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ABSTRACT 

In this era of fast advances in nanotechnology and electronics Ni has become an 

interesting element because its oxidized form possessing semiconducting properties is 

enabling several applications such as gas sensors, dyed sensitized photocathodes and 

electrodes in alkaline batteries. In addition, recently NiO has been utilized as a resistive 

switching (RS) memory [1], [2], [3], and energy-saving application as an electrochromic 

(EC) [4], [5], [6] smart window. In particular, NiO has promise for RS memory to replace 

Flash memory beyond the 14 nm process node. RS memory guarantees rapid speeds in 

reading and writing, high storage density and non-volatility with lifetimes of ten years or 

more. [7]The EC property of the NiO is also a driving force behind futuristic 

technologies such as smart windows and non-volatile displays. However, the exact 

mechanisms behind certain phenomena such as RS and EC are still not fully understood. 

In addition, in recent years there has been lots of research in Diluted Magnetic 

Semiconductor (DMS) materials because of their important utilization in spintronic 

devices. DMS materials have charge and spin degrees of freedom enabling the realization 

of devices with magnetic, electronic and optical functionalities. DMS electronic devices 

can have a higher speed and a lower switching energy than traditional electronic devices. 

NiO is an antiferromagnetic p-type semiconductor because of the presence of vacancy at 

Ni2+ sites [8], [9]. [10]The magnetic structure of NiO consists of ferromagnetic sheets of 

Ni2+ parallel to the (111) plane with opposite spin directions in neighboring planes. The 
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Fe doping of NiO leads to Fe-doped NiO (Permalloy Oxide) which exhibits advantageous 

DMS properties over NiO. However, the effect of transition metal (TM) ion doping on 

the magnetic properties of NiO at higher iron concentration has not been fully determined 

yet. The effect iron doping has on the Neel temperature of NiO is also still unknown.  

The study of switching properties of NiO or Fe-doped NiO in resistive random- 

access memory (RRAM) devices can be easily possible by using optical or magnetic 

techniques that is why their physical properties such as optical or magnetic properties are 

also of interest in this thesis. In this thesis research, the physical properties of NiO, and 

Fe-Doped NiO were determined via theoretical and experimental methods. 

a) Theoretical Methods: 

For the theoretical part of the research, computer simulations were performed, 

and the physical properties were determined with the Density Functional Theory (DFT) 

using Vienna ab initio Simulation Package (VASP). Electronic, optical and magnetic 

properties of 4-atom NiO, 32-atom NiO, and 32-atom Fe-doped NiO supercells with spin 

polarization in the (111) planes were calculated using (GGA) and GGA+U methods. The 

theoretical outcome was compared with the experimental one or other findings from the 

literature. We began with simulations of 4-atom NiO, and 32-atom NiO. For the 

simulation of 32-atom Fe-doped NiO, we utilized the crystal structure of 32-atom NiO 

with Ni atoms substituted by Fe atoms (6.25%, and 12.5% Fe concentrations) without 

altering the initial spin ordering. Crystal structure and Brillouin zone were produced 



 
 

xvi 
 

using Vesta software and Bilbao Crystallographic Server respectively, and graphs were 

produced using p4VASP and Origin Pro software. The results show that NiO is an 

antiferromagnetic semiconductor with a band gap depending on the Hubbard potential 

(U). The nature of the magnetism of Fe-doped NiO depends on the amount of Fe atoms.  

The Fe doping reduces the band gap, and this reduction of the band gap has the effect on 

the optical properties. With the Hubbard potential U(4eV), the static refractive index is 

about 2.2 for NiO, and 2.25 for 6.25 at.% Fe-doped NiO respectively.  

b) Experimental Methods: 

For the experiment part of the research, different laboratory instruments 

including an AJA Sputtering System, an X-ray Diffractometer (XRD), an Ellipsometer, 

and a Physical Property Measurement System (PPMS) were utilized. Data analysis was 

carried out using specialized software. The samples were manufactured using the AJA 

Sputtering system. An XRD system was used to gather information about the crystal 

structure for each sample. The optical properties were determined using Ellipsometer and 

the CompleteEase software was used for ellipsometric data analysis. Magnetic properties 

were obtained using the PPMS interfaced with the Multivu program. All graphs were 

obtained using Microsoft Excel or Origin Pro software. The experiment involved NiO 

and Ni0.8Fe0.2O1-𝛿 samples, and one sample for each species was sputtered at low O 

pressure and another was sputtered at high O pressure. The XRD shows that all samples 

have NaCl-type structure. Samples sputtered at low O pressure have a higher magnetic 
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moment than those sputtered at high O pressure. Each sample has the static refractive 

index (n) close to 2. 
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I.INTRODUCTION 

1.1 Basic Physics 

              1.1.1 Optical Physics 

The theory of optics involves the properties of light, including the interaction of 

light with matter, and ways to investigate optical phenomena. Light is described as a 

propagating superposition of the electric field (E) and the magnetic field (B), producing 

electromagnetic waves through space-time, consequently these fields satisfy the wave 

equation. The unifying relation between the electric and magnetic fields is given by the 

following Dirac Symmetrized -Maxwell equations (in SI units) [11], [12]:                                
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Here e  is the electric charge density m  is the magnetic charge density, ej


is the 

electric current density, mj


 is the magnetic current density, 0  is the permittivity of free 

space, 0 is the permeability of free space. Normally, the charge density is related to the 

polarization P


 arising from the interaction of light with the medium. Since no magnetic 

monopoles have been observed, Maxwell’s equations can be obtained from the above 

equations by assuming that the magnetic charge and magnetic current densities are equal 

to zero. 
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 The combination of the Maxwell’s equations derived from (1), (3), and the 

combination of the Maxwell’s equations from (2), (4) lead respectively to the following 

electric and magnetic field equations: 
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Here 00/1 c  is the speed of light in the vacuum. Using the bac-cab formula for 

both E


and B


 vector fields, the above field equations become: 
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In the free space, the solutions to the above equations are for sinusoidal waves, 

and can be written in the following form [13]: 
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Here  r


 is the position vector, and k


 is the wave number vector, 𝜔 is the angular 

frequency,
0E


and 
0B


 are the respective complex electric and magnetic field amplitudes 

[13] associated with the initial electric and magnetic vector fields respectively. 

As mentioned before, when light propagates through a material, its electric field 

interacts with it causing a polarization P


 in the material. In the case of sinusoidal waves, 

the general equation for the electric field has the following solutions [13]: 
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For a linear material, the polarization P


 as a function of 𝜔 can be written as a 

product of the susceptibility 𝜒 and the electric field E


, as follows: 

                                   )()()( 0  EP


                                               (1.9) 

The substitution of the expressions of P


, and E


 into the general electric fields 

equation leads to the following formula for the dispersion relation: 

                                 
2

00
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Since, 00/1 c  then the complex reflection index inN 
~

 can be expressed in 

terms of the susceptibility: 
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Under the influence of electric field E


 of light, the motion of an electron bound 

to a nucleus is described by the following equation [14]: 
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Here, m is the electronic mass, e is the elementary charge, r


 is the position of the charge, 

E


 is the electric vector field,  is the damping factor ,and 𝜔0 is the resonant frequency. 

The solution to the above equation is given by [14]: 
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Since the position r


 is linked to the dipole moment which is, in turn, related to 

the atomic polarizability~ , then the expression for this latter is given by [14]: 

                            






im

e

)(

1
)(ˆ

22

0

2

                                  (1.14) 

On one hand, the displacement field D


 can be related to the electric field  E


 by 

the formula: 
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On the other hand, the displacement field D


 can be related to the polarizability by

END


 ˆ)41(  , where N is number of oscillators, then equating the expressions for D

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and substituting the atomic polarizability by its expression, the dielectric function 

21
~  i  is given by [14]: 
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Here, 1  and 
2 are respective real and imaginary parts of~ , and their expressions are 

respectively given by [14]: 
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Let iN  be the density of N oscillators with a resonance frequency i . Eq.1.19 

can be written in the following way: 
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Since, 2~~ N , the optical properties n, and k can be expressed in terms of the values of 

1  and 2  in the following way: 
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As light propagates through space, it carries energy as described by the 

following Poynting’s theorem: 

                
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 VVV

udv
t

dvrErJdanrS 0)().().(


                 (1.23)           

Here )(rS


 is the Poynting vector, )(rJ


 is the electric current density vector, da  is the 

surface element, d is the volume element, n̂ is the unit normal vector perpendicular to 

the surface element,  )(rE


is the electric field, and u is the energy density.  

Also the Kramers-Kronig relations, derived using the Cauchy’s theorem due to 

the analyticity of  0/)(   , give n as function of energy E, relating k to the Cauchy’s 

principal value P in the following way [15]: 

                          '
'

)'('2
1)(

0

22
dE

EE

EkE
PEn 







                            (1.24) 

Here, E is the energy, and should not be confused with the magnitude E of the electric 

field E


 used in previous equations. 

Upon a material light can experience certain optical phenomena such as 

reflection or refraction and the angle of refraction depends on the index of refraction, 

according the following  Snell’s equations for reflection and refraction respectively: 
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                                               ri                                                    (1.25a) 

                                  )sin(ˆ)sin(ˆ
2211  NN                                      (1.25b) 

Here i , and r are incidence and reflection angles for the reflection phenomenon upon 

the interface of a material. 1N̂ , 2N̂ are complex refraction index, and 1 , 2 are incident 

and refraction angles for the medium 1 and medium 2 [16]. Note that since the refraction 

indices are complex, also the refraction angles can complex. 

Therefore, it is possible to construct an instrument that is able to determine the 

optical properties n, and k once angles of incidence and refraction are known; for 

example the ellipsometric techniques takes the advantage of the above theory for the 

determination of a variety of physical properties such as optical constants,  sample 

thickness, etc. 

               1.1.2 Solid State Physics 

The formulation of the quantum theory was important to the birth of solid state 

theory, and the progress in solid state physics was ignited by the discovery of the x-ray 

diffraction which showed that most crystals have a periodic structure of atoms or groups 

of atoms. Infinitely repeating groups of identical atoms form an ideal crystal. With the 

lattice being the set of mathematical points, the lattice along with a basis represents the 

crystal structure. It is the choice of crystal axes that allows the identification of a basis for 

the crystal structure. A 3-D lattice is spanned by the three primitive translation vectors 1a

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, 
2a


and 3a


 such that the translation leaves the crystal invariant from r


 to 'r


. Such 

crystal translation is defined by [17], [18]: 

              332211' aaaTwithTrr


                     (1.26) 

Here 1 , 
2 , and 3  are arbitrary integers, and  T


is the crystal translation vector. The 

primitive lattice is the smallest lattice that can serve as a building block of matter, and it 

is spanned by the primitive translation vectors 1a


, 2a


, and 3a


. Each primitive cell or 

primitive basis contains the exact same number of atoms. The choice of primitive cell can 

be achieved in different way, and a primitive cell with exactly one lattice point is known 

as Wigner-Seitz primitive cell. In momentum space, a primitive cell of reciprocal lattice 

is the Brillouin zone (BZ). 

 In two-dimensions there exist five types of lattices, and in three dimensions, 

due to the symmetry groups there exist seven types of cells and fourteen lattices, for 

example, in a cubic system, there are three different lattices: the simple cubic (SC) lattice, 

the body-centered cubic (BCC) lattice, and the face-centered (FCC) lattice. The 

orientation of the crystal plane is defined by the three non-collinear points whose 

coordinates may be in terms of lattice constants 1a


, 2a


 and 3a


  , provided that each of 

them is situated on each Cartesian axis [17], [18]. However, in most of cases, the 

orientation of the crystal plane is preferred to be defined by indices of the plane. 

Normally, there exist 1v , 2v , and 3v  integers such that the intercepts of each crystal plane 

are 11av


, 22av


, and 33av


 . 
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 The reciprocals of 1v , 
2v , and 3v  are reduced to corresponding three integers 

(hkl) called the indices of the plane or Miller Indices. In order words, (hkl) are the 

coefficients of the linear combination in the 3-D reciprocal space spanned by reciprocal 

lattice vectors 1b


, 2b


, and 
3b


 [17], [18]. When the light wave interacts with the crystal, 

the distance d between crystal planes is related to the angle of incidence 𝜃 and the n 

multiple of light wavelength 𝜆 as described by the following Bragg law [17], [19]: 

                                        nd )sin(2                                                 (1.27) 

Since the crystal is invariant under the translation vector T


, then any local physical 

property such as the electron density )(rn


 is also invariant, and then can be expanded 

into a Fourier series. Then, the Fourier series of electron density and its Fourier transform 

are [17], [19]: 

                                          
rdrGirnvn

rGinrn

cell

cG

G

G













3).exp()()/1(

).exp()(

                          (1.28) 

Here, cv is crystal cell-volume, Gn  is the Fourier coefficient whose set determines the x-

ray scattering amplitude, and the sum is over a set of reciprocal lattice vectors G


which 

determine the possible x-ray reflections. If the incoming and outgoing beams are 

respectively represented by ).exp( rki


, and )'.exp( rki


 , the phase difference is given 

by ]).(exp[ rki


 , where kkk


 '  is called the scattering vector. And when Gk


  

the diffraction condition for elastic scattering is given by: 0.2 2 GGk


. And under the 
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same condition, the scattering amplitude FG can be expressed in terms of the atomic form 

factor jf [17], [19]: 

                            j

cell j

jG frGiNrdrGirnNF ).exp().exp()( 3

  


                 (1.29) 

For spherically symmetric electron distribution with r


 making an angle 𝛼 with 

G


, the atomic form factor is given by the formula [17], [19]: 

                     )(sin).exp()( 3 GrcrdrGirnf jj  


                        (1.30) 

Any periodic crystal can be considered as a quantum system with periodic 

potential, and according to the quantum theory, a suitable solution to such periodic 

quantum system is given by the following Bloch theorem: 

The solution to a quantum system with a periodic potential is the product of the 

plane wave function and a function of the same period as the crystal lattice [20]. 

                              ).exp()()( rkirur kk


                                       (1.31) 

where )(ruk


 has the same periodicity as the crystal lattice, )()( Truru kk


 , here, T


 is 

the lattice  translation vector. Since )(rk


 is identical to, )(rGk


  , and both correspond 

to the energy )(kE


, and )( GkE


  respectively, then )()( GkEkE


 [20].  
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              1.1.3 Atomic Origin of Magnetism in Matter 

              The total angular momentum and the nature of interaction of electrons in matter 

are responsible for the phenomenon of magnetism. There are five classes of magnetic 

materials: diamagnetic, paramagnetic, ferromagnetic, antiferromagnetic, and 

ferrimagnetic [21].  

A diamagnetic material is a substance with a closed shell in atoms that usually 

have spin, and orbital moments oriented so that the atoms have a zero permanent net 

magnetic moment. But, in presence of the external magnetic induction, this material 

obtains a non-zero net magnetic moment. The magnetic moment as function of applied 

magnetic field, m(H) for a diamagnetic material is a linear curve that slowly decreases 

from zero; this means that a diamagnetic material has a negative susceptibility 𝜒. The 

diamagnetic moment is independent of the temperature. 

 A paramagnetic material is a substance whose atoms possess a non-zero net 

magnetic moment due to the non-cancelation of the spin of the electrons. Although at 

zero field the net magnetic moment of a paramagnet is zero as the spins of the various 

atoms are randomly oriented and cancel each other out, when an external magnetic field 

is applied to the paramagnet it carries a net magnetic moment. The m(H) for a 

paramagnetic material at small magnetic fields is a linear graph which increases rapidly 

from zero with increasing magnetic field; this means that its susceptibility 𝜒 is positive. 

At higher magnetic field the magnetic moment saturates. The magnetic moment is 

typically inversely proportional to the temperature, so the higher the temperature the less 

of the magnetic moments are aligned. 
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 A ferromagnetic material is a substance with a non- zero net magnetic moment 

because the electron spins are mostly aligned in the same direction. For ferromagnetic 

materials the spins of neighboring atoms are aligned because of the exchange interaction. 

The net magnetic moment of a ferromagnetic material can be non-zero in zero magnetic 

field and depends on the field that was applied to the material in the past, in other words, 

ferromagnetic materials seems to remember their history characterized by hysteresis. The 

m(H) for a ferromagnetic material is a non-linear graph with hysteresis. 

 An antiferromagnetic material is a substance with a zero net magnetic moment 

because the nearest neighbor’s moments are aligned antiparallel, which leads to the 

cancelation of the net magnetic moment. One of the characteristics for 

antiferromagnetism is the behavior of the susceptibility above the Neel temperature. 

Above this temperature, the susceptibility obeys the Curie-Weiss law with a negative 

intercept indicating negative exchange interaction. Small grains of anti-ferromagnetic 

material tend to have a magnetic moment because of uncompensated spins near the 

surface of the antiferromagnetic material.  

Finally, a ferrimagnetic material is a substance with a non-zero net magnetic 

moment because the magnetic moments of neighboring atoms are not equal. The 

magnetic moment in this material are aligned antiparallel. This is a particular case 

because for other previous magnetic materials, all magnetic moments are of equal 

magnitude. Antiferromagnetic and ferrimagnetic materials are related to ferromagnetic 

materials as all the three type of materials show magnetic order. The order in these 

materials disappears at higher temperature. For instance, ferromagnetic materials are 
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paramagnetic, above the Curie temperature, and antiferromagnetic materials are 

paramagnetic above the Neel temperature. 

The susceptibility for a sample can be easily calculated by using the following 

formula [21]:   

                                  Oe) (emu/cm H/M 3


                                        (1.32) 

Here, M


 is the magnetization which is equal to the magnetic moment m


 per unit of 

volume v, and H


 is the applied magnetic field strength.  

              1.1.4 Quantum Physics 

Quantum physics is the most mysterious and successful theory for describing the 

microscopic level of any physical (made of matter) system. According to quantum theory, 

the properties of a system can be determined by solving the Schrodinger’s equation 

which, in the time-independent, non- relativistic form, is: 

                              ),...,(),...,(ˆ
11 nn rrErrH


                                      (1.33) 

Here 𝐻̂ is the Hamiltonian operator describing all interactions of the system of n 

particles, E is the total energy of the system, and  ,  which contains all the information 

about the system, is a set of solutions, or eigenstates of the Hamiltonian operator. Each of 

these eigenstates n  is associated with an eigenvalue nE , a real number that satisfies the 

eigenvalue equation.  
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In Hilbert space, quantum mechanics becomes the matrix mechanics where 

probability amplitudes are complex numbers and operators are represented by complex 

matrices. Thus the above time-independent Schrodinger’s equation can be written as 

follows [22]: 
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                       (1.34) 

The exact expression for the Hamiltonian depends on nature of the physical 

system being described by the Schrodinger’s equation. A much simpler form of the 

Hamiltonian is that of the particle in a box or a simple harmonic oscillator, and their 

corresponding Schrodinger’s equation can be simply solved in closed form. The 

Hamiltonian for a many-body system is more complicated due to many degrees of 

freedom and a number of interactions between electrons and nuclei of the system. A full 

expression for the Hamiltonian for a multiple interactions system is as follows:     

        

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
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1ˆ      (1.35)                                   

Here, IM  are nuclear masses, ir


 are electron positions, Ir


 are nuclear positions, the first 

term is the kinetic energy of each electron, the second term the kinetic energy of the 

nuclei, the third term is the electron- electron interaction, and the fourth term is the 

nuclei-nuclei interaction and the last term is the electron-nuclei interaction. The evolution 
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of any quantum state between measurements is described by the time-dependent 

Schrodinger equation: 

                                         





t
iĤ                                              (1.36) 

By solving the above time-dependent Schrodinger’s equation, the time-

dependent solution takes a simple form, especially if the potential operator is time-

independent, thus due to separation of variable, the solution for stationary states can be 

written as follows: 

                                  )(),(
~

),,( trrtrr IiIi 


                                      (1.37)  

The above separation, with a constant of separation E, leads to the respective 

time-independent and time evolution equations: 

                                     ),(
~

),(
~ˆ

IiIi rrErrH


                                        (1.38a) 

                                          )()( tEt
dt

d
i                                            (1.38b) 

The solution to the time-dependent Schrödinger’s equation can now be written 

in the following form: 

                            )exp(),(
~

),,( iEtrrtrr IiIi 


                               (1.39) 

This solution is stationary because the expectation value of a given time-independent 

operator Ô for this solution is time-independent: 
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
~ˆ~

O
 

This is also the reason why the time-independent Schrödinger’s equation may be an 

appropriate choice for the study of the properties for arbitrary physical system.  

The time-dependent many-electron wave function can also be written in terms of 

single-particle wave function  )( ik r
i


  as follows [23]: 

                        )()....(),,...,(),,...,,( 1

}...{

121 1

1

NkkN

kk

N rrtkkctrrr
N

N


                (1.41) 

Here, ik  represents the quantum numbers, and ),,...,( 1 tkkc N  are the coefficients 

satisfying the permutations for particles (electrons). From the first to the second 

quantization; the wave function is written in terms of the Slater determinant and the 

occupation numbers in the Hilbert space as follows [23]: 
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The above expression may be written in the following condensed form [23]: 
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      (1.43) 

Here, P is the permutation operator for electrons, NS  is the permutation group, and p is 

the number of permutation. By defining a wave function: 

                       nntnnt
Nnn

~,...,~),~,...,~()( 1
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                              (1.44) 

Then the time-dependent Schrodinger’s equation for a fermionic system can be written as 

follows [23]:     
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In a collection of N atoms, the change of momenta of both electrons and nuclei 

is the same because forces exerted on each other due to their charges is the same. 

However the velocity of the nuclei is significantly less than that of the electrons because 

nuclei are heavier than electrons. This is seemingly credible on the time-scale of the 

nuclear motion, the electrons will instantaneously respond to any change in distance 

relative to the nuclei, or the ground-state configuration. This allows us to neglect the 

kinetic energy term for the nuclei in the full expression of the Hamiltonian, and solve first 

the time-independent Schrödinger’s equation for the ground state in that configuration, 

and then solve for the nuclear motion. This approach of solving for electrons and nuclei 

separately is known as Born-Oppenheimer Approximation, and is based on the 

assumption that the wave-function for the Hamiltonian of the form: 
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                                            (1.46) 

and it requires that ),( Ii rr


  satisfies the time-independent Schrödinger’s equation for the 

electrons in a motionless cloud of nuclei [24]:           
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in which the eigenvalue eE of the Hamiltonian also depends on the positions of the 

nuclei. If the full Hamiltonian (1.35) acts on the whole wave-function [24]:            
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The adiabatic term eE contributes to the energy of the system more than the 

remaining non-adiabatic terms according to the time-independent perturbation theory. By 

neglecting the non-adiabatic terms, the above Schrodinger’s equation is satisfied if )( Ir


  

is the solution of the following equation [24]:      
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The electron density for the system can be derived from the expression of the probability 

for finding arbitrary electron in a specific region of space.  
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The variational principle can also be utilized to find the lowest energy eigenstate 

of the system. By relaxing the restriction on the orthonormalization, the expectation value 

of the Hamiltonian operator H


 can be expressed as follows: 

                                       

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

H
E

ˆ
                                            (1.50) 

Assume that the expectation value of the Hamiltonian E  is the functional the 

wave function, ][ EE , and make  a small change  ,  of the quantum state  , 

then the change in the expectation value of the energy is given by:                              
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After some algebra and without considering changes in second and higher-order terms in 

 , then the expression of the above change of the expectation value becomes: 

     

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]][ˆ([)][ˆ(
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EHEH
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
             (1.52) 

If   is the eigenstate of the Hamiltonian operator Ĥ , with eigenvalue ][E , then there 

is no change of the functional, ][E  . Thus, finding stationary values of ][E , can allow 

obtaining the eigenvalues of the Hamiltonian Ĥ . Details for the derivation of above 

equations are found in Appendix B. 

Let S be a system in the quantum state   close to the ground state
0 , 

assuming that the quantum state is complete, so it can be expressed as follows: 
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Using the variational principle, the value of ][E  is given by: 
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0 nn

n

n aOEEaEE                         (1.53) 

 Since for, 1n , 0EE n , then one realizes that 0][ EE  , in other words this shows 

that functional gives the upper bound value of 0E . The details about the above equations 

are found in Appendix B. 

Since solving Schrodinger equations for many-body quantum systems is full of 

difficulties, other successful way for obtaining approximate solutions is the usage of the 

perturbation theory. For the time independent perturbation theory, the time- independent 

Schrodinger’s equation for unperturbed system can be written as follows: 

                                      )0()0()0(

0
ˆ

nnn EH                                     (1.54) 

By adding a small perturbation to the Hamiltonian such that the perturbed Hamiltonian is 

WHH ˆˆˆ
0   where Ŵ  is the perturbation operator and 𝜍 is a small positive 

dimensionless parameter to ensure that the perturbation is as small as possible, then the 

time-independent Schrodinger’s equation becomes [25]: 

                            )0()0()0(

0 )ˆˆ( nnn EWH                                     (1.55) 

Since the perturbation was chosen to be significantly small, eigenstates and eigenvalues 

of the above Schrodinger’s equation can be expressed in series:                                 
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When 𝜍  equals to zero, the above eigenstates and eigenvalues are for the unperturbed 

system. The time-independent Schrodinger’s equation written in terms of the above series 

has the following form [25]: 
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After expansion, and comparison of coefficients of each power of 𝜍, one obtains 

infinite series of equations corresponding to the powers of 𝜍, and in general, the j th 

equation has the following form: 
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The zero- order equation is just the Schrodinger equation with unperturbed Hamiltonian. 

If 𝜍 is written in terms of small parameters ,....),( 21 xxx  , there exists a map from a 

parameter manifold M on which the parametrized Hamiltonian is defined to be a 

Hermitian operator )( xH acting on the Hilbert space. If the latter operator has 

respective eigenstates and energy eigenvalues )(  xn
, and )( xEn , then the eigenstates 

form a vector bundle on the manifold M. Since 𝜍  is parametrized, if the unperturbed 
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reference point 
0x  is equal to zero then the parametrized Hamiltonian operator can be 

written as follows: 

                                    
 FxHxH ˆ)0(ˆ)(ˆ                                         (1.59) 

Here, F̂  is the operator which may represent the forces related to x . According to the 

adiabatic assumption, energy eigenvalues and eigenstates are smooth functions of 

parameters, thus they can be expended in series. In the power series expansion, energy 

eigenvalues and eigenstates have the following forms:                 
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Since  a quantum system with a time–independent perturbation is described by 

time-independent perturbation theory, thus a system that is subject to a time-dependent 

perturbation is described by time-dependent theory, however the mathematics for both 

theories are purely the same [26]. 

 

1.2 Motivation 

NiO is playing a major role in science and technology because of its important 

physical properties.  NiO with Ni vacancies is a p-type semiconductor which can serve as 

p-type transparent and conducting films and the bulk NiO is widely chosen for use as 



 
 

23 
 

antiferromagnetic or functional sensor layers [27]. Due to its unipolar and bipolar 

switching properties, NiO is the basis for RRAM technology which takes advantage of 

the soft breakdown of a switching material, usually transition metal oxides, for non-

volatile data storage [28]. Normally, the migration of oxygen in the metal oxide can lead 

to switch from high resistance metallic state to low semiconducting or insulating state, 

and the control of different resistance levels is achieved by applying a certain voltage 

across the electrodes. Thus this resistance change property is utilized for the storage of 

bits of information. However, only little is known about the fundamental origin of these 

switching properties. 

The Fe alloying of NiO leads to NiFeO which is also thought as the oxide of 

Permalloy (NiFe). Permalloy has become more and more important for modern 

nanotechnology and nano-electronics due to its particular magnetic properties. The first 

application of Permalloy was in telegraphic communication to maintain signal 

degradation caused by distortion of communication cables. Due to its high permeability, 

Permalloy is also applied in sensing devices and actuators [29].  Because of the important 

application of Permalloy [30], interest in study of Permalloy Oxide (NiFeO) has been 

growing among scientists. Another way for obtaining Permalloy oxide is the Fe doping of 

NiO. Normally, it has been observed that the Fe doping of NiO yields advantageous 

semiconducting properties, but as previously mentioned, only little is known about all 

physical properties of Fe-doped NiO. 

The study of optical properties of NiO and Fe-doped NiO are of great 

importance especially for the RRAM technology. The RRAM switching properties are 

based on a filament that appears during the low resistance state and disappears during the 
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high resistance state. Locating this filament when studying the switching properties of 

RRAM devices currently requires the devices to be disassembled, but location techniques 

based on optical or magnetic properties would allow to remotely locating this filament 

without any disassembly.  

 

1.3 Literature overview of optical and magnetic properties of NiO and NiFeO 

samples 

While little has been done for thick or RF sputtered NiO samples, NiO powders 

and thin films have been studied extensively; for instance Issei Sugiyama et al. found 

ferromagnetic dislocations in antiferromagnetic NiO, and the origin of this 

ferromagnetism is the local non-stoichiometry at dislocations with Ni deficiency [31]. N. 

Mironova-Ulmane et al. found that NiO nanopowders (13-23 nm particles size) are 

antiferromagnetically ordered at room temperature with a rhombohedral structure (R-3m) 

as evidenced from the (422) Bragg reflect splitting located at high scattering angle of 

about 130 degrees[32]. 

The introduction of Ni2+ vacancies or doping with other cations leads to p-type 

semiconducting behavior [33].  

Yuan-Hua Lin et al. found that the Fe-doped NiO samples exhibit FM properties 

at room temperature, and the magnetization loop exhibits the remnant magnetization, and 

this magnetism is likely to be caused by the introduction of magnetic Fe ions and related 

defects [34]. P. Douvalis et al. found that 2% 57Fe-doped NiO samples, prepared by 
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heating in air at temperatures between 673 and 873 K, are ferromagnetic, and the origin 

of this magnetism is attributed to the presence of NiFe2O4 impurity phase, but this phase 

may not be detected by the XRD due to its small particle size effect or the high dilution 

[35].  

S. Manna et al. found that pure NiO nanorods at room temperature exhibit a 

weak ferromagnetic phase due to the presence of a small hysteresis at the lower magnetic 

field, and a presence of antiferromagnetic phase [36]. The Fe doping increases the 

hysteresis compared to undoped NiO. Fe ions have two stable valence states Fe3+, and 

Fe2+, and the ferromagnetism may arise from Fe3+, or a mixture of Fe2+, and Fe3+ states 

[36]. The XRD results show six (111), (200), (220), (311), (222), and (400) characteristic 

peaks of cubic crystalline NiO, these same peaks appear for Fe-doped NiO, this suggests 

that there is no presence of an impurity phase when substituting Ni with Fe at some of the 

Ni sites. [36] The temperature dependence of the magnetic moment from room 

temperature to low temperature of Fe-doped NiO shows that FC and ZFC curves decrease 

when the temperature decrease and FC and ZFC curves split above the room temperature.  

S. Philp Raja et al. found that impurity phase NiFe2O4 have effects on magnetic 

and dielectric properties of Fe-doped NiO [37].  

According to Shaohui Liu et al.[38] the XRD of Ni1-xFexO (x = 0, 0.01, 0.02) 

shows five (111), (200), (220), (311), and (222) diffraction peaks characteristic of the 

NaCl-crystal structure. No lattice constants change, due to the increase of the Fe doping, 

was  observed since ionic radii of Ni2+, Fe2+, and Fe3+ were quite close [38]. Both NiO 

and Fe-doped NiO samples show hysteresis, but the magnetic moment m(H) for NiO is 
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almost linear, characteristic of the antiferromagnetic  phase, for both samples the FC 

curve decreases, and the ZFC curve increases as the temperature increases, and for each 

sample the FC and ZFC curves converge at around 300K [38]. 

J. Khemprasit et al. found that Fe0.01Ni0.09O nanoparticles samples have the rock 

salt structure, and calcining them at different temperatures ranging from 400 to 1000 

degrees Celsius does not affect their crystal structure [39]. J. Khemprasit et al. claim that 

the origin of the ferromagnetism is: (a) the double exchange interaction through Fe ions 

and defects (e.g Fe*Ni), and (b) the presence of ferromagnetic and / or ferrimagnetic 

impurities co-existed with the main phase [39]. Also they found that the crystallite size 

and the particle size increased when the calcining temperature increased because of grain 

growth during heat treatment [39]. They also claim that NiO is antiferromagnetic below 

the Neel temperature, but it becomes ferromagnetic if its crystallite size is less than 8 nm 

due to finite-size effect, since the reduction of the crystallite size results in the increase of 

the surface to volume ratio, and this causes the high value of uncompensated magnetic 

moments [39]. 

D.Y. Jiang et al. found that the optical band gap of NiO thin films deposited 

onto quartz substrates by the electron beam deposition technique ranges from 3.08 to 3.32 

eV [40]. M. Tyagi et al. found that the static refractive index (n) of NiO thin films 

deposited by RF sputtering is about 2.48 [41]. M. Guziewicz et al. found that NiO thin 

films made using unbalanced magnetron sputtering from a 3'' NiO target in an O2–Ar gas 

mixture at controlled temperatures from 300 up to 700 °C have the bandgap ranging from 

3.4 to 3.58 eV [42]. A. Venter et al. found that the bandgap and the refractive index (n) of 

the oxidized Ni thin films depend on the oxidation temperature; the range for the bandgap 
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is from 3.37 eV at 350 degree Celsius to 3.76 eV at 600 degrees Celsius, and the 

refractive index (n) at 400 degrees Celsius is about 2.3 [43]. 

P.M. Ponnusamy et al. found that the bandgap for NiO and Fe-doped NiO 

nanoparticles prepared by wet-chemical process is 3.958 eV and 4.026 eV respectively 

[44]. 
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II.NICKEL OXIDE AND PERMALLOY OXIDE 

2.1 Nickel and Nickel Oxides 

               2.1.1 Nickel  

Nickel is a chemical element which is symbolized by (Ni) and having an atomic 

number 28. Nickel is a silvery-white, hard and ductile material which belongs to 

transition metals in the periodic table of elements. It exhibits a mixture of ferrous and 

nonferrous metal materials. It was found that Nickel is present in most of meteorites, and 

is often used as one of the criteria for distinguishing a meteorite from other minerals. The 

bulk of nickel mined are either from laterites where the dominant ore minerals are 

nickeliferous limonite [(Fe,Ni)O(OH)] and garnierite (a hydrous nickel silicate), or 

magmatic sulfide deposits where the principal ore mineral is pentlandite [(Ni,Fe)9S8] 

[45], [46], [47]. And pure Nickel is easily reactive at room temperature forming 

principally NiO, N2O3, 𝛼-Ni(OH)2,  𝛽-Ni(OH)2, or NiOOH.    

Ni atom has a total of ten valence electrons, eight electrons in the 3d orbital, and 

two electrons in the 4s orbital. Ni has a cubic–closed packed (CCP) crystal structure 

which is stable at pressures of at least 70 GPA. Ni belongs to a space group Fm3m with a 

space group number 225. Ni has the following unit cell parameters: a: 352.4 pm, b: 352.4 

pm, c: 352.4 pm, α: 90.000°, β: 90.000°, and γ: 90.000°, where a, b, and c are lattice 

vectors, and α, β, and γ are lattice angles [48], [49]. As already mentioned, the oxidation 

of Ni can lead to a variety of chemical substances including NiO will also be the main 

subject of discussion in this thesis. 
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               2.1.2 Nickel (II) Oxides and Permalloy Oxide 

Pure Nickel is highly reactive with the air forming different Nickel Oxides 

depending on the nature of existing conditions. For instance, in the Physics Research Lab 

at Texas State University, optical properties of Ni thin films which were left at ambient 

air and room temperature underwent a logarithmic change over a period of several weeks, 

and optical characterization showed the formation of Nickel oxide (NiO), and possibly 

Ni(OH)2. For artificial oxidation, non-stoichiometric NiO and NiFeO samples were 

obtained by the sputtering process, and samples were sputtered at both low and high 

oxygen concentrations to study the effect of oxygen vacancies on physical properties. 

Bulk NiO is an antiferromagnetic semiconductor material with a Neel temperature of 

about 523K. 

               2.1.3 NiO and Permalloy Oxide Crystal Structures 

NiO adopts a face-centered cubic (FCC) structure with octahedral Ni (II) and O2- 

sites, two Ni atoms in the unit cell, with a lattice constant (a) of 4.1705 Angstroms at 0K. 

Bulk NiO has a rhombohedral and cubic structure below and above the Neel temperature 

respectively [32], [50]. NiO also belongs to space group Fm3m, with a space group 

number 225. Below the Neel temperature, Ni2+ spin polarize in ferromagnetic 

configuration in the (111) planes along <112> axes, and the alternation of in-plane 

magnetization leads to the antiferromagnetic state. In the (FCC) structure, the in-plane 

magnetizations lead to magnetic domains.  Figure 2.1 shows the crystal structure of NiO 

[51]. Any doping may cause structural stress in the crystal lattice which can be eliminated 

by structure relaxation, but the degree of stress depends on the amount and the atomic 
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size of the dopant. Both NiO and Permalloy Oxide were simulated using the same crystal 

structure since the XRD shows that they both have the rock salt structure.    

 

 

                   

Figure 2.1 Crystal Structure of NiO with spin-polarization in the (111) planes. T and 

S are magnetic domains in [111], and [112] directions respectively. 
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III.COMPUTATIONAL THEORY 

3.1 Early First Principle Calculations 

The early known first principle calculations are the Hartree method, and the 

Hartree Fock method. The Hartree (H) method considers a one-electron model, instead of 

the n-electron system, by assuming that the n-electron system is just a set of non-

interacting one-electrons where each electron interacts with others at an average. In the H 

method, the wave equation for the system is given by [52]: 

              )()()()(
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where )(rU ext


is the interaction between the electrons and the nuclei, )(rU H


 is the 

Hartree potential resulting from the Coulomb repulsive interaction between each electron 

and the average field of others. The total energy of the system is the sum of energies of 

all electrons, since electrons are non-interacting. Consequently, the wave function for the 

system is the product of the one-electron wave function for each electron  )(ri


  , this 

product is known as the Hartree product: 
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The main issue with the (H) method is that it does not obey the principle of 

antisymmetry and the Pauli’s principle, and yet the method does include the exchange 

and correlation potentials. 



 
 

32 
 

The Hartree-Fock (HF) method [53], [54] is the improved (H) method using 

variational process, and gives a proper description to the missing information in the (H) 

method. In the HF method, the wavefunction for an n-electron system is given by the 

Slater determinant [55] for the approximation of linear combination of non-interacting 

one-electron wave functions. For example, the wave function for a two-electron system 

is: 

             )]()()()([
2

1

)()(

)()(

2

1
),( 21121211

2221

1211

21 rrrr
rr

rr
rr











          (3.3) 

The above determinant takes such form because of the antisymmetry principle, since 

electrons are fermions: 
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By taking in account of the spin state for each electron, the exact Slater determinant as a 

combination of ),( 11 r


 , ),( 11 r

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The above Slater determinant satisfies the Pauli’s principle for the wave function 

vanishes once two electrons occupy the same spin state. 

              The Slater determinant for an n-electron system, without taking in account the 

spin state for each electron, has the following form [53], [56], [57], [58]: 
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And the wave equation for the HF case is obtained by rewriting the wave equation for the 

H case in terms of the Slater determinant as a wavefunction is: 
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where )(rU ij


is the electron–electron interaction which stands for classical and quantum 

contribution of electrons to the system. The energy of the system can be obtained from 

the inner product of the Hamiltonian: 
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Since the electrons are in interaction, the wavefunction as a Slater determinant is not 

accurate, so the improvement comes from the variational principle. The ground state (GS) 

energy is determined by the variational principle [53]. In quantum physics, without 

degeneracy, the lowest energy corresponds to the ground state, and minimizing the 

energy of the system with respect to the wave function leads to the ground state energy. 

                                                    
GS

drH  ˆ0                                          (3.9) 
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3.2 Density Functional Theory  

The Schrodinger’s equation is one of the brilliant achievements in the modern 

science; unfortunately the equation is easily applicable for very simple quantum systems 

due to difficulties resulting from many-particle quantum effect. However, many–body 

systems can be approximately solved using the density functional theory (DFT).  

This is a powerful computational quantum mechanical modeling approach used 

in physics, chemistry and materials science to calculate the (ground state) [59] properties 

of many body systems. For the last three decades, DFT has been the most successful 

method for the quantum mechanical simulation of periodic systems and nowadays it is 

widely used in modeling of energy surfaces in molecules and even inner compositions of 

planets. The central idea of the theory consists of expressing the electron density )(rn


 in 

terms of the one–electron wave-function [59], [60] )(ri


 : 
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By including the spin, the wave-function takes the spinor form, where the first and the 

second elements of the spinor stands for spin up and spin down respectively: 
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And the complex conjugation of the spinor which has two elements leads to a form of the 

electron density matrix with four elements: 
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Also, the electron density matrix can be expended into the electron density and the 

magnetization density.  

However, even with electron density, difficulties for solving the problem for 

many-electron system  remain since the Hamiltonian of the system is extremely complex 

(complicated), thus a sets of particular methods need to be utilized to satisfy the 

Schrodinger equation for the system, and one of these special methods is Born-

Oppenheimer Approximation which was previously discussed briefly in the introduction. 

              3.2.1 Born-Oppenheimer Approximation 

If we decide to describe the properties of a collection of N atoms of 3N degrees 

of freedom; for instance, one of the necessary things that would need to be known about 

the energy is the change in energy if some atoms are moved with respect to others. To 

indicate the position of each atom we need to know the location of both the nuclei and 

electrons, since the electrons are not much heavier than nuclei, they tend to respond 

rapidly to any change. Thus the kinetic energy of nuclei is negligible, and then the Born-

Oppenheimer approximation guarantees that electronic and nuclear motions can be 

studied independently. The separation of these two types of motions is given by the 

equation (1.46). In the first step of the above approximation, one solves Schrodinger’s 

equation for fixed atomic nuclei, and the wave function depends on the electrons only. 

And in the second step, one solves the Schrodinger’s equation for nuclei only, with the 
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electronic wave function serving as a potential [16]. The adiabatic potential energy 

surface of the atoms having M nuclei situated at positions 
1r


,…, Mr


 is the ground state 

energy function of the form; E(
1r


,…, Mr


). 

               3.2.2 Hohenberg-Kohn Theorems 

These theorems are the basis for density functional theory, because they allow 

the determination of the ground-state properties of a system without dealing with many-

electron states
i . Since our system has N electrons moving in a static potential, the 

normalization condition can be written as; Nii  . 

These theorems are based on an important assumption that any physical system 

can be regarded as a collection of electrons moving in the field of an external potential

)(rU ext


. The first theorem states that the ground-state energy from the Schrodinger’s 

equation is a unique functional of the electron density )(rn


, where r


 is the position 

vector. The energy functional )]([ rnE


can be written in terms of the external potential as 

follows [59], [60]:         
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Here, F is an unknown quantity, but universal functional of the electron density )(rn


. 

This means that there exists an injective mapping between the ground-state wave function 

and the ground state electron density function.  
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Even though the first theorem claims that the functional of the electron density 

satisfies the Schrodinger’s equation, it does not give the details about the nature of the 

functional. It is the second theorem that defines the functional in the following way: the 

electron density that minimizes the energy of the overall functional satisfies the 

Schrodinger’s equation. Then, if the functional is known, a true electron density can be 

obtained by simply varying an arbitrary to minimize the functional. The functional 

described by the Hohenberg-Kohn theorem can be written in terms of a one-electron 

wave function )(ri


 , and the energy functional is given by the equation [62]: 
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            (3.14) 

Here, the functional includes five terms: the first term is the electron kinetic energy, the 

second term is the Coulomb interaction between the electrons and the nuclei, the third 

term is the Coulomb interaction between pairs of electrons, the fourth term is the 

exchange-correlation functional that includes all additional quantum mechanical effects, 

and the last term is the Coulomb interaction between pairs of nuclei. 

              3.2.3 Kohn-Sham Equations 

A Kohn-Sham Subsystem is a quantum system of non-interacting fermions 

moving in the external potential field. Kohn and Sham found that the right electron )(rn


 

density can be achieved by solving a set of Schrodinger equations called Khon-Sham 

equations [63] of non-interacting particles in which each equation only involves one 
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particle, in other words, with the Kohn-Sham approach, the n-electron system is replaced 

by a one-electron system. The solution obtained by using the Kohn-Sham approach is a 

single Slater determinant of the set of orbitals corresponding to the lowest energy 

eigenvalues to the following Kohn-Sham equations [60], [62]: 
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Here, the orbitals i  are the solutions to the KS equations, i  are the energy eigenvalues, 

the first term in the Hamiltonian for KS equations is the kinetic energy, the second term 

stands for the interaction between an electron and a collection of nuclei, and the third 

term stands for the Coulomb interaction between the electron and the total electron 

density, and is called Hartree potential and is defined by [63]: 
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The self- interaction is represented by the fourth term, and stands for the 

exchange and correlation potential, and is related to the exchange correlation energy 

through the following functional derivation: 
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As mentioned before, to find the electron density, it is required to solve the 

Kohn-Sham equations, but the Hartree potential has to be defined, however defining the 
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Hartree potential requires the knowledge of the electron density [64], and to know the 

electron density, the single-electron density should be known, but knowing them requires 

solving the Kohn-Sham equations. In other words, the problem requires executing the 

following algorithm [65]: 

1-Defining an initial guess electron density )(rn


 

2-Solving the Kohn-Sham equations using the trial (guess) electron density to 

find the single-electron wave functions, )(ri


  

3-Using the Kohn-Sham single-particle wave functions from step 2, to 

determine the electron density:  )()(2)( rrrn i

i

iKS


    (fermionic systems) 

4-Comparing the electron density )(rnKS


with the trial electron density, )(rn


, 

and if both are the same, that is the ground state electron density, then the total energy of 

the system can be calculated by utilizing that calculated electron density. If they are 

different, the process should be repeated with new trial values of electron density until 

both electron densities become approximately identical [67]. The iterative variation 

approach (self-consistent loop) is shown in the Figure 3.1. 

 

 

 

 



 
 

40 
 

                                                     Trial )]([),( rnErn XC


 

                                              

    

 

                                                 
iiiKSH  ˆ  

 

                                                            )()( New rnrn KS


  

                                 NoConverged/   

                          positionsion  update and forces Calculate  

                               NoConverged/  

                                                               YesConverged/  

                                     PropertiesOther  andEnergy  

 

 Figure 3.1 Self-Consistent Loop for Density Functional Theory. 
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With the Bloch theorem, the function )(ruk


is a periodic function [68], and 

according to the Fourier theorem, it can be written as a Fourier series, thus the wave 

function has the form: 

                        ]).(exp[)()( rGkiGcru
G

kk


                              (3.18) 

As mentioned before, G


 is the reciprocal lattice vector. And Kohn-Sham (KS) equations 

can be written in terms of the Fourier transforms: 
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Since the effective potential can be written in terms of the plane wave (PW ) 

basis set, by expressing the kinetic energy in terms of k


 and G


, then Kohn-Sham 

equations can be written in the condensed matrix form, for example, the 3x3 matrix KS 

Hamiltonian at arbitrary band index n can be written as follows:     
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In any material, there is the formation of bands, bands which are occupied by 

electrons are called the valence band, and the unoccupied bands are called the conduction 

band, and the band-structure is obtained by plotting the energy as a function of the 

Fourier space known as k-points space. Another representation of the electronic structure 
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is the density of states (DOS), which is the number of electronic states per unit energy 

range. 

              3.2.4 Exchange-Correlation Functional(s) 

The KS equations do not succeed  to accurately describe real systems for the KS 

method does not fully include the exchange-correlation (XC) energy since, as already 

mentioned, the KS method is for one-electron systems instead of n-electron systems. 

Even though, in the formulation of the theory of density functional(s), this energy counts 

for less than ten percent of the total energy, it plays a major role in determining important 

physical system properties such as spin-polarization, or band gap formation. Thus, the 

accuracy of the DFT calculations depends on the best approximation of the XC energy 

[69]. This energy is related to effective reduction of electron density or XC hole which is 

due to the repulsion between electrons. The XC hole comprises exchange and correlation 

components, and at high electron densities, due to Pauli Exclusion Principle the XC hole 

is mainly dependent of the exchange component, and at lower densities the correlation 

component becomes important. The electrostatic energy of an electron at position r


 with 

XC hole at position 'r


 is the local XC energy per electron, and can be expressed as 

follows: 
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And the integral of the product of the electron density and the local XC energy per 

electron is the XC energy functional [69]: 
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The approximate value of the XC energy can be achieved by assuming that the overall 

electron density is equivalent to the local electron density. With this idea of localized XC 

hole, the physical system is regarded as a collection of many pieces of uniform density 

with distinct values, and the total XC energy is the sum of all energies for individual 

pieces. This is called the local density approximation (LDA) [70]. This method is 

accurate for systems with almost zero gradient electron densities or homogeneous 

electron gases. For instance, for a homogenous gas of exchange-correlation energy per 

electron )]([hom rnXC


  the functional is given by: 
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                        (3.23) 

By considering the spin variable for spin-polarized systems, the LDA is extended to the 

spin-polarized density approximation (LSDA), and the XC energy functional for the 

system is written as: 

                rdrnrnrnrnrnE XC
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However, real physical systems are not homogenous; they do really not have 

uniform electron density. Then the application of the LDA for real systems do not 

guarantee a precise result. More accurate XC functional(s) are obtained by the 

generalized gradient approximation (GGA) method [71], [72] which includes electron 
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density and its local gradient. The general XC energy functional, depending on the spin 

variable with the density gradient, is given by:     

  
 rdrnrnrnrnrnrnrnE GGA

XC

GGA

XC


)](),(),(),([)()](),([     (3.25)    

While the XC energy functional for GGA has no both simple and correct form, 

its general form can be expressed in terms of the exchange-correlation energy LDA. 

Beyond GGA, there are other XC functionals which include additional variables to 

produce better accuracies.  
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IV.COMPUTATIONAL APPROACH 

4.1 Brillouin Zone Sampling 

In the reciprocal space, the primitive cell is the first Brillouin zone (BZ) [73], 

and symmetry operations such as rotation and inversion can reduce the first BZ to the 

irreducible BZ, and fold certain k-points a number of times, these special k-points are 

called points of high symmetry. 

While constructing the first BZ follows the same procedure in either two or 

three dimensions, the construction in latter dimensions is more difficult.  In two 

dimensions, it can be constructed by drawing a reciprocal lattice, and lines from a 

reference lattice point to its nearest neighbors and bisect the lines perpendicularly. In 

three dimensions, the first BZ is the volume formed by surfaces taking at same bisecting 

lines from the Gamma point to its neighbors. An example of the first BZ is shown in 

Figure 4.1. Also there exist BZs of high order centered at the Gamma point; however all 

of them play the same role due to the periodicity of the reciprocal lattice, all k-points 

outside the first BZ are the same since they differ by the reciprocal lattice vector G


.   

Sampling the first BZ is important for the DFT calculations because few k-

points reduce the computational time, and enough k-points represent accurately the 

system. Normally any point in the first BZ is a k-point, thus there exists an infinite 

number of k-vectors for the wave function. However, because of the smoothness of the 

wave function over the first BZ, a finite number of k-points is sufficient. The choice of 

necessary number of k-points depends on the convergence of the energy, in other words, 

good convergence of the total energy corresponds to sufficient k-points. 
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Figure 4.1 First Brillouin Zone (BZ) of (FCC) lattice with some points and lines of high 

symmetry. 

 

 

4.2 Bandstructure and Density of States (DOS) 

              In isolated atoms, electrons occupy specific and discrete energy levels, but when 

they come together, there is a formation of bands. Almost all core electrons remain in 

initial locations because of strong interaction with the nuclei, however valence electrons 

try to occupy the same energy level. The electronic structure is represented with the 

spectrum of energy curves in the k-space which is called the bandstructure. Figure.4.2 

shows an example of the bandstructure for Si [74]. Also a representation of the density of 

states (DOS), which is the number of electronic states per unit of energy range, is another 

way to characterize the electronic structure. 
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Figure 4.2 Bandstructure for Si. The valence band and the conduction band are below and 

above the Fermi energy level (EF=0) respectively. 

 

  

             The reaction of valence electrons to the nuclei can lead to the formation of band 

gap. The band gap width and its location with respect to the Fermi level also play role for 

the physical description of materials.  

 

4.3 Generalized Gradient Approximation (GGA) 

In comparison with other calculation methods such as LDA, the GGA method 

describes very well almost all systems [75], [76] with error less than to 4% for some 

properties. The method solves most of overbinding issues of LDA. However the GGA 

method has some limitations. One of the widely known limitations is that the GGA 

approach fails to describe strongly correlated systems such as transition metal oxides for 

orbitals of such systems are strongly localized, thus there is an additional repulsive 

interaction between each pair of electrons. In addition, like the LDA method, the GGA 
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method fails to accurately describe the band gap [77], [78]. On one hand, the failure is 

caused by GGA’s inaccessibility to excited states; the GGA method is based on the 

noninteracting one-electron Kohn-Sham (KS) model in which the definition of the band 

gap is different from the true definition of the band gap. On the other hand, the failure 

results from an incomplete cancelation of the self-interaction due to the nature of XC 

energy. 

 

4.4 Beyond Generalized Gradient Approximation (GGA) 

For strongly correlated systems, the GGA can be extended to GGA+U method, 

also called the U-approach which consists of adding the energy U to the GGA Kohn-

Sham (KS) Hamiltonian [79], [80] to improve the DFT calculations. This approach has 

been reported to improve many physical system properties such as band gap, or magnetic 

moment. Otherwise, the correction for the band gap underestimation may be achieved by 

using advanced techniques such as hybrid functionals [81], Green function techniques, 

GW approximation or other self-interaction correction methods, however, unlike the 

GGA method or the U-approach, most of the above methods are computationally 

expensive. Thus, all DFT calculations in this thesis research were performed with the 

GGA/U-approach.    
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4.5 VASP Simulations 

VASP (Vienna Ab initio Simulation Package) [65], [82] is software for 

electronic structure and quantum mechanical modeling of physical systems. VASP solves 

the many-body Schrodinger’s equation approximatively either within the DFT or within 

the HF method, or within a mixture of both as Hybrid functionals. VASP calculations 

require at least four input files: INCAR, POSCAR, POTCAR, and KPOINTS. 

The INCAR file is the central brain for the calculations because it contains the 

lines of codes (flags) about the run. The POSCAR file contains the information about the 

structure of the system to simulate. The POTCAR file contains pseudopotential or PAWs 

and XC functional information for atoms of the system. And the KPOINTS file contains 

coordinates and symmetry specification for k-points in the BZ. In general, the 

computational time depends on the number of electrons in the system, the content of the 

INCAR file, or the computational method. Advanced calculations for many-electron 

systems are extremely costly due to either the colossal amount of required computing 

power or computation time. Once the calculation is complete, several files containing the 

result of the run are returned, and frequently used output files are: OUTCAR, 

CONTCAR, DOSCAR and CHGCAR. 

The OUTCAR file contains most of the output information from the run along 

with the input file, for example the information about the bandstructure, the density of 

states or dielectric constants can be easily extracted from the OUTCAR file. The 

CONCAR file contains the information about atomic positions after the calculation is 

complete. The DOSCAR file contains the total DOS and partial DOS information. 
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Normally the DOSCAR file obtained directly from the relaxation process are useless for 

DOS, accurate DOS information requires running a static calculation using the result the 

converged calculation, with the CONTCAR as POSCAR file. And finally, the CHGCAR 

file contains the lattice vectors, atomic coordinates and the charge density after the run. 

 

4.6 Simulation Methods 

Various VASP simulations for NiO and Fe-doped NiO were performed. The 

results were compared with previous findings in the literature. Simulations for Fe-doped 

NiO were utilized to learn about of the effect of Fe doping on the electronic, optical and 

magnetic properties of NiO. 

The first simulations were for NiO crystals, and the main reason was to directly 

facilitate next simulations, given that the Permalloy (NiFe) oxide can be obtained from 

NiO by replacing Ni atoms with Fe atoms, and also to ease the study because any change 

in physical properties had to be attributed to the Fe doping. 

The first simulations of NiO were done with a simple cubic lattice structure. 

Above the Neel temperature NiO has an FCC (NaCl-type) structure but we chose to 

simulate it in the simple cubic (SC) structure to reduce the amount of time for VASP 

calculation and learn more about NiO system. We recall that the NaCl-type structure can 

be described in two ways: a) an FCC lattice plus two basis atoms or b) a SC lattice + 

eight basis atoms.   
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Preliminary calculations were done with SC lattice + eight basis atoms: four 

Nickel and four oxygen (O) atoms (see Figure 4.3). The first calculations were for the 

self-consistency calculations and the investigation of the crystal structure stability. Since 

the crystal structure stability corresponds to k-points with the lowest total energy, several 

simulations were performed with different k-points in the (BZ) in search for the k-points 

with the lowest total energy. Used k-points were: (2x2x2), (4x4x4), (6x6x6), (8x8x8), 

(10x10x10), and (12x12x12), and the calculations showed that the stable NiO 

corresponded to (4x4x4) k-points. This is probably one of the reasons why these k-points 

were previously used for NiO first principles calculations, as published in [83], and other 

works. 

 

 

 

Figure 4.3 FCC (SC lattice + eight basis atoms) Structure for NiO. The lattice parameters of 

the above supercell are twice those of the unit cell. The lattice constant for the unit cell of NiO is 

about 4.17 Angstroms.  
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 Spin calculations were also performed. More specifically one no-spin polarized 

(ISPIN=1) calculation, and another spin polarized (ISPIN=2) calculation. The 

comparison between the total energies from both calculations showed that the total 

energy for the spin-polarized calculation was lower than that of the no-spin polarized 

calculation, which means that the electron charge density is not distinguished by spins. 

Next, calculations with or without (ISPIN =2), MAGMOM tags were performed, and 

calculations with these tags yielded the lower total energy than those without them, since 

Ni atoms were given a unique non-zero magnetic moment for every different calculation, 

this indicates that each atom in NiO has a magnetic moment. 

To study the type of magnetism of NiO, the energies for both ferromagnetic 

(FM) and anti-ferromagnetic (AFM) configurations were calculated by choosing 

sequences in which all spins of Ni atoms are up or down, or sequences of up and down 

spins of Ni atoms in the MAGNOM tag. Each Ni atom was assigned a magnetic moment 

value, +2 for the spin-up state and -2 for the spin-down state, and all O atoms were given 

a zero magnetic moment value each. And by total energy comparison technique, the 

simulations showed that the ferromagnetic NiO was more likely to be stable, which is a 

contradiction since, as already mentioned, the bulk NiO is antiferromagnetic. However, 

the difference in total energies for both configurations was extremely small, but non-

negligible.  

Since the DFT calculations are normally done at zero Kelvin (K), so it was 

necessary to consider the crystal structure of NiO at such temperature, which is a 

distorted structure along the [111] direction, also known as, the rhombohedral structure. 
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In addition, since all previous calculations were done with GGA method which does not 

fully describe the system, thus the application of the U-approach was also necessary, and 

the correction for exchange-correlation interactions was U-J, with J = 0. The Hubbard 

correction U for both NiO, and Fe-doped NiO, only involved d-orbitals for both Ni, and 

Fe atoms. Different U values were utilized for studying the Hubbard (U) effect on the 

bandgap, but the study of Fe effect required the use of the same U for both NiO and Fe-

doped NiO. 

In this case, the NiO crystal structure was increased from a unit cell to a 

supercell with both the cubic (FCC) structure and rhombohedral structure with 

antiferromagnetic (Ni) ordering in the (111) planes, and since NiO is supposed to be 

rhombohedral at zero Kelvin (K), calculations with cubic structure were carried out only 

for a test, thus only rhombohedral structures are displayed. Each structure had either 4 

atoms: 2 Ni and 2 O atoms, or 32 atoms: 16 Ni atoms and 16 O atoms. At least four 

different types of calculations were done, and at least two calculations for each type of 

structure.  
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Figure 4.4 Rhombohedral Structure of a 4-atom NiO. Antiferromagnetic (Ni) ordering in 

(111) planes. 

 

 

 

 

Figure 4.5 Rhombohedral Structure of a 32-atom NiO Supercell. Antiferromagnetic (Ni) 

ordering in (111) planes. 
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Calculations with NiO supercells with both cubic (FCC), and rhombohedral 

structures, showed that the total energy obtained with spin polarization was greater than 

that with non-spin polarization for each structure, which is in agreement with the 

previous calculation with NiO unit cells that up and down spins in NiO are free to have 

different spatial orbitals. In addition, calculations with MAGMOM showed less total 

energy than calculations without MAGMOM for each structure, and calculations with the 

AFM configuration yielded less total energy than the FM configuration, however, the 

total energy with either AFM or FM configuration for the cubic structure was greater than 

the total energy for the AFM configuration for the rhomboidal structure. This indicates 

that the bulk NiO is indeed AFM with the rhombohedral structure at zero Kelvin (K). 

 

Some similarities were observed for both FCC and rhombohedral structures, for 

example, for each of structures, the total force was zero, however most of ions were 

extremely stressed, relaxation calculations were carried out to reach the self-consistency 

condition (with a fully relaxed system). Five calculations for structural and ionic 

relaxations (ISIF=2) were performed for thirty ionic steps to reach an acceptable force on 

each ion less or equal than 0.001 eV/Angst. In addition, the static calculation was done, 

and the result from the static calculation was used to obtain the (DOS). Normally the 

space group is not identical for FCC and rhombohedral structures, while the space group 

of the FCC structure belongs to the space group Fm3m (225), the rhombohedral structure 

belongs to the space group R3m (166). For the (BS) bandstructure, additional calculations 

with different paths of high symmetry points in the (BZ) shown by Figure 4.5, to obtain 

the Fourier space energy.  
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Figure 4.6 Brillouin zone (BZ) along with high symmetry points for the rhombohedral 

structure for NiO, or Fe-doped NiO. 

 

After the simulation of Nickel Oxide, four types of simulations for Nickel oxide 

doped with Iron were done. All simulations were performed using a supercell, in a 

rhombohedral structure in the (111) planes, of 32atoms: one Fe atom, 15 Ni atoms, and 

16 O atoms in the AFM configuration. Thus, in comparison with NiO simulations, a 

concentration of 6.25% Fe was considered in these simulations. The magnetic moment 

for Fe atom was randomly chosen to be 5 B  , but VASP adjusted that value during the 

calculation.  
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Figure 4.7 Rhombohedral Structure of Fe-doped NiO Supercell (32 atoms). Anti-

ferromagnetic ordering for both (Ni) and (Fe) in the [111] direction. 

 

First, two calculations were performed to learn whether or not Fe-doped NiO 

was magnetic, one calculation was done without MAGMOM tag, and another with 

MAGMOM tag, and with total energies comparison from both calculations showed that 

Fe-doped NiO was  magnetic.  The last two calculations with MAGMOM were done, 

with one in the AFM configuration, and another in the FM configuration. The energy 

from the calculation with no MAGNOM was extremely higher than energies from other 

calculations, and the energy from the calculation with spins of atoms being up and down 

alternatively was lower than the energies from simulations with all spins of atoms being 

either up or down, but the non-zero magnetic moment indicated that Fe-doped NiO was 

not antiferromagnetic, and this makes sense because only one Ni was substituted by Fe 

atom by keeping the same spin ordering. 
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Also Fe-doped NiO ions were stressed, thus the relaxation was needed to 

significantly reduce forces on ions. After several relaxations, the self-consistent result 

was obtained, and then used, along with different paths of the K-points in the Brillouin 

zone, to generate the bandstructure and densities of states.                                             
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V.COMPUTATIONAL RESULTS 

5.1 Optical and Magnetic Properties of NiO 

The GGA calculations for 4-atom NiO yielded a band gap, however with the 

same type of the calculation for 32-atom NiO the band gap was not present; this is due to 

the exchange-correlation interactions that increase with the number of interacting 

particles, especially for strong correlated systems.  

According to the crystal field theory,  Ni atoms in NiO have an octahedral 

coordination, 3d orbitals are split such that the conduction band minimum is made of  eg 

states, and the  valence band maximum is made of a mixture of  eg  and  t2g states. 

Figure 5.1 shows the band structure and density of states for a 4-atom NiO from 

the GGA calculations. According to the results, NiO has an energy gap Eg of about 0.6 

eV with respect to the Fermi energy level (EF =0 eV) at the valence band maximum. 

Since this electronic gap has a small but non-zero energy, then intrinsic NiO is a 

semiconductor. 
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Figure 5.1 Bandstructure (BS) and density of states (DOS) for both spin up and spin down 

states obtained for a 4-atom NiO using GGA. The Fermi energy level is set at the origin (EF = 

0 eV) at the valence band maximum. Measured from the Fermi energy level, the band gap is Eg = 

0.6 eV. 

 

According to the above result, the spin-up bandstructure is identical to the spin-

down bandstructure; consequently, the total magnetic moment is zero. Table 5.1 shows 

the magnetization for each orbital and the total magnetization for 4-atom NiO. The first 

two ions correspond to Ni atoms, and others correspond to O atoms. The total 

magnetization is zero, as expected since the bulk NiO is antiferromagnetic.  
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Table 5.1 Magnetic moment (in B ) obtained for 4-atom NiO using GGA.The first two ions 

(in green color) are for Ni atoms , and the last ions (in red color) are for O atoms. 
 

                                

 

# of ion s p d tot 

1 -0.008 -0.014 1.23 1.208 

2 0.008 0.014 -1.23 -1.208 

3 0.000 0.000 0.000 0.000 

4 0.000 0.000 0.000 0.000 

tot 0.000 0.000 0.001 0.000 

 

                                                                                 

 

 

 

Normally, the trial magnetic moment value was 2 B  for Ni atom and 0 B  for 

O, the calculated value is 1.208 B  for Ni, and 0.00 B  for O atom (see Table 6.2), but 

the magnetic moment is correctly described by GGA+U method. The result also shows 

that the total magnetization is zero, this is in agreement of the fact that both DOS and BS 

are symmetric with respect to the Fermi energy (EF = 0 eV). For each Ni atom, most of 

the magnetization comes from the d-orbital electrons, and a small contribution comes 

from s-orbitals, and the possible reason is s-orbitals are fully occupied, and d-orbitals are 

not, and yet their electrons have non-zero orbital angular momenta. 

Since GGA also underestimates the band gap, the U-approach was used to 

obtain better accuracy. The chosen U value was 4 eV for d-orbitals of Ni atoms and 0 eV 

for O atoms, and the exchange interaction value was zero. Like the GGA, the U-approach 

yielded a zero magnetization and symmetric bandstructure for spin-up and spin-down 

states, and   the energy gap became 2.6 eV. Figure.5.2 shows the symmetric density of 
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states for spin-up and spin-down states. The Fermi energy level is, at the origin of the 

energy spectrum, at the valence band maximum. 

                                    

-21 -18 -15 -12 -9 -6 -3 0 3 6 9 12

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14  spin up

 spin down

 

 

D
O

S
(s

ta
te

s
/e

V
)

E(eV)

4-atoms

GGA+U(3eV)

NiO

   

Figure 5.2 Density of states (DOS) for a 4-atom NiO with GGA+U. With U-J = 3eV, the band 

gap is about 2.6 eV. 

 

 

As expected, the magnetic moment for Ni atoms was improved by the U-

method. The magnetization value with GGA+U(3eV) is about 1.6 B . Table 5.2 shows 

the magnetization for NiO from GGA+U(3eV) calculations. The total magnetization for 

same orbitals is zero, which means that the total magnetization for the whole system is 

also zero; thus confirming that the bulk NiO is an antiferromagnetic. As in the previous 

case with GGA method, the majority of the magnetization comes from the d-orbital 

electrons and s-orbitals contribute less to the magnetization.               
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Table 5.2 Calculated magnetic moment (in B ) for atomic orbitals and the net magnetic 

moment for 4-atom NiO using GGA+U(3eV). The first two ions (in green color) are for Ni 

atoms, and the last two ions (in red color) are for O atoms. 

                                       

 

# of  ion s p d tot 

1 -0.007 -0.011 1.584 1.565 

2 0.007 0.011 -1.584 -1.565 

3 0.000 0.000 0.000 0.000 

4 0.000 0.000 0.000 0.000 

tot 0.000 0.000 0.000 0.000 

 

 

 

 

With the Hubbard correction U for Ni d-orbitals, both bandstructure and density 

of states for spin up are identical to those for spin down; this indicates that the total 

magnetic moment, thus the system is antiferromagnetic. With the Hubbard energy U = 

4.0 eV, there is a band gap of 2.5 eV (See Figure 5.3). With the Hubbard energy U = 4.5 

eV, the band gap is 3 eV (See Figure 5.4), this is in a much better agreement with the 

experimental value ranging from 3.5 to 4.0 eV. This also indicates that the value of the 

band gap depends of the value of U. Normally, other calculations, which are not included 

here, showed that there is a range for U that leads to the bandgap, in other words, by 

increasing the value of U, the bandgap increases to reach a maximum and decreases to 

ultimately vanish.  
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Figure 5.3 Bandstructure (BS) and Density of States (DOS) for a 32-atom NiO Supercell 

with GGA+U. Spin-up and spin-down states for both BS and DOS are symmetric. With U-J = 

4.0eV, the band gap is 2.5 eV.  

 

-8

-6

-4

-2

0

2

4

6

8

E
n

e
rg

y
 (

e
V

))

spin up

GGA+U(4ev)

32-atoms

NiO

F  T L 
-8

-6

-4

-2

0

2

4

6

8

E
n

e
rg

y
 (

e
V

)

(Spin down)

F  T L 

GGA+U(4eV)

32-atoms

NiO



 
 

65 
 

                     

Figure 5.4 Density of states (DOS) for a 32-atom Supercell NiO with the U-approach. Spin-

up and spin-down states for DOS are symmetric. With U-J = 4.5 eV, the band gap is 3 eV. 

 

The result about the optical properties of NiO from 0 to 10 eV (see Figure 5.5) 

shows that, at the lowest energy (0.0 eV), the refractive index (n) is about 2.2, and the 

reflectivity is about 0.14, but the extinction coefficient (k), the real optical conductivity, 

the absorption, and the energy loss are all null, whereas the reflectivity function is not. 

The optical conductivity, the absorption and the loss functions begins to increase at 

around 2 eV.  The result also shows that the imaginary dielectric function, the extinction 

coefficient (k), the reflectivity, the real optical conductivity, and the absorption function 

have a peak at same energy of the order of 4 eV. For low energies ranging from 0 to 

approximately 2ev intrinsic NiO is less absorbing, less optically conducting and less 

lossy.  
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Figure 5.5 Calculated optical properties of NiO using GGA+U method. Dielectric Function 

(a), Refractive Index (b), Reflectivity (c), Real Optical Conductivity (d), Absorption (e), and 

Energy Loss (f). 
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The total magnetic moment is zero as expected ,and the magnetic moment for Ni  

is 1.643 B , this is lightly different from the Ni magnetic moment value in the 4-atom 

NiO system.  Normally, the crystal relaxation was not performed for the 4-atom NiO 

system because it appeared fully relaxed. But, the magnetic moment of O is zero as 

expected. Each orbital of O has a zero magnetic moment, thus the most of the magnetic 

moment originates from the d- orbital electrons for Ni.  
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Table 5.3 Calculated magnetic moment for 32-atom NiO using GGA+U. The first sixteen ions 

(in green color) are for Ni atoms, and the last sixteen ions (in red color) are for O atoms.      

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 # of ion s p d tot 

1 -0.005 -0.009 1.657 1.643 

2 -0.005 -0.009 1.657 1.643 

3 -0.005 -0.009 1.657 1.643 

4 -0.005 -0.009 1.657 1.643 

5 -0.005 -0.009 1.657 1.643 

6 -0.005 -0.009 1.657 1.643 

7 -0.005 -0.009 1.657 1.643 

8 -0.005 -0.009 1.657 1.643 

9 0.005 0.009 -1.657 -1.643 

10 0.005 0.009 -1.657 -1.643 

11 0.005 0.009 -1.657 -1.643 

12 0.005 0.009 -1.657 -1.643 

13 0.005 0.009 -1.657 -1.643 

14 0.005 0.009 -1.657 -1.643 

15 0.005 0.009 -1.657 -1.643 

16 0.005 0.009 -1.657 -1.643 

17 0.000 0.000 0.000 0.000 

18 0.000 0.000 0.000 0.000 

19 0.000 0.000 0.000 0.000 

20 0.000 0.000 0.000 0.000 

21 0.000 0.000 0.000 0.000 

22 0.000 0.000 0.000 0.000 

23 0.000 0.000 0.000 0.000 

24 0.000 0.000 0.000 0.000 

25 0.000 0.000 0.000 0.000 

26 0.000 0.000 0.000 0.000 

27 0.000 0.000 0.000 0.000 

28 0.000 0.000 0.000 0.000 

29 0.000 0.000 0.000 0.000 

30 0.000 0.000 0.000 0.000 

31 0.000 0.000 0.000 0.000 

32 0.000 0.000 0.000 0.000 

tot 0.000 0.000 0.000 0.000 
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 5.2 Optical and Magnetic Properties of Fe-doped NiO 

 

Unlike for NiO, due to the Fe doping the (BS) as well as the (DOS) for spin-up 

and spin-down states for Fe-doped NiO are noticeably different, consequently, the net 

magnetic moment should not be zero. In comparison with the DOS for NiO, one realizes 

the Fe-doping introduces a state that reduces the initial band gap. This state originates 

from the Fe energy splitting which sends the state t2g  of  Fe above the highest occupied 

NiO level, and this t2g sub-band becomes highest fully occupied state (see Figure 5.6), 

that is why the band gap of Fe-doped NiO is lower than that of NiO. The U-method for 

Fe-doped NiO yielded the energy gap which is approximately equal to 2.0 eV which is 

about 0.5 eV lower that the one obtained for NiO (see Figure 5.3 and Figure 5.6). 
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Figure 5.6 Density of States (DOS) for spin-up and spin-down states obtained for a 32-atom 

Fe-doped NiO supercell  using GGA+U. With respect to the Fermi level ( EF = 0), the bandgap 

is about 2 eV. 
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We also study the optical properties of Fe-doped NiO from 0 to 10 eV. Like the 

32-atom NiO system, Fe-doped NiO is  less optically conductive, less absorbing, and has 

less energy loss at lower energies (see Figure 5.7). However, the decrease of the bandgap 

due to the Fe doping affects the optical properties of intrinsic NiO. For eaxmple, the 

bandgap reduction causes the decrease of the maxima of the dielectic function, the 

refractive index, the reflectivity, the real optical conductivity, and the absorption function 

(see Figure 5.5 and Figure 5.7). In addition,  the decrease of the bandgap increases  the 

static refractive index (n) from 2.2 to 2.25, also there is an increase of static reflectivity 

R(0) from about 0.14 to 0.15 (see Figure and 5.5 and Figure 5.7).  For lower energies, the 

real optical conductivity, and the absorption function begin to increase at approximately  

2eV as in intrinsic NiO, but  the loss function of Fe-doped NiO increases faster than that 

of intrinsic NiO, this is also due to the reduced band gap in Fe-doped NiO compared to 

instrincic NiO (see Figure 5.5 and Figure 5.7). 
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Figure 5.7 Calculated optical properties of Fe-doped NiO using GGA+U (4eV) method. 

Dielectric Function (a), Refractive Index (b), Reflectivity (c), Real Optical Conductivity (d), 

Absorption (e), and Energy Loss (f). 
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Unlike for NiO, the result (see Table 5.4) from the calculations shows that 6.25 

at.% Fe-doped NiO has a non-zero magnetic moment of the order of 1.968 B , this is 

obvious since Fe atom has a higher magnetic moment than Ni atom, for example, 

according to Hund’s rule. The calculated magnetic moment of Fe is 3.652 B , and the 

magnetic moments for Ni and O are approximately identical to those obtained for NiO. 

Like for NiO, for each Ni atom in the Fe-doped NiO, the major contribution to the 

magnetic moment comes from d-orbitals, and even though the overall magnetization for 

each O atom is zero, p-orbitals of each O contributes more to the magnetic moment. 
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Table 5.4 The calculated magnetic moment (in B ) for 32-atom 6.25 at. % Fe-doped NiO 

using GGA+U (4 eV). The first ion (in aqua color) is for Fe atom, the following fifteen ions (in 

green color) are for Ni atoms, and the last sixteen ions (in red color) are for O atoms. 

 

# of ion s p d tot 

1 0.012 0.008 3.632 3.652 

2 0.003 0.002 1.671 1.677 

3 -0.007 -0.011 1.635 1.618 

4 -0.005 -0.01 1.643 1.628 

5 -0.007 -0.011 1.635 1.618 

6 -0.005 -0.01 1.64 1.625 

7 -0.003 -0.003 -1.67 -1.675 

8 -0.006 -0.011 1.633 1.616 

9 0.006 0.008 -1.638 -1.623 

10 -0.003 -0.003 -1.67 -1.675 

11 0.007 0.01 -1.633 -1.616 

12 0.006 0.009 -1.635 -1.62 

13 0.007 0.01 -1.632 -1.615 

14 0.006 0.009 -1.636 -1.621 

15 0.004 0.002 1.672 1.678 

16 0.007 0.009 -1.635 -1.619 

17 0.000 -0.001 0.000 -0.001 

18 0.000 -0.009 0.000 -0.009 

19 0.000 -0.013 0.000 -0.013 

20 0.000 0.002 0.000 0.002 

21 0.000 -0.02 0.000 -0.019 

22 0.000 0.000 0.000 0.000 

23 0.000 0.000 0.000 0.000 

24 0.000 0.001 0.000 0.001 

25 -0.007 -0.061 0.000 -0.068 

26 0.000 0.000 0.000 -0.001 

27 0.007 0.063 0.000 0.07 

28 -0.007 -0.082 0.000 -0.089 

29 0.007 0.064 0.000 0.072 

30 -0.007 -0.076 0.000 -0.083 

31 0.001 -0.009 0.000 -0.008 

32 0.007 0.062 0.000 0.069 

tot 0.023 -0.066 2.012 1.968 
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Table 5.5 Calculated magnetic moment (in B ) for 32-atom 12.5 at. % Fe-doped NiO using 

GGA+U (4 eV). The first ion (in aqua color) is for Fe atom, the following fifteen ions (in green 

color) are for Ni atoms, the nineteenth ion (in aqua color) is for Fe atom, and the last fifteen ions 

(in red color) are for O atoms. 

 

 

# of ion s p d tot 

1 0.014 0.011 3.797 3.822 

2 -0.002 -0.007 1.723 1.714 

3 -0.002 -0.007 1.723 1.714 

4 -0.001 -0.007 1.718 1.709 

5 -0.002 -0.007 1.723 1.714 

6 -0.001 -0.007 1.718 1.709 

7 -0.002 -0.007 1.72 1.711 

8 -0.001 -0.006 1.722 1.715 

9 -0.014 -0.011 -3.764 -3.789 

10 0.002 0.007 -1.723 -1.714 

11 0.002 0.007 -1.723 -1.714 

12 0.001 0.007 -1.718 -1.709 

13 0.002 0.007 -1.723 -1.714 

14 0.001 0.007 -1.717 -1.709 

15 0.002 0.007 -1.719 -1.711 

16 0.001 0.006 -1.722 -1.715 

17 0 0 0 0 

18 0 0 0 0 

19 0 0 0 0 

20 0 0 0 0 

21 0 0 0 0 

22 0 0 0 0 

23 0 0 0 0 

24 0 0 0 0 

25 0 0.002 0 0.002 

26 0 0.007 0 0.007 

27 0 0.006 0 0.006 

28 0 -0.006 0 -0.006 

29 0 0.006 0 0.006 

30 0 -0.006 0 -0.006 

31 0 -0.007 0 -0.007 

32 0 -0.002 0 -0.002 

tot 0 0.002 0.034 0.036 
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5.3 Summary 

GGA/GGA+U calculations show that NiO is an antiferromagnetic 

semiconductor. With the GGA method, a 4-atom NiO has a band gap of 0.6 eV, and with 

the  GGA+U method, a 32-atom NiO has a band gap of 2.5 eV by using U(4eV), and a 

band gap of 3 eV by using U(4.5eV). The calculated magnetic moments of Ni and O 

atoms are ~1.7 B , and 0 B  respectively, this is in agreement with [84].  GGA+U 

calculations show that 6.25 at.% Fe-doped NiO has a non-zero net magnetic moment. The 

calculated magnetic moments for Ni and O are, on average, similar to those obtained for 

NiO. The calculated magnetic moment for Fe is ~3.7 B , and this value is in agreement 

with [84]. This explains why 6.25 at. % Fe-doped NiO has a non-zero net magnetic 

moment since only one Ni atom was substituted by one Fe atom keeping the same 

antiferromagnetic ordering. The result also shows that 12.5 at.% Fe-doped NiO have a 

very small net magnetic moment to be considered zero (note that there is also a magnetic 

contribution from O atoms), thus 12.5 at.% Fe-doped NiO.  This indicates that the 

magnetic nature of Fe-doped NiO depends on the Fe concentration. The Fe doping 

decreases the bandgap, and this decrease affects the optical properties of NiO. The 

decrease of bandgap increases the static refractive index (n) just as P. Mallick et al.[104] 

claim that the reduction of the bandgap due to the Fe doping  increases the refractive 

index. 
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VI.LAB INSTRUMENTS AND RESULTS 

6.1 AJA Magnetron Sputtering System 

The AJA Magnetron Sputtering System is a confocal thin-film deposition 

instrument which is usually utilized to deposit thin-films of metals and insulators on 

silicon wafers or other substrates. The system contains 2 DC and 2 RF magnetron 

sputtering guns which allow in-situ tilting of their heads; this allows uniformity, or 

sputtering rate optimization at any distance within a short period of time and a minimal 

effort. The system uses a LabVIEW based Phase II-J computer control system allowing 

both manual and automated modes [85]. 

 

Figure 6.1 AJA Sputtering System in the Cleanroom at Texas State University. 

The system can attain a pressure as low as 4E-8 Torr, and the substrate holder 

allows simultaneous rotation, and heating up to 850 degrees Celsius. During the 
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sputtering process, Argon ions are accelerated into the target consisting of the material to 

be deposited, and due to the energy and momentum transfer, some of the target atoms are 

ejected. These ejected atoms form an atom beam and are deposited on the substrate. The 

ignition of the plasma requires a pressure above 20 mTorr, and the initial presence of 

positively charged ions necessary to start a plasma may depend on cosmic radiation. In 

the Direct Current (DC) sputtering mode, positively charged ions are accelerated to the 

target by a negative potential of hundreds of volts. Electrons created by impacting ions 

can also cause further ionization of the gas. However this technique is limited to 

conducting materials such as metals and doped semiconductors. The main reason is that 

impacting positively charged ions would create a charge on an insulating target, and 

annihilate the ion current. To prevent the charge build up, a Radio-Frequency (RF) 

alternating current (AC) voltage is applied to insulating targets, thus this technique is 

called RF-sputtering. The samples reported on in this thesis were made by reactive RF 

magnetron sputtering using a mixture of oxygen and argon. 

              6.1.1 Sample Manufacturing 

Samples were sputtered in the AJA Sputtering system. As the deposition rate 

was not constant but varied across the sample-holder, and to reduce the thickness 

variations across the substrate the sample holder was rotated at 40 rpm during deposition. 

The thickness varies slightly across a 3’’ microscopic slide. Si/SiO2 was used as 

substrates for all samples. All substrates were cleaned [86] via sonication in water for 

five minutes, acetone for five minutes, methanol for five minutes, and isopropyl alcohol 

(IPA) for five minutes. 



 
 

78 
 

After the substrates were loaded into the AJA sputtering system the substrates 

were cleaned in-situ using the Copra gun: 240 Watts, 0.15 sccm argon (Ar) flow, and a 

cleaning time of 300 seconds. The films were sputtered at room temperatures using a 

metallic target of Ni or Ni0.8Fe0.2. For all cases the substrate shutter was used during the 

time the guns were ramped up to full power and the gas flow rates were adjusted. The 

deposition power was 240 Watts for all samples. The other deposition parameters are 

summarized in Table 6.1 below. The deposition rate was measured with a crystal 

thickness monitor. To avoid the sputter guns from getting overheated, after sputtering for 

600-700 seconds the gun was switched off and allowed to cool down for 10 minutes. 

After the cool down period, the guns were started up again and the deposition was 

continued. The number of sputter sessions are listed in the table and labeled as #runs. The 

total gas flow was kept constant during deposition at 50-51 sccm. Films were sputtered at 

two different oxygen (O) sputter gas concentrations. Table 6.1 shows two different 

sputter pressures. PM was measured with a capacitance manometer and PT was measured 

with a convectron gauge. The readings of the latter vacuum gauge depend on the type of 

gas. The AJA convectron gauge is calibrated for N2. The real pressure for Ar is a factor 

1.4 larger than the indicated value. The values listed in the table are the values read from 

the instrument.  

 

 

 

 



 
 

79 
 

Table 6.1 Deposition Parameters for NiO and NiFeO Samples. 

sample target Ar 

flow 

sccm 

O 

flow 

sccm 

volt #runs Dep. 

Rate 

[A/sec] 

Depos. 

Time 

[sec] 

PM 

[mTor] 

PT 

[mTor] 

081016A/B Ni81Fe19 45.02 5 119 7 0.5 4560 7.7 3.9 

081016-1/2 Ni81Fe19 49.74 0.54 107 5 0.7 3300 7.9 N/A 

081416-A/B Ni 45.03 6.02 137 7 0.6 4260 7.9 4 

081516-1/2 Ni 50.23 0.47 127 6 0.9 3600 8.9 3.8 

 

As already mentioned, samples were made by reactive RF magnetron sputtering; 

the background pressure in the chamber before starting the deposition was in the 10-8 

Torr range. Prior to deposition the Ni or NiFe target was pre-sputtered for one minute, 

sputtering was done using a mixture of Ar and O gases. Note that two Si/SiO2 substrates 

were mounted for the same sputtering run resulting in two samples for each deposition 

run.  

Dependent on the chemical composition, and the oxygen flow during deposition, 

four types of samples were made: 

Table 6.2 Composition and Dimensions of NiO and NiFeO samples. (High O) and (Low O) 

stand for high and low oxygen flow respectively. 

 

 

 
Sample       Composition  Width  Length Thickness Volume (m3) 

081416A NiO (High O) 4.6 mm 4.375 mm 335.4 nm 6.752e-12 

081516-1 NiO (Low O) 4.2 mm 5.650 mm 437.0 nm 10.99e-12 

081016A Ni0.8Fe0.2O1-𝛿( High O) 4.2 mm 4.400 mm 269.5 nm 4.985e-12 

081016-2 Ni0.8Fe0.2O1-𝛿 (Low O) 4.0 mm 5.500 mm 293.5 nm 6.457e-12 

 

Two different techniques were used to determine the thickness of the samples: 

prior to deposition the deposition rate was measured with a crystal thickness monitor and 
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the film thickness was calculated from the measured deposition rate and deposition time. 

Also ellipsometry was used to determine the film thickness. Both techniques did not yield 

the same results. Table 6.3 shows the estimated thickness from the thickness monitor 

deposition rate and deposition time as well as the measured thickness determined from 

ellipsometry measurements. The ellipsometry thickness is consistently higher. A plot of 

the crystal monitor thickness vs. the ellipsometer thickness shows a straight line with a 

slope of 0.75 and a non-zero y-axis intersect. 

 

 
Table 6.3 Samples thickness measured with different techniques: Ellipsometer, and Crystal 

Monitor. 

 

 
Sample Composition Est. thickness  

 (Ellipsometry 

just after 

deposition) 

Est. thickness 

(crystal monitor) 

Est. thickness 

(Ellipsometry 

with roughness, 

6 months after 

deposition) 

081016A/B Ni0.8Fe0.2 O(High O) 269.5 (nm) 228 (nm) 261.6+6.8  (nm) 

081016-1/2 Ni0.8Fe0.2 O(Low O) 293.5 (nm) 231 (nm) 283.3+30.7(nm) 

081416-A/B NiO(High O) 335.4 (nm) 256 (nm) 316+17      (nm) 

081516-1/2 NiO(Low O) 463.5 (nm) 324 (nm) 436.5+30.6(nm) 
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Figure 6.2 Crystal Monitor Thickness (nm) vs Ellipsometer Est. Thickness (nm) just after 

deposition. 

 

The crystal monitor thickness is based on mass (using density). The optical 

thickness is based on actual thickness (using the wavelength of the light). The difference 

could indicate that the RF sputtered NiO and NiFeO thin films have a different density 

than bulk material, possibly due to voids caused by the high sputter pressures (50 mTorr). 

The ellipsometric values in this table are based on the ellipsometric measurements that 

we did immediately after we made the samples. Another explanation could be a 

systematic error in the ellipsometer thickness caused by an initial seed layer with 

different optical properties as revealed by [87]. The optical properties that vary through 

the film thickness are not uncommon for oxide materials. For example, the dry or wet 

oxide on Si is normally modeled by a bi-layer with two different refraction indices. 
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6.2 X-ray Diffractometer (XRD) 

The reason why the X- ray diffraction is commonly utilized for the study of 

crystal structure and atomic spacing is crystals act as diffraction gratings for X-ray 

wavelengths. The X-ray diffraction is based on constructive interference which is 

produced when the interaction of the X-rays and the crystal satisfy the Bragg’s Law 

which relates the wavelength of the X-rays to the lattice spacing. A scan of the sample 

through a range of 2𝜃 angles allows reaching all possible diffraction directions of the 

crystal lattice. And since a material has a unique d-spacing, a relation between the 

diffraction peaks and the d-spacing allows for the identification of the crystal structure 

and orientation. 

The X-Ray Diffraction (XRD) system consists of three basic parts: an X-ray 

tube, a sample holder, and an X-ray detector. In the X-ray tube, electrons from the heated 

cathode are accelerated by the anode. Upon their arrival at the anode, their interaction 

with the atoms of the anode leads to the release of energy and the emission of the X-ray 

spectra when incoming electrons have sufficient energy to displace the inner shell 

electrons of the target material. The X-ray spectra have a variety of components, and the 

strongest are K  and K  lines due to respective electronic transitions from L shells to K 

shells, and M shells to K shells. The K component of the X-ray spectra consists of two 

parts of almost the same intensity and energy: 1K , and 2K   [88]. The X-rays are 

collected from the source by a collimator, and directed towards the sample. The reflected 

X-rays are detected by a detector that is mounted on a goniometer and the intensity of the 

beam is recorded. As mentioned before, peak intensity occurs once the Bragg’s Law is 
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satisfied. Then the detector processes the X-ray signal and sends the output signal to a 

computer system.         

              6.2.1 System Preparation and Measurement Methods 

Measurements were made using a SmartLab Rigaku Diffractometer. The 

instrument is easy to uses since it is a fully computer controlled system with guidance 

software. Before any of the measurements, the water chiller is turned on. A wait time 

might be required for the chiller’s temperature to reach 70F. Normally, this is the 

recommended temperature at which the XRD system is ready for operation. Next, the 

connected computers to the XRD system are powered up and the HyPix detector is 

connected. The smartlab guidance software is started and the X-ray generator is activated. 

For measurement, the voltage and the current are set to 40kV and 44mA respectively 

[89], [90]. The type of the measurement is chosen and both optical and sample 

alignments are performed. For optical alignment, the system starts with the alignment of 

the source components, and moves down the light path. For the sample alignment, the 

system aligns the sample parallel with the light path. Center slit and Height Reference 

Sample Plate are usually required for optical alignment, and changing between samples 

may require optical alignment for best measurement results.                         

              6.2.2 XRD Measurements 

Prior to measurement, the samples were cleaned with ionized water, acetone, 

methanol, and isopropyl, and then dried with IPA using the spinner. Figure 6.3 shows the 

Rigaku X-ray Diffractometer (XRD) which was used for the measurements. After the 

system preparation, for each measurement, the glass was placed between the sample and 



 
 

84 
 

the sample stage to reduce the background noise. The sample stage was installed in the 

system in parallel beam (PB) configuration for a theta/2theta scan [90] starting from 30 to 

100 degrees. The typical duration for each measurement was set to 8 min. 

 

 

Figure 6.3 Rigaku X-Ray Diffractometer (XRD) at Texas State University. 

 

The 𝜃 angle was set at 2 degrees and only the sample scan was done through the 

2𝜃 angle. So this X-ray scan does not show the planes parallel to the substrates as the 

traditional 2𝜃- scan. In fact, the peaks at low angle originate from planes that are kind of 

parallel to the substrate while the peaks at higher two theta angle are caused by planes 

that make an angle with the substrate. By choosing a small 𝜃 angle, the incident X-rays 

are more or less parallel to the substrate and do not see the silicon substrate. So the Si 
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peaks are strongly suppressed. The peak combination around 54 degrees in the spectra is 

caused by the Si substrate. If necessary, it can also be removed by rotating the sample 

slightly around its normal. The X-ray measurements were done with a slit width of 5 mm. 

The plastic clips to hold the samples were not used. The smaller slit width (i.e. 5 mm 

instead of 10 mm) guaranteed that none of the x-rays is missing the sample and hit the 

substrate holder or the clips. 

 

 

              

 

Figure 6.4 An example of the propagation of light for a theta (2 degrees)/ 2theta scan 

with XRD. 

 

 

               6.2.3 X-Ray Results for NiO and Ni0.8Fe0.2O1-𝜹  Samples 

XRD shows that some of the NiFeO peaks are much weaker and slightly broader 

than those of NiO; this indicates that both samples have the same crystal structure, but 

NiFeO samples have smaller crystallites and possibly a different texture. Due to the 
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omega measurement configuration, the (111) peak and the (222) peak originate from the 

same crystal direction but different crystallites. Similarly, the (200) peak and the (400) 

peak originate from the same crystal orientation but different crystallites. These 

diffraction peaks are characteristic of the NaCl-type structure, thus our XRD are in 

agreement with [36], [38]. 

 

  

Figure 6.5 XRD for NiO, and Ni0.8 Fe0.2O1-𝜹 samples. Both results show that samples have 

NaCl-type structure. 

 

It should be noted here that although XRD results are often used to show the 

absence of other phases, 2𝜃 scans are very not sensitive to nanoparticles of other phases. 

As the diffraction peak width increases with smaller size grains, the peaks of 

nanoparticles often disappear in the noise of the 2𝜃 scan. Nanoparticles of these phases 

can still be present as shown by A P. Douvalis et al. [35]. FTIR ellipsometry 

measurements on RF sputtered FeNiO by Taludker et al. confirm the rocksalt crystal 

structure [105]. 
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6.3 Ellipsometry 

Ellipsometry is a powerful technique for research on new materials and 

processes. This technique was utilized to determine the optical properties of all samples. 

The theory of Ellipsometry is based on Fresnel reflection and transmission equations of 

polarized light on the planar interfaces of a multilayer material. The term Ellipsometry 

comes from the fact that the reflected light of incident linearly polarized light arriving on 

a surface at an oblique angle is often elliptically polarized. The change of the state of 

polarization of the light upon reflection depends on the optical properties and structure of 

the multilayer. Since the light wave is transverse, the end point of the electric field 

describes an elliptical trajectory in a plane perpendicular to the wave number vector k


 

[91]. Perpendicular to k


 are mutual electric field E


 and magnetic field B


 vectors. 

Figure 6.6 shows the propagation of light from the source to the sample to the detector. 

The simplest relation between the electric field E


, and the magnetic field B


 is given by 

the following formula: 

                                               /)( EkB


                                                (6.1)          

Here k


 is the wave number, and 𝜔 is the angular frequency.                          

The electric field E


 can be described by the superposition of two linearly 

polarized electric plane waves of complex amplitudes Ep, and Es which are respectively 

parallel and perpendicular to the plane of incidence containing the wave number vector 

k


, and the normal to the sample. These two wave components are usually called p-waves 
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and s-waves respectively. Their corresponding planes are shown in Figure 6.6. The time 

dependence of the electric field E


 can be expressed as follows [91]: 
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Here t0 is the initial time, and   is the ellipsometric relative phase which measures the 

difference in phase shift of the p- and s- light waves upon reflection. opos EE / , the 

relative amplitude of the electric field amplitudes osE  and opE  is often written as

opos EE /)tan(  . Both   and   are determined by single ellipsometric measurement. 

The ratio of the intensity of the outgoing wave to that of the incident wave is called the 

reflectance ( ). Note that intensities are proportional to the square of the electric field 

amplitudes. 

                      (a)                                                                                    (b) 

                                

Figure 6.6 (a) Elliptically polarized light wave as described by Eq. (6.2). (b) Illustrates the 

propagation and polarization of light. Linearly polarized light is elliptically polarized upon 

reflection with the sample. 

 

 



 
 

89 
 

 

The reflection or transmission of an EM-wave with a planar interface is 

described by the Fresnel equations.  For a planar interface between medium 1 and 

medium 2 with refraction indices 1N̂  and 2N̂ respectively, the Fresnel coefficients for 

reflection (a) and transmission (b) are given by [93]: 
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Here, 1  refers to the angle of incidence, 2  to the angle of refraction, the superscripts 

stand for p-waves and s-waves, and the subscripts stand for the medium 1 and medium 2. 

For a material with, more than one interfaces, the transmitted light across any interface 

can end up being reflected, thus the total Fresnel reflection coefficient (R) is defined as 

the ratio of the outgoing resultant electric field amplitude to the incoming electric field 

amplitude of light. For instance, for a thin film with two interfaces, the light wave 

reaching interface 2 can either be transmitted in the medium 3, or reflected back (see 

Figure 6.7), thus the total reflection coefficient is [93]: 
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Here d is the thickness of the medium 2, and 𝜆 is the wavelength of the light. Thus the 

relation between R and Ψ is given by the formula, [92], [93] sp RR /)tan(  , and the 

reflectance   is related to the total reflection coefficient R by the formula 
2

R .                                    

 

Figure 6.7 Reflection of light from a single thin film. The total reflected light is the sum of 

waves going back in the medium 1, and the total transmitted light is the sum of light waves 

reaching the medium 3. 

 

   

 

The samples studied in this thesis are more complicated than the one illustrated 

by the above Figure 6.7 because they contain two thin films, a 2.25 nm thick SiO2 layer 

in between the Si wafer and the transition metal oxide film. This oxide layer is thick 

enough to avoid a reaction between Ni and Si atoms at room temperature.                        

              6.3.1 CompleteEase Software 

Results from experimental ellipsometric measurements are analyzed using the 

CompleteEase program. This computational tool is utilized to determine samples 
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properties such as energy gap, optical properties, thickness, and surface roughness. The 

program can interface with the ellipsometer to perform measurements, thus data 

collection and analysis can be done within the CompleteEase program. The program 

utilizes different models such as Lorentz model for characterizing optical properties in 

the infrared part of the electromagnetic spectrum, or Cody-Lorentz model for describing 

the energy-gap and it effect on the optical proprieties [94]. Other incorporated models 

such as Cauchy, Sellmeier, Forouhi, and Urbach tail also play important roles, for 

instance, the optical properties of transparent materials can be described below the 

bandgap by Cauchy or Sellmeier models. The latter model describes absorption bellow 

the energy gap.  

              6.3.2 Ellipsometric Measurement Methods and Settings  

Measurements for determining the optical properties of samples were made 

using a Woollam M- 2000 ellipsometer which is a rotating compensator ellipsometer. 

Figure 6.8 shows a Woollam M-2000 ellipsometric model for optical characterization. 

The wavelength range was from 350 to 2000 nm, and most measurements were 

made using:  a six angles recipe, a three angles recipe, or a one angle recipe. The 

integration time was set between 10 and 30 seconds. The typical accuracy for straight-

through measurements of this type of ellipsometer is Ψ=+/-0.075o and Δ=+/-0.05 o (for a 

10-second integration time).  And the amount of noise on the ellipsometric quantities was 

negligible and errors are mostly caused by imperfections in the assumed model.                               
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Figure 6.8 Woollam M-2000 Ellipsometer (Credit J.A Woollam.Co., Inc.). 

 

In addition to ellipsometric measurements, the M-2000 ellipsometer can also be 

used to measure the transmission spectra of the samples sputtered on glass. The 

transmission measurements are typically done at perpendicular incidence. The data from 

the measurements were modeled and analyzed using the CompleteEase Software. Models 

were made using both optical properties of materials from the Woollam database, and 

some materials manufactured in the cleanroom at Texas State University. For all films, it 

was assumed that the optical properties were isotropic and constant through the film 

thickness. Strictly speaking those assumptions are not correct as grain size increases with 
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film thickness, resulting in a change of the optical properties through the film thickness 

as shown by [87]. It is expected that the error caused by deficiencies in the model of the 

samples has a tremendous effect on the calculated film thickness than the noise in the Ψ 

and Δ spectra. 

 

6.4 Physical Property Measurement System 

The physical property measurement system (PPMS) [95] is an instrument that 

contains several measurement techniques of physical properties such as resistivity, and 

magnetic properties [96] under constant or variable temperature, pressure, magnetic and 

electric fields. Magnetic properties are determined with the vibrating sample 

magnetometer (VSM) technique [95]. The PPMS has a 9-Tesla superconducting magnet 

capable of producing a magnetic field ranging from -9 to +9 Tesla [95]. Measurements 

can be done along a temperature interval ranging from 1.9K to 300K [95]. The maximum 

sample size depends on the type of measurement technique. For the VSM the maximum 

sample size is 4x4 mm2. 

               6.4.1 Measurement Procedure and Settings 

The measurement of magnetic properties requires following a certain procedure 

to ensure the safety for both the user and the instrument. The system must be prepared for 

the VSM installation. To avoid the superconducting magnet from quenching, the Helium 

level in the system must stay above 70%. For each VSM measurement, using the 

MultiVu program interfaced with the system, the temperature and the magnetic field was 
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set to 300 K, and 0 Oe respectively, and then the system was vented. Before loading the 

sample, any existing sample in the sample chamber was removed. The coil set was 

inserted in the sample chamber using the puck-insertion tool. The sample tube was 

carefully lowered in the sample chamber until the centering ring touched the top flange. 

The linear motor was installed on the top flange, and linear motor and VSM cables are 

connected to the system. The VSM was activated, and when it was ready, the chamber 

was opened, and the sample mounted on the sample holder was carefully lowered through 

the top of the linear motor. After sample loading, the chamber was closed, and purged 

using the standard purge method. The sample position was set manually. Normally, the 

sample position can be set either manually or automatically, however, since our samples 

have very a weak magnetic moment, only the manual setting for sample position was 

possible. After the measurement, we followed the same procedure in reverse for sample 

unloading and instrument shutdown. 

               6.4.2 Measurement of Magnetic Properties for Samples 

The magnetic properties for both NiO and Permalloy (NiFe) Oxide with high 

and low oxygen concentration were determined with the (Model 6000) Quantum Design 

Physical Property Measurement System (PPMS) [95]. Figure 6.8 shows the PPMS which 

was utilized for the VSM measurements. Before each measurement, samples were 

cleaned with ionized water, acetone, methanol, and isopropyl, and then were dried using 

a spinner. For each measurement, a sample of roughly 4x4 mm2 was mounted on a 

Quantum Design quartz sample holder using glue (rubber cement) and substrate tiles 

were mounted around the sample to make the substrate longer than the distance between 

the VSM pick-up coils (see Figure 6.10), this techniques suppresses the diamagnetic 
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signal of SiO2/Si substrate since the VSM measurement for any sample longer the 

distance between the pick-up coils is zero. 

 

Figure 6.9 The Quantum Design PPMS-Model 6000 at Texas State University.  

 

The measurement involved the determination of magnetic moment (m) as 

function of the temperature (T) or function of the applied magnetic field (H). 

Measurements were taken in the magnetic field (H) after sample cooling to the desired 

temperature (3K) either without the applied magnetic field to obtain zero-field cooled 

(ZFC) curves or with the applied magnetic field to obtain field cooled (FC) curves. The 

temperature was varied from 3K to 300K, and the applied magnetic field varied from -0.3 

to 0.3 Tesla and from -9 to 9 Tesla. Two type of sequence of commands were written in 

the Multivu program: one sequence for the measurement of m(H) from -9 to 9 Tesla at 

different temperature (T), another sequence for ZFC and FC curves of m(T) at 9 Tesla, 
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followed by m(H) from -0.3 to 0.3 Tesla after a wait time of 900s, and ZFC and FC  

curves of m(T)  at 0.3 Tesla after a wait time of 300s. 

 

 

Figure 6.10 The sample holder fully covered by the sample (in the middle) + 

substrate tiles. The effect if the substrate is suppressed since it is longer than the distance 

between the pick-up coils. 

 

Each hysteresis curve measurement was done in the sweeping field control 

mode, and the linear field approach mode with the time constant of 1s. The field speed 

for m(H) measurements was 11 Oe/s for the 0.3 tesla hysteresis curves and 100 Oe/s for 

the 9 tesla hysteresis curves. The temperature speed for m(T) measurements was 0.017 to 

0.05K/s. 
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VII.EXPERIMENTAL RESULTS 

7.1 Optical Characterization 

The thickness and the optical properties of the samples were calculated from the 

measurement results using a B-Spline model. The model included a 2.21 nm thick native 

SiO2 layer. The thickness of this oxide was determined from ellipsometric measurements 

performed on a Si substrate.  

               7.1.1 Optical Properties of NiO (Low and High O Sputtering Pressure) 

The optical properties of the NiO films were calculated from the measurement 

results using the following B-Spline models: 

(a) NiO (Low O Sputtering Pressure) 

 

(b) NiO (High O Sputtering Pressure) 

 

Figure 7.1 B-Spline Multi-layers Fitting for NiO. (a) NiO (Low O Sputtering Pressure). (b) 

NiO (High O Sputtering Pressure). 
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The results shows that for low energies, the optical constants of NiO sputtered at 

low O pressure are slightly lower than those of NiO sputtered at high O pressure, and the 

refractive index for NiO is around 2 (see Figure 9.2(a)). NiO sputtered at high O pressure 

is more absorbing than the one sputtered at low O pressure at higher photon energies. 

 

Figure 7.2 Measured optical properties for NiO (Low and high O sputtering pressure). 

Optical constants (n (𝜔), k(𝜔)) (a), and absorption coefficient 𝛼(𝜔) (b). 

 

             7.1.2 Optical Properties of Ni0.8Fe0.8O1-𝜹 (Low and High O Sputtering 

Pressure) 

The optical properties of the NiFeO films were calculated from the measurement 

results using the following B-Spline models: 
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(a) NiFeO (Low O Sputtering Pressure) 

 

(b) NiFeO (High O Sputtering Pressure) 

 

Figure 7.3 B-Spline Multi-layers Fitting for NiFeO. (a) Ni0.8 Fe0.2O (Low O Sputtering 

Pressure). (b) NiFeO (High O Sputtering Pressure). 

 

For high energies, the optical constants (extinction coefficient) for (NiFe) Oxide 

sputtered at low O pressure are higher than those of (NiFe) Oxide sputtered at high O 

pressure, and for low energies, the optical constants are almost identical for both 

materials, and yet in this energy regime, the absorption is approximately the same, 

whereas at high energies, (NiFe) Oxide sputtered at low O pressure is more absorbing 

than the one sputtered at high O pressure. Like for NiO, the refractive index for NiFe 

Oxide at the lowest energy is approximately equal to 2 (see Figure 7.4(a)).  
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Figure 7.4 Measured optical properties for NiFe Oxide (Low and high O sputtering 

pressure). Optical constants (n(𝜔), k(𝜔)) (a), absorption coefficient 𝛼(𝜔) (b). 

 

 

The Figure 7.5 (a) shows that the optical constant (k) for Ni0.8Fe0.2O1-𝛿(Low O) 

is higher than that for NiO (Low O) for the energy ranging from ~ 1 to ~ 4eV and  the 

opposite  for  the energy ranging from ~ 4 to ~ 4.8 eV.  The optical constant (n) is the 

same for both samples for the energy ranging from 1 to 2eV, from 2 to ~ 4.5 eV the 

optical property (n) for Ni0.8Fe0.2O1-𝛿(Low O) is greater than that for NiO (Low O), and 

from ~4.5 to 5 eV the optical property (n) for Ni0.8Fe0.2O1-𝛿(Low O) is lower than that for 

NiO (Low O). 
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NiO (Low O), and from ~4 to 5 eV  both samples  have almost the same  the optical 

constant (n). 

 

 
 

 

Figure 7.5 Optical properties of NiO (Low O) vs. those of Ni0.8Fe0.2O1-𝜹 (Low O) (a), optical 

properties of  NiO (High O) vs. those of  Ni0.8Fe0.2O1-𝜹 (High O) (b). 

 

  

7.2 Magnetic Characterization 

              7.2.1 Magnetic Properties for NiO (Low and High O Sputtering Pressure) 

Figure.7.6 shows the data measured on the NiO sample sputtered at low oxygen 

(Low O) concentration. Figure.7.6a shows the ZFC and FC magnetic moment for NiO 

(Low O) sample cooled and measured at 9 Tesla. Figure.7.6b shows the ZFC and FC 

magnetic moment for NiO (Low O) sample cooled and measured at 0.3 Tesla, and 

Figure. 7.6c. shows the ZFC and FC for NiO (Low O) sample cooled at 9Tesla and 

measured at 0.3 Tesla. Figure.7.6d shows the hysteresis curve measured at RT. 

0 1 2 3 4 5
0

1

2

3

4

5

O
p

ti
c
a

l 
C

o
n

s
ta

n
ts

(n
(

),
k
(
)

Energy (eV)

 n/Low O/NiO

 k/Low O/NiO

 n/Low O/NiFeO

 k/Low O/NiFeO

(a)

0 1 2 3 4 5
0

1

2

3

4

5

O
p

ti
c
a

l 
C

o
n

s
ta

n
ts

(n
(
,

k
(
)

Energy (eV)

 n/High O/NiO

 k/High O/NiO

 n/High O/NiFeO

 k/High O/NiFeO

(b)



 
 

102 
 

For the NiO sample with low O concentration, the magnetic moment m(T) 

measured at 9 Tesla is higher than the moment m(T) measured at 0.3 Tesla, which 

indicates that the sample is not diamagnetic. The moment m(T) for the FC curve 

measured at 0.3 Tesla, after the sample cooling at 0.3 Tesla is almost identical of the one 

measured 0.3 Tesla, after the sample cooling at 9 Tesla.  Both ZFC and FC curves show 

peaks at the same temperature of 54.75 K. For the measurement at 9 Tesla, the peak for 

the FC curve is higher than the one for the ZFC curve, whereas, both ZFC and FC have 

peaks of same magnitude for the measurement at 0.3 Tesla; this shows that the height of 

the peak at 54.75K is influenced by the intensity of the applied magnetic field.  
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Figure 7.6 Magnetic properties for NiO sputtered at low O pressure. Magnetic moment as 

function of temperature: (a) ZFC and FC (9 tesla) curves measured at 9 Tesla, (b) ZFC and FC 

magnetic moment for NiO (Low O) cooled and measured at 0.3 Tesla, (c) ZFC and FC magnetic 

moment for NiO (Low O) cooled at 9 Tesla and measured at 0.3 Tesla, and magnetic moment as 

function of the applied magnetic field: (d) from -0.3 to 0.3 Tesla. 
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Figure 7.7 Magnetic moment m(H) per unit volume of NiO (Low O) measured from -9 to 

+9Tesla at different temperatures. The magnetic moments at temperatures below 54.75K vs. 

the magnetic moment at 300K (a), the magnetic moment at temperatures above 54.75K. 

 

 

  

Some similarities for NiO sputtered at low O pressure were also observed for the 

one sputtered at high O pressure. For example, the magnetic moment m(T) measured at 9 

Tesla is also higher than the moment m(T) measured at 0.3 Tesla. And FC curves 

obtained at 0.3 Tesla after sample cooling at 0.3 Tesla and 9 Tesla are also almost 

identical. Both ZFC and FC curves obtained at 9 Tesla and 0.3 Tesla have peaks at the 

same temperature of 54.75 K. The peak for the FC curve is higher than the peak for the 

ZFC curve for 9 Tesla case, and ZFC and FC curves have peaks of same magnitude for 

measurements at 0.3 Tesla after sample cooling at 0.3 Tesla and at 9 Tesla after sample 

cooling at 0.3 Tesla respectively. 
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Figure 7.8 Magnetic properties for NiO sputtered at high O pressure. Magnetic moment 

m(T) as function of temperature: (a) ZFC and FC (9 Tesla) magnetic moments measured at 9 

Tesla,(b) ZFC and FC (0.3 Tesla)  magnetic moments measured at 0.3 tesla,(c) ZFC and FC (9 

Tesla)  magnetic moments measured at 0.3 Tesla, and magnetic moment as function of the 

applied magnetic field: (d) from -0.3Tesla to 0.3Tesla measured after ZFC, and FC curves 

measurement at 9 Tesla. 

 

 

 

However, due to the difference in O sputtering pressure, the magnetic moment 
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O pressure. And yet, the peak for NiO sputtered at high O pressure is higher than the 
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The magnetic moment m(H) measured from -9 to 9 Tesla at different 

temperature shows a decrease in magnetic moment as the temperature increases (see 

Figure 7.9), this is in agreement with the measurement of m(T) illustrated by Figure 7.8. 

There is the ferromagnetic phase that decreases as the temperature increases, to leave 

place to the antiferromagnetic phase.  

  

Figure 7.9 Magnetic moment m(H) per unit volume for NiO samples measured from -9 to 9 

Tesla at different temperatures.  

 

Also, at 300K the magnetic moment m(H) per unit volume shows that NiO 

sputtered at low O pressure is greater than the one for NiO sputtered at high O pressure. 
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magnetic field (H). The moment m(H) for NiO sputtered at high O pressure shows a 
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however the antiferromagnetic configuration can easily happen in bulk materials whereas 

-80000 -60000 -40000 -20000 0 20000 40000 60000 80000
-15

-10

-5

0

5

10

15

M
a
g

n
e

ti
c

 M
o

m
e

n
t(

e
m

u
/c

m
3
)

Magnetic Field(Oe)

 10K

 17K

 26K

 88K

 300K

NiO
High O Sputtering Pressure

(a)

-80000 -60000 -40000 -20000 0 20000 40000 60000 80000

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

Magnetic Field(Oe)

M
a
g

n
e

ti
c

 M
o

m
e

n
t(

e
m

u
/c

m
3
)

200K

300K

NiO
High O Sputtering Pressure

(b)



 
 

107 
 

the moments in the boundary layers prevent thin films from being perfectly 

antiferromagnetic. 

 

                                    

Figure 7.10 Magnetic moment m(H) per unit volume at 300K for NiO samples, one 

sputtered at low O pressure, and another sputtered at high O pressure. The moment m(H) 

shows the magnetic vortex at high magnetic fields. 
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ZFC and FC curves have peaks at the same temperature of 54.75K, and for the magnetic 

moment measured at 9 Tesla, the FC curve has a higher peak than the ZFC curve, but 

both curves have peaks of the same height for the magnetic moment measured at 0.3 

Tesla. Excluding the peak, the magnetic moment increases as the temperature increases. 

  

 

 

Figure 7.11 Magnetic Properties for Ni0.8Fe0.2O1-𝜹 sputtered at low O pressure. ZFC and FC 

curves obtained with the applied magnetic field of 9 Tesla (a), and 0.3 Tesla (b). 9T/FC curve 

obtained at 0.3 Tesla (c). Magnetic moment as function of the applied magnetic field from -3 

Tesla to 3 Tesla measured after ZFC, and FC curves at 9 Tesla (d). 
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Figure 7.12 Magnetic moment m(H) per unit volume for Ni0.8Fe0.2O1-𝜹 samples. Magnetic 

moments m(H) measured at temperatures 26K, 88K, and 300K (a). Magnetic moment m(H) 

measured at 200K, and 300K (b). 

 

For NiFeO sputtered at high O pressure, the magnetic moment m(T) measured at 

9Tesla is greater than the one measured at 0.3Tesla. For both cases, the ZFC and FC 

curves have peaks at the temperature of 54.75K, and for the magnetic moment measured 

at 9Tesla, the FC curve has a higher peak than the ZFC curve, but for the magnetic 

moment m(T) measured at 0.3Tesla, both curves have a peak of the same height.  

Excluding the peak, the magnetic moment decreases as the temperature increases. At low 

temperature below 25 K a peak which is not present in any of the other samples is 

observed in both the FC and ZFC curves. The height of ZFC curve is consistently lower 

than the height of the FC curve. The height of this low temperature peak increases by a 

factor of 4 when the applied field is increased by a factor of 30.   
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Figure 7.13 Magnetic Properties for Ni0.8Fe0.2O1-𝜹 sputtered at high O pressure. ZFC and FC 

curves obtained with the applied magnetic field of 9 Tesla (a), and 0.3 Tesla (b). 9T/FC moment 

measured at 0.3 Tesla (c). Magnetic moment as function of the applied magnetic field from -9 to 

9 Tesla (d). 
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moment m(H) decreases slightly as the temperature increases (see Figure 7.14), this is in 

agreement with the m(T) measurement (see Figure 7.13). 

 

 

 

Figure 7.14 Measured magnetic moment m(H) per unit volume at different temperature for 

Ni0.8Fe0.2O1-𝜹 sample sputtered at high O pressure. The moment m(H) at 10K, 26K, and 300K 

(a), the moment m(H) at 200K, and 300K. 
 

At 300K, there is a magnetic moment jump around the zero magnetic field for 

NiFeO sputtered at high O pressure. For low magnetic field, the magnetic moment for 

NiFeO sputtered at high O pressure is higher than the one for NiFeO sputtered at low O 

pressure. 

-80000 -60000 -40000 -20000 0 20000 40000 60000 80000
-30

-20

-10

0

10

20

30

M
a
g

n
e
ti

c
 M

o
m

e
n

t(
e
m

u
/c

m
3
)

Magnetic Field(Oe)

 10k

 26k

 300K

NiFeO

High O Sputtering Pressure

(a)

-90000 -60000 -30000 0 30000 60000 90000

-15

-10

-5

0

5

10

15

High O Sputtering Pressure

M
a
g

n
e

ti
c

 M
o

m
e

n
t(

e
m

u
/c

m
3
)

 200K

 300K

Magnetic Field(Oe)

NiFeO

(b)



 
 

112 
 

                  

Figure 7.15 Measured magnetic moment m(H) per unit volume at 300K for NiFeO 

sputtered at low O pressure, and NiFeO sputtered at high O pressure. 

 

The double peak is present in the m(T) for all samples. The position of the peak 

suggests that it originates from O2 condensed on the sample. Notice that the peak is 

exactly situated at the melting temperature of O2; in addition, the PPMS manual [97] says 

that the O2 contamination may lead to a peak for a measurement of magnetic moment 

below 100K. The double peak we observed looks similar to the peak observed by 

Dubroca et al. (2006) [98] on a single Si wafer. 

Two types of measurements were made to exactly learn about its true origin. 
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sample holder only. Both results also show the same peak at almost the same 

temperature, thus this indicates that this peak has nothing to do with the sample. 

   

 

 

Figure 7.16 Measured magnetic moment m(T) at 9 Tesla of the sample holder+substrate (a), and 

the sample holder only (b). The moment m(H) for the sample holder+substrate (c). The moment 

m(H) for the sample holder only (d). 

 

 

 

The interpretation of the results shown in Figure 7.16 is not straightforward. The 

observed moment suggests that if condensed oxygen is causing the peak that the oxygen 

0 50 100 150 200 250 300
-0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

35 40 45 50 55 60 65
-0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

M
a
g

n
e
ti

c
 M

o
m

e
n

t(
e
m

u
)

Temperature (K)

 FC

 ZFC

H=9T

dT/dt=0.05K/s

 Sample holder fully covered by (SiO/Si) substrate

M
a
g

n
e
ti

c
 M

o
m

e
n

t(
e
m

u
)

Temperature (K)

 FC

 ZFC

Sample holder + (SiO/Si) substrate

(a)

0 50 100 150 200 250 300

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

35 40 45 50 55 60 65

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

M
a

g
n

e
ti

c
 M

o
m

e
n

t(
e

m
u

)

Temperature (K)

 FC

 ZFC

Sample holder

H=9T

dT/dt=0.05K/s

M
a
g

n
e
ti

c
 M

o
m

e
n

t(
e
m

u
)

Temperature (K)

 FC

 ZFC

Sample holder

(b)

-3000 -2000 -1000 0 1000 2000 3000

-0.000004

-0.000002

0.000000

0.000002

0.000004

Sample holder + (SiO2/Si) substrate

M
a
g

n
e
ti

c
 M

o
m

e
n

t(
e
m

u
)

 m(H)

Magnetic Field(Oe)

(c)

-3000 -2000 -1000 0 1000 2000 3000

-0.000006

-0.000004

-0.000002

0.000000

0.000002

0.000004

0.000006

Sample holder

M
a
g

n
e

ti
c

 M
o

m
e

n
t(

e
m

u
)

 m(H)

Magnetic Field(Oe)

300K

dT/dt = 0.05K/s

(d)



 
 

114 
 

film is not homogeneous across the sample holder. Notice also the large difference in 

moment between the bare sample-holder and the sample-holder covered with substrate 

tiles. The latter also contains rubber cement with air bubbles, and the surface area is not 

constant across the length of the quartz sample holder because of the small gaps between 

the substrate tiles.  

7.3 Summary 

The magnetic properties of RF sputtered NiO and Ni0.8Fe0.2O1-𝛿 thin films vary 

with oxygen and iron concentration. Films sputtered with low oxygen flow rate have a 

slightly higher magnetization at room temperature than films sputtered at higher O flow 

rate. Excepting the NiO films, the magnetic moment of films sputtered at low O flow rate 

seems to increase as a function of temperature; this is due of the presence of the 

ferromagnetic components in the sample which is characteristic of ferromagnetic phases 

according to J. Khemprasit et al. [39]. And these films are ferromagnetic at room 

temperature which is agreement with Yuan-Hua Lin et al. [34], and P. Douvalis et al. [35] 

since the RXD at room temperature may not detect the impurity phase. Doping with Fe 

increases the magnetization with a factor 4-6 for low O flow condition. For high O flow 

conditions, the Fe-doping significantly changes the magnetization below 25 while the 

magnetization at RT is hardly affected. 

The magnetic moment of films sputtered at high O flow decreases as the 

temperature increases, this may be due to the particle size effect since J. Khemprasit et al. 

[39] claim that the particle size increases with increasing temperature, and this leads to 

the decline of the magnetic moment m(T). Also as the temperature increases more 
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thermal energy is available and this excess energy may lead to the magnetic disorder in 

the samples causing the decline of the magnetic moment m(T). 

The dual higher peaks around 54.75K are caused by the condensed O2 according 

to our results which also agree with [97], [98]. Our DFT results show that bulk NiO and 

12.5 at. % Fe-doped NiO is antiferromagnetic, and J. Petersen et al. [84] found the same 

for 25 at. % Fe-doped NiO, however the experiment shows NiO and Ni0.8Fe0.2O1-𝛿  

sputtered at high O flow show weak magnetic moment which is possible due to the 

presence of a ferromagnetic phase, this phase may due to the surface to volume effect 

since our samples are not completely considered as bulk even though they are thick 

enough. Since there are small gaps between the substrate tiles (see Figure 6.10), a small 

amount of glue used to stick the substrates on the sample holder may fill them (gaps), 

according to Quantum Design Inc. [101] this glue can also contribute to the measured 

magnetic moment. Also note that the magnetic moments in the samples can also originate 

from impurities as for example discussed by M.A. Garcia [102]. For the AJA system 

there are two main contaminations sources, the sputter gasses (Ar is 5N and O2 is 4N4) 

and the sputter targets (99.94% for Ni0.8Fe0.2 and 99.99% for Ni). 
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  VIII.DISCUSSION 

(A) Overall Summary 

The theory shows that NiO is an antiferromagnetic semiconductor with a band 

gap which depends on the Hubbard potential U. Also Fe-doped NiO appears to be a 

semiconductor. The calculated Ni magnetic moment is less than that of Fe. Calculated Ni 

and Fe magnetic moments are in good agreement with values found in the literature. 

Calculations show that for a 32–atom supercell, 6.25 at.% Fe-doped NiO is a p-type 

semiconductor, but not antiferromagnetic due to non-zero net magnetic moment. 

According to the above finding that the Ni magnetic moment is different from that of Fe 

strictly speaking, such supercell is ferri-magnetic. On the contrary 12.5 at.% Fe-doped 

NiO, i.e two Fe atoms per supercell, is antiferromagnetic; this indicates that the magnetic 

nature depends on the amount of Fe dopants and the site they reside on. In addition, 

calculations for optical properties show that the refractive index (n) in the lowest energy 

regime for both materials is in good agreement with our experiment and [84]; note that 

the static real dielectric function also depends on the Hubbard energy. However, both 

materials generally have different optical properties. 

The experiment shows that all samples are not diamagnetic since the magnetic 

moment change is in the same direction as the applied magnetic field. RF sputtered NiO 

thin films grown on SiO2/Si have a small magnetic moment. Although the origin of this 

moment is not clear, it is most probably due to magnetic moments in the grain 

boundaries, on the surfaces, or in the defects of the thin films. The glue (rubber cement) 

used to mount the sample [101], or magnetic impurities originating from the sputter gas 
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or targets can also contribute [102]. As expected, NiFeO thin films grown on SiO2/Si 

have a small magnetic moment in the applied magnetic field.  

The magnetic moment also depends on the O sputtering pressure, for example, 

at room temperature the magnetic moment per unit volume of NiO sputtered at low O 

pressure is higher than that of NiO sputtered at high O pressure. In addition, the magnetic 

moment per unit volume of NiFeO sputtered at low O pressure is higher than that of 

NiFeO sputtered at high O pressure. While, in the low energy regime, the experimental 

optical properties are in better agreement with those obtained theoretically, for high 

energies, there is a noticeable difference. Our static refractive index (n) is about 2 which 

is 4% lower than [103], this may be due to the thickness and density of our samples. 

Other reasons for the observed differences between the experiment and theory 

might due to countless defects present in our polycrystalline samples. In addition, unlike, 

the experiment, DFT calculations were performed at zero Kelvin (K), this suggests that 

the temperature difference between experiment and calculation might also be responsible 

for the observed differences.   

 

(B) Future Works 

  It would be interesting to compare the results of the DFT calculations with the 

optical properties of epitaxial NiFeO thin films with larger crystallites and less grain 

boundaries. Permalloy oxide can be grown epitaxially on MgO (100) or Bi-YIG (111) by 

dual ion beam sputtering [99]. As DIBS allows sputtering at much lower pressure, the 

density of such films is expected to be much higher than those of RF sputtered films. 
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Another approach would be to further explore the effect of defects; in particularly oxygen 

vacancies on the optical properties [100]. Such approach could involve the use of 

effective medium approximations to partly model the polycrystalline nature of the films.   

Regarding the observed magnetic properties works needs to be done to further 

detail their origin. Magnetic measurements as a function of the film thickness could 

reveal whether the magnetic moment is homogeneously distributed through the film or is 

maybe concentrated in the seed-layer which has the smallest crystallites. Scanning probe 

microscopy measurements (including AFM, MFM, and conductive AFM) could reveal a 

correlation between film structure, magnetic moment, and conductivity useful for 

systematic switching studies of MRAM devices.  

 

 

 

 

 

 

 

 

 



 
 

119 
 

                                     APPENDIX SECTION                

APPENDIX A 

Units: 

emu                                                          electromagnetic units 

Oe                                                            Oersted 

B                                                             Bohr magneton 

 

APPENDIX B 

 

The variation of the energy functional E: 
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