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BRESSE SYSTEMS WITH LOCALIZED KELVIN-VOIGT
DISSIPATION

GABRIEL AGUILERA CONTRERAS, JAIME E. MUNOZ-RIVERA

ABSTRACT. We study the effect of localized viscoelastic dissipation for curved
beams. We consider a circular beam with three components, two of them
viscous with constitutive laws of Kelvin-Voigt type, one continuous and the
other discontinuous. The third component is elastic without any dissipative
mechanism. Our main result is that the rate of decay depends on the position
of each component. More precisely, we prove that the model is exponentially
stable if and only if the viscous component with discontinuous constitutive law
is not in the center of the beam. We prove that when there is no exponential
stability, the solution decays polynomially.

1. INTRODUCTION

We study a Bresse system that describes the vibrations of a circular arc beam
with three components positioned over intervals Iy =0, {y[, I2 =]¢o, £1], Is =]¢1,¢].
We denote by I = I; U Is U I3. More precisely, we consider the system

p1oe — Sz —IN =0 in I x (0,+00), (1.1)
pathsy — My +S =0 in I x (0,400), (1.2)
prwg — Ny 418 =0 in I x (0, +00), (1.3)

where S, M and N stand for the shear force, bending moment, and axial force,
respectively. The constitutive law we use here are:

S = K(px + ¥ + lw) + K@t + e + lwy),
M = bipy + bibyy,
N =K(w, —lp)+ IN((wmt — lpy),

where w, ¢ and v are the longitudinal, vertical, and shear angle displacements.
Here, p1 = pA, ps = pl, kg = EA, k = K'GA, b = EI, and | = R™!, where p is
the density of the beam, F the elastic modulus, G the shear modulus, k¥’ the shear
factor, A is the cross-sectional area, I the second moment of area of the cross-section
and R is the radius of curvature of the beam. Here we assume that all the above
coefficients are positive constants. When the curvature [ is zero, the model reduces
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to the well-known Timoshenko beam system. Therefore we can consider the Bresse
system as an extension of the Timoshenko’s model.
The functions &, b, and K are non negative of the following type:
/:L:Ii0+1€1, B:bo+bl, K:KQ+K1,

where kg, by and Ky are discontinuous functions over |0, ¢[, positive over Ip and
vanishing outside Ip. Also k1, by and K; are C! functions over |0, £[, positive over
I¢ and vanishing outside I¢. Figures depict typical examples of the functions

Rk, b, and K.
y = k(z)
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FIGURE 1. The discontinuous component is not centered.

In Figure [1} the discontinuous viscous material is not in the center, so there is
only one discontinuity point in ¢;. In Figure [2| the discontinuous viscous material
is in the center, we have two points of discontinuity, one at ¢y and the second at /¢;.
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FI1GURE 2. The discontinuous component is centered.

Here we assume that there exist positive constants ¢, C1, and Cs, such that
12 < clbal, [R1[* < clmal, K < clKl, (1.4)
Cir1 < by < Oyk1. (1.5)
The initial conditions
©(,0) =0, @:(-,0) =1, ¥(-0) =y,
UVe(,0) =1, w(-,0) =wo, w(-,0)=w
are given over (0,¢) and we consider the Dirichlet boundary conditions
©(0,t) = (¢, t) = ¥(0,t) = ¥(¢,t) = w(0,t) = w(¢,t) =0 in (0, +o0). (1.7)
Additionally, we have the transmission conditions

p(l) = (th), () =), w(ty)=w(t), (1.8)
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S(;) = 8(¢F5), M((7) = M), N(t7)=N(E). (1.9)

K2 3 7

for i = 0,1. Note that condition (1.9)) implies S, M, N € H'(0,¢). If we have more
points of discontinuity, the set I needs to be modified.

I =Flastic Component  Ic=Visco Continuous Ip="Visco Discontinuous

F1GURE 3. Two possible positions for the components of the beam,
in which the discontinuous part is not centered.

FIGURE 4. In this case, the discontinuous part is in the center of
the beam.

It seems to us that the first study about the lack of the exponential stability to lo-
calized viscoelastic system is due to Liu and Liu [I3], where the authors proved that
the wave equation with localized Kelvin-Voigt viscoelastic damping (with discontin-
uous constitutive law) is not exponentially stable. See also Cheng, Liu, and Liu [6],
and Tiang and Zhang [21] for similar results for Timoshenko’s model. On the other
hand, Liu and Rao in [14] proved that when the localized viscoelastic damping has
a Cl-constitutive law, then the corresponding semigroup is exponentially stable.
Therefore, the regularity of the constitutive law of localized viscoelastic damping
completely changes the asymptotic properties. Concerning Timoshenko system we
have the work [I6] where the authors consider the transmission problem of Tim-
oshenko’s beam composed by N components, each of them being either purely
elastic (E), or a Kelvin-Voigt viscoelastic material (discontinuous constitutive law
V), or an elastic material inserted with a frictional damping mechanism (F). The
authors prove that Timoshenko’s model is exponentially stable if and only if all
the elastic components are connected with one component with frictional damping.
Otherwise, there is no exponential stability, but a polynomial decay of the energy
as 1/t2. In [2] the authors obtained similar results for Timoshenko’s model.

Here we consider two types of localized viscoelastic damping, one with continuous
constitutive law and the other with discontinuous constitutive law. We prove that
the exponential stability depends on the order of the viscoelastic components of the
beam. That is, we show that the semigroup is exponentially stable if and only if
the discontinuous component is not in the center of the beam. Furthermore, in case
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of lack of exponential stability, we show that the semigroup decays polynomially to
Zero.

The remainder part of this paper is organized as follows. In section 2 we establish
the well-posedness of the model. In section 3 we show the exponential stability
provided the discontinuous component is not in the center of the beam. Finally in
section 4 we show the lack of exponential stability.

2. SEMIGROUP APPROACH

The energy associated with system (1.1)-(1.3) is
1 Z
E® = [ orlorl® + paloul? + pafunl? + Uuaf? + sl +6 -+ b
0
+ K|w, — lp|? dz.
Multiplying equations (1.1) by ¢, (1.2]) by ¢, and (1.3) by w;, and summing up
these products we arrive at

d ¢
—EB(t) = _/ b0|¢mt\2dx + Kol|at + U + lwt|2 + Ko|wzt — lsé7t|2dJU <0. (2.2)
0

(2.1)

dt

The definition of the energy motivates us to define the phase space H as
H = H(0,0) x L*(0,€) x HY(0,£) x L*(0,£) x H(0,¢) x L*(0,¢)

which is a Hilbert space with the norm
‘
U113, = / L@+ 2| W4 p1 [W P +0]s |2+l 0o+t +Hlw]*+ K [wy —lp|* dz (2.3)
0

where U = (¢, ®,9, U, w, W)t. Because of the Dirichlet boundary condition, the
above norm is equivalent to the usual norm of H. Denoting by ¢y = @, ¢ = U,

wy = W, system (1.1))-(1.3) can be written as

U, — AU =0, U(0)=1U, (2.4)
where
1 1 1
AU = (&, —(S; +IN), ¥, —(M, —S), W, —(N, —185))
P1 P2 P1
and
D(A)={U e H: 0,V W € Hy, rp, + &y, bipy + bV, Kw, + KW, € H'}.

(2.5)
Note that the operator A is dissipative and

14 14 0
Re(AU,U) :7/ b|\IJx|2dxf/ ;%|<I>x+\II+ZW|2dx7/ K|W, —1®|?dz < 0.
0 0 0

The resolvent system \U — AU = F with F = (f1, fo, f3, f4, [5, f6)! € H in terms
of its components is given by

Ap—®=f1, pA®—S, —IN=f, inlx(0,400), (2.6)
My— W= fs, poAU—M,+S=f inlx(0,+00), (2.7)
Mo—W = fs, ptAW =N, +1S=fs inlx(0,400). (2.8)

Following standard procedures (see [II, B, 20]) we can show that 0 € p(.A), which
implies that A4 is the infinitesimal generator of a contraction semigroup.
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Theorem 2.1. Under the above conditions the operator A is the infinitesimal gen-
erator of a Cy semigroup of contraction. Hence, for any Uy € H there exists only
one mild solution U € C(0,T;H) of problem [2.4)). Also if Uy € D(A), there exists
only one classic solution U € C(0,T; D(A)) N C*(0,T;H) of problem (2.4).

3. ASYMPTOTIC BEHAVIOR

The main objective of this section is the characterization of the exponential and
polynomial stabilization of the system. The main tool are theorems due to Priiss
[18], Huang [10], Gearhart[9], and Borichev and Tomilov [5].

Theorem 3.1. Let S(t) be a contraction Cy-semigroup, generated by A over a
Hilbert space H. Then, in Priss [18] is established that there exists C,vy > 0 satis-

fying
[S(t)]| < Ce™ & iR C o(A) and ||[(iIA] — A) " g < M, VAER. (3.1)

For polynomial stability, Borichev and Tomilov [B] result establish that there exists
C > 0 such that

C
—1 _
IS®A < 7

Our first step is to prove that the semigroup associated with system (1.1)-(L.3) is
strongly stable. The resolvent equation iAU — AU = F' in terms of its components
is given by

& iR C o(A) and ||GA — A)7H| < MA|Y, VYAER. (3.2)

iNg—® = i, (3.3)
Z[)l)\(I) - Sx —IN = fg, (34)
I — T = (3.5)
1AV — M, + S = fy, (3.6)
o —W = fs, (3.7)
Theorem 3.2. With the above notation we have iR C p(A).
Proof. Let us denote
N ={seR":] —is, is[C p(A)}. (3.9)

Since 0 € p(A), N # @. Putting 0 = sup N we have two possibilities: o = +oo
which implies that iR C p(.A), and 0 < o finite. We will reason by contradiction.
Let us suppose that o < co. Then, exists a sequence {\,} C R such that A, —
o < 400 and

||(’L')\n] — A)_1||L(H) — +0o0
Hence, there exists a sequence {f,} C H such that | f,|[x = 1 and |[(¢\,] —
A) 71l — +oc. Denoting

Un = (Z)‘HI - A)ilfn = fn = Z)\nUn - A[}n

= % = .fin 1
and U,, = AR F, ] we obtain

AU, — AU, = F,, — 0. (3.10)
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Since || AU, || < C, it follows that U, is bounded in D(.A). This implies in particular
that ®,,, ¥,, and W,, are bounded in H}(0,¢) and ¢, 1, w are bounded in H?(Ig).
Then there exist subsequences such that:

¢, —®, U,V W, =W strongly in L*(0,¥) (3.11)
One + n + lwy — @z + Y+ lw,
Vg = Vo, Wz — lpn — wy — lp, strongly in LQ(IE). (3.12)

Taking inner product we obtain
i/\n”UnH2 - <AUnv Un> = <Fna Un> —0

and taking real part we arrive at
¢
—Re(AU,,,U,) = / (BT + K|®" + U™ +IW"|? + K|W — 19"]?) dx — 0.
0

This convergence implies
T P4 U LI, WP —1®" — 0 strongly in L*(Ic UIp).  (3.13)
Therefore,
mEl " 4 lw™ w? — 1" — 0 strongly in L?(Ic U Ip). (3.14)

From (3.11)), (3.12)) and (3.14)) it follows that U,, — U strongly in #H. Since A is
closed, we conclude that U satisfies

icU — AU = 0.

Moreover, using the convergences (3.13)-(3.14]) and the resolvent system, we obtain
U =0 over Ic UIp. Since Iy = [«, (] is linked to I¢ or Ip on a or 3, we obtain
that U(a) =0 or U(8) = 0. So on Ja, ] we have

—p102g0 + k(pz + U+ lw), — K (w, —lp) =0,
— 2021 + bihyy + k(e + U + lw) =0,
—p10%w 4 K(wy — 19) e + 16(pp + 9 + lw) = 0,

with

pla) =(a) = po(a) = 1e(a) = w(a) = we(a) = 0.
Looking the above equation as a second order initial value problem, we obtain
¢ =1 =w = 0 over |a,B]. Hence U = 0 on H, which is a contradiction. This
completes the proof. O

Remark 3.3. From the dissipativity of the operator A, we have

¢
/ bo| W 2 + o| + U + IW|? + Ko| Wi — 19| da
0 (3.15)

=Re(U, F)u < [U|lnllF ]l
The following lemma is crucial to prove the exponential stability of the system.

Lemma 3.4. Let us suppose that (1.4) and (1.5) hold. Then, the solution of ({3.3))-
(13.8) satisfies

/ K1 AP + by AU |2 da + K (AW | dx < C||U||||F|| + C-||F||? + €| U

Ic
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Proof. Multiplying (3.4) by iAx1® and integrating over [a, b],

/ pm|/\<1>|2da;:/ (Sz +IN + fo)idwk, @ da.

Ic IC

Recalling the definitions of S and N, on I we obtain

/ p1LE1|A®|? dx

Ic

= / [k(px + ¢ +lw) + k1 (P + U 4+ IW)] i1 P dx + / foidk1®dx  (3.16)

Ic Ic

=6+ &g+ foidk1 P dx.

Ic

Where & = ffc [£1(Pg + U + IW))iA(K) P + k1Py) dz and By = flc (ke + 9 +

lw)]iA(k]® + k1P, ) dz. Then

&= [ [K1(Py+ T+ IW)iA(KLDP + k1 (Py + ¥ +IW)) dx
Ic

— / [£1(Py + U +IW)]iN(k1 0 + K1 IW) dx.
Ic

Taking the real part of the above relation and using (3.15)) we obtain

Re® = Re/ [£1(Dy + T + IW)]iN(k] P) dx
Ic

— Re/ [£1(Py + U +IW)iN(Kk1 ¥ + K1 IW) dx
Ic

< e[[AP[? + el MY + e AW |2 + C U F -
Similarly, using (3.3]), (3.5)), (3.7), and (3.15)), we obtain
Re & — Re/ (5(e + 6 + L) INFLD T+ 185 do
Ic

<e [ |®+|V]?+|W[dz+ R.
Ic

Thus, substituting (3.18) and (3.19) in (3.16) yields

/ K1[A®? dr < e AR|* + €| AW||* + C||U|l]| F],
Ic

(3.17)

(3.18)

(3.19)

(3.20)

for |A| > 1. Multiplying (3.6) by iA\b; ¥ and multiplying (3.8) by iA\K; W and using

the same above procedure we obtain

[ oaalAW2 do < N[+ AW + CU ],

Ic
/ P1E AW P dz < €| A®||* + €| AW |2 + C||U|[[| F|].
Ic

From the last three inequalities our conclusion follows.

We introduce the notation

(rap1)’
2

Kgp1
2

/
Eo = o2+ ZISP, T, = “ o2+ ISP,

(3.21)
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(bqu) q bqp2
Ey = W+ |M|2, Zy= % + IM\Q, (3.22)
(qul) q qu2
Ew = [W? + |N|2, 7, = (W[? + IN\2 (3.23)
5_5¢+5¢,+5w, I=I¢+z¢+zw (3.24)

and , ,
L= E(s)ds — / (p15qPV + p1kGI®W + p1 KqlW ®)dx
tL ) (3.25)
+/ (¢lSN + glSN + ¢SM)dzx.

nx

Taking ¢(z) = ¢ ;em we have ¢'(z) = e™* > ¢(z), for n large, hence we obtain

Co/bfdm<£<01/b€dx (3.26)
Remark 3.5. Recalling the definition of S and M we obtain
/b|S|2dm < c/bn|%+w+zw|2dx+/b (D + U + IW)2 da
Using theadissipative pro;erties, we have '
[152ar<c [ o tv e mitas s el
Similarly we havea '

b b
[ apas<c [ papds+clulie),
a a

b b
/ N2 dz < c/ s — 19| dz + C||U|||[ 7).
Therefore, for n large we have
b b
J 10+t b WP 4 P W 10 do < [ dat U |F]
a a
and
b b
[ ede < [ 0P+ lpat il P P WP+~ 10 do+ U )L
a a
Lemma 3.6. On [a,b] C Ic U I we have

2(s) -2 <

Also on Ip = [a,b] we have

+el|lU]

b
]ﬁ—ﬂ$u£dWW+QﬂﬂwwﬂP+@WW

Proof. Multiplying (3.4) by ¢S, (3.6) by ¢M, and (3.8) by ¢V, we obtain

pikq d
- Lygp 1 g
2 dx (3.27)
= Ry + p16q®V + p1rql®W — idp1qi®(®, + ¥ +IW) — gISN,
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p2bg d oo g d oo o -
e = — v, — .
5 Iz |, 2d:17|M‘ Ry — iAp2qb¥®¥, — gSM, (3.28)
pKqd o qgd o
— —|W* = =—|N
2 dx | 2 d:zr' | (3.29)
= Rs — p KqIW® — i\pygKW (W, — [®) — glSN.
Summing these equations we arrive at
pikq d oo  p2bg d > pKqgd 2 qd oo qd 2 qd 2
— —|®|* — ——|¥|" — —|W* = ==—|S]* = =—|M|*" - =—|N
2 dx | 2 dx | 2 dx | 2da:| | 2 dx | 2d33| |

= Ry + p16q®V + p1rql®W — py KgIW® — qIlSN — SN — ¢SM + J(z)
where
J(z) = —iAp1qi® (D, + U + IW) — iApaqbW T, — iXp g KW (W, — [®)

and using the notation introduced above,

d
— T (T(@) + (@)

= Ry + p15q®V + p16gl®W — py KqIW® — gISN — qISN — gSM + J(x).
Note that when [a,b] C Ic U Ig, from Lemma [3.4] we obtain

b
|/a J(2) da| < C|UNIF| + C||FI* + U (3.30)
On Ip we obtain
| /ID J(z) dz| < el[U|* + CAPUNIF + £ (3.31)
After an integration using the above inequalities our conclusion follows. ([

Let us denote
E(s) = p1|® + p2| W% + pr[W]? + b0 |* + Kl + ¢ + lw]* + K|w, — lp|?.

Theorem 3.7. The semigroup associated with system (1.1)—(L.3|) is exponentially
stable if the viscous discontinuous part Ip is not in the center of the beam.

Proof. Since Ip is not in the center then 0 € Ip or £ € Ip, hence because of the
boundary conditions, Poincaré inequality is valid for ®, ¥ and W. So, we have

/ 0|2 dar < Cp/ W, |* dz < C|[U|||F]|. (3.32)
ID ID
Using iAY = ¥ + f3 and taking A\ large we obtain

¢

/Z [¥ul? + |9 * dz < CIU||F|| + C||F|?

1
Using Poincaré’s and the triangular inequality we obtain
/ B dx < c/ 1, dr < c/ BB+ U+ IW 4 [ W24 IW 2 da < CI|U||IF |

Ip Ip Ip

Similarly for W we have

| wea<c [ wira <o,
ID ID
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Hence
[ @ <cpulie) + i

Ip

On the other hand, integrating (3.4), (3.6)), and (3.8)) over [a,b] C Ic we obtain

b b b

i)\pl/ <I>dac—5’(b_)+5(a+)+l/ Ndx:/ fodz, (3.33)
" " ab

i)\pg/ \I/dm—M(b_)+M(a+)+/ Sdmz/ fadx, (3.34)
o "o "

i)\pl/ de—N(b‘)—l—N(aﬂ—l—l/ de:/ fodx. (3.35)

From Lemma [3.6] we obtain

|/Icq>dx} gi([S(b—)—s(aﬂH’/ablNdx|+’/abf2dx])

< (j| (lI2E 2 + o)+ 1) -
Similarly we arrive at
|| wda| < |§’| (W1 21E1 2 + o+ 1P (3.36)
:
|, Wl < f| (w1212 + o) + 1) - (3.37)

So we have

b 9 b
|\If|2d;v§0‘/ xlfdx( +O/ by |, |2 do
Ic a a
<
A2

b 5 b
/de( +C/ by | W, |? da
a a
< <
A2 A2
Using (83), (B3), (1), and (B.15), we obtain

/ E(x)dz < C|U||IF] +

Ic

<

< CUlF) + e

101+ 5z 1F1%,

W|*dx < C

Ic

< CIUNIFN+ 7z 1017 + s IF1

C

WHUII2 +C|F|I*. (3.38)

Since I is not in the center of the beam we have IcUI g = [0, 3] or IcUI g = [(g, ).
Let us assume the latter case. Using the observability Lemma [3.6) we obtain

c
/ E(z) dz < CZ(a) + CIUIIF] +
Ic

< CIUIF| + Ul + ClIF%,

[tegmyeiival

for A large. Using the observability over the interval [a, £] we arrive at

/ E(z) dz < C||U||F|| + €| U|]* + C[| F|I*. (3.39)

Ic
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From ((3.32)), (3.39), and (3.39)), we obtain

L
I = [0 + a0 B0l 4 [0 4 ol W =l

< CIUINF| + Ul + ClLF)%,
from where we obtain that |U]| < C||F||. So our conclusion follows. O

We conclude this section by showing the polynomial decay when the discontin-
uous viscous part is in the center of the beam. We use the result given in [5].

Theorem 3.8. If the viscoelastic discontinuous part Ip is in the center of the beam,
then the semigroup associated with system (1.1)—(1.3)) decays polynomially as

IS(®)Uoll < CEV2|[Uollpay. (3.41)

Proof. According to the hypothesis, we denote Ip =]y, ¢1[. Using Lemma
(3.33]), (3.34), and (3.35]), for a = £y and b = £; we have

’ 2 ’ 2 ’ 2 ¢ 2 ¢ 2
[weas<c] [Cvasl +o [niw.pis < PN+ IV + I PI
similarly

b
C C
1 d < CUNIF -+ 51017 + 1P
b
C C
W ds < CIpNF + 510 + 511
Then o
| @iz < CWNFN+ U + PP (3.42)
D

On I, using the same process as in Theorem we obtain that estimate (3.38)) is
still valid. Let us suppose that ¢; € I. Using Lemma on Ip =]y, ¢1[ we have

() < / E(z) dz +¢||U||* + C AU F] + ClIF*. (3.43)
Ip
Since S(¢7) = S(¢), M(¢7) = M(¢]), and N(¢7) = N(¢), we have
/1 E(z)dz < Z(6y) + CUl|Fll3 < ellUN* + Ce[ A FIJ*. (3.44)

From the above inequality we obtain
U1 < CIAFIFI? +ellU ],

Hence from Borichev-Tomilov Theorem (Theorem (3-2)) the polynomial decay
follows. .

4. LACK OF EXPONENTIAL STABILITY

Here we assume that Ip is in the middle of the beam. The main tool use is the
following theorem due to Rivera et al. [17].

Theorem 4.1. Let H be a Hilbert space and Hy a closed subspace of H. Let S(t) be
a contraction semigroup on H, and Sy(t) be a unitary group on Hy. If the difference
S(t) — So(t) is a compact operator from Hy to H, then S(t) is not exponentially
stable.
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Another key result for our purposes is the following lemma (see [12]).

Lemma 4.2 (Lions-Aubin). Let be V', H, Vy Banach spaces such that V. C Vo C H,
where the first embedding is compact. Let

W ={p € L([a,b);V): @1 € LP([a, b]; H}.
Then the embedding W C LP([a, b]; V) is compact.

Theorem 4.3. If the viscoelastic discontinuous part Ip is in the center of the beam,
then the semigroup associated with system (1.1)—(1.3)) is not exponentially stable.

Proof. Let us define the spaces:

Lo ={f € L*(0,6) : f|,,, 4, =0}, Vo= H;(0,6) N Lo,
HOZ‘/OXL()XVOXL()X‘/OX]LQ.

Let us consider the model on [0, ¢o]:

p1@it — K(Pa + 0 + 1), — 1K (0, — 1p) = 0,
p21r/;tt - b'&ww + "f(@w + 1; + lﬂ)) = 0,
privy — UK (ty — 1§)g + 16(Gg + 1 + 1) = 0,

$(0,t) = @(Lo, t) = P(0,1) = (Lo, t) = @(0,) = @(lo, t) = 0.

Let Sy be the semigroup on Hy (null extensions on [£y, £]) associated with (4.1)). So
we have

(4.1)

150(t)Uol|* = IUo1?, YUy € Ho. (4.2)
We will prove that S(t) — So(t): Hy — H is a compact operator, where
SHUG" = (™, @ ™, " w™, wi) € H,
So()UG" = (@™, @ 0™, ;" &™, 0]") € Ho.

Let o™ := ™ — @™, y™ 1= Y™ — 1/;7", Z™ = w™ — w™. By definition we have

m—m f m _ agmif
Um(1'7t) _ @m (TR | Y S [07£O]a ym(x’t) _ ¢m w y 1 x e [0760]
w if x ¢ [O,Eo]’ r¢ , if ¢ [07&)]’
) =40 T lfx € [0, 4],
wm’ if x ¢ [O,go]

Moreover v, y, and z verify
p1Vs — (Vg +y +12)e — B(Vge + ye + 120) e — 1K (2, — )
— K (2 — lvy) =0,
P2yt — Waw — Wawr + K(ve +y +12) + R(var + ye 4+ 12) = 0, (4.4)
p12er — — 1K (2 — W)y — UK (21 — l0) g + Ik(vy +y + 12)
+ 1R (vgr +yr +12¢) = 0.
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Multiplying (4.3]) by v, and (4.4]) by w;, and integrating on [0, ¢], we obtain

L
/ (prlvel® + p2lye? + prlze? + blya|® + Klve +y + 12* + K|z — W0]?) da
0

L
¢ ¢ ¢ _
= m)mvt‘oo + byzy,g|00 + nzmzt|00 - / Rlvgs + yr + 12|* da (4.6)

Lo

L L
—/ b\ywt|2dx—/ K\zwt—lvt\2dm‘.
£ A

Using the boundary conditions we obtain
fwwvt‘éo + bwwwt|é° + KZIZt’f;O
= —r@u by, )pe (b 1) = bibu (b ) e (b 8) — Kb (b, t)wi (g, t).

Now, we denote U™ (t) = [S(t) — So(O)]UF* = (0™, v, y™, yi", 2™, z;"). Note that
the left-hand side in (4.6)) is |4 (¢)||3,. Thus, integrating (4.6) over [0, t], we obtain

(4.7)

t t ¥/
/ 4™ (2)]|3, dt +/ / Rlom 4y + 120 + by ? + K|2m — o™ |? dx dt
0 0 J4o

t ~
= —/0 (r@y (Lo, )i (b, 1) + 0P (Lg , )Y (Eg 5 1)) + Ky (Ly s t)wi™ (g, 1) di.

(4.8)
From the observability, we have

P (ly o) — Pa(ly 1) weakly in L*(0, T),

VI (ly t) — Yy (ly ,t)  weakly in L?(0, T),

WLy 1) — Wy (Ly ,t)  weakly in L2(0, T).
We only need to prove that
strongly in [L?(0, T')]3, which implies the norm convergence in (4.8). To do that
we use (3.15)) and system (1.1))—(1.3)) and obtain

Sagnv w;nv wzn € L2(0» T H' (ID))’ ‘p?tl’ Q/J?tlv U}?Z € L2(07 T H_l(ID))'
Since H' ¢ H'™9 ¢ H~! for 0 < § < 1/2, where the first inclusion is a compact
embedding, the inclusion H'=° c C(Ip) is also compact. From Lemma there
exists a subsequence (we still denote with the same symbol) such that
(0" wi) = (ot e, wy)
strong in L2(0, T; H'=°(Ip) x H'=%(Ip) x H'~%(Ip)). and since the embedding
H'=%(Ip) c C(Ip) is compact, we have
(@, Y wi™) — (¢p, s, wy)  strongly in L2(0,T;C(Ip) x C(Ip) x C(Ip))

This implie§ (4.9). Hence inequality (4.8) implies the convergence in norm of ™.
So, S(t) — So(t) is a compact operator. Then our conclusion follows. O

In summary, we have established the following result.

Theorem 4.4. The Bresse system (1.1)-(1.3)) is exponentially stable if and only if
the viscoelastic discontinuous part is not in the center of the beam. Otherwise, the
system only has polynomial rate of decay.
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