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Computing Eigenvalues of Regular

Sturm-Liouville Problems ∗

H.I. Dwyer & A. Zettl

Abstract

An algorithm is presented for computing eigenvalues of regular self-
adjoint Sturm-Liouville problems with matrix coefficients and arbitrary
coupled boundary conditions.

Introduction

SLEDGE [8], SLEIGN [3],[2] (see also [6]) and the NAG library code [9] are
all highly effective, state of the art general purpose codes for computing eigen-
values of regular scalar Sturm-Liouville (SL) problems with separated boundary
conditions. Although there are special purpose codes (e.g. [7]) for computing
eigenvalues of regular scalar SL problems with periodic boundary conditions
there seems to be no general purpose algorithm available for general coupled
self-adjoint boundary conditions, even in the scalar case.

The purpose of this paper is to present such an algorithm not only for the
scalar case but also for SL problems with matrix coefficients and general self-
adjoint coupled boundary conditions. Our method is based on a construction
which, given an SL problem with a coupled boundary condition, constructs
a higher dimensional problem with separated conditions which has exactly the
same eigenvalues as the given coupled problem. The general purpose code for SL
problems of arbitrary dimension with separated boundary conditions developed
by Dwyer in [4] can then be used to compute these eigenvalues. The eigenfunc-
tions of the original problem can also be recovered from the eigenfunctions of
the constructed higher dimensional problem.

It is worth noting that the eigenvalues and eigenfunctions of the new problem
with separated conditions are not simply approximations for those of the original
problem; the correspondence is exact. This may have theoretical implications
as well as numerical ones.
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Problems and Theorems

A Sturm-Liouville (SL) problem consists of the second order linear ordinary
differential equation

−(py′)′ + qy = λwy on (a, b) (1)

together with boundary conditions. For the case when both endpoints a, b are
regular, these have the form

C

(
y(a)

(py′)(a)

)
+D

(
y(b)

(py′)(b)

)
=

(
0
0

)
. (2)

Theorem 1 Let p, q, w be complex m × m matrix functions defined on the
interval [a, b], −∞ < a < b <∞, satisfying the following conditions:

1. The matrix p(t) is invertible for almost all t ∈ (a, b).

2. Each component of p−1, q, w is in L1(a, b).

3. The matrices p(t), q(t), w(t) are hermitian for almost all t ∈ (a, b).

4. The matrices p(t) and w(t) are positive definite for almost all t ∈ (a, b).

Assume that the complex constant 2m × 2m matrices C and D satisfy:

5. The 2m × 4m matrix (C|D) has full rank.

6. CJC∗ = DJD∗, where J =

(
0 Im
−Im 0

)
and Im denotes the m × m

identity matrix.

Then the boundary value problem, (1),(2) is self-adjoint; its eigenvalues are all
real, there are countably many of them {λn : n ∈ N0 = {0, 1, 2, · · ·}}, and they
can be ordered to satisfy

−∞ < λ0 ≤ λ1 ≤ λ2 ≤ · · · , with λn →∞ as n→∞.

Proof: See Mőller and Zettl [5]. 2
It is convenient to partition the two matrices C and D into four 2m × m

matrices
C =

(
C2 −C1

)
, D =

(
−D2 D1

)
. (3)

Using these, the boundary condition (2) may be rewritten in a form which
closely resembles the Lagrange sesquilinear form

(D1(py
′)(b)−D2y(b))− (C1(py

′)(a)− C2y(a)) = 0. (4)

Below we consider the question: How can the eigenvalues λn be computed
numerically? The codes SLEDGE, and SLEIGN, as well as the codes in the
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NAG library, address this question only for the special case when m = 1 and
the boundary conditions 2 are separated, i.e., can be reduced to the form

A1y(a) +A2(py
′)(a) = 0 , B1y(b) +B2(py

′)(b) = 0. (5)

The algorithms used by SLEIGN and the NAG routine are based on the Prüfer
transformation, while SLEDGE is based on a piece-wise constant approximation
of the coefficient functions. ( We understand that the NAG library routine
has been updated to incorporate some features of SLEDGE.) The methods
underlying these codes do not seem to be susceptible to an extension to the
cases when m > 1 and probably also not to the case m = 1 when the boundary
conditions are coupled.

Our method consists in constructing a new problem of dimension 2m (i.e.,
m → 2m) which has exactly the same eigenvalues and separated boundary
conditions. On this new problem, the method due to Atkinson, Krall, Leaf,
and Zettl [1] as extended and refined by Dwyer [4] can then be applied.

Construction of an Equivalent Separated Prob-
lem

We begin with an m-dimensional self-adjoint problem, (1), (2) satisfying the
conditions of Theorem 1.

Definition

1. Let P (x) =

(
p(x) 0

0 p((a+ b)− x)

)
for all x ∈ [a, b]

2. Let Q(x) =

(
q(x) 0
0 q((a+ b)− x)

)
for all x ∈ [a, b]

3. Let W (x) =

(
w(x) 0

0 w((a+ b)− x)

)
for all x ∈ [a, b]

4. Let A1 =

(
I −I
0 0

)
, A2 =

(
0 0
I I

)
5. Let B1 =

(
−D2 C2

)
, B2 =

(
D1 C1

)
.

Consider the problem on the interval [c, b], where c = (a+ b)/2, given by

−(PY ′)′(x) +Q(x)Y (x) = λW (x)Y (x) (6)

subject to:

A1Y (c) +A2(PY
′)(c) = 0 (7)

B1Y (b) +B2(PY
′)(b) = 0. (8)
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Theorem 2 Let m be a positive integer, and let Problem 1 be a boundary value
problem of dimension m defined by equations (1), (2) which satisfies the con-
ditions of Theorem 1. Let Problem 2 be the boundary value problem defined
by (6),(7),and (8). Then Problem 2 is a regular self-adjoint Sturm-Liouville
problem of dimension 2m on the compact interval [c, b], with separated boundary
conditions, and the following statements are true:

1. A real value λ is an eigenvalue of Problem 1 if, and only if, λ is an
eigenvalue of Problem 2.

2. The multiplicity of λ as an eigenvalue of Problem 1 is equal to the multi-
plicity of λ as an eigenvalue of Problem 2.

3. Let λ be an eigenvalue of Problem 1, and hence also of Problem 2. A
function y is an eigenfunction of Problem 1 if, and only if, the function
Y defined by

Y (x) =

(
y(x)

y((a+ b)− x)

)
(9)

is an eigenfunction of Problem 2.

4. Let λ be an eigenvalue of multiplicity k for Problem 1, and hence also for
Problem 2, and let y1, · · · , yk be linearly independent eigenfunctions of λ
for Problem 1.

Let Y1, · · · , Yk be defined according to equation (9) using y1, · · · , yk re-
spectively. Then {y1, · · · , yk} is an orthonormal set in the Hilbert space
L2
w(a, b) if, and only if, the set {Y1, · · · , Yk} is an orthonormal set in the

Hilbert space L2
W (c, b).

Proof: To verify that Problem 2 is a regular, self-adjoint problem, simply
verify that all of the constraints are met. We then have:

1. Suppose that λ is an eigenvalue of Problem 1. Then there is a nontrivial
solution y(x) defined on the interval [a, b] such that

(a) −(py′)′(x) + q(x)y(x) = λw(x)y(x) for all x ∈ [a, b]

(b) C2y(a)− C1(py
′)(a)−D2y(b) +D1(py

′)(b) = 0.

Since the interval is [a, b], the differential equation also holds at (a+b)−x;
for all x ∈ [a, b] :

−(py′)′((a+b)−x)+q((a+b)−x)y((a+b)−x) = λw((a+b)−x)y((a+b)−x).

For x ∈ [c, b], define

Y (x) =

(
y(x)

y((a+ b)− x)

)
.
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Clearly Y is nontrivial, and Y and PY ′ are absolutely continuous, since y
is a nontrivial solution.

The differential equation of Problem 2 is satisfied by the function Y . At
the left endpoint we have

A1Y (c) +A2(PY
′)(c)

=

(
I −I
0 0

)(
y(c)
y(c)

)
+

(
0 0
I I

)(
(py′)(c)
−(py′)(c)

)
=

(
y(c)− y(c)

(py′)(c)− (py′)(c)

)
= 0.

At the right endpoint we have

B1Y (b) +B2(PY
′)(b)

=
(
−D2 C2

)( y(b)
y(a)

)
+
(
D1 C1

)( (py′)(b)
−(py′)(a)

)
= −D2y(b) + C2y(a) +D1(py

′)(b)− C1(py
′)(a) = 0.

Thus the boundary conditions are satisfied, so Y is an eigenfunction for
Problem 2 corresponding to the eigenvalue λ. The proof of the converse
is similar.

2. The first part of the proof establishes a correspondence between eigen-
functions of Problem 1 and eigenfunctions of Problem 2. Clearly, a set
of eigenfunctions {y1, · · · , yk} is linearly independent if, and only if, the
corresponding set of functions {Y1, · · · , Yk} is linearly independent. Thus
the number of linearly independent eigenfunctions for Problem 1 is equal
to the number for Problem 2; the multiplicities for the eigenvalue λ are
equal.

3. The first part of the proof establishes the relationship between the eigen-
functions.

4. Consider two eigenfunctions of Problem 1, yj and yk, and the correspond-
ing functions for Problem 2, Yj and Yk. The inner product of yj and yk
in the Hilbert space L2

w(a, b) is

< yj , yk >w=

∫ b

a

y∗j (t)w(t)yk(t) dt.

The inner product of Yj and Yk in the space L2
W (c, b) is

< Yj , Yk >W =

∫ b

c

Y ∗j (t)W (t)Yk(t) dt
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=

∫ b

c

(
yj(t)

yj((a+ b)− t)

)∗(
w(t) 0

0 w((a+ b)− t)

)
×(

yk(t)
yk((a+ b)− t)

)
dt

=

∫ b

c

y∗j (t)w(t)yk(t) + y∗j ((a+ b)− t)w((a + b)− t)yk((a+ b)− t) dt

=

∫ b

c

y∗j (t)w(t)yk(t) dt+

∫ c

a

y∗j (t)w(t)yk(t) dt

=

∫ b

a

y∗j (t)w(t)yk(t) dt = < yj , yk >w .

Since the corresponding inner products are equal, we see that if either set
of eigenfunctions is orthonormal, then the other set will be also. 2

Examples

Two examples will be presented. In the first, a comparison is made with results
obtained by a technique which is quite different from the one described here.

In the second, a problem will be transformed into three distinct problems,
sharing the same set of eigenvalues. All three problems produce comparable
results, providing evidence that the technique is working as expected. The
method used to solve the separated problems produces an interval estimate for
the desired eigenvalue. In a recent paper [7] Plum, using an algorithm based on
a homotopy, computes eigenvalues of a scalar periodic problem, Problem a. This
method is in no way similar to the algorithm developed here which transforms
Problem a into a separated problem, Problem A.

Problem a On the interval [0, π],

−y′′ + 100(cosx)2y = λy

subject to the periodic boundary conditions

y(0) = y(π) , y′(0) = y′(π).

In the notation we have been using, we have

p(x) = 1 , q(x) = 100(cosx)2 , w(x) = 1

with boundary conditions defined by four 2 × 1 matrices

C1 =

(
1
0

)
, C2 =

(
0
1

)
, D1 =

(
1
0

)
, D2 =

(
0
1

)
.
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Problem A On the interval [π2 , π],

P (x) =

(
1 0
0 1

)
, W (x) =

(
1 0
0 1

)
Q(x) =

(
100(cosx)2 0

0 100(cos(π − x))2

)
with the boundary conditions constants given by

A1 =

(
1 −1
0 0

)
, A2 =

(
0 0
1 1

)
, B1 =

(
0 0
−1 1

)
, B2 =

(
1 1
0 0

)
.

The results given by Plum are quite comparable to those computed by solving
Problem A, as shown in Table 1. The subscripts and superscripts at the end
of the numbers in Table 1 and Table 2 below specify the interval in which the
given eigenvalue is located; i.e. the superscript gives an upper bound and the
subscript gives a lower bound for the eigenvalue.

n Plum Problem A
1 9.74322046

0 9.743223
14

2 28.685141
38 28.685141

31

3 46.477837
4 46.477823

14

4 62.986493
86 62.986498

88

5 77.805244
37 77.805071

61

6 91.8011
07 91.801147

071

7 98.9758
4 98.975449

372

Table 1: Comparison of Results

The next example begins with a scalar problem, Problem b, with a general,
coupled boundary condition, with a non-constant, non-periodic coefficient. The
second problem, Problem c, is constructed from the first by “folding” the interval
in thirds, producing a dimension 3 problem with the same eigenvalues. The
third problem, Problem d, is constructed from the first by a change of variable:
x 7→

√
1 + x. Each problem is solved using the technique described above,

involving two problems of dimension 2, and a problem of dimension 6.

Problem b On the interval [0, 3], with coefficients

p(x) = 2 , q(x) = 1 + x2 , w(x) = 1

subject to the boundary conditions(
1 2
0 3

)(
y
py′

)
(0) +

(
1.5 0
4 2

)(
y
py′

)
(3) = 0.
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Problem c On the interval [0, 1], with coefficients

p(x) =

 2 0 0
0 2 0
0 0 2

 , w(x) =

 1 0 0
0 1 0
0 0 1


q(x) =

 1 + x2 0 0
0 1 + (x− 2)2 0
0 0 1 + (x+ 2)2


subject to the boundary conditions

1 0 0 2 0 0
0 0 0 3 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 1 1


(

y
py′

)
(0)

+


0 0 1.5 0 0 0
0 0 4 0 0 2
1 −1 0 0 0 0
0 0 0 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0


(

y
py′

)
(1) = 0 .

Problem d On the interval [1, 2], with coefficients

p(x) =
1

x
, q(x) = 2x(x4 − 2x2 + 2) , w(x) = 2x

subject to the boundary conditions(
1 2
0 3

)(
y
py′

)
(1) +

(
1.5 0
4 2

)(
y
py′

)
(2) = 0.

The corresponding separated problems, Problem B, Problem C, and Problem D
were solved; the bisection process was continued in each case until the width
of the interval estimate was less than 0.00001. The bisection process began
with intervals with integer endpoints in all cases. The results are shown in
Table 2. All of the separated problems were solved using a multi-step numerical
integration method. To control run times, the integrator uses a relatively coarse
mesh, which we believe is the source of the disagreements between some of these
results.
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n Problem B Problem C Problem D
1 1.635979

71 1.635979
71 1.635979

71

2 7.956970
63 7.956970

63 7.956970
63

3 12.820641
33 12.820641

33 12.820641
33

4 25.257767
59 25.257767

59 25.257767
59

5 38.483925
17 38.483932

25 38.483925
17

6 60.174065
57 60.174057

49 60.174026
19

7 82.265015
07 82.265381

73 82.265251
44

8 112.765945
38 112.765694

86 112.764473
65

Table 2: Results
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Addendum

January 10, 1996. A remark and a FORTRAN code for the main algorithm
of this article have been placed as an appendix. See files “appendix.tex” and
“Dwyer.fort” in the directory EJDE/Volumes/1994/06-Dwyer-Zettl. See also
the article
H.I. Dwyer, A. Zettl, Eigenvalue Computations for Regular Matrix Sturm–
Liouville Problems, Eletrc. J. Diff. Eqns. Vol. 1995(1995), No. 5, pp. 1-13.


