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EXISTENCE AND GLOBAL ATTRACTIVITY POSITIVE
PERIODIC SOLUTIONS FOR A DISCRETE MODEL

ZHENG ZHOU, ZHENGQIU ZHANG

ABSTRACT. Using a fixed point theorem in cones, we obtain conditions that
guarantee the existence and attractivity of the unique positive periodic solution
for a discrete Lasota-Wazewska model.

1. INTRODUCTION
Wazewska-Czyzewska and Lasota [10] investigated the delay differential equation
2 (t) = —ax(t) + e 7ET >0,

as a model for the survival of red blood cells in an animal. The oscillation and global
attractivity of this equation have been studied by Kulenovic and Ladas [9]. A few
similar generalized model were investigated by many authors, see Xu and Li [12],
Graef et al. [4], Jiang and Wei [8], Gopalsamy and Trofimchuk [3]. Recently, Liu
[2] studied the existence and global attractivity of unique positive periodic solution

for the Lasota-Wazewska model

2(1) = —a()(t) + 3 pi(t)e s O==TO),
i=1

by using a fixed point theorem, and got some brief conditions to guarantee the
conclusions. In [7], the existence of one positive periodic solution was proved by
Mawhin’s continuation theorem. In [I3], the existence of multiple positive periodic
solutions was studied by employing Krasnoselskii fixed point theorem in cones.

Though most models are described with differential equations, the discrete-time
models are more appropriate than the continuous ones when the size of the popu-
lation is rarely small or the population has non-overlapping generations [I]. To our
knowledge, studies on discrete models by using fixed point theorem are scarce, see
[13]. In this paper, we consider the Lasota-Wazewska difference equation

m
Aa(k) = —a(kya(k) + Y pilk)e W70, (L)
i=1
We will use the following hypotheses:
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(H1) a: Z — (0,1) is continuous and w-periodic function. i.e., a(k) = a(k + w),
such that a(k) #Z 0, where wis a positive constant denoting the common
period of the system.

(H2) p; and ¢; are positive continuous w-periodic functions, 7; are continuous
w-periodic functions (i =1,2,...).

For convenience, we shall use the notation:

h= max {(h(k)}, h= min {h(k)}.

where h is a continuous w-periodic function. Also, we use

qg= max {q}, T:mzix{ﬂ-}, p:pri(s), (k<s<k+w-1),
" i=1

1<i<m 1<i
-1
[12, (1 —a(s))

1-TI2, (1= a(s))
w—1 A 1

, o= 1—a(s)) =—= .
) g< ()= % <

)

1
B = w—1
1 _Hs:() (1 —a

Considering the actual applications, we assume the solutions of (|1.1)) with initial
condition

xz(k)=¢(k) >0 for —7<Ek<O0.

To prove our result, we state the following concepts and lemmas.
Definition. Let X be Banach space and P be a closed, nonempty subset, P is said
to be a cone if

(i) dee Pforallz € Pand A >0

(ii) = € P,—x € P implies x = 6.
The semi-order induced by the cone P is denoted by ” < ”. That is, z < y if and
y—x € P.
Definition. A cone P of X is said to be normal if there exists a positive constant
0, such that ||z + y|| > 6 for any z,y € P. ||z| = ||y|| = 1.
Definition. Let P be a cone of X and T : P — P an operator. T is called
decreasing, if 8 < z < y implies Tx > TY.

Lemma 1.1 (Guo [5 [6]). Suppose that

(i) P is normal cone of a real Banach space X and T : P — P is decreasing
and completely continuous;
(i) 70 > 0, T? > £T0, where g9 > 0;
(ii) For any 0 <z <T0 and 0 < X\ <1, there exists n = n(x, ) > 0 such that

T(A\x) < A1 +7n)] ' Tz. (1.2)

Then T has ezactly one positive fized point & > 0. Moreover, constructing the
sequence T, = Tx,—1 (n = 1,2,3,...) for any initial xg € P, it follows that
|z — Z|| = 0 as n — oco.

2. POSITIVE PERIODIC SOLUTIONS

To apply Lemma[T.1] let X = {z(k) : 2(k) = z(k+w)}, ||z| = max{| z(k) |1z €
X}. Then X is a Banach space endowed with the norm || - ||.
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Define the cone
P={zxeX:zk) >0, (k) >o|z|}
Lemma 2.1. If z(k) is a positive w-periodic solution of (L.1)),then z(k) > o||z||.
Proof. Tt is clear that is equivalent to

m

2(k+1) = (1—a(k)x(k) + > pi(k)et®=kmik),
=1

Multiplying the two sides by Hk,0(1 - a(s))_1 we have

k—1

Summing the two sides from k to k +w — 1,

k+w—1 m
z(k)= Y G(k,s)Y_ pi(s)eulrtkmmilk)), (2.1)
s=k =1

where X
-1
1225 (1= a(r)
w—1
1Tl (1 —a(r))
Then, z(k) is an w-periodic solution of (1.1)) if and only if 2(k) is w-periodic solution
of difference equation ([2.1)). It is easy to calculate that

G(k,s) = , k<s<k+w-1.

w—1
1= 1
A= Al 200) g ) < = —. B,
1— 12 (1 — a(s)) 1— 1920 (1 — a(s))
o 1 A
A= B= 2y,
I 1-o "B
k4+w—1 m
||$H < B Z Zpi(s)e_%(s)x(s—n(s))’
S=k i=1
k4+w—1 m
Z A Z Zp e —q; 5‘)1‘(8 7'1(3))).
S=k i=1
Therefore, z(k) > 4| z| = oz .

Define the mapping T : X — X by
k+w—1

Z Gk, s Z ()6 @ (2T () (2.2)

=1
forx € X, k € Z. It is not dlfﬁcult to see that T is a completely continuous
operator on X, and a periodic solution of (|1.1)) is the fixed point of operator T'.
Lemma 2.2. Under the conditions above, TP C P.

Proof. For each x € P, we have
k+w—1

|Tz| < B Z Z i(5)e™ 0 ()2 (k=Ti(k)
i=1
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From ([2.2)), we obtain

k+w—1 m
A
Tx > A Z G(k, s) Zpi(s)e_q’i(s)x(k_”(k)) > EHT;}:H =o||Tz|.

s=k =1

Therefore, Tx € P, thus TP C P. |

Lemma 2.3. z(k) is positive and bounded on [0,00).

Proof. Obviously, x(k) is defined on [—7, +00) and positive on [0, +00). Now, we
prove that every solution of is bounded, otherwise, there exists an unbounded
solution x(k). Thus, for arbitrary M > Bmwp/e?™ , there exists N = N(M), when
k> N,z(k) > M. From (2.1), we have

k+w—1 m
xz(k) < B Z Zﬁe‘ﬁM = Bmwp/e?™ < M.
s=k =1
where
q= lglgnm{@}, p= 1252571{171'}’
which is a contradiction. Consequently, z(k) is bounded. O

Now, we are in position to state the main results in this section.

Theorem 2.4. Assume that (H1)-(H2) hold and Bpq < 1. Then (1.1)) has a unique
w-periodic positive solution Z(t). Moreover,

(k) — Z[| = 0(k — oo)m
where x(k) = Tx(k —1)(k =1,2,...) for any initial zo € P.

Proof. Firstly, it is clear that the cone P is normal. By an easy calculation, we
know that T is decreasing, in fact

(Tz)(k) — (Ty) (k)
k4+w—1 m

= Y Gk, )Y pils) (e B _ emnleleome)
s=k i=1
k+w—1 m

= 3 Glh, )Y pils)e EOREN ] _ a0 =als=n (D] > 0
s=k i=1

when 0 <z <y, i.e., y(s—7(s)) —z(s — 7:(s)) > 0.
Secondly, we will show that the condition (ii) of Lemma [I.1] is satisfied. From

(2.2), we have

k+w—1 m

Bp> (TO)(k)= > G(k,s)Y pi(s) > Ap>0.

s=k i=1
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Thus, 70 > 6, and

k4+w—1

Z G(k, s) Z (5)e— G (TO(=7i(s))

=1
k4+w—1

e~ Bra Z Gksz i(5)

=1
= e‘BPq(TQ)(k;).

So that T260 > ¢oT6, where ¢ = e~ 5P7 > 0.
Finally, we prove that the condition (iii) of Lemma is also satisfied. For any
0 <x<Tfand 0< <1, wehave ||| <||T0]|] < Bp and

k+w—1

m
T(\x)(k) = Y Glk,s Z Yo Aai($)a(s=mi(s)
s=k i=1
k+w—1 m
= Z G(k’s)Zp-(3)6*%(5)@(5*‘&(5))6(17,\)%(5)3@(5,,&.(5)) (23)
s=k i=1

< eIV B(T) 1)
= AN NBPa (T (k).
Set f(A) = AePPa(=N): therefore, f/(N) = (1— Bpg\)ePPal=2) > 0 for A € (0,1).

Thus 0 < f(\) < f(1) = 1. soset f(A) = (1 +n)~t, where n = n(A\) > 0. From
([2-3), we have

TOz) <A Tz =X +9)" Tz = M1 +9)] ' Ta.
By Lemmal[I.1] we see that 7" has exactly one positive fixed point Z > 6. Moreover,

lz(k) — Z|| — 0(n — o0), where (k) = Tz(k —1)(k = 1,2,...) for any initial
xro € Pfor ke N. O

Remark 2.5. Theorem [2.4|not only gives the sufficient conditions for the existence
of unique positive periodic solution of ([1.1]), but also contains the conclusion of
convergence of z(k) to Z.

Remark 2.6. From the statements above, we have

k+w—1 m
(k) = Z Gk, s Z Jem @ (DF=Ti() > Ape-alFl 5 0 (2.4)

Ape~ qu < z(k) <Bp>0. (2.5)

which will be used in the following section.

3. GLOBAL ATTRACTIVITY OF THE SOLUTION TO (|L.1)

Theorem 3.1. Assume that (H1)-(H2) hold and Bpg < 1. Then the unique w-
periodic solution Z(k) of (1.1) is a global attractor of all other positive solutions of

().
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Proof. Let y(k) = x(k) — &(k), where z(k) is arbitrary solution of (L.1)), Then it is
easy to obtain

Dy(k) = Dw(k) — #(k))
— Da(k) - A& (k)

_ (k) + 3 pi(s)em IR0 (emasehyls=mils)) _ 1),

i=1

(3.1)

Now, we shall prove limy_.. y(k) = 0 in the following three cases:

Case 1. Suppose that y(t) is eventually positive solution of . It is easy to
see that Ay(k) < 0 for all sufficiently large k, so limy_.. y(k) =1 > 0. we claim
that [ = 0. If [ > 0, then there exists N > 0 such that Ay(k) < —la(k),k > N.
Summing the two sides of the inequality from N to co, we have

I—y(N) =" Ay(k) <=1 a(k) = —c0.
k=N

k=N

which is a contradiction, so [ = 0.

Case 2. Suppose that y(k) is eventually negative. By similar proof as above we
obtain that [ = 0.

Case 3. Suppose that y(k) is oscillatory, from Lemma we know y(k) is bounded.
We set

klim supy(k) =c>0 and klim infy(k) =d <0. (3.2)

For arbitrarily small positive constant €, d — e < 0 and ¢ + € > 0. In view of (3.2)),
there exists N, > 0, such that

d—e<y(k)<c+e forall k>N, —T. (3.3)

From (3.1)and (3.3)),we have

y(k+1) — (1 —a(k)y(k) = Zpi(s)efqi(S)i(S*ﬂ(S))(efqi'(S)y(sfﬂ-(S)) —1).
i=1

Multiplying the two sides by Hfzo(l —a(s))™!, we have

k—1 1

A(y(k

w0 [T =)

1 “ .
_ . —qi(8)%(s—7i(s)) (o= (s)y(s—Ti(s)) _q
1= 2omtore (e )
5= = (3.4)
1 " -

< (e—ld=¢) _q | I § ) —qi(s)Z(s—7i(s))
= (6 ) poird 1 _ G(S) — pi(s)e

k—1 1

= (e79479 — 1) A(&(k) H m)~

s=0
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Summing the two sides from N, tooco, for k > N,, we have

k 1 N.—1 1
E+1 — —y(N, —_—
ot 0 T =5 =000 1T =5
= = (3.5)
k 1 N.—1 1
< (e7197) — ) [E(k+1 — &(N,
< (e W+ ) I oy 20 T 7o)
s=0 s=0
Thus
k k
y(k+1) <y(No) [ (1=a(s)+(e 1= [E(k+1)-2(N) [] (1-a(s))]. (3.6)
s=N, s=N,
From (3.2)), and Remark [2.6] we have
¢ < Bp(em 9479 1),
As € is arbitrary small, we have that
¢ < Bp(e 9% —1). (3.7

By the similar method as above, we obtain
d > Bp(e™9° —1). (3.8)

From results in [2, 12], Bpg < 1 implies that (3.7)), (3.8) have a unique solution
¢ =d = 0. Therefore,

klim y(k) = klim [x(k) — z(k)] = 0.
The proof is complete. O
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