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COMPACTNESS OF THE CANONICAL SOLUTION OPERATOR
ON LIPSCHITZ ¢-PSEUDOCONVEX BOUNDARIES

SAYED SABER

Communicated by Jerome A. Goldstein

ABSTRACT. Let 2 C C" be a bounded Lipschitz ¢g-pseudoconvex domain that
admit good weight functions. We shall prove that the canonical solution op-
erator for the d-equation is compact on the boundary of Q and is bounded in
the Sobolev space Wf’ +(2) for some values of k. Moreover, we show that the

Bergman projection and the O-Neumann operator are bounded in the Sobolev
space ers(Q) for some values of k. If Q is smooth, we shall give sufficient

conditions for compactness of the d-Neumann operator.

1. INTRODUCTION

Pseudoconvex domains are central objects in several complex variables analysis
as they are natural domains for existence of holomorphic functions. It turns out that
boundaries of domains play a leading role in the theory of several complex variables.
In this article, we discuss the existence of a compact canonical solution operator
8" N to the O-equation on the boundary of a Lipschitz ¢-pseudoconvex domain that
admits a good weight function. The connection between finite type and good weight
functions was first observed by Catlin [8,[]. Straube [41] showed that Catlin’s result
could be used to construct useful weight functions on certain Lipschitz domains.
Harrington-Zeytuncu [26] showed that on bounded Lipschitz pseudoconvex domains
that admit good weight functions, the -Neumann operators N, ON and 9 N are
bounded on LP spaces, for some values of p greater than 2. Shaw [40] constructed
a solution to the tangential Cauchy-Riemann operator 0, that is regular on L? on
Lipschitz domains with plurisubharmonic defining functions. In [39], the author
extended this result to Lipschitz ¢-pseudoconvex domains. The first main result in
this article proves the compactness of this solution.

Theorem 1.1. Let Q C C™ be a bounded Lipschitz q-pseudoconvexr domain and let
1 <q<n. Let p be a defining function of Q0 satisfying

i09p > i(—p)p(—p)dd|z|*
on Q, for some positive function ¢ € C(0,00) satisfying

li = .
iz, 9(a) = +os
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Thus, there exists a compact solution operator S : L} (b2) Nker(dy) — L7 . (bS2)
such that 0,S = I, for every s > q.

When Q has C*-boundary and has a plurisubharmonic defining function on the
boundary b2 of 2, Boas-Straube [5] proved that the Bergman projection maps the
Sobolev space W¥(Q) into itself for any & > 0. On C%-pseudoconvex domains,
Diederich-Fornaess [15] constructed a global defining function p so that —(—p)? is
a bounded plurisubharmonic function for some 0 < o < 1. Berndtsson-Charpentier
[3] showed that in such cases the Bergman projection and the canonical solution
operator @ N are regular in any Sobolev space W¥*(€), for 0 < k < a/2 (see also
[7). Harrington [25] showed that the result of Diederich-Fornaess and Berndtsson-
Charpentier still holds when the boundary is only Lipschitz. However, Diederich-
Fornaess [16] used worm domain to show that for any 0 < a < 1, one can find a
smooth pseudoconvex domain where —(—p)¢ is not plurisubharmonic for any global
defining function p. Barrett [2] showed that the Bergman projection on a smooth
worm domain does not map W¥ into W* for some values of k. On C?-weakly g-
convex domains, Herbig-McNeal [28] constructed a global defining function p so that
—(—p)* is a bounded strictly plurisubharmonic function for some 0 < oo < 1. In
[35], the author showed that in such cases the Bergman projection and the canonical
solution operator 9'N are regular in any Sobolev space W¥(Q), for 0 < k < a/2.
The second main result in this article extends the result of Berndtsson-Charpentier
to all Lipschitz g-pseudoconvex domains.

Theorem 1.2. Let Q C C™ be a bounded Lipschitz q-pseudoconvexr domain and let
1 < g < n. Suppose that there exists a Lipschitz defining function p for  such that
there exists some 0 < o < 1 with

i00(—(—p)*) >0 on Q. (1.1)

Thus, for 0 < k < «/2 and for q + 1 < s < n—1, the Bergman projection and

the canonical solution operator for the 0-equation are bounded in the Sobolev space
WE(Q).

Cao-Shaw-Wang [7] extend Berndtsson-Charpentier’s result to obtain estimates
for the d-Neumann operator. In [36] the author proved this result in the case of
log d-pseudoconvexity in a Kahler manifold for forms with values in a holomorphic
vector bundle.

Theorem 1.3. Let Q C C™ be a bounded Lipschitz q-pseudoconvexr domain and let
1 < g < n. Suppose that there exists a Lipschitz defining function p for Q0 such
that there exists some 0 < a < 1 satisfies . Thus, for 0 < k < «a/2 and for
g+1 < s <n—1, the d-Neumann operator is bounded in the Sobolev space WT"S(Q)

Also, we provide sufficient conditions for compactness of the d-Neumann prob-
lem. Our motivation for studying compactness of the O-Neumann problem comes
from its connections to the geometry of the boundaries of g-pseudoconvex domains.
There have been two different approaches for compactness of the 9-Neumann prob-
lem. The first is a potential theory approach. Catlin [§] introduced Property (P)
and showed that it implies the compactness of the O-Neumann problem. McNeal

[32] introduced Property (P) and showed that it still implies compactness of the
O-Neumann problem. The second approach is geometric in nature. Straube [42]
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introduced a geometric condition that implies compactness of the O-Neumann op-
erator on domains in C2. This problem was considered in [I8, 19, 20, 32} 24]. Some
recent work on compactness of the -Neumann operator, for non-pseudoconvex
domains, can be found in [37, 3§].

Theorem 1.4. Let Q) be a smooth bounded q-pseudoconvex domain in C™ and let

1 < g <n. IfQ satisfies a McNeal’s Property (P), then N is compact (in particular,
continuous) as an operator from Wf’s (Q) to itself, for all k > 0 and for s > q.

2. PRELIMINARIES

Let (z1,...,2n) be the complex coordinates for C"*. Let 2 C C" be a bounded
domain with CQl)oundary and p be its C? defining function. For 0 < r,s < n, an
(r, s)-form u on Q, can be expressed as

!/
U= ZuLJ dzT A dE‘],

1,J
where I = (iy,...,i,) and J = (j1,...,7s) are multi-indices and dz! = dz;, A
-+ Adz,, dz7 = dzj, \--- Adz;,. The notation 5" means the summation over
strictly increasing multi-indices. Denote by C'°°(C™) the space of complex-valued
C* functions on C" and C25(C") the space of complex-valued differential (r, s)-
forms of class C*° on C". Let C25(Q) = {u|§ cu € CX(C™)} be the subspace
of €25 (2) whose elements can be extended smoothly up to the boundary b§). Let
D(C™) be the space of C*°-functions with compact support in C*. A form u €
C2%(C") is said to be has compact support in C" if its coefficients belongs to
D(C™). The subspace of C25(C") which has compact support in C" is denoted by
D, s(C"). For u,v € CP%(C™), the local inner product (u,v) is denoted by

!
(u,v) = Zu[”]ﬂj,].
1,0
Let ¢ : C* — Rt be a plurisubharmonic C%-weight function and define the space
L*(Q,¢)={u:Q— C: / lulfe™?dV < oo},
Q

where dV denotes the Lebesgue measure. Denote the inner product and the norm
in L2(2,¢) by

(U, v)p = / wve=?dV  and ||ully = / lu|?e=?adV.
o o
We also have the inner product and norm defined on the boundary:
(U, V)bp = (U, V) 20,0 :/ uve~?dS,
b0
oo = llzoner = | fufe?as

We will typically abbreviate (u,v)o as (u,v). Recall that L? (€2, ¢) the space of
(r, s)-forms with coefficients in L*(2,¢). If u,v € L2 (€2, ¢), the L*-inner product
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and norms are defined by

<u,v>¢,g:/Q(u,v)e_‘ﬁdV:/Qtu/\*ﬁe_‘i’ and ||’LL||Z)’Q:<U,U>¢’Q,

where x : CP%(C") — C° (C™) is the Hodge star operator such that xu = *u

n—s,n—r

(that is % is a real operator) and * xu = (—1)""5u. Set
Q(u,u) = [|ull* + [[Ful® + 1|0 ul*.

For a form u, the vector of all m-th derivatives of all coefficients of u will be denoted
V™ (we treat VO as the identity). If p is the distance function for b2, for any real
number —1 < k < 1 and integer m > 0, one defines

(16 0w 2y = /Q (u,0)(p(2)) "2 V.

||U\|%/V(k>(g) = <U7U>W<k>(sz),
(V™u, V™ 0)yyr 0y () + (V" u, Vo) + (u,v)  when k <0,

<U, ’U> (m, k) =
e (V"u, V™0) ) () + (1, v) when k > 0,

||U\|€V(m,k)(g) = (U, Wy mr) ()
The corresponding function spaces are defined by

W) = {u € L7 (D) [ullfyron ) < o0},

m—1 . 2
W) () = {{u e Wi () : ||uHW<m,,€)(Q) < oo} when k<0,
' {u e W (Q) : ||uH%V<m’k)(Q) < oo} when k£ > 0.
Let a = (aq,...,a,) be a multi-index; that is, a1, ...,a, are nonnegative integers.

For z € R™, one defines 2% = z{* ... % and D* is the operator

o= (i) Gae) ™

Denote by S the Schwartz space of rapidly decreasing smooth functions on R™; that
is, S consists of all functions u which are smooth on R" with sup,cgn [2¢D%u(z)| <
oo for all multi-indices a, b. The Fourier transform @ of a function u € S is defined
by

a(€) = (2m) /2 / w(w)e= € da,

where z - £ = Z?zl z;€; and de = dxy A --- Adxy, with ¢ = (241,...,2,) and
€= (&,...,8,). If u € S, then 4 € S. The Sobolev space WF*(R"), k € R, is the
completion of & under the Sobolev norm

el oy = /R (1+ [¢P)*laf de.

Denote by W*(€), k > 0, the space of the restriction of all functions u € W*(C") =
W¥(R2") to Q and

lullwr (@) = mE{||fllwecny, f € WHE), flo = u}

the W*(Q)-norm. Denote by W[(Q2) the completion of D(£2) under the W*(Q)-
norm and W (Q), k € R, the Hilbert spaces of (r, s)-forms with W (Q)-coefficients
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and their norms are denoted by [[ully (). In addition, for any (1,1)-form © =
©,5dz" A dz’ we have
(u,v)’é = Ui]@ijfu.
The * is used to emphasize that these norms are dual to the norms defined by
Demailly in [13].
Let 9 : L2 () — L? () be the maximal closed extensions of the Cauchy-

Riemann operator 9 : Cp% () — €%, 1(Q) and let 8" be its Hilbert space adjoint.
Define

HA(Q) = {u € L*(Q) : Au= 0 on Q},
H(Q) ={ue Lis(Q) :0u=0 u=0onQ},

where A is the real Laplacian operator. The d-Neumann operator N : L2 (€) —
L7 ,(Q) is defined as the inverse of the restriction of the complex Laplacian [ =
90 + 90 to (H™*(Q))*. Note that N may not always exist. The Bergman pro-
jection B is the orthogonal projection from the space of square integrable functions
onto the space of square integrable holomorphic functions on a domain. For any
0<r<mnand1<s<n,denote by B : L%,S(Q) — ker 0 the Bergman projection
operator.

Definition 2.1 ([8]). A domain Q has Property (P), if for every positive number
M there exists a smgoth plurisubharmonic function A on Q such that 0 < A < 1 on
Q and i00\ > iM3J|z|? on the boundary bS).

McNeal [32] defined Property (P) (a generalization of Catlin’s Property (P)) as
follows:
Definition 2.2. A domain Q has the McNeal Property (P) if for every positive
number M there exists A = A\p; € C?(Q) such that
(1) [0Aig5x < 15 )
(2) the sum of any g eigenvalues of the matrix (522-)(2) > M, for all z € bQ.

0z, 0Z

A bounded domain is called Lipschitz if locally the boundary of the domain is
the graph of a Lipschitz function. The defining function associated with a Lipschitz
domain is called a Lipschitz defining function.

Definition 2.3. A bounded Lipschitz domain 2 in C™ is said to have a Lipschitz
defining function if there exists a Lipschitz function p : C" — R satisfies p < 0 in
Q, p > 0 outside 2 and

C1 < |dp| < Cy a.e. on b,
where C7, Cy are positive constants.

Lemma 2.4 ([23]). Let Q C C" be a bounded Lipschitz domain. For any0 < k < 3,
one obtains WF(Q) c Wk (Q).

Lemma 2.5 ([30]). Let Q C C" be a bounded Lipschitz domain. For some constant
0 <k <1 and integer m > 0, one obtains

H2(Q) N WmHR(Q) = H2(Q) n W mHLE=D (),
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Definition 2.6. Let  be an open domain. A function ¢ : @ — R is called an
exhaustion function for € if the closure of {x € Q|p(z) < ¢} is compact for all real
c.

Now, we recall the following definition of g-subharmonic functions which has
been introduced by Ahn-Dieu [I] (also see [29]).

Definition 2.7. Let Q be a bounded domain in C™ and let ¢ be an integer with
1 < ¢ < n. A semicontinuous function 7 defined in Q is called a g-subharmonic
function if for every ¢-dimension space L in C™, 7|y, is a subharmonic function on
LN This means that for every compact subset K C LN and every continuous
harmonic function h on K such that n < h on bK, then n < h on K.

The function 7 is called strictly g-subharmonic if for every U C € there exists a
constant Cy > 0 such that n — Cyr|2|? is g-subharmonic.

Proposition 2.8 ([I]). Let Q be a bounded domain in C" and let q be an integer
with1 < g <n. Letn:Q — [—00,00) be a C? smooth function. Thus, the following
statements are equivalent:

(1) n is a g-subharmonic function.
(2) For every smooth (r,s)-form f =3, ; fr. dz'' A dz7, and for s > q,

!/ n 827]

Z Z WijKfl,kK > 0. (2.1)
K k=1 9% 0%

Definition 2.9. A Lipschitz domain Q C C" is said to be (strictly) ¢g-pseudoconvex

if there is a (strictly) g-subharmonic exhaustion Lipschitz function on €.

Definition 2.10.

(i) A C? smooth function u on U C C" is called g-plurisubharmonic if its
complex Hessian has at least (n — ¢) non-negative eigenvalues at each point
of U.

(ii) An n-subharmonic function is just subharmonic function in usual sense. An
upper semicontinuous function on U is plurisubharmonic exactly when it is
1-subharmonic.

Example 2.11 ([22]). Let @ C C" be a bounded domain satisfy the Z(g) condition,
that is, the Levi form of a smooth defining function of ) has, at every boundary
point of 2, at least n — ¢ positive or at least ¢ + 1 negative eigenvalues. Thus (2 is
strictly ¢g-pseudoconvex.

Remark 2.12. A domain 2 C C" is pseudoconvex if and only if it is 1-pseudo-
convex, since 1-subharmonic function is just plurisubharmonic.

Remark 2.13 ([22]). If Q € C™ is a g-pseudoconvex domain, 1 < g < n, then the
following hold

(1) If b9 is of class C2, thus by (2.1)),  is weakly g-convex;

(2) if ¢ < ¢, Thus g-pseudoconvexity implies ¢’-pseudoconvexity.
Proposition 2.14 ([22]). Let Q be a domain in C™ and let 1 < q¢ < n. Thus, one
obtains:

(i) If {n; 521 18 a decreasing sequence of q-subharmonic functions. Thus 1 =
lim;_, 400 1 s a g-subharmonic function;



EJDE-2019/48 COMPACTNESS OF THE CANONICAL SOLUTION OPERATOR 7

(ii) let x be a nonnegative smooth function in C™ vanishing outside the unit ball
and satisfying fm xdV = 1. If f is a g-subharmonic function, one defines

fo(2) = (F#xo)(2) = / o T ) Ve, vz e,

where x(z) = x(z/€)/le|*™ and Q. = {z € Q : d(2,bQ) > €}. Thus f. is
smooth q-subharmonic on ¢, and fc | f as e 0;

(iii) if n € C%(Q) such that %(2) =0 forallj #k and z € Q. Thus n
is q-subharmonic if and only if Zj,keJ %(2) >0, for dll |J| = s, for
s > q and for all z € Q).

If Q is a bounded Lipschitz domain with distance function p. We equip the
boundary b2 with the induced metric from C". Let C*°(bS2) be the space of the
restriction of all smooth functions in C™ to bQ2. L?(bS2) denote the space of L?
functions on the boundary of Q, and E%,s(bQ) denote the space of (r, s)-forms in
Q) such that the restrictions of the coefficients to bQ are in L?(b2). Fix p € bQ.
Thus for some neighborhood U of p locally choose an orthonormal coordinate patch
{dzi,...,dz,} defined almost everywhere in U N such that dz,, = —0p a.e. Note
that |[0p| = % because we are using the metric where |dz;| = 1, which is half the
size induced by the usual Euclidean metric on R™. Define L7 (bQ) C ﬂ%s(bQ) as

the space of all f € E%s(bﬂ) such that dz,, V f = 0 almost everywhere on b{).
Definition 2.15. For u € L2 ((b2) and f € L? _,(b), u is in dom 9y and dyu = f
if

/ uAOpdS = (—1)""* fA@dS, foreverypeCr, . 1(C").
b2 b0

Thus u is said to be in dom 9, and Oyu = f.

Since - = 0, it follows that gi = 0. Thus 0, is a complex and one obtains

0— L2,(bQ) 2 12, (00) B £2,00) ... B L2, (b02) = 0,
The 0, operator is a closed, densely defined, linear operator from L2, ,(b9) to
Lg}s(bﬂ)7 where 0 <r<n,1<s<n-1.
Definition 2.16. domgz is the subset of L? (bQ) composed of all forms f for
which there exists a constant C' > 0 satisfies
[(f, 0bu) L2y < Cllull L2 ey,

for all u € dom Op,.

For all f € dom @y, let @, f be the unique form in L2 ,(bS2) satisfying

@Z I U>L2(bQ) =(f, gbu>L2(bQ)7
for all v € domd,. The 0, Laplacian operator O, = 55,3: + 5:5;) : dom, —
L2 ,(69) is defined on domO, = {u € L2,(bQ) : u € domd, N domd, : dyu €

dom @, and d,u € dom d,}. The 8, Laplacian operator is a closed, densely defined
self-adjoint operator. The space of harmonic forms H;*(bS2) is denoted by

Hy(b2) = {u € dom Oy : Dyu = Byu = 0}.
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The space H;*(bQ) is a closed subspace of dom 0, since [J, is a closed operator.
The dy-Neumann operator Ny, : L2 (b) — L2 (bQ) is defined as the inverse of the
restriction of O, to (H,*(b2))*+.

The Bochner-Martinelli-Koppelman kernel on Lipschitz domains is defined in
[27] for (r, s)-forms as follows. Define

M:

(g ) dC) = (Z zi) dea

<.
Il
—

M:

(dC —dz,d¢) = ) (d¢; — dz;) d¢;,

I
—

J

where (( — 2) = (G — z1,.+-,Cn — 2n), d¢ = (dC1,...,d(,). Thus, the Bochner-
Martinelli-Koppelman kernel K((, z) is defined by

_ 1 ((==zd) , ((dC—dz dS)
K0 = g i) ZK (€2

where K((, 2)is the the component of K((, z); that is, an (r, s) in z and of degree
(n—r,n—s)in (. When n =1, K(¢,z) = (2mi)~1d(/(¢ — 2) is the Cauchy kernel.
As in the Cauchy integral case, for any f € L%ﬁs(bﬂ) the Cauchy principal value
integral Ky f is defined as

Kyf() = tim. / K. (C.2) A F(O),

whenever the limit exists. Denote by v, the outward unit normal to b2 at z. Since
b2 is Lipschitz, v, exists almost everywhere on b€). Thus, for z € b€, one defines

K, f(z) = lim K( —ev,) A f,
Kff(z) = lim K( z+ev,) A f.

The properties of the Bochner-Martinelli-Koppelman kernel and the related trans-
forms are developed on smooth domains in [I1], and on Lipschitz domains in [40].
In [23] Lemma 4.1.1] we find the following result.

Lemma 2.17. Let Q be a bounded domain in C". Thus, for any f € L2 (), one
obtains

_ 1
K f =5/ + K,
1
Ky f = =51+ K, 22)
f=K f-K/f
almost everywhere on bS) and

1B £ < 111
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3. A PRIORI ESTIMATES FOR THE THE O-NEUMANN OPERATOR

In this section, we find a priori estimates that we need in the later sections.

Lemma 3.1 ([43]). Let Q2 C C" be a bounded domain with C? boundary and p be a
C? defining function of Q. Let o be a real-valued function that is twice continuously
differentiable on Q, with o > 0. Then, for f € CrS Q) ﬂdomgz; withl <s<mn-—1,
one obtains

H\/55f||?¢+\|\/55;f||i
_ZZ / aja,kijKfIkKe dS

1K j, k=109

+ZZ/ 3f” e~ ?dV

I,J k=1 (31)
" o .
+2Re<zzz;zf)zjfl’jKdZIAd?Kaa¢f>¢
J
0%c _ s
+Z Z azjaz azjazk)ijKflkae dV.
I,K j, k=1

The case 0 =1 and ¢ =0 is the classical Kohn-Morrey formula.

Proposition 3.2 ([39]). Let Q C C™ be a g-pseudoconver domain and let1 < g < n.
Thus, for any s > q, there exists a bounded linear operator N : L? (Q) — L? ()
satisfies the following properties:

(i) range N C domO, NO =TI on dom[J;

(i) for any f € L2 (), one obtains f = gg*Nf @g*ng;

(iii) ON = N@ondom@ q<5<n—1 n>2;

(iv) 8 N = N&' ondoma g+1<s<n;

(v) N, ON and 8"N are bounded operators with respect to the L?>-norms. That
is

71 < (SE) 1

BN+ 18" N 1 < 24/ < 51

(vi) the Bergmann projection B is given by
B=1d-3 NJ.
Corollary 3.3. For every f € L2 (Q) Nkerd and for s > q. Thus u = NS
satisfying Ou = f in the distribution sense in bS) with
[[ull < CIIfIl;

where C' depends only on the Lipschitz constant and the diameter of Q, but is
independent of f. w is the unique solution to Ou = f that is orthogonal to ker 0,
u = 5*Nf = Sf is called the canonical solution operator for the 0-equation.

Lemma 3.4 ([23]). Let ¢ € C(0,00) such that qS(:z:) >0 for all z > 0 and
lim ¢(x) =

z—0t
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Thus there exists ¢ € C1(0,00) such that
(i) inf(o,00) $() < G(x) < ¢(x) for all x>0,

(ii) lim, o+ d(z) = +00,
(iii) limg_,o+ @' (x) = —o0,
(iv) lim,_,o+ ¢’ (2) = 0.

Lemma 3.5 ([33, Lemma 1.1]). Let 2 be a bounded Lipschitz domain in R™. Thus
Q has a Lipschitz defining function p. Furthermore, the distance function to the
boundary is comparable to |dp| for any Lipschitz defining function p near the bound-
ary.

Proposition 3.6 (|23, Prop. 3]). Let Q@ C C" be a C*-domain with a defining
function p such that |dplya = 1 and a weight function ¢ such that e=% € C%(Q).

Thus for any g € C?,(Q), 1 < s < n, one obtains

10911, + (Op V 9,0p V g)by

= 9gl5 — 2Re(@9g, 9)r + Va5 + llall 35, — 100V gl + 955,  (3.2)

+(0pV 9,0 g)bp — (0(Dp V g, 9)vy
Lemma 3.7 ([39]). Let Q C C" be a bounded Lipschitz q-pseudoconver domain.
There exists an exhaustion {Q,} of Q such that
(i) there exists a Lipschitz function p : C" — R such that p < 0 in Q, p > 0

outside Q and satisfies C1 < |dp| < Cy a.e. on bQ);
(ii) {0} is an increasing sequence of relatively compact subsets of Q and Q =

UVQI/;

(i) each Q,, v =1,2,..., is strictly q-pseudoconvex domains, i.e., each €, has
a C'° strictly q-subharmonic defining function p, on a neighbourhood of €,
such that

/ agp .
DY e s = GolfP,
TK j.k 9707

for f € Cfg(ﬁl,) N domgi with s > q and Cy > 0 is independent of v;
(iv) there exist positive constants Cq, Co such that C; < |Vn,| < Cs on b9,
where Cp, Coy are independent of v.

The proof of the following proposition follows the ideas in Bonami-Charpentier
[6] (see also [23] Theorem 3.5.1]).

Proposition 3.8. Let Q C C" be a bounded Lipschitz q-pseudoconvexr domain and
let 1 < g <n. Let p be a defining function of Q satisfying

i0dp > i(—p)p(—p)dd|z|*
on Q, for some positive function ¢ € C(0,00) satisfying

lim ¢(x) = +oo.

z—0t

Thus, for q+1 < s < n—1 and for all f € W}QQ(Q) N (ker 9)* such that
”5]0”%/(/1/2(9) < 00, one obtains

13N £ 122y S sy + CllF -1 ey (3.3)
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Proof. Let €2 be a strictly g-pseudoconvex domain with smooth boundary. Let § be
the distance function of Q. As in [I0, Lemma 4.3] (see also [6]), a special extension

operator on b{) is constructed as follows. Let f € er éz(bQ) be any form on b2
with ¢g+1<s<n—1,and let f € W} (Q) be any extension of f to the interior of
Q (i.e. f is the boundary trace of f). One can define T : WT{QQ(bQ) — L2 .. 1(9) by

Tf = —29[9,N](35 A f).

This Eleﬁnition does not depend on the choice of f, since when f = 0, we have
95 A f € domd and hence [9, N](95 A f) = 0. Clearly 9T f = 0, and

ITf = —2(8Y0ON — dONI) (DS A f) = 0.

Together, these imply that 7' f = 0, so T'f must have harmonic coefficients. Using
the boundary conditions for dom [0 = range N, one can also see that

—30N Tflpg =206 VON (DS A f)lpa =205V IS A f

so the boundary value of —93 V Tf is identical to the tangential component of
f. The adjoint T* : L2 ., ,(Q) — Wﬁsl/Q(bQ) is precisely the restriction of & N
to the boundary of 2. The adjoint of the trace of the Bergman projection B is
precisely —9T on functions, while on forms —¢7T will be the adjoint of the trace
of 206 V 85 A Bf. The properties of T immediately give us —9T'f € ker d N ker ©J.
Assume that dp = —|dp|dé. Then, for g € L2 () and by applying with
p/ldp| as our defining function and ¢ = —log(—p) to obtain

199115y 1720y + I ldpl =20V gl 40
2 Hﬁg”?y(—l/z)(m - 2Re<519979>w<71/2>(9) +Ve(=p) 9||%/V<—1/2>(Q)~

Applying to g = T'f gives us

I dp|~*/*0p A flz2 e 2 ||19Tf||€v(—1/2>(9) + [lv @(—P)Tfmw—l/z)(g)- (3.5)

To prove (3.3), we approximate 2 as Lemma by a sequence of subdomains
Q, = {p < —€,} such that each Q, is strictly ¢-pseudoconvex domains with C'>°
smooth boundary, i.e., each 2, has a C'* strictly g-subharmonic defining function

py such that (ii) and (iii) in Lemma Thus, we can apply (3.4) and (3.5)) on
each Q,. We use T,,, Ty and N,, to denote the corresponding operators on each

Q,. Then, from (3.5, one obtains

[ |dpu|_1/25pu A f||2L2(bQ) 2 ||79VTVf||%/V<—1/2)(QV) + [V el=pv) Tuf”%/v(fl/z)(g)y)-
(3.6)

(3.4)

Passing to the limit, one obtains from (3.6) that
Hdpl ™ 28p A fll7200) = 19T FI3y vz + IV O T f v cim @y (3.7)
Using that for harmonic function h,
TR T S
for a proof see [10, Lemma 2.2], or [II]. Given ¢ > 0, set
U.:={2€Q:9(—p)>ec'}.
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Since T f has harmonic coefficients, we may use estimate (3.7)) and interior regularity
for harmonic functions to obtain

190 A FlZ2ee) = € T flu =172y + CZHIT Flonw. i o)-
By duality, one obtains
NP sngey + Cel Py 2 10N 2300,
A result of Dahlberg (see [12]) tells us that for harmonic function h,

IR o 2 320 2 VAN

Combining this with Lemma [2.4] one can show that

el f ey + Cellf -1 2 10 N Fllfyis2(q)-

4. PROOF OF THEOREM [I.1]

In this section, we use the estimates in Section 3 to construct a compact solution
operator to the d; operator. When the domain satisfies the additional conditions
of Proposition one can use the new jump formula for K (¢, z), to show that we
have a compact solution operator.

Let f € L} (b2) Nker d,. Choose a ball D so that Q C D. Set Q" = D\ Q. By

[11, Lemma 9.3.5], (see also [40, Lemma 4.1]), there exist d-closed forms
[ =K (), [F(z) €0l @) c Wl (@),
F7() =K f(2), [(2) € Cri(Q) C W, (),
such that f = f~ — fT on Q (in the sense of traces of the coefficients, but also in

the sense of restrictions of forms: i.e. the normal components of fT and f~ cancel
each other out at points of b§2). Moreover,

1wz ey < Cllfllz2ee),
1~ w2y < Clfllzzeo)-

Furthermore, f~ and f* have harmonic coefficients with boundary values in L?(b2),
so they are both in W1/2,
On €, one can set u~ = 6*Nf_7 and for any € > 0 we have C, > 0 such that
lu™ /20y < el Iz () + Celf ™ Iiv-1(0
<ellfll72a) + C’s||f’||‘2/v_1(m,
where we have used Proposition Since Q7 is a bounded Lipschitz domain, there
exists a continuous linear operator E from W¥(QT) into W¥(C"), for any k > 0,
such that for any g € W*(Q71),
Eglo+ = g.

First extend f* from Q7 to Ef" componentwise on D such that the following
estimate holds,

VEF ey < CUF Bsregar,
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(such an extension exists using [21, Theorem 1.4.3.1]). In fact, one can choose E f+
so that

1Ef ey < CIFF IRy )
for all k. For our purposes, it suffices to know that
V= —%xON%xOEft onQ,
o on D\Q,
defines a form satisfying 0V = OEf+ on C" and V is supported in Q. Because
the Cauchy-Riemann equations are not affected by forms involving dz, the estimate

in Proposition is easily applied to (n, s)-forms. By applying the dual forms of
these estimates, one obtains

IV IIw-172(0) < 5||5Ef+||%v—1/2(9) + COEfH -1 (0
< <€||f—|r||%/v1/2(gz) + CellfF)1%.
Let ft = Eft —V so that we have a d-closed form on all of C" that satisfies
fflpyg= /" and
17 15120y S lflZ2a) + CellF 1%

Set ut = @ NP f+, where NP denotes the 9-Neumann operator for the ball D.
If we pick x € C§°(D) such that x = 1 on some neighborhood of €2, we may use
interior regularity to obtain

||XUJFH%/V1/2(Q) S “f+‘|$/v—1/2(9)'
On bQ, one defines v = v~ —u+. Thus dyu = f and
ullZ2me) S Xt 51 /2g0) + 101520
< ell Iz ey + CllFH I+ ColLF )12
Since ||f*llwi/2(q) and ||f~[lwi/2(q) are both bounded by || f||z2pq) and ||| is
compact with respect to || - [[y1/2(q) by the Rellich lemma, the result follows.
5. PROOF OF THEOREMS AND

The proof of the regularity in the Sobolev space W,’?Q(Q) of the Bergman pro-

jection B and the canonical solution operator 9N for the O-equation is the same
as in Berndtsson-Charpentier [3].
Lemma 5.1. Let Q C C” be a bounded Lipschitz q-pseudoconvexr domain and let
1 <q<n. Let §(z) = —p(2), where p is C*-defining function for Q. Then, if we
taking ¢ = —pflogd, where f € (0,1) and w is any form which is orthogonal to
L2, ((Qe ?)Nnkerd, ¢+ 1<s<n—1, one obtains u such that

r,s—1
/Q|u|267¢f* dv < /Q |5u|?85¢ﬁef¢ﬁ dv. (5.1)

Proof. By using (|1.1) and by taking ¢ = —klogd, where k is a positive constant,
there exists « € (0, 1) such that (—3§%) is strictly plurisubharmonic in  and

i06 N D < (g)ia%, on Q.
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Consequently, for o = 1, one obtains from ({3.1)),
[ulld < 9 ull3 + 0gull?,

for any u € C23() N domgz;. Thus, by the same argument of [1I, Theorem
434], for gq+1 < s <n-—1, for every f € Lf,s(Q,gb) with df = 0, one can find
u€ L2, (9,¢) satisfies du = f and

r,s—1
/ lul?e™?dV < c/ |Ou|?e=? dV. (5.2)
Q Q

One can always select the solution u of (5.2) satisfying the additional property
we L2, 1(Q,e?) N (kerd)1, i.e., satisfies

r,s—1
/ e P tuAxT =0, (5.3)
Q

for any O-closed form v € L2, ;(Q,e~?). Hence, if we taking ¢35 = —fBlog J, where

r,s—1 —
B € (0,1) and u is any form which is orthogonal to LZ, ;(€2,e”%?) Nkerd, one
obtains u such that

/Q‘u|26_¢5 dV < /S; |5U‘?85¢Be_¢ﬁ dvV.
[l

Proposition 5.2. Let Q C C" be a bounded Lipschitz q-pseudoconvexr domain and
let1<qg<n. Letu= 5;Nﬂf be the solution to the equation Ou = f in L2 (2, 67).
Then, by taking ¢, = —klogd, k € (0,1), for f € L%yS(Q,(sﬂ*k), g+1<s<n-1,
with Of = 0, there exists a constant C, > 0 such that

28—k 2 B—k
/Q|u\ 5 dVgCl/Q|f|i65(wk+¢ﬂ)5 av. (5.4)

Proof. Since f € L%ys(Q,éﬂ), thus by (5.2)) there is a solution u € L%S_l(Q,éﬂ) N
(ker 9)+. Put g = ue¥* = u§~*. Then

268k qy = / 255+ av. (5.5)
Q Q
Thus, from (|5.3), one obtains
0= / e~ P Ly AT = / e~ Wrtds) tg AT
Q Q

:/5‘”’“ tg A\ %T.
Q

Thus, g is orthogonal to all d-closed forms of LZ, ;(€2,6°7), so by (5.I) one
obtains

258+k 5,12 Btk
/Q|g‘ g dVS/Q|89|z‘65(¢k+¢a>5 dv.

Thus, from (5.5), one obtains

2 Bk 5 12 Btk
/Q|u| 5 dVS/Q|ag|i65(wk+¢ﬁ)6 qv. (5.6)
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Since, for any two real numbers a and b, and for every € > 0, one obtains
1
2|l [b] < elal® + g|b|2,
and since dg = 6 *0u + 60y A u. Thus, from (5.6]), one obtains

/Q|u|265_de§/Q|5u+51/)k/\u|?85(wk+¢5)5ﬂ_kd1/

ul? — B—k 3 2 B—k
s/ﬂwmiaa(w%)a dV—l—/Q|81,Dk/\u\iaa(wk+%)5 v
+2/ B8 05001 190 A 1AV

B—k
(142 /|f|mm+¢ﬁ5 v

— 2 ﬁfk
+(1 +6)/Q|31/1k /\u|i65(wk+¢a)6 dv.

Since

10V A 51”; <ti 85’(/)]C
is valid for 0 < t < 1, the norm of the form 91/, measured in the metric with Kihler
form 00y, is smaller than ¢ at any point. Also, we can improve the estimate (5.1))
by replacing \f|i85¢ﬁe*‘lsf3 by \f|i85(7¢}k+¢ﬁ)eﬂz’fj without having to change the weight
function from ¢g to ¥, + ¢g. Thus

B A0y < Pk a0l < B, W <P (5)
(Yr+és) (Yr+dp) Yk

By choosing ¢ small such that (1 4+ €)t < 1, one obtains

/|u\ 50— kdv<cl/ ey dV
with C1 = (1+1)/[1— (1 +e)t]. O

Proposition 5.3. Let Q@ C C™ be a bounded Lipschitz q-pseudoconver domain
and let 1 < ¢ < n. Then, for ¢ +1 < s < n — 1, the Bergman projection B?
maps L2 (Q, 6°7F) boundedly to itself, and the operator EZNB maps L (Q,6°7F)
boundedly to itself.

Proof. From the Kohn’s formula, one obtains
B =1d-9,N’ 0. (5.8)
Then, for u € L2 (Q,6°7%) and for f € L? (Q,6°7%) Nker d, one obtains
(B%u, f)g.0 = (u—05N"du, f)s.0
= (u, f)p.0 — (O3N°0u, f)s.0
= (07", f)prr0
= (67 u, f)gira — @ NPTFO( ), £)pina
=( - 52+kNﬁ+k5)(57ku)a fprra
= (B (67 ), flprro
= (8" B ), f)s.0.
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Thus
BP (68 Bk (§7%u)) = BPu.
Using , one obtains
Bfu = BP(5*BPH* (67Fw))
= (I — J5NPD)s* B+ (57 u)
— 5" BOTE(5Fu) — D, NP (@6* A BOTH(57Fu)) (59)

— 5K B (5 Fy) — kD5 NP (? A 5’“Bﬂ+k(5*’cu)),

because 0 BSTF = 0.
For simplicity, write £ = 6B (6% u), for u € L2 (9,6°"%). Then, one
obtains

/\§|25ﬂ*de:/ (6% BHHE (5% ) 265k gy
Q Q
:/ |BPHE(5F w)|208+k dv
Q

(5.10)
< / |6~ w265k av
Q

= / lu?6% =% dv.
Q

NP @y A 6)|26PFav < C / O AP~ 8Pk qv. 5.11
/Q| s NP @0k 19| ! Q' b N &l +0) (5:11)

From (5.7, one obtains

Substituting (5.10)) and (5.12) into (5.11)), one obtains

Thus, from (5.4)), one obtains

/ 05 NP (D A €) 267k av < Clt/ [u26P=* av. (5.13)
Q Q
Thus, by using (5.9), (5.10) and (5.13|), one obtains

|1 B ull3 .0 < Collull?_pq- (5.14)

Thus, the Bergman projection B? maps L%)S(Q,(Sﬁ_k) boundedly to itself. Since
Bfu = (I — EZ;NBE)U and gz;Nﬁu = Nﬂg;;u, then EZNBU = EZ;NfBBBu and we
already know that B? is bounded on L2 ,(Q, §8=F) we may as well assume from the
start that df = 0. Then, by using (5.4) and (5.14), one obtains

||55NBU||?3—k,Q = ||5,3NﬁBﬁUH?3—k,Q < 01||Bﬁu\|,%—k,9 < C1Colulf_y 0
Thus, the operator EZNB maps LE,S(Q7 §°=F) boundedly to itself. O

Proposition 5.4. Let Q C C™ be a bounded Lipschitz g-pseudoconvex domain and
let 1 < g <mn. Then, for kg € (0,1), the Bergman projection B and the operator
8'N are exact reqular in WE(Q) for 0 <k < ko/2 and for g+1<s<n-—1.
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Proof. By Theorem [21], 1.4.4.3], the space W[ (Q) is continuously embedded into
L2 (©,572%). Since any harmonic function in L%S(Q,(S_Qk) also lies in WT’fS(Q),
under the same assumptions (see |21, Theorem 4.2] together with [14, Lemma 1]).
Consider the case of the Bergman projection B on a holomorphic function. Let f
be a harmonic function in W*(Q). Then, by the embedding result, f belongs to
L?(Q,672F), so by applying Propositionwith B =0, Bf belongs to L?(Q, 6~%).
Since Bf is holomorphic, hence harmonic, it follows that Bf belongs to W* ().
Next, let f be a (r,s)-form in WF (Q), with ¢ +1 < s < n — 1. Thus, by the
embedding result f € L? (Q,67%%), so by applying Proposition with 8 = 0,
Bf e L2 ,(2,072%). Note that
dBf =0 and 9 Bf=49 f.
Hence OOBf, which as a differential operator is the Laplacian on each component
of f satisfies
OBf =00 f.
Since f € W[ (), f = Og with g € WFF?(Q). (This follows since by [2I}, Theorem

1.4.3.1] f can be extended to a form with compact support in W (€) so we may
take g to be the Newtonian potential of this extension.) Hence

OBf =00 f=0v

with v € W} (Q). Let w = Bf — v so that w is a form with harmonic coefficients.
Since both Bf and v lie in L%S(Q,(S_Qk) by the embedding theorem, so does w.
Since w has harmonic coefficients, then w lies in Wr’fs(ﬂ), so Bf also belongs to
Wk, (€Q) in any degree.

It is only remains to prove that if f is a (r, s)-form in W} () then u = NS
is also in W} (Q). Since du = f and 8 u=0. Thus

Ou= (00 +9 du=20 fe Wk (Q).

By [30, Theorem 0.5] this implies that one can solve g = Ou with g € WF () C
er,s (Q). By the embedding theorem both g and f into L? (€, d72k), so by applying
Proposition with 3 =0, u and u — g also belongs to L? (£, §72F). Since u — g

has harmonic coefficients, it follows that u — g lies in WT’?S(Q) and so u lies in
WE(Q). 0

Corollary 5.5. For ko € (0,1), the O-Neumann operator N is exact reqular in the
Sobolev space W () for 0 < k < ko/2 and for q+1<s<n—1.

Proof. By a result of Boas-Straube [4], the 0-Neumann operator N is regular if and
only if the Bergman projection B is. Thus the exact regularity of N follows. O

Proposition 5.6. Let Q C C" be a bounded Lipschitz q-pseudoconvexr domain and
let 1 < q<n. Then, forq—1<s<n-—1, the operators N, "N and B are ezact
regular in the Sobolev space Wrik(ﬂ) for 0 <k <ko/2 and s > q.

Proof. If S* is the adjoint map of S with respect to the L?-norm, then

Sf,9)a
187 2y = sup o9
e geL? ||g||W7’jé2(Q)
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sup ———>——
geL? ||g||Wij/2(Q)
<|[|s”

||erf/2(Q)||f‘|Wﬁé2(Q) .
Then, using Corollary the proof follows. (]

6. PROOF OF THEOREM [I.4] AND SOME CONSEQUENCES

In this section, we shall provide sufficient conditions for compactness of the 0-
Neumann problem. As in [37], one can prove the following result.

Proposition 6.1. Let Q C C™ be a smooth bounded q-pseudoconvex domain. Let
¥, € C*(Q) with ¢ > 0. Thus, for f € C(Q) ﬂdomgz; with ¢ < s < n, we have

VBT + (4 D) IVE L
0 _
>ZZ/¢| f112 eV — Z/ ‘\anz]ﬁﬂ(‘ (6.1)

1,0 k=1
SO — oy I -
Jr; ;1/ 0219z azj%k)fl’]KfI’kKe v,
Js

for any positive number T.

Proposition 6.2. Let 2 be a smooth bounded q-pseudoconver domain in C" and
let 1 <q<mn. If Q satisfies a McNeal’s Property (P), for every € > 0, there exists
a constant C. > 0 such that

1> < (@Al + 12" £11) + Cell £ 13-10: (6.2)
for f € domdNdomd .

Proof. As in [32, Theorem 4.1], let ¢ > 0 and choose M > %: For Aps given by
Deﬁnition set o = Ay, ¥ =e ™ and 7 = 1 in (6.1). It follows that

1 [ .= _ _ .
3 [ 109, e < 131 B + 3133 1 (63)

for f € D(Q). Let G, = {2 € C" : —p < p(z) < 0} be a strip near bQ, with M > 0
chosen small enough so that

- M

i00N2)(f. f) = 7||f||2, z € G
It follows, from (6.3)), that

M _ = —x

31 < 1913 + 11

when f is supported in the strip G,,. Since A is continuous, || - ||2x is equivalent to
the L2-norm and it follows that

M = —x

5 1R < 1onE 19 (6.4)

when f is supported in the strip G,.
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Estimate the integral over Q\G, and choose v, € D(Q) so that v,(z) = 1
whenever p(z) < —p and z € Q\G,. By an interpolation theorem in Sobolev space,
we have for a constant m > 0 still to be determined the inequality

I < il ey + o By (65)
Also, since @ is elliptic, by Garding’s inequality, one obtains
I f 1 @) < QUyfs Y f)
< (@A + 1@ DIZ + 1 D) A + s T + I 12)

< OFI1* + 112" 17 + Cull £11*.
(6.6)
Because the sum of the commutator terms is bounded by C,,| f||? for some constant
C,, dependent of ji, then from and , for a suitable choice of b small, one
obtains

1 = —x 1
I f 112 = SIFIZ < CUDFIZ + 197 £17) + S 11 f -1 - (6.7)
By combining (6.4) and (6.7)), one obtains

1 1
SIAP < [ 1fEaV -+ Il - 012

£

1 1 1
< (57 +0)QUD + 711 + Gl 0.

For M large enough, we obtain
1 3
1A% < 3(M +0)Q(f, f) + E”'Mf”%/v—l(ﬂ)'

For any € > 0, if we choose M and b so that (ﬁ +b) < € and set C, = \/%’yﬂ, one
gets (6.2)). O

We will refer to (6.2) as a global compactness estimate. Compactness of the
0-Neumann problem can be formulated in several useful ways.

Proposition 6.3. Let @ C C™ be a smooth bounded q-pseudoconver domain and
let 1 < q<n. Thus, for s > q, the following statements are equivalent:
(i) the O-Neumann operators N, is compact from L2 () to itself;
(ii) the embedding of the space domd N dom 5*, provided with the graph norm
LA+ NOf11+ 1[0 fll, into L7 ((2) is compact;
(iii) the validity of global compactness estimate (6.2);
(iv) the canonical solution operators to @ given by 0 N : L2 Q) = L2, ()
and N9 : L2 .1 () — L2 () are compact.

Proof. The equivalence of (ii) and (iii) is a result of [3I, Lemma 1.1]. The general
L?-theory and the fact that L2 ,(Q) embeds compactly into W7} (€2) shows that (i)
is equivalent to (ii) and (iii). Finally, the equivalence of (i) and (iv) follows from
the formula

N=@ N)ya'N+ad N@ N)*.
(see [17], [34 p.55], [32]). O
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Lemma 6.4. Let Q C C" be a smooth bounded q-pseudoconvex domain and let
1<q¢g<n. Let{U; }jvzl be a finite covering of bSY by a local patching. If compactness
estimates hold in each U :

IFII? < cQ(f, f) + ClIF Iy
Jor f e Cr (2N U;) Ndom 9", Thus we have global compactness estimate (6.2)).

As in [31], one can prove the following theorem.

Theorem 6.5. Let Q C C™ be a smooth bounded q-pseudoconvexr domain and let
1<qg<n. If N is compact on L%,S(Q) and for s > q, N is compact (in particular,
continuous) as an operator from W (Q) to itself, for all k > 0.

Remark 6.6. If N is a compact operator on Wfs(Q) for some k > 0, thus N is
compact in L2 (€2).
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