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ABSTRACT. In this article, we use the variational method in data assimilation
to study numerically the null controllability of degenerate/singular parabolic
problem

A
atw - az (ma z¢($)) - xiﬁlp = f7 (Ir t) E]O, 1[><]OrT[7
¥(@,0) =0, ¥l,_o =¥, =0

To do this, we determine the source term f with the aim of obtaining (-, T) =
0, for all 1o € L2(]0,1[). This problem can be formulated in a least-squares
framework, which leads to a non-convex minimization problem that is solved
using a regularization approach. Also we present some numerical experiments.

1. INTRODUCTION

In this article, we study an inverse problem of identifying the source term in
degenerate/singular parabolic equation. This in the aim to study the null control-
lability, which has important applications in various areas of applied science and
engineering.

Controllability properties of degenerate/singular parabolic equations has been
widely studied (see [II, [, 13| 12} 26]) using Carleman estimates. Our main con-
tribution is to study numerically the null controllability of problem , below,
using the variational method in data assimilation.

The problem can be stated as follows: Estimate the source term in the degenerate
parabolic equation with singular potential

O = (" 0u0(@) — S50 = f, (2,0) € QX0 T (1.1

where Q =0, 1[, a €]0,1], 8 €]0,2 — af, A <0, and f € L*(Qx]0,T]).
The mathematical model leads to a non-convex minimization problem

find f € A,q such that

B(f)= min E(5) -
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where the cost function F is
1
B(f) =5t = T)|72(q); (1.3)

subject to 1 being the weak solution of the parabolic problem with source
term f.

Problem is ill-posed in the sense of Hadamard, some regularization tech-
nique is needed to guarantee numerical stability of the computational process,
maybe with noisy input data. The problem thus consists in minimizing a func-
tional of the form

1 €
J(f) = §||¢(t =T)|720) + §||fH%2(Q><]O,T[)' (1.4)

The last term in (1.4]) stands for the so called Tikhonov-type regularization [8, [11],
being a small regularizing coefficient that provides extra convexity to the functional
J.

First we prove that the functional J is continuous, and G-derivable. Numerical
experiments are presented later.

2. PROBLEM STATEMENT AND MAIN RESULT

Consider the problem
o+ AW) = f
¥(0,t) =4(1,t) =0 Vt €]0,T] (2.1)
¥(x,0) = o(z) Vo e
where, Q =]0,1[, f € L?(Qx]0,T|), vo € L?(Q), and A is the operator defined as

AW) = ~0ua(@)d(@) — 50, alx) =2

with « €]0,1[, 5 €]0,2 — o[, and A < 0.
The minimization problem with regularization associated to this problem is

find f € A,q such that

N . (2.2)
J(f) = J
(f) Jnin. (f),
where the cost function J is defined as
1 €
J(f) = 5llvt = T)||72(q) + §||fH%2(Qx]0,T[)a (2.3)

subject to ¢ being the weak solution of the parabolic problem (2.1)) with source
term f,

Aaa = {u € L(Qx]0,T]) : ||ull z2(@xjo.rp < 7}, (2.4)
where r is a real strictly positive constant.

We now specify some notation. Let us introduce the functional spaces (see
[T, 13, 1)

V = {u € L*(Q) : u absolutely continuous on [0,1]},
S ={uc L*Q) : Vau, € L*(Q) and u(0) = u(1) = 0},
H(Q)=VvnS§s,

H2Q)={uec HXQ) : au, € H'(Q)},
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Hyo={u€ Hy :u(0) = u(l) = 0},
H) = {ue L*(Q) N HL(0,1]) : 22 u, € LX(Q)},
with
HUH?{;(Q) = Hu||2L2(Q) + ”\/aux”ZL?(Q)?

||UH§13(Q) = ||UH?13(Q) + ||(aux)x||i2(sz),
(u,v) 1 = / (uwv + %Uyvy) da.
Q

We recall that (see [9]) H! is an Hilbert space and it is the closure of C2°(0,1) for
the norm || - ||z If 5= € L*(€) then the following injections
H, (Q) — L*(9),
HZ(Q) — H,y (),
HY(0,T;L*(Q)) N L*(0,T; D(A)) — L*(0,T; H}) N C(0,T; L*())

are compact.
The weak formulation of problem (2.1)) is

A
/ Oppv dx +/ (a(m)@zwamv — —ﬂwv) dx = / fodr, Yve€ Hi(Q). (2.5)
Q Q r Q
Let
By, v] = (a(:c)a YOz v — i1/)1}) dz (2.6)
’ Q x x xﬁ M M
We discuss the cases non-coercive and subcritical potential cases separately.

Non-coercive case: \ = 0. In this case the bilinear form B becomes
Blu,v] = / (a(2)950,0) da. (2.7)
Q

We have a(z) = 0 at = 0, from where the bilinear form B will be non-coercive.
We recall the following theorem.

Theorem 2.1 ([I,[13,[12]). For all f € L*(Qx]0,T[) and 1y € L*(R), there exists
a unique weak solution to (2.1)) such that

¢ € C([0,T]; L*()) N L*(0,T; H,)
and there is a constant Cr such that for any solution of (2.1,
T
sup [[¢(t)[172(q) +/ IV ae (t)]|7 20y dt < CT(||¢0||2L2(Q) + Hf||2L2(Q><]O7T[)) :
t€[0,T] 0
Furthermore, if 1o € HL(Q) then
¥ e C([0;T], Hy) N L*(0,T; H) N H'(0,T; L*(2))
and there is a constant Cr such that
T
sup [[4(1)][72 +/ ([l 2 20y + 1) (D172 0y )t
te[0,T) 0
< Cr(|lvollFr + 117 2@xj0.7p)-

The continuity of the functional J is deduced from the continuity of the function
@ : f — 1, where 1) is the weak solution of (2.1)) with source term f.
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Theorem 2.2. Let ) be the weak solution of (2.1). In the non-coercive case, if g €
HL(Q), then the functon ¢ : L*(2x]0,T[) — C([0,T); HL(Q)) N L0, T; H2(2))
N HY(0,T; L*(Q)), defined by
o(f) =1
18 continuous.

If 1o € L*(Q), then ¢ : L*(Qx]0, T[) — C([0, T]; L*(Q)) N L*(0, T Hy), ¢(f) =
P is continuous.

The differentiability of the functional J is deduced from the differentiability of
the function ¢ : f — 1.

Theorem 2.3. Let ¢ be the weak solution of R.1). If v € HL(Q), then the
function ¢ : L*(Qx]0,T[) — C([0,T); HL(Q)) N L*(0,T; H2(2)) N HY(0,T; L*(Q)),
o(f) = is G-derivable.

If Yo € TA(Q), then o - L2(@x]0, T[) — C(0, T); 1()) N L2(0, T HY), o(f) =
¥ is G-derivable.

Sub-critical potential case: A # 0. (see[20] [4]) In this case the bilinear form B
becomes

Blw, v] = /Q (al@)dr60,0 - m%m) da. (2.8)

Since a(z) =0 at £ = 0 and lim,_¢ I—’\ﬁ = 400, the bilinear form B is non-coercive
and is non continuous at z = 0.
Consider the unbounded operator (K, D(K)) where

A
Ku = (2%u)s + —u, 2.9
U (xu)—f—xﬁu (2.9)

for u in

D(k) = [u € H o 1 HR(0, 1] (% ue)e + yu € ()]

Theorem 2.4 ([3, 26]). If f = 0, then for all 1y € L*(Q), problem has a

unique weak solution
¥ € O([0,T]; L*(2)) N C(10,T]; D(K)) N C*(10, T]; L*(%2)) - (2.10)
If Yo € D(K) then

¥ € C([0,T]; D(K)) N CH([0,T]; L*(2)) - (2.11)
If f € L2(2x]0,T) then for all 1o € L*(Q), problem has a unique solution
Y € C([0,T]; L*(Q)). (2.12)

We have the following results.

Theorem 2.5. Let v be the weak solution of (2.1). In the sub-critical potential
case, the function ¢ : L?(Q2x]0,T[) — C([0,T); L*()), w(f) = v is continuous.

Theorem 2.6. Let ¢ be the weak solution of [2.1). Then ¢ : L?*(2x]0,T[) —
C([0,T); L?(Q2)), ¢(f) = 1 is G-derivable.
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3. PROOF OF MAIN RESULTS.

Proof of Theorem[2.2. Let ¢y € H}(), and & f a small variation such that f+df €
Agd-

Consider d¢p = ¢° — 1), with 1) is the weak solution of (2.1)) with source term f
and ¢° is the weak solution of (2.1]) with source term fo = f + §f. Consequently,
01) is solution of the variational problem

/Qatam dm+/a(x)8w5¢(x)axv dx:/ﬂdfvdx

Q
5 (0,t) = d(1,t) =0 Vit €]0,T]

0p(x,0) =0 Ve

Hence, §¢ is the weak solution of (2.1)) with source term §f. We apply the
estimate in theorem [2.I} to obtain a constant Cr such that

(3.1)

T
sup ||5¢(t)”§{g(n)+/0 (110:09 ][220y + 1102(ads09) (t) |72 (e )t

t€[0,T] (3.2)
S CTH(Sin?(QX]O,T[);
therefore,
S 169313y < CTISF 132 (010,27 (3.3)
169112 0.7 113 02y < CTN0F 172 00x70,77)- (3.4)

Then from (3.2) we have
T

160 (0) 1313 () +/0 102(a0200) (£) 1720t < Crllof 1172 (cxjo.rp»

T T
/0 ||57/1(f)\|%1;(9)dt + T/o 182 (adu600) ()7 20y dt < TCrI6f 11725 0.7p5
T T
inf(1,7)( / 1608 123t + / 102 (a0259) (8)]2 0y )
< TO7||6f1I72 @x10,77)
T T
/0 1600 12yt + / 102 (00250 (1)

TCr 2
< m”(;f”L?(Qx]O,T[)'

Hence,
TCr
169113 20,7, 12 (0) < mH&fH%Q(QX]O,T[)' (3.5)

In addition, from ([3.2)) we have
T
169 ()17 (0 +/o 10:69 ()1 720y dt < Crl|0f 17 200x10,7p> 7t € 0,7,

T
1802 + Ve B0(8) 2y + / 108 (8) 12 gt
< Orll6flZ2xporp: ¥t € 0,77,
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T
169 (611720 +/0 1089 ()1 220yt < CrlldflIZ2xj0,m: ¥ € [0,T],
T T
/0 165 (1|72 oyt + T/O 10:60 ()1 72y dt < TCrN0f 117200010, 7p

TCr

169011 (0,722 (0)) < mf(1 T)||5f||%2(szx]o,T[)- (3.6)

Inequalities , and imply the continuity of the function

o+ LA(Qx]0,T]) — C([0,T]; HL (@) 1 L2(0, T5 H2(9)) 0 H(0,T; L3(9)), 9(f) =
. In the same way we can prove that if ¢y € L?(f2), then the function ¢ :
L2(2x]0,T]) — C([0,T); L*>(Q)) N L2(0,T; HL), o(f) = 1 is continuous. Hence,
the cost J is continuous. (I

Proof of Theorem [2.3. Let v € H}(), and & f a small variation such that f+df €
Agq, we define the function

@' (f):0f € Aaa — 09, (3.7)
where 1) is the solution of the variational problem
/ O (69)v dx +/ a(x)0,(0¢)0yv dx = / Sfvdr Vv € H(Q)
Q Q Q
SU(0,8) = S(1,6) = 0 Vit €]0, T (3.8)
oY(xz,0) =0 Ve
and we set
o(f) = o(f +0f) —(f) — &' (f)dFf. (3.9)
We want to show that
o(f) = o(8). (3.10)

We easily verify that the function ¢ is solution of following variational problem
/ Ordv dx —|—/ a(x)0;$0yv dx = /(6f —(6f))vdx Vv € Hy(Q)
Q Q Q

$(0,t) = ¢(1,¢) =0Vt €]0,T][ (3.11)
é(x,0) =0 VYreQ.

In the same way as in the proof of continuity, we deduce that

[01E 0,711 0 < Crll6f = (6.5)2(172 10,77 (3.12)
TCr

10012207, 12 () < m”ﬁ — (0 1Z2x10,70) (3.13)
TCr

16113 0,72 () < m”df — (0?12 x10,77)- (3.14)

Therefore, the function ¢ : L?(Q2x]0,T]) — C([0,T]; HL(Q)) N L2(0,T; H2(Q)) N
HY(0,T; L*(Q)) ¢(f) = ¢ is G-derivable.

In the same way we prove that if 1o € L?(Q2), then the function ¢ : L?(Q2x]0,T]) —
C([0,T); L*(Q)) N L%(0,T; HY), ¢(f) = ¢ is G-derivable. Hence, we deduce the ex-
istence of the gradient of the functional J. (]
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Proof of Theorem[2.5. Let §f be a small variation such that f+4f € Agq. Consider
5 = % — 1, with ¢ a the weak solution of , with source term f, and consider
1% the weak solution of with source term f® = f + §f. Consequently, 51 is
the solution of variational problem

/Q&'t&lw dx +/Q (a(z)agc&/}@xv — %51{11})6& = /Q(vadx, Vv € H} ()
(0,t) = d(1,¢) =0 Vit €]0,T]|
p(x,0) =0 Vze.

(3.15)

Take v = v, this gives

A@wwm+4@m@mw—ﬁﬂw@m=4wwm, (3.16)

Q is independent of ¢, which gives

3t 0Pt [ (@007 = Z560)2)de = [ spvde. @)

recall that d¢ (¢ = 0) = 0, by integrating between 0 and ¢ with ¢ € [0, T] we obtain

lem®+// )(0.00)° — 5 (50)?) dids

(3.18)
:/ /5f§1/}dxds.
0 Q
We have 2ab < a? + b2, for all (a,b) € R, therefore
1000+ [ [ (a @007 = 25 602) d i
(3.19)
<5 [ Wos et 5 [ 10viads.
Then
1000+ [ [ @000 - 5560 ards
: (3.20)
< 510 ey + 3 [ 1601 s
Therefore
t
1500 sy < S oy + | 1661 (3.21)
Gronwall’s Lemma gives
t
10 sy < 107 s oy exel | ds) Ve 0.7,
169172y < exp(DN6f1F2x10rp V¢ € [0, T,
from where
160018 0:11,22 ) < €D 172070, (3.22)

Which implies the continuity of the function ¢ : L?(Q2x]0,T[) — C([0,T]; L3()),
©(f) = . Hence, the cost J is continuous. O
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Proof of Theorem[2.6. Let df be a small variation such that f + 0f € Auq, we
define the function

¢'(f):0f € Awa — 09, (3.23)
where dv is the solution of the variational problem
/ O (dY)vdr + / (a(x)0y(0%)O0pv — %51/}1}) dzx = / Sfvdr Vv € H}(Q)
Q Q €z Q
0p(0,t) = d(1,¢) =0 Vit €]0,T]
0p(z,0) =0 Ve Q.

(3.24)
We set
o(f) = o(f +0f) —o(f) — &' (f)of. (3.25)
We want to show that
o(f) = o(df). (3.26)

We easily verify that the function ¢ is the solution of variational problem

/Qﬁtgbv dz +/Q (a(2)0,¢0pv — x%gbv) dzx = /Q(éf —(6f)*)vdz Vv € H}(Q)
6(0,) = 6(1,8) =0Vt €0, |
¢(x,0)=0 Ve

(3.27)

In the same way as that used in the proof of continuity, we deduce
1611E 077,220y < exP(D 6 — (65)*172x0.77)- (3.28)
Hence, in all cases, the function ¢(f) = v is G-derivable and we deduce the existence
of the gradient of the functional J. (]

Now, we compute the gradient of J using the adjoint state method.

4. GRADIENT OF J

We define the Gateaux derivative of 1 at f in the direction h € L?(2x]0,T),
by

s—0 S

Y(f + sh) is the weak solution of (2.1) with source term f + sh, and ¥ (f) is the
weak solution of (2.1) with source term f.
We compute the Gateaux (directional) derivative of (2.1)) at f in some direction
h € L?(2x]0,T[), and we get the so-called tangent linear model:
O + A = h
$(0,8) = P(1,8) =0Vt €0, T (4.2)

O(z,0)=0 Vz € Q.

We introduce the adjoint variable P, and we integrate,

1 T 1T 1 T
//nwWﬁm+// me://mmﬁm, (4.3)
0 0 0 0 0 0

1 R T R T R
/ (WP]g - / Yo P dt) dx +/ (AY, P)r2ydt = (h, P)r2oxj0,1),  (44)
0 0 0
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/ W(T)P(T) — D(0) P(0))dz — / (6, 00 P) oyt + / (A, P) 120y dt
0 0 0
= (h, P) L2 (ax]0,7])-

Let us take P(x = 0) = P(z = 1) = 0, then we may write (1/3,AP>L2(Q) =
(A9, P)r2(qy. With P(T) = 0 we may now rewrite (4.5)) as

(4.5)

T
/ (,0,P — AP) 12 ()dt = —(h, P) 12 (ax]0,1])
0
this gives
T ~
/ (Y,0;P — AP) 12(qydt = —(h, P) 2(ax]o,1])
0 (4.6)
Plx=0)=P(zx=1)=0, P(T)=0.
The discretization in time of (4.6)), using the Rectangular integration method,

gives
M+1

> (W(ty), 0. P(t;) — AP(t;)) L2 () At = (=P, h) 2 (axjo.1)
3=0 (4.7)
With
t; =jAt, je{0,1,2,...,M+1},
where At is the step in time and T = (M + 1)At.
The Gateaux derivative of J at f in the direction h € L?(2) is given by
J(h) = tim 2L = I

s—0 S

After some computations, we arrive at

J(h) = ((T), 9 (T)) L2() + (€f> h) L2 (@x]o.T) - (4.8)
The adjoint model is

8,P(T) — AP(T) = Aith), OP(t;) — AP(t;) =0 Yt; £T

Px=0)=Plz=1)=0 Vt; €]0;T| (4.9)
P(T)=0.
From equations (4.7)), (4.8) and (4.9)), the gradient of J is given by
oJ
— =-P . 4.10
of +ef ( )

Problem (4.9) is retrograde, we make the change of variable t «— T — t.

5. DISCRETIZED PROBLEM

Step 1. Full discretization.

Discrete approximations of these problems need to be made for numerical imple-
mentation. To resolve the Direct problem and adjoint problem, we use the Method
#-schema in time. This method is unconditionally stable for 1 > 6 > %

Let h be the step in space and At the step in time. Let

x; =1ih, i€{0,1,2,...,N+1},
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c(z;) = a(x;) + 1,
t;=jAt, je{0,1,2,... M+1},

1= flaity).

We put
wzj = lfi(Ii,tj),
da(zi) = C($i+1)h— C(xz')’
A
Therefore
o+AY=f (5.1)
is approximated by
OByttt (1+ 22 (ws) + dafas) 22 + b )9AL) i ™
h? h? h
OAL OAL,
_@=-0)At (1-0)At N2(1-0)At
= Tc(xz) 71+ (1 — Tda(xl) — e c(x;)

—(1- H)b(xi)At)z/Jg + (%da(wi) + hﬁc(ml)) f_H

+ A1 - 0) ] + o1

Let us define

OAt
h?
20At OAt
g2(w;) =1+ 70(%‘) + da(fﬂi)T + b(x:)0At,

OAtL OAt

g3(z;) = f?c(xi) - da(xi)T,
1—0)At
o-oar,,

da(x;) — wc(@) — (1= 0)b(x;)At,

h2
(1-0)At (1-0)At
P da(ay) + oy —c(ay).

qi(zi) = — (i),

k‘1 (xl) =

(1-0)At
h

k3($l) =

k‘g(.’lﬁl) =1-

Let 97 = (wg)ie{l,g ,,,,, ~3, finally we obtain

Dyt = Byl + VI with j € {1,2,..., M}

5.2
z/}" = (f(ih))ie{l,Q ,,,,, N} 5:2)
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where
[g2(21) ga(z1) 0O 0 ]
gi(z2) g2(22) g3(z2) 0
0 gi(zs) g2(w3) gs(xs) O
D 0 g1(za) g2(wa) gs(za) 0
o 0 . . . 0
. . . 0
0 gi(rn-1) g2(xn—1) g3(zn—1)
L0 0 gilzn)  g2(zn) |
_kg(l‘l) k‘g(.]?l) 0 0
kl (1‘2) kg(iﬁg) ]{33(132) O
0 kl(.Tg) kg(l‘g) kg(il;’g) 0
B = 0 kl({E4) k2(1'4) k3($4) 0
0 . . . 0
. . . 0
0 ki(xn-1) ka(zn-1) ks(rn-1)
L0 0 ki(zn)  ka(zn) |
At[(l — 9)f(x1, tj) + 9f(:101, tj + At)]
At[(l — Q)f(.%‘g, tj) + ef(l‘g, t; + At)]
Vi = :
At[(1 = 0)f(xn—1,t;) + 0f(xn—1,t; + At)]
Step 2. Discretization of the functional
1 1t
Ty = /0 (u(w)) o + /0 ((z, T))2da. (5.3)
We recall that the Simpson methods for calculate an integral is
b M1 T
h
[ f@yde= @) +2 Y flea) 443 flonin) + flawsn)]
a i=1 i=1
with 20 = a, zy41 =b, 2y =a+ih, i €[1,...,N+1].
Let
o(z) = (u(z))? VzeQ,
p(a) = (Y(,T))* VreQ.
We have
1 M1 &
h
/0 o) dr = 3 [6(0)+2 Y. Bwa) +4Y dlwzien) +o(1)]
i=1 i=1
1 M1 Hil

| o@) dr= 5o +2 3 plan) +4 Y elani) + o).
i=1

i=1
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Therefore,
N+1 -1 N+1
eh
J(u) = = [9(0) +2 Z: ¢(22:) +4§;¢$zz+1 +o(1)]
N+1 N+1

»Mb

0) +2 Z (22i) +4Z P(z2i41) + (1))

The main steps for descent method at each iteration are:

Calculate 1* solution of with source term f*
Calculate P* solution of the adjoint problem
Calculate the descent direction dy = —V.J(f*)
Find ¢, = argmin J(fF + td)

e Update the varlable FEL = fF 4+ tdy.

The algorithm ends when ‘J | < u, where p is a given small precision.

The value tj is chosen by the inaccurate linear search by the Armijo-Goldstein
Rule as follows:

Let o, 8 € [0,1] and oo > 0

if J(f* + apdy) < J(f*) + Baid} dg, t, = a; and stop.

if not, a; = aq;.

6. NUMERICAL EXPERIMENTS

We did all tests on a PC with the following configurations: Intel Core i3 CPU
2.27GHz; RAM 4GB (2.93 usable). For all tests, we take number of points in
space N = 100, number of points in time M = 100, and initial state the function
Py = % In the figures below, vy is drawn red and the rebuilt function v in
blue.

Noncoercive case. Let a = % and A = 0. Figure |1 shows results without regu-
larization. Figures [2] and [3] show results with regularization.

L L L L L L L L L
a 01 0z 03 04 0s 06 o7 08 08 1

FiGURE 1. Final temperature without regularization. It shows
that we cannot have ¢ (T) ~ 0.
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0 01 02 03 04 05 06 07 08 08 1 0 01 02 03 04 05 06 07 08 09 1

FIGURE 2. Temperature at t = t19 (left), and at ¢ = tg9 (right).

0 01 02 03 04 05 0B 07 08 08 1 0 01 02 03 04 05 06 07 08 09 1

FIGURE 3. Temperature at ¢t = t59 which is nearly 0 (left). Final
temperature showing that ¢ (7T") ~ 0 (right).

FIGURE 4. Graph of J (left). Norm of gradient (right).

Next we have tests for « > 2 and A = 0. Using the Carleman estimates, in
[10] we prove that problem (2.1)) is non-null controllable. In this tests we confim
numerically this result; see Figures [f] and [6]

6.1. Sub-critical potential case. Let o = %, A= —%, and 8 = %Ta Figure

shows test without regularization. Figures [§] and [9] have regularization.

Conclusion. This article presents a regularization method for determining the
source term. This is done with the aim of studying numerically the null controlla-
bility of degenerate/singular parabolic problems.
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025 025

02 02

015 015

01 o1

005 0.0s

0 0

005 0.05

01 04

015 015

02 02

025 L L L L L L L L L . 0.2 L L L L L L L L L .
0 01 02 03 04 05 06 07 08 08 1 0 01 02 03 04 05 06 07 08 09 1

FIGURE 5. Temperature at ¢ = t1o with a = 2 (left). Final tem-
perature with o = 2 which shows the non-null controllability of

(right).

025 0%

02 02

015 015

01 o1

005 0.0s

0 0

005 -0.05

01 01

015 015

02 02

025 L L L L L L L L L , 0.2 L L L L L L L L L ,
0 01 02 03 04 05 06 07 08 08 1 0 01 02 03 04 05 06 07 08 08 1

FIGURE 6. Temperature at t = t1o9 with a = 4 (left). Final tem-
perature with o = 4 which shows the non-null controllability of

(2.1) (right).

FIGURE 7. Final temperature without regularization which shows
that we cannot have ¢¥(T") ~ 0.
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