1− 1/p− α/p > 0
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means p > 1 + α. On the other hand we can write

t−2α+α/p((B + zI)−1h)(t) = t−2α+α/pw(t)

=
∫ 1

0

σ−2α+α/ph(σ)Kµ(t, σ)dσ,
(3.8)

where

Kµ(t, σ) =

{
1

t2α−α/pσα/p expµ(t−2α+1 − σ−2α+1) if t > σ

0 if t < σ.
(3.9)

Therefore,∫ 1

0

|Kµ(t, σ)|dσ =
1

t2α−α/p
exp(Re(µ).t−2α+1)

∫ t

0

exp(−Re(µ).σ−2α+1)
σα/p

dσ

6
1

2α− 1
exp(Reµ.t−2α+1)

∫ +∞

t−2α+1
exp(−Re(µ).s)ds

6
1

Re(z)
,

and

max
t∈[0,1]

∫ 1

0

|Kµ(t, σ)|dσ 6
1

Re(z)
. (3.10)

Furthermore, one has∫ 1

0

|Kµ(t, σ)|dt

=
exp(−Reµ.σ−2α+1)

σα/p

∫ 1

σ

1
t2α−α/p

exp(Reµ.t−2α+1)dt

=
1

2α− 1
exp(−Re(µ).σ−2α+1)

σα/p

∫ σ−2α+1

1

1

s
α

p(2α−1)
exp(Reµ.s)ds,

and ∫ σ−2α+1

1

1

s
α

p(2α−1)
exp(Reµs)ds

=
∫ 1+σ−2α+1

2

1

1

s
α

p(2α−1)
exp(Reµs)ds+

∫ σ−2α+1

1+σ−2α+1
2

1

s
α

p(2α−1)
exp(Reµs)ds

6
∫ 1+σ−2α+1

2

1

exp(Reµs)ds+
1

( 1+σ−2α+1

2 )
α

p(2α−1)

∫ σ−2α+1

1+σ−2α+1
2

exp(Reµs)ds

= I1 + I2.

Then

I1 6
1

Reµ

[
exp(Reµ

(1 + σ−2α+1)
2

)− exp(Reµ)
]

6
1

Reµ
exp(Reµ

(1 + σ−2α+1)
2

),
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and

1
2α− 1

exp(−Reµσ−2α+1)
σα/p

I1

6
1

Re(z)
exp(−Reµ(σ−2α+1 − 1)/2)

σα/p

6
1

Re(z)
exp(−µ0(σ−2α+1 − 1)/2)

σα/p

6
C1(α, p)
Re(z)

,

since the function

σ 7→ exp(−µ0(σ−2α+1 − 1)/2)
σα/p

is continuous on [0, 1]. Moreover

1
2α− 1

exp(−Reµσ−2α+1)
σα/p

I2

6
1

2α− 1
exp(−Reµσ−2α+1)

σα/p( 1+σ−2α+1

2 )
α

p(2α−1)

∫ σ−2α+1

1+σ−2α+1
2

exp(Reµs)ds

6
C2(α, p)

Re(z).σα/p( 1+σ−2α+1

2 )
α

p(2α−1)

6
C3(α, p)
Re(z)

in virtue of the fact that

lim
σ→0

1

σα/p(1 + σ−2α+1)
α

p(2α−1)
= 1.

Consequently, there exists some constant C(α, p) > 0 such that

max
σ∈[0,1]

∫ 1

0

|Kµ(t, σ)|dt 6
C(α, p)
Re(z)

. (3.11)

Now, using Schur interpolation Lemma together with (3.10) and (3.11), we obtain

‖t−2α+α/pw‖Lp(0,1;X) 6
C(α, p)
Re(z)

‖t−2α+α/ph‖Lp(0,1;X),

from which it follows

‖(B + zI)−1‖L(E1) 6
C(α, p)
Re(z)

.

Thus, we can take εB = π/2− ε0 (for each ε0 ∈]0, π/2[).
The study of the spectral properties of the operator A are based on those of

operators L(t). For each t, we write

(L(t)Ψ) = L0Ψ + P (t)Ψ

with
D(L0) = {Ψ ∈W 2

p (0, 1) : Ψ(0) = Ψ(1) = 0}
L0Ψ = −Ψ′′,

(3.12)



EJDE-2005/36 AN LP-APPROACH 9

and
D(P (t)) = W 1,p(0, 1)

P (t)Ψ = −αt2α−1yΨ′ = −b(t)yΨ′.
(3.13)

It is easy to see that the operator L0 is sectorial. Moreover, thanks to Hölder
inequality, for ψ ∈ D(L0) ⊂ D(P (t)) we have

‖P (t)Ψ‖Lp(0,1) =
( ∫ 1

0

∣∣∣− b(t)yΨ′(y)|pdy
)1/p

=
( ∫ 1

0

| − b(t)y
( ∫ y

0

(sΨ′′(s))ds+
∫ 1

y

(1− s)Ψ′′(s)ds
)∣∣∣pdy)1/p

6
( ∫ 1

0

∣∣∣− b(t)y
∫ y

0

(sΨ′′(s))ds
∣∣∣pdy)1/p

+
( ∫ 1

0

∣∣∣− b(t)y
∫ 1

y

(1− s)Ψ′′(s)ds
∣∣∣pdy)1/p

6 b(t)
(
C1(p)‖Ψ′′‖

Lp(0,1) + C2(p)‖Ψ′′‖
Lp(0,1)

)
6 C(p)‖Ψ‖D(L0).

On the other hand, let us set

m(t) : Lp(0, 1) → Lp(0, 1)

ψ 7→ [m(t)ψ](y) = −b(t)yψ(y),

i : W 1,p(0, 1) → Lp(0, 1)
ψ 7→ ψ,

d : W 2,p(0, 1) →W 1,p(0, 1)

ψ 7→ d(ψ) = ψ′.

Then P (t) = m(t) ◦ i ◦ d. Thus, P (t) is compact from D(L0) into E1 since i is
compact and d, m(t) are continuous. So for any t ∈ [0, 1], the operator L(t) is
sectorial (see Lunardi [14, Proposition 2.4.3, p.65]) and consequently there exists
some r0 > 0 such that

ρ(−L(t)) ⊃ Σπ−ε1 = {z : |z| > r0, | arg z| < π − ε1}
where ε1 ∈]0, π/2[. Now, for h ∈ E1 and λ ∈ Σπ−ε1 the spectral equation

Aw + zw = h

is equivalent to
L(t)w(t) + zw(t) = h(t), t ∈ (0, 1)

which admits a unique solution,

w(t) = (L(t) + z)−1h(t).

Hence

‖w(t)‖Lp(0,1) 6
K

|z|
‖h(t)‖Lp(0,1)

and

‖w‖E1 =
( ∫ 1

0

‖t−2α+α/pw(t)‖pdt
)1/p

6
K

|z|
‖h‖E1 .

Finally A and B satisfy (LT1).
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Proposition 3.2. Operators A and B satisfy Hypothesis (LT2).

In our case, the domains D(L(t)) = D(L(0)) are constant. Let us verify the
Sobolevskii’s estimate: There exists M > 0 such that for all t, σ ∈ [0, 1],

‖[(L(t)L(σ)−1 − I)]‖L(X) 6 M |t− σ|ρ , (3.14)

where ρ = min(1, 2α− 1).
For g ∈ X = Lp(0, 1), the equation ψ = L(σ)−1g is equivalent to

([L(σ)]ψ)(y) = −D2
yψ(y)− ϕ(σ)ϕ′(σ)yDyψ(y) = g(y),

ψ(0) = ψ(1) = 0,

and

[(L(t)− L(σ))L(σ)−1g](y) = (ϕ(σ)ϕ′(σ)− ϕ(t)ϕ′(t))yDyψ(y). (3.15)

Then, we get

‖[(L(t)− L(σ))L(σ)−1g]‖X 6 α|t2α−1 − σ2α−1|‖yψ′‖X

6 M1|t− σ|min(1,2α−1)‖ψ′′‖X

6 M2|t− σ|min(1,2α−1)‖ψ‖W 2,p(0,1)

6 M |t− σ|min(1,2α−1)‖g‖Lp(0,1).

To prove (LT2), it is sufficient to estimate

‖A(A+ λI)−1[A−1; (B + zI)−1]‖L(E1)

where λ ∈ ρ(−A) ,z ∈ ρ(−B). Let h ∈ E1. Then

∆ = (t−2α+α/pA(A+ λI)−1[A−1; (B + zI)−1]h)(t)

= t−2α+α/p(A(A+ λI)−1(A−1(B + zI)−1 − (B + zI)−1A−1)h)(t)

= t−2α+α/pL(t)(L(t) + λI)−1{L(t)−1
(
(B + zI)−1h

)
(t)

−
(
(B + zI)−1A−1h

)
(t)}.

Using the representation given in (3.8) and the kernel defined in (3.9) where we
have put µ = z/(2α− 1), we obtain

∆ = L(t)(L(t) + λI)−1

∫ 1

0

σ−2α+α/pKµ(t, σ)(L(t)−1 − L(σ)−1)h(σ)dσ

=
∫ 1

0

σ−2α+α/pKµ(t, σ)L(t)(L(t) + λI)−1(L(t)−1 − L(σ)−1)h(σ)dσ

=
∫ 1

0

σ−2α+α/pKµ(t, σ)(L(t) + λI)−1(I − L(t)L(σ)−1)h(σ)dσ

since the domains D(A(t)) are constant. Also

‖∆‖X =
K

|λ|

∫ 1

0

|Kµ(t, σ)||t− σ|ρσ−2α+α/p‖h(σ)‖Xdσ,
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with ρ = min(1, 2α− 1). Recall that

∫ 1

0

Kµ(t, σ)|t− σ|ρdσ

=
1

t2α−α/p
exp(Reµt−2α+1)

∫ t

0

σ−α/p(t− σ)ρ exp(−Reµσ−2α+1)dσ .

Then by Hölder inequality, one has

∫ t

0

σ−α/p(t− σ)ρ exp(−Reµσ−2α+1)dσ

6
( ∫ t

0

σ−α/p exp(−Reµσ−2α+1)dσ
)1−ρ

×
( ∫ t

0

σ−α/p(t− σ) exp(−Reµσ−2α+1)dσ
)ρ

and

J1 =
( ∫ t

0

σ2α−α/pσ−2α exp(−Reµσ−2α+1)dσ
)1−ρ

6
(t2α−α/p)1−ρ

(2α− 1)1−ρ

1
(Reµ)1−ρ

(exp(−Reµt−2α+1))1−ρ

J2 =
( ∫ t

0

σ−α/p(t− σ) exp(−Reµσ−2α+1)dσ
)ρ

=
( ∫ t

0

σ2α−α/p(t− σ)σ−2α exp(−Reµσ−2α+1)dσ
)ρ

6
(t2α−α/p)ρ

(2α− 1)ρ

1
(Reµ)ρ

( ∫ t

0

(t− σ)κ′(σ)dσ
)ρ

where κ(σ) = exp(−Reµσ−2α+1). Using an integration by parts, we obtain

∫ t

0

(t− σ)κ′(σ)dσ =
∫ t

0

exp(−Reµσ−2α+1)dσ

=
∫ t

0

σ2ασ−2α exp(−Reµσ−2α+1)dσ

6
t2α

(2α− 1)
1

Reµ
exp(−Reµt−2α+1)

from which we deduce that

J2 6
(t2α−α/p)ρ

(2α− 1)ρ

1
(Reµ)ρ

(t2α)ρ

(2α− 1)ρ

1
(Reµ)ρ

(exp(−Reµt−2α+1))ρ.
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Finally we have∫ 1

0

Kµ(t, σ)|t− σ|ρdσ

6
exp(Reµt−2α+1)

t2α−α/p

(t2α−α/p)1−ρ

(2α− 1)1−ρ

(exp(−Reµt−2α+1))1−ρ

(Reµ)1−ρ

× (t2α−α/p)ρ

(2α− 1)ρ

1
(Reµ)ρ

(t2α)ρ

(2α− 1)ρ

(exp(−Reµt−2α+1))ρ

(Reµ)ρ

6
(t2α)ρ

(2α− 1)1+ρ

1
(Reµ)1+ρ

,

and

max
t

∫ 1

0

Kµ(t, σ)|t− σ|ρdσ 6
C

(Reµ)1+ρ
.

Similarly one has

max
σ∈[0,1]

∫ 1

0

Kµ(t, σ)|t− σ|ρdt 6
C

(Reµ)1+ρ
.

In virtue of Schur’s lemma, we conclude that

‖A(A+ λI)−1[A−1; (B + zI)−1]‖L(E1) 6
C

|λ|(Reµ)1+ρ
=

C

|λ|(Re z)1+ρ

which implies

‖A(A+ λI)−1[A−1; (B + zI)−1]‖L(E1) 6
C

|λ||z|1+ρ

for any λ ∈ ρ(−A) and any µ belonging to a suitable sectorial curve. Then (LT2)
is verified with τ = 0 and ρ = min(1, 2α − 1). For more details concerning the
commutator used in (LT2), see Labbas-Terreni [11].

Applying Theorem 2.1, we deduce the following statement.

Proposition 3.3. There exists λ∗ such that for all λ > λ∗ and h ∈ DA(σ, p)
Problem (3.5) has a unique solution w ∈ D(A) ∩D(B) such that for all θ 6 1/2p

(i) L(.)w ∈ DA(θ, p)
(ii) ϕ(t)w′ ∈ DA(θ, p)
(iii) L(.)w ∈ DB(θ, p).

Observe that we have a similar result when h ∈ DB(σ, p)). To make precise the
time and the space regularity of w we need to specify the space DA(σ, p). One has

DA(σ, p) =


{
w ∈ E1 : t−2α+α/pw ∈ Lp(0, 1;W 2σ,p(0, 1)),
w(t, 0) = w(t, 1) = 0

}
if 2σ > 1/p,

{w ∈ E : t−2α+α/pw ∈ Lp(0, 1;W 2σ,p(0, 1))} if 2σ < 1/p.

Indeed we know that

DA(σ, p) = {w ∈ E1 : ‖ξ1−σAe−ξAw‖E1 ∈ Lp
∗},

because (−A) is a generator of the analytic semigroup {e−ξA}, ξ > 0. Now, w ∈
DA(σ, p) implies

‖ξ1−σAe−ξAw‖E1 ∈ Lp
∗
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or equivalently∫ ∞

0

‖ξ1−σAe−ξAw‖p
E1

dξ

ξ

=
∫ ∞

0

‖t−2α+α/pξ1−σAe−ξAw‖p
Lp(0,1;Lp(0,1))

dξ

ξ

=
∫ ∞

0

( ∫ 1

0

‖t−2α+α/pξ1−σ(Ae−ξAw)(t)‖p
Lp(0,1)

dt
)dξ
ξ
< +∞.

Since

(Ae−ξAw)(t) = L(t) eξL(t)(w(t)),

by Fubini’s Theorem, we obtain∫ ∞

0

‖ξ1−σAe−ξAw‖p
E1

dξ

ξ

=
∫ ∞

0

( ∫ 1

0

‖t−2α+α/pξ1−σL(t) eξL(t)(w(t))‖p
Lp(0,1)

dt
)dξ
ξ

=
∫ 1

0

‖t−2α+α/p‖p
( ∫ ∞

0

‖ξ1−σL(t)eξL(t)(w(t))‖p
Lp(0,1)

dξ

ξ

)
dt < +∞,

which means that, for almost every t, the function y 7→ t−2α+α/pw(t)(y) is in
DL(t)(σ, p). It is well known that this last constant space is

DL(t)(σ, p) = DL(0)(σ, p) = (W 2,p(0, 1) ∩W 1,p
0 (0, 1);Lp(0, 1))1−σ,p

=

{
{w ∈W 2σ,p(0, 1), w(0) = w(1) = 0} if 2σ > 1/p
W 2σ,p(0, 1) if 2σ < 1/p.

Let σ be a fixed positive number satisfying σ < 1/2p. From the above proposition,
we have the following statement.

Proposition 3.4. For all h such that t−2α+α/ph ∈ Lp(0, 1;W 2σ,p(0, 1)), Problem
(3.5) admits a unique solution w fulfilling the regularity properties:

(i) w ∈ Lp(Ω), t−2α+α/pw ∈ Lp(Ω), w(0) = 0
(ii) t−2α+α/pD2

yw ∈ Lp(Ω)
(iii) tα/pDtw ∈ Lp(Ω),
(iv) t−2α+α/pD2

yw ∈ Lp(0, 1;W 2σ,p(0, 1))
(v) tα/pDtw ∈ Lp(0, 1;W 2σ,p(0, 1)).

Let us recall that h(t, y) = t2αg(t, y), g(t, y) = f(t, x) and w(t, y) = u(t, x) where
(t, y) = (t, x/tα). Then∫ 1

0

‖t−2α+α/ph(t, .)‖p
W 2σ(0,1)dt

=
∫ 1

0

tα−2αp

∫ 1

0

∫ 1

0

|h(t, y)− h(t, y′)|p

|y − y′|2σp+1
dy dy′ dt

=
∫ 1

0

t2σαp

∫ tα

0

∫ tα

0

|f(t, x)− f(t, x′)|p

|x− x′|2σp+1
dx dx′ dt,
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from which we deduce that ϕ−2+1/ph ∈ Lp(0, 1;W 2σ,p(0, 1)) signifies that∫ 1

0

ϕ(t)2σp

ϕ(t)∫
0

∫ ϕ(t)

0

|f(t, x)− f(t, x′)|p

|x− x′|2σp+1
dxdx′dt <∞.

We denote this condition by

f ∈ Lp
ϕ2σ (0, 1;W 2σ,p

ϕ ).

Similarly, we can prove the following equivalences.

Proposition 3.5.
(i) t−2α+α/pw ∈ Lp(0, 1;Lp(0, 1)) if and only if u ∈ Lp(U)
(ii) t−2α+α/pD2

yw ∈ Lp(0, 1;W 2σ,p(0, 1)) if and only if D2
xu ∈ L

p
ϕ2σ (0, 1;W 2σ,p

ϕ )
(iii) tα/pDtw ∈ Lp(0, 1;W 2σ,p(0, 1)) if and only if Dtu ∈ Lp

ϕ2σ (0, 1;W 2σ,p
ϕ ).

Then Theorem 1.1 is a consequence of the previous propositions. Note that the
regularity of the solution in this result is maximal, when f ∈ Lp

ϕ2σ (0, 1;W 2σ,p
ϕ ).

4. Proof of Theorem 1.2

Assume that ϕ(t) =
√
t, m = t−1 and λ > 1/2p. Recall that u(t, x) = w(t, y).

Then problem (1.1) is equivalent to the following problem in X = Lp(0, 1)

tw′(t) + Lw(t) + λw(t) = tg(t) t ∈ (0, 1),

w(0) = 0,
(4.1)

where
D(L) = {ψ ∈W 2,p(0, 1) : ψ(0) = ψ(1) = 0}

(Lψ)(y) = −ψ′′(y)− 1
2
yψ′(y).

(4.2)

Observe that D(L) = X. It is sufficient to consider the equation

tw′(t) + Lw(t) +
1
2p
w(t) = h1(t), t ∈ (0, 1),

w(0) = 0,
(4.3)

where h1 is in the space

E2 = {h ∈ Lp(0, 1;Lp(0, 1)) : t−1+1/2ph ∈ Lp(0, 1;Lp(0, 1))}.
Then, we can write Bw +Aw = h1, where

D(A) = {w ∈ E2 : t−1+ 1
2pw ∈ Lp(0, 1;W 2,p(0, 1) ∩W 1,p

0 (0, 1))}
(Aw)(t) = Lw(t), t ∈ (0, 1),

and
D(B) = {w ∈ E2 : t

1
2pw′ ∈ Lp(0, 1;X)}

(Bw)(t) = t w′(t) +
1
2p
w(t), t ∈ (0, 1).

(4.4)

Since p > 3/2 then 1/2p + 1/p < 1 and w(0) is well defined in D(B). We will see
below that necessarily w(0) = 0.

Observe that the condition (DV3) is satisfied. In order to apply Theorem 2.2 we
need to verify (DV1), (DV2).
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Proposition 4.1. Operators A and B are linear and closed with dense domains in
E2. Moreover, they satisfy (DV1) and (DV2).

Regarding the operator B, the proof is based on the solvability of the spectral
equation

Bw + zw = h1,

where h1 ∈ E2 and z > 0. Then

t w′(t) +
1
2p
w(t) + zw(t) = h1(t)

admits the following solution

w(t) = t−z−1/2p

∫ t

0

sz−1+1/2ph1(s)ds.

Observe that w(0) = 0 since

‖t−z−1/2p

∫ t

0

sz+1/2p−1h1(s)ds‖X 6
∫ t

0

s−1/2ps−1+1/2p‖h1(s)‖ds

6 ‖h1‖E

( ∫ t

0

s−q/2pds
)1/q

6
t

2p−3
2p−2

(1− q/2p)1/q
‖h1‖E2 ,

and p > 3/2 (recall that 1/p+ 1/q = 1). On the other hand, we have

‖(zI +B)−1h1‖p
E2

= ‖w‖p
E2

=
∫ 1

0

‖t
−1+1/2p

w(t)‖p
Xdt,

and

t
−1+1/2p

w(t) =
∫ t

0

t
−z−1

sz−1+1/2ph(s)ds =
∫ 1

0

Kz(t, s)s
−1+1/2p

h(s)ds,

where

Kz(t, s) =

{
t
−z−1

sz if s < t

0 if s > t.

So

sup
t∈[0,1]

∫ 1

0

|Kz(t, s)|ds 6 sup
t∈[0,1]

∫ t

0

t
−z−1

szds 6
1

z + 1
,

and for all z > 0,

sup
s∈[0,1]

∫ 1

0

|Kz(t, s)|dt 6 sup
s∈[0,1]

∫ 1

s

t
−z−1

szdt 6
1
z
.

Then, there exists a constant C(p) such that

‖(B + zI)−1‖L(E2) 6
C(p)
z

for any large z. Moreover, we can see that

(B−1h1)(t) = t−1/2p

∫ t

0

s−1+1/2ph(s)ds,

and
‖(B−1h1)(t)‖X 6 t1−1/2p‖h1‖E2 ,
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which implies

‖B−1h1‖E2 6 C(p)‖h1‖E2 .

So B−1 ∈ L(E2) and ii) of (DV 1) is verified.
Now, to prove that B ∈ Bip(E2), we set

Bw = B0w +
1
2p
w,

with

D(B0) = {w ∈ E : t
1
2pw′ ∈ Lp(0, 1;X), w(0) = 0} = D(B)

(B0w)(t) = t w′(t), t ∈ (0, 1).

Consequently, it is sufficient to show that B0 ∈ Bip(E2) (see [15, Theorem 3]).
Due to the Dore-Venni similar techniques used in [3], we have, for t ∈ (0, 1) and
Re(z) ∈]0, 1[

(B−z
0 w)(t) =

1
Γ(z)Γ(1− z)

∫ ∞

0

λ−z
(
(λ+B0)−1w

)
(t)dλ

=
1

Γ(z)Γ(1− z)

∫ ∞

0

λ−zt−λ

∫ t

0

sλ−1w(s)dsdλ

=
1

Γ(z)Γ(1− z)

∫ ∞

0

λ−z

∫ t

0

(
s

t
)λw(s)

ds

s
dλ

=
1

Γ(z)Γ(1− z)

∫ ∞

0

λ−z

∫ t

0

exp
(
λ ln(

s

t
)
)
w(s)

ds

s
dλ

=
1

Γ(z)Γ(1− z)

∫ t

0

w(s)
(
ln(

t

s
)
)z−1

( ∫ ∞

0

µ−ze−µdµ
)ds
s

=
1

Γ(z)

∫ t

0

(ln
t

s
)z−1w(s)

ds

s
.

which implies that, for τ < 0,

(B−z
0 w)(eτ ) =

1
Γ(z)

∫ τ

−∞
(τ − σ)z−1w(eσ)dσ.

Let us set ω = −1 + 1
2p , and

ψ(σ) =
1

Γ(z)
(max{σ, 0})z−1eσ(ω+1/p) for σ ∈ R,

φ(σ) =

{
eσ(ω+1/p)w(eσ) for σ ∈ (−∞, 0),
0 for σ ∈ (0,∞).

Then it is easy to verify that

(ψ ∗ φ)(τ) = eτ(ω+1/p)(B−z
0 w)(eτ ),
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for any τ ∈ R−. Then we have

‖φ‖Lp((−∞,+∞);X) =
( ∫ 0

−∞
‖eσ(ω+1/p)w(eσ)‖p

Xdσ
)1/p

=
( ∫ 0

−∞
eσ(ωp+1)‖w(eσ) ‖p

Xdσ
)1/p

=
( ∫ 1

0

‖tωw(t)‖p
Xdt

)1/p

= ‖w‖E2 .

Since ψ ∈ L1(R), its Fourier transform F (ψ) is

F (ψ)(ξ) =
1√

2πΓ(z)

∫ ∞

0

e−iσξσz−1eσ(ω+1/p)dσ

=
1√

2πΓ(z)

∫ ∞

0

e−σ(iξ−ω−1/p)σz−1dσ

=
1√
2π

(
− 1
p
− ω + iξ

)−z
.

This last equality is obtained by using the curve

γε,R = γ1
ε,R ∪ γ2

R ∪ γ3
ε,R ∪ γ4

ε,R,

with

γ1
ε,R : [ε, R] −→ R;σ 7→ σ,

γ2
R : [0, θ] −→ R;σ 7→ γ(σ) = Reiσ,

γ3
ε,R : [R, ε] −→ R;σ 7→ σ(−1

p
− ω + iξ),

γ4
ε,R : [θ, 0] −→ R;σ 7→ γ(σ) = εeiσ,

where θ = arg(− 1
p − ω + iξ). It follows that

0 = lim
ε→0,R→∞

∫
γε,R

e−u(iξ−ω−1/p)uz−1du

=
∫ ∞

0

e−σ(iξ−ω−1/p)σz−1dσ − Γ(z)
(
− 1
p
− ω + iξ

)−z
.

Therefore,

d

dξ
F (ψ)(ξ) = −iz(−1/p− ω + iξ)−1F (ψ)(ξ)

d2

dξ2
F (ψ)(ξ) = −z(z + 1)(−1/p− ω + iξ)−2F (ψ)(ξ)

Now, let us put z = η − ir with (η, r) ∈]0, 1[×R and

˜(ψ ∗ φ)(τ) =

{
(ψ ∗ φ)(τ) for τ ∈ (−∞, 0)
0 for τ ∈ (0,+∞).
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Then, the extended Mikhlin’s multiplier theorem gives

‖(B−z
0 w)‖E2

= ‖ ˜(ψ ∗ φ)‖Lp((−∞,+∞);X)

6 C max
06j62

(
sup
ξ∈R

∣∣ξj d
j

dσj
F (ψ)(ξ)

∣∣)‖φ‖Lp(X)

6 C(1 + |z|2) sup
ξ∈R

[(
(ω +

1
p
)2 + ξ2

)−Re z/2
e(Im z arg(−ω− 1

p +iξ))
]
‖w‖E2

6 C(1 + η2 + r2)e
π
2 |r|‖w‖E2 .

since −ω − 1/p = 1− 1/2p− 1/p > 0. We then deduce the following proposition.

Proposition 4.2. For any r ∈ R, Bir
0 is a bounded operator in E2. Moreover

r → Bir
0 is a strongly continuous group, and there exists a constant C > 0 such

that
‖Bir

0 ‖L(E2) 6 C(1 + r2)e
π
2 |r|,

See A.9 in the appendix of Dore-Venni [2]. Consequently, condition (ii) of (DV 2)
is satisfied with θB = π/2 + ε for any ε > 0.

Now, we are concerned with the operator A and its realization defined by

(LΨ) = L0Ψ + PΨ

where L0 and P are defined as in (14) and (15) by

D(L0) = {Ψ ∈W 2
p (0, 1) : Ψ(0) = Ψ(1) = 0}, L0Ψ = −Ψ′′;

D(P ) = W 1,p(0, 1), PΨ = −1
2
yΨ′.

It is easy to see that the operator L0 is sectorial. Moreover, thanks to Hölder
inequality, for ψ ∈ D(L0) ⊂ D(P ), we have

‖PΨ‖Lp(0,1) 6 C(p)‖Ψ‖D(L0).

And the operator P = m ◦ i ◦ d is compact from D(L0) into E2 while L is sectorial.
Furthermore, there exists some r0 > 0 such that

ρ(−L) ⊃ Σπ−ε1 = {λ : |λ| > r0 , | arg λ| < π − ε1},

where ε1 ∈]0, π/2[. Observe that the classical second order differential equations
theory with Dirichlet conditions gives, for all δ > 0,

ρ(−(L+ δI)) ⊃ Σπ−ε1 = {λ : | arg λ| < π − ε1}
∀λ ∈ Σπ−ε1 , ‖(Lδ + λI )−1‖L(E2) 6 Mδ/(1 + |λ|),

where Lδ = L+ δI. Consequently, Lδ is a positive operator.
According to Labbas-Moussaoui [12], (L0 + δI)is forms a strongly continuous

group such that for any γ1 > 0, there exists M0 > 0 satisfying

‖(L0 + δI)is‖L(E2) 6 M0e
γ1|s|, ∀s ∈ R .

On the other hand, for any η ∈]0, 1[, (L0 + δI)η is defined and its domain D((L0 +
δI)η) coincides with the complex interpolation space

[Lp(0, 1), D(L0 + δI)]η
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which is contained in W 1,p(0, 1) = D(P ) when η is near to 1, see Triebel [18]. Then,
using Dore-Venni [4], the operator (Lδ)is is bounded for all s ∈ R and

‖(Lδ)is‖L(E2) 6 M ′
δe

(ε+γ1)|s|, ∀s ∈ R ∀ε > 0 .

So, we have a same result for the operator A+ δI, for any δ > 0.
Now, applying the same techniques used in the proofs of Theorem A1 and Lemma

A2, pages 89-90 in [6], we obtain, as δ → 0,

θA = θLδ
= ε+ γ1 ∈]0, π/2[.

The condition θA + θB < π is verified and, finally, A and B satisfy (DV1), (DV2)
and (DV3). Then, Theorem 2.2 leads to

Proposition 4.3. Given h1 ∈ E2, Problem (4.1) has a unique solution w satisfying

w ∈ E2, w(0) = 0,

t−1+ 1
2pw ∈ Lp(0, 1;W 2,p(0, 1) ∩W 1,p

0 (0, 1)),

t
1
2pw′ ∈ Lp(0, 1;Lp(0, 1)).

In the triangle U , using the changes h1(t, y) = t.g(t, y), g(t, y) = f(t, x) with
f ∈ Lp(U), we then have h1 ∈ E2. Consequently, from this last Proposition, we
have

(1) w ∈ E2, that is t−1u ∈ Lp(U)
(2) t−1+1/2pD2

xw ∈ Lp(0, 1;Lp(0, 1)) that is D2
xu ∈ Lp(U).

Thus, Equation (1.1) implies Dtu = D2
xu−λt−1u+ f ∈ Lp(U). This completes the

proof of Theorem 1.2.
Note that here, we obtain a maximal regularity of the solution in the triangle

when the second member is only in Lp(U).

Remark 4.4. Note that our approach for solving (3.5) and (4.2) can also be used
in more general situations of elliptic operators L(t) and L.
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Boll. Un. Mat. Italiana, (7), 1-B (1987), 545-569.
[12] Labbas R., Moussaoui M.: On the Resolution of the Heat Equation With Discontinuous

Coefficients, Semigroup Forum, Vol. 60, (2000), 187-201.

[13] Lederman C, Vazquez J. L. & Wolanski N.: A Mixed Semilinear Parabolic Problem From
Combustion Theory, Electron. J. Diff. Eqns., Conf. 06, (2001), 203-214.

[14] Lunardi A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkäuser
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