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Abstract. We prove the existence of parabolic initial boundary value prob-

lems of the type

ut − div(aε(t, x, uε,∇uε)) = µε in Q := (0, T )× Ω,

uε = 0 on (0, T )× ∂Ω, uε(0) = u0,ε in Ω,

with respect to suitable convergence of the nonlinear operators aε and of the

measure data µε. As a consequence, we obtain the existence of a renormalized
solution for a general class of nonlinear parabolic equations with right-hand

side measure.

1. Introduction

In this article we consider the parabolic problem

ut − div(a(t, x, u,∇u)) = µ in Q := (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u(0) = u0 in Ω,
(1.1)

where Ω is an open bounded subset of RN , N ≥ 2, T > 0 and Q is the cylinder
(0, T ) × Ω, (0, T ) × ∂Ω being its lateral surface, the operator of Leray-Lions u 7→
−div(a(t, x, u,∇u)) is pseudo-monotone defined on the space Lp(0, T ;W 1,p

0 (Ω))
with values in its dual Lp

′
(0, T ;W−1,p′(Ω)), p > 1 and 1

p + 1
p′ = 1. We assume that

u0 ∈ L2(Ω) and the data µ is a Radon measure with bounded variation on Q.
Under some assumptions on a, If µ ∈ Lp

′
(Q) the existence and unicity of a

weak solution u of (1.1) belonging to suitable energy space and to C([0, T ;L2(Ω)])
was proved in [18]. In the case of linear operators the difficulty can be overcome
by defining the solution through the adjoint operator, this method is used in [27]
and yields a formulation having a unique solution. For nonlinear operators, the
authors in [4] and [21] extends the results in two different directions, assuming that
µ ∈ L1(Q) and u0 ∈ L1(Ω), they prove existence of a renormalized solution, and
of entropy solution, the same notions of solutions are used to ensure existence and
uniqueness of equations with bounded Radon measures on Q that does not charge
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the sets of zero parabolic p-capacity (See [4, 15, 24]), the authors show in [14] that
these two notions of solution actually coincide.

Here we use the notion of renormalized solution, introduced in [12, 20, 23].
Roughly speaking, a renormalized solution to (1.1) is a measurable function with
all the truncations in the space Lp(0, T ;W 1,p

0 (Ω))∩L∞(0, T ;L1(Ω)) and such that
for every S ∈W 2,∞(R)(S(0) = 0) with S′ has compact support on R, we have

−
∫

Ω

S(u0)ϕ(0) dx−
∫ T

0

〈ϕt, S(u− g)〉 dt

+
∫
Q

S′(u− g)a(t, x, u,∇u) · ∇ϕdx dt

+
∫
Q

S′′(u− g)a(t, x, u,∇u) · ∇(u− g)ϕdx dt

=
∫
Q

S′(u− g)ϕdµ̃0,

(1.2)

for every function ϕ ∈ Lp(0, T ;W 1,p
0 (Ω))∩L∞(Q), ϕt ∈ Lp

′
(0, T ;W−1,p′(Ω)), with

ϕ(T, x) = 0, such that S′(u − g)ϕ ∈ Lp(0, T ;W 1,p
0 (Ω)), gt is the time derivative

part of µ0 and µ̂0 = µ − gt − µs = f − div(G). Moreover, for every ψ ∈ C(Q) we
have

lim
n→+∞

1
n

∫
{n≤v<2n}

a(t, x, u,∇u) · ∇vψ dx dt =
∫
Q

ψdµ+
s ,

lim
n→+∞

1
n

∫
{−2n<v≤−n}

a(t, x, u,∇u) · ∇vψ dx dt =
∫
Q

ψdµ−s ,

where µ+
s and µ−s are respectively the positive and the negative part of the singular

part of the measure µ w.r.t. the p-capacity.
In the proof of [23, Theorem 2], they used the fact that the approximating

sequences µε having a splitting converging to µ, the estimate concerning uε and
uε− gtε, next they prove the strong convergence of Tk(uε− gε) in Lp(0, T ;W 1,p

0 (Ω)).
To obtain this result, they use the same technique as in [12] adapted to the parabolic
case.

In the present paper we generalize this existence result to renormalized solutions
of problems depending on u and ∇u

(uε)t − div(a(t, x, uε,∇uε)) = µε in Q := (0, T )× Ω,

uε = 0 on (0, T )× ∂Ω,

uε(0) = u0 in Ω,
(1.3)

where (µε) is a sequences of measures with splitting converging to µ, and

lim
ε→0

aε(t, x, sε, ζε) = a0(t, x, s, ζ),

for every sequence (sε, ζε) ∈ R× RN converging to (s, ζ) and for a.e. (t, x) ∈ Q.
The main point which allows to go further the previous works, is the proof of the

almost everywhere convergence of gradients in Proposition 5.2 using the technique
developed in [24, 25]. To underline the importance of this tool, we have chosen to
plan the paper in the following way: in Sect. 2, we recall some basic notations and
we investigate the link between measures in Q and the notion of parabolic capacity,
this notion can be obtained from the result of the ”elliptic capacity” contained in
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[8], which can be slightly adapted to this context of parabolic spaces, and we show
the decomposition method for more general measures with bounded total variation
in order to find a sense of solution to Cauchy-Dirichlet problems.

In Sect. 3, we introduce and study a special type of approximating sequences of
measures obtained via convolution arguments. In Sect. 4 we show the interest of
cut-off functions and intermediary lemmas. In the last two sections, we establish
the fundamental a priori estimates and we use the proof of strong convergence of
truncates to obtain our main result.

2. Preliminaries

2.1. Assumptions on the operator. Throughout this paper Ω will be a bounded
open subset of RN , N ≥ 2, p and p′ will be real numbers, with p > 1 and 1

p + 1
p′ = 1.

In what follows, |ζ| and ζ ·ζ ′ will denote respectively the Euclidean norm of a vector
ζ ∈ RN and the scalar product between ζ and ζ ′ ∈ RN .

Fixed three positive constants c0, c1, c2, and a non-negative function b0 = b(t, x) ∈
Lp
′
(Q), we say that a function a : (0, T )×Ω×R×RN → RN satisfies the assumptions

H(c0, c1, c2, b0) if a is a Carathéodory function (that is, a(·, ·, s, ζ) is measurable on
Q for every (s, ζ) in R × RN , and a(t, x, ·) is continuous on R × RN for almost
every (t, x) in Q) such that, for every s ∈ R, ζ, ζ ′ ∈ RN with ζ 6= ζ ′, satisfying the
following properties.

a(t, x, s, ζ) · ζ ≥ c0|ζ|p, (2.1)

|a(t, x, s, ζ)| ≤ b0(t, x) + c1|s|p−1 + c2|ζ|p−1, (2.2)

(a(t, s, s, ζ)− a(t, x, s, ζ ′)) · (ζ − ζ ′) > 0. (2.3)

Notice that, as a consequence of (2.1) and of the continuity of a with respect to
ζ, we have that a(t, x, s, 0) = 0 for a.e. (t, x) in Q and for every s ∈ R. Thanks
to assumptions H(c0, c1, c2, b0), the map u 7→ −div(a(t, x, u,∇u)) is a coercive,
continuous, bounded and monotone operator defined on Lp(0, T ;W 1,p

0 (Ω)) with
values into its dual space Lp

′
(0, T ;W−1,p′(Ω)); hence by the standard theory of

monotone operators (see, e.g.,[18]), for every F in Lp
′
(Q) and u0 ∈ L2(Ω) there

exists a variational solution u of the problem

ut − div(a(t, x, v,∇v)) = F in Q := (0, T )× Ω,

v = 0 on (0, T )× ∂Ω,

v(0) = u0 in Ω,

in the sense that v belongs to W∩C(0, T ;L2(Ω)) (where W = {u ∈ Lp(0, T ;V ), ut ∈
Lp
′
(0, T ;V ′)} with V = W 1,p

0 (Ω) ∩ L2(Ω)), and

−
∫

Ω

u0ϕ(0) dx−
∫ T

0

〈ϕt, v〉 dt+
∫
Q

a(t, x, v,∇v) · ∇ϕdx dt

=
∫ T

0

〈F,ϕ〉W−1,p′ (Ω),W 1,p
0 (Ω)dt,

(2.4)

for all ϕ ∈ W such that ϕ(T ) = 0. (Here and in the following 〈·, ·〉 denotes the
duality pairing between W−1,p′(Ω) and W 1,p

0 (Ω)).
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2.2. Capacity and measures. For every set B ⊆ Q, its p-capacity capp(B,Q)
with respect to Q is defined by

inf{‖u‖W }
where the infimum is taken over all the functions u ∈ W such that u ≥ 1 almost
everywhere in a neighborhood of B.

We say that a property P(t, x) holds capp-quasi everywhere if P(t, x) holds for
every (x, t) outside a subset of Q of zero p-capacity. A function u defined on Q
is said to be capp-quasi continuous if for every ε > 0 there exists B ⊆ Q with
capp(B,Q) < ε such that the restriction of u to Q\B is continuous. It is well
known that every function in W has a unique, up to sets of p-capacity zero, capp-
quasi continuous representative, whose values are defined capp-quasi everywhere
in Q. In what follows we always identify a function u ∈ W with its capp-quasi
continuous representative.

We define Mb(Q) as the space of all Radon measures on Q with bounded total
variation, and Cb(Q) as the space of all bounded, continuous functions on Q, so
that

∫
Q
ϕdµ is defined for ϕ ∈ Cb(Q) and µ in Mb(Q). The positive part, the

negative part, and the total variation of a measure µ inMb(Q) are denoted by µ+,
µ−, and |µ|, respectively.

We recall that for a measure µ in Mb(Q), and a Borel set E ⊆ Q, the measure
µ ⊥ E is defined by (µ ⊥ E)(Q) = µ(E ∩B) for any Borel set B ⊆ Q.

In the sequel we suppose that p satisfies p > 2 − 1
N+1 . Then the embedding

W 1,p
0 (Ω) ⊂ L2(Ω) is valid, i.e.,

X = Lp((0, T );W 1,p
0 (Ω)), X ′ = Lp

′
((0, T );W−1,p′(Ω)).

We say that a sequence (µn) of measures inMb(Q) converges in the narrow topology
to a measure µ in Mb(Q) if

lim
n→+∞

∫
Q

ϕdµn =
∫
Q

ϕdµ (2.5)

for every ϕ ∈ C(Q). If (2.5) holds only for all the continuous functions ϕ with
compact support in Q, then we have the usual weak * convergence in Mb(Q).

We defineM0(Q) as the set of all measures µ inMb(Q) which satisfy µ(B) = 0
for every Borel set B ⊆ Q such that capp(B,Q) = 0, while Ms(Q) will be the
set of all measures µ in Mb(Q) for which there exists a Borel set B ⊂ Q, with
capp(B,Q) = 0, such that µ = µ ⊥ E. For every µ ∈ Mb(Q) there exist a
unique pair (µ0, µs) such that µ = µ0 + µs, µ0 ∈ M0(Q), µs ∈ Ms(Q) (see [17,
Lemma 2.1]). In addition, a measure µ belongs to M0(Q) if and only if µ belongs
to L1(Q) + Lp

′
(0, T ;W−1,p′(Ω)) + Lp(0, T ;V ) (see [15, Theorem 1.1]). Hence a

measure µ ∈Mb(Q) can be decomposed (not in a unique way) as

µ = f + F + gt + µ+
s − µ−s (2.6)

with f ∈ L1(Q), F ∈ Lp′(0, T ;W−1,p′(Ω)), gt ∈ Lp(0, T ;V ) and µs ⊥ p-capacity.

2.3. Definition of renormalized solution. For any k > 0, we define the trun-
cation function Tk : R→ R by

Tk(t) = max(−k,min(k, t)), t ∈ R
Let us consider the space of all measurable functions, finite a.e. in Q such that
Tk(u) belongs to Lp(0, T ;W 1,p

0 (Ω)) for every k > 0.
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We can see that every function u in this space has a capp-quasi continuous
representative, that will always be identified with u. Moreover, there exists a mea-
surable function v : Q→ RN , which is unique up to almost everywhere equivalence,
such that ∇Tk(u) = vχ{|u|<k} a.e. in Q, for every k > 0, (see [7, Lemma 2.1]).
Hence it is possible to define a generalized gradient ∇u of u, setting ∇u = v. If
u ∈ L1(0, T ;W 1,1

0 (Ω)), this gradient coincide with the usual gradient in distribu-
tional sense.

Let Tk(t) be the Lipschitz continuous function Tk : R→ R, so that we can define
the auxiliary functions

Θn(s) = T1(s− Tn(s)), hn(s) = 1− (Θn(s)), Sn(s) =
∫ s

0

hn(r)dr, ∀s ∈ R.

We are now in a position to introduce (following [23]) the notion of renormalized
solution. To simplify the notation, let us define v = u− g, where u is the solution
and g is the time-derivative part of µ0, and µ̂0 = µ− gt − µs = f − div(G).

Definition 2.1. Let u0 ∈ L1(Ω), µ ∈ Mb(Q). A measurable function u is a
renormalized solution of problem (1.1) if there exists a decomposition (f,G, g) of
µ0 such that

v = u− g ∈ Lq(0, T ;W 1,q
0 (Ω)) ∩ L∞(0, T ;L1(Ω)) ∀q < p− N

N + 1
,

Tk(v) ∈ X ∀k > 0,
(2.7)

and, for every S ∈W 2,∞(R) such that S′ has compact support on R, and S(0) = 0,

−
∫

Ω

S(u0)ϕ(0) dx−
∫ T

0

〈ϕt, S(v)〉 dt+
∫
Q

S′(v)a(t, x, u,∇u) · ∇ϕdx dt

+
∫
Q

S′′(v)a(t, x, u,∇u) · ∇vϕ dx dt =
∫
Q

S′(v)ϕdµ̃0,

(2.8)

for any ϕ ∈ X ∩ L∞(Q) such that ϕt ∈ X ′ + L1(Q) and ϕ(·, T ) = 0; for any
ψ ∈ C(Q)

lim
n→+∞

1
n

∫
{n≤v<2n}

a(t, x, u,∇u) · ∇vψ dx dt =
∫
Q

ψdµ+
s ,

lim
n→+∞

1
n

∫
{−2n<v≤−n}

a(t, x, u,∇u) · ∇vψ dx dt =
∫
Q

ψdµ−s ,

(2.9)

Remark 2.2. Notice that, if u is a renormalized solution of (1.1), then

(S(u− g))t − div(a(t, x, u,∇u)S′(u− g)) + S′′(u− g)a(t, x, u,∇u) · ∇(u− g)

= S′(u− g)f + S′′(u− g)G · ∇(u− g)− div(GS′(u− g))
(2.10)

is satisfied in the sense of distributions. Hence we can put as test functions not
only functions in C∞0 (Q) but also in Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(Q).

3. Statement of results

In what follows the variable ε will belong to a sequence of positive numbers
converging to zero. Let aε : Q×R×RN → RN be a sequence of functions satisfying
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the hypothesis H(c0, c1, c2, b0). Assume that there exists a function a0 : Q × R ×
RN → RN satisfying the hypothesis H(c0, c1, c2, b0), and such that

lim
ε→0

aε(t, x, sε, ζε) = a0(t, x, s, ζ), (3.1)

for every sequence (sε, ζε) ∈ R × RN which converges to (s, ζ) and for almost
(t, x) ∈ Q. Fixed µ ∈Mb(Q), we consider a special type of approximating sequence
µε, defined as follows.

Definition 3.1. Let µ ∈ Mb(Q) be decomposed as µ = f + F + gt + µ+
s − µ−s ,

with f ∈ L1(Q), and F = −div(G), G ∈ (Lp
′
(Q))N , gt ∈ Lp

′
(0, T ;W−1,p′(Ω)).

Let (µε) be a sequence of measures in Mb(Q), we say that (µε) has a splitting
(fε, Fε, gtε, λ

⊕
ε , λ

	
ε ) converging to µ. If for every ε the measure µε can be decomposed

as
µε = fε + Fε + gtε + λ⊕ε − λ	ε , (3.2)

and the following holds
(i) (fε) is a sequence of C∞c (Q) functions converging to f weakly in L1(Q);
(ii) (Gε) is a sequence of functions in (C∞c (Q))N that converges to g strongly

in (Lp
′
(Q))N ;

(iii) (gtε) is a sequence of functions in (C∞c (Q))N that converges to gt in Lp(0, T ;V );
(iv) (λ⊕ε ) is a sequence of non-negative measures in Mb(Q) such that λ⊕ε =

λ1,⊕
ε,0 − div(λ2,⊕

ε,0 ) + λ⊕ε,s with (λ1,⊕
ε,0 ∈ L1(Q), λ2,⊕

ε,0 ∈ (Lp
′
(Q))N and λ⊕ε,s ∈

M+
s (Q)) that converges to µ+

s in the narrow topology of measures;
(v) (λ	ε ) is a sequence of non-negative measures in Mb(Q) such that λ	ε =

λ1,	
ε,0 − div(λ2,	

ε,0 ) + λ	ε,s with (λ1,	
ε,0 ∈ L1(Q), λ2,	

ε,0 ∈ (Lp
′
(Q))N and λ	ε,s ∈

M+
s (Q)) that converges to µ−s in the narrow topology of measures.

Moreover, let uε0 ∈ C∞0 (Ω) that approaches u0 in L1(Ω), notice that this approx-
imation can be easily obtained via a standard convolution arguments and we can
also assume

‖µε‖L1(Q) ≤ C|µ|; ‖u0,ε‖L1(Ω) ≤ C‖u0‖L1(Ω).

Remark 3.2. Let us introduce the following function that we will often use in the
following

Hn(r) = χ[−n,n](r) +
2n− |s|

n
χ{n<|s|≤2n}(r), Hn(r) =

∫ r

0

Hn(τ)dτ,

and another auxiliary function introduced in terms of Hn(s)

Bn(s) = 1−Hn(s).

Proposition 3.3. Let v = u−g be a renormalized solution of problem (1.1). Then,
for every, k > 0, we have ∫

Q

|∇Tk(v)|pdx dt ≤ C(k + 1),

where C is a positive constant not depending on k.

For a proof of the above proposition see [23, Proposition 2].

Remark 3.4. If we decompose the measures, µε, λ⊕ε , λ	ε respectively as µε =
µε,0 + µε,s, λ⊕ε = λ⊕ε,0 + λ⊕ε,s (λ⊕ε,0 = λ1,⊕

ε,0 − div(λ2,⊕
ε,0 )), λ	ε = λ	ε,0 + λ	ε,s (λ	ε,0 =

λ1,	
ε,0 −div(λ2,	

ε,0 )), with µε,0, λ⊕ε,0, λ	ε,0 inM0(Q), and µε,s, λ⊕ε,s, λ
	
ε,s inMs(Q), then
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clearly λ⊕ε,0, λ	ε,0, λ⊕ε,s, λ
	
ε,s are non-negative, µε,0 = fε + Fε + gε + λ⊕ε,0 − λ

	
ε,0 and

µε,s = λ⊕ε,s − λ	ε,s. In particular we have

0 ≤ µ+
ε,s ≤ λ⊕ε,s, 0 ≤ µ−ε,s ≤ λ	ε,s. (3.3)

We are interested in the asymptotic behaviour of a sequence of renormalized
solutions (uε) to the problem

(uε)t − div(a(t, x, uε,∇uε)) = µε in Q := (0, T )× Ω,

uε = 0 on (0, T )× ∂Ω,

uε(0) = u0 in Ω,
(3.4)

in the sense of Definition 2.1. Our main result reads as follows.

Theorem 3.5. Let (aε), a0 be functions satisfying H(c0, c1, c2, b0) and (3.1). Let
µ ∈ Mb(Q) be decomposed as f + F + gt + µ+

s − µ−s , and let (µε) a sequence
of measures in Mb(Q) which have a splitting (fε, Fε, gε, λ⊕ε , λ

	
ε ) converging to µ.

Assume that uε is a renormalized solution of (3.4). Then there exists a subsequence,
still denoted by (uε), and a renormalized solution u to the problem

ut − div(a0(t, x, u,∇u)) = µ in Q := (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u(0) = u0 in Ω,
(3.5)

such that (uε) converges to u a.e. in Q, and (vε) = (uε− gε) converges to v = u− g
a.e. in Q.

Remark 3.6. The convergence of uε to u is not merely pointwise. The kind of
converges obtained are listed in Proposition 5.2, where the existence of the limit
function u is obtained.

Remark 3.7. Let zν be a sequence of functions such that

zν ∈W 1,p
0 (Ω) ∩ L∞(Ω), ‖zν‖L∞(Ω) ≤ k,

zν → Tk(u0) a.e. in Ω as ν tends to infinity,
1
ν
‖zν‖pW 1,p

0 (Ω)
→ 0 as ν tends to infinity.

Then, for fixed k > 0, and ν > 0, we denote by (Tk(v))ν (Landes-time regularization
of the truncate function Tk(v) introduced in [19] and used in several articles (see
[2, 5, 13]) the unique solution of the problem

dTk(v)ν
dt

= ν(Tk(v)− Tk(v)ν) in the sense of distributions,

Tk(v)ν = zν in Ω,

therefore, Tk(v)ν ∈ Lp(0, T ;W 1,p
0 (Ω)∩L∞(Q)) and dTk(v)

dt ∈ Lp(0, T ;W 1,p
0 (Ω)), and

it can be proved that, up to a subsequences, as ν diverges

Tk(v)ν → Tk(v) strongly in Lp(0, T ;W 1,p
0 (Ω)) and a.e. in Q,

‖Tk(v)ν‖L∞(Q) ≤ k ∀ν > 0

Then choosing this approximation in parabolic case with fact that (µε) approxi-
mates µ in the sense of Definition 3.1. Hence we obtain, as consequence of the
strong convergence of truncates the existence of renormalized solution of (3.5) ob-
tained as stated in the following theorem.
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Theorem 3.8. Let a0 be a function satisfying H(c0, c1, c2, b0) and u0 ∈ L1(Ω),
µ ∈Mb(Q). Then there exists a renormalized solution u to problem

ut − div(a0(t, x, u,∇u)) = µ in Q := (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u(0) = u0 in Ω.

4. Some remarks on measures

We recall that a sequence (µε) of non-negative measures converges to µ in the
narrow topology if and only if (µε(Q)) converges to µ(Q) and (2.5) holds for every
ϕ ∈ C∞c (Q). In particular a sequence (µε) of non-negative measures converges to µ
in the narrow topology if and only if (2.5) holds for every ϕ ∈ Cc(Q). The following
lemma states a consequence result of the Dunford-pettis theorem.

Lemma 4.1. Let (ρε) be a sequence in L1(Q) converging to ρ weakly in L1(Q) and
(σε) a bounded sequence in L∞(Q) converging to σ a.e. in Q. Then

lim
ε→0

∫
Q

ρεσεdx dt =
∫
Q

ρσ dx dt

Next we need to localize some integrals near the support of µs ∈Ms(Q) (singular
measure with respect to p-capacity). This will be done in terms of the following
cut-off functions (see [23, Lemma 5]).

Lemma 4.2. Let µs be a measure in Ms(Q), and let µ+
s , µ

−
s be respectively the

positive and the negative part of µs. Then for every δ > 0, there exists two functions
ψ+
δ , ψ

−
δ in C1

0 (Q), such that the following hold
(i) 0 ≤ ψ+

δ ≤ 1 and 0 ≤ ψ−δ ≤ 1 on Q;
(ii) limδ→0 ψ

+
δ = limδ→0 ψ

−
δ = 0 strongly in Lp(0, T ;W 1,p

0 (Ω)) and weakly * in
L∞(Q);

(iii) limδ→0(ψ+
δ )t = limδ→0(ψ−δ )t = 0 strongly in Lp

′
(0, T ;W−1,p′(Ω)) +L1(Q);

(iv)
∫
Q
ψ−δ dµ

+
s ≤ δ and

∫
Q
ψ+
δ dµ

−
s ≤ δ;

(v)
∫
Q

(1− ψ+
δ ψ

+
η )dµ+

s ≤ δ + η and
∫
Q

(1− ψ−δ ψ−η )dµ−s ≤ δ + η for all η > 0.

Lemma 4.3. Let µs be a measure in Ms(Ω), decomposed as µs = µ+
s − µ−s , with

µ+
s and µ−s concentrated on two disjoint subsets E+ and E− of zero p-capacity.

Then, for every δ > 0, there exists two compact sets K+
δ ⊆ E+ and K−δ ⊆ E− such

that
µ+
s (E+\K+

δ ) ≤ δ, µ−s (E−\K−δ ) ≤ δ, (4.1)
and there exists ψ+

δ , ψ−δ ∈ C1
0 (Q), such that

ψ+
δ , ψ

−
δ ≡ 1 respectively on K+

δ ,K
−
δ , (4.2)

0 ≤ ψ+
δ , ψ

−
δ ≤ 1, (4.3)

supp(ψ+
δ ) ∩ supp(ψ−δ ) ≡ ∅. (4.4)

Moreover
‖ψ+

δ ‖S ≤ δ, ‖ψ−δ ‖S ≤ δ, (4.5)
and, in particular, there exists a decomposition of (ψ+

δ )t and a decomposition of
(ψ−δ )t such that

‖(ψ+
δ )1

t‖Lp′ (0,T ;W−1,p′ (Ω)) ≤
δ

3
, ‖(ψ+

δ )2
t‖L1(Q) ≤

δ

3
, (4.6)
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‖(ψ−δ )1
t‖Lp′ (0,T ;W−1,p′ (Ω)) ≤

δ

3
, ‖(ψ−δ )2

t‖L1(Q) ≤
δ

3
, (4.7)

and both ψ+
δ and ψ−δ converges to zero * weakly in L∞(Q), in L1(Q), and up to

subsequences, almost everywhere as δ vanishes.
Moreover, if λ⊕ε and λ	ε are as in (3.2) we have∫

Q

ψ−δ dλ
⊕
ε = ω(ε, δ),

∫
Q

ψ−δ dµ
+
s ≤ δ, (4.8)∫

Q

ψ+
δ dλ

	
ε = ω(ε, δ),

∫
Q

ψ+
δ dµ

−
s ≤ δ, (4.9)∫

Q

(1− ψ+
δ ψ

+
η )dλ⊕ε = ω(ε, δ, η),

∫
Q

(1− ψ+
δ ψ

+
η )dµ+

s ≤ δ + η, (4.10)∫
Q

(1− ψ−δ ψ
−
η )dλ	ε = ω(ε, δ, η),

∫
Q

(1− ψ−δ ψ
−
η )dµ−s ≤ δ + η. (4.11)

For a proof of the above lemma see [23, Lemma 5].

Remark 4.4. If λ⊕ε and λ	ε satisfy (iii) and (iv) of Definition 3.1, respectively, and
ψ−δ and ψ+

δ are the functions defined in Lemma 4.2, as an easy consequence of the
narrow convergence we obtain

lim
δ→0

lim
ε→0

∫
Q

ψ−δ dλ
⊕
ε = 0, lim

δ→0
lim
ε→0

∫
Q

ψ+
δ dλ

	
ε = 0, (4.12)

lim
η→0

lim
δ→0

lim
ε→0

∫
Q

(1− ψ+
δ ψ

+
η )dλ⊕ε = 0, lim

η→0
lim
δ→0

lim
ε→0

∫
Q

(1− ψ−δ ψ
−
η )dλ	ε = 0. (4.13)

5. Existence of a limit function

The following lemma is the main tool in order to establish the fundamental a
priori estimates for the sequence (uε).

Lemma 5.1. Let u, v as defined before, and assume that there exists C > 0 such
that

‖u‖L∞(0,T ;L1(Ω)) ≤ C; ‖v‖L∞(0,T ;L1(Ω)) ≤ C,∫
Q

|∇Tk(u)|pdx dt ≤ Ck;
∫
Q

|∇Tk(v)|pdx dt ≤ C(k + 1),
(5.1)

for every k > 0. Then there exists C = C(N,M, p) > 0 such that
(i) meas{|u| ≥ k} ≤ Ck−(p−1+ p

n ), meas{|v| ≥ k} ≤ Ck−(p−1+ p
n ),

(ii) meas{|∇u| ≥ k} ≤ Ck−(p− N
N+1 ), meas{|∇v| ≥ k} ≤ Ck−(p− N

N+1 ).

Proof. (i) We can improve this kind of estimate by using a suitable Gagliardo-
Niremberg typeinequality (see [11, Proposition 3.1]) which asserts that is w ∈
Lq(0, T ;W 1,q

0 (Ω)) ∩ L∞(0, T ;L2(Ω)), with q ≥ 1, σ ≥ 1. Then w ∈ Lσ(Q) with
σ = qN+ρ

N and ∫
Q

|w|σdx dt ≤ C‖w‖
ρq
N

L∞(0,T ;Lρ(Ω))

∫
Q

|∇w|qdx dt.

Indeed, in this way we obtain∫
Q

|Tk(u)|p+
p
N dx dt ≤ Ck,
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and so, we can write

Kp+ p
Nmeas{|u| ≥ k} ≤

∫
{|u|≥k}

|Tk(u)|p+
p
N dx dt ≤

∫
Q

|Tk(u)|p+
p
N dx dt ≤ Ck,

Then,

meas{|u| ≥ k} ≤ C

kp−1+ p
N

.

(ii) We are interested about a similar estimate on the gradients of functions u; let
us emphasize that these estimates hold true. First of all, observe that

meas{|∇u| 6= λ} ≤ meas{|∇u| 6= λ; |u| ≤ k}+ meas{|∇u| 6= λ; |u| > k}

with regard to the first term in the right hand side, we have

meas{|∇u| 6= λ; |u| ≤ k} ≤ 1
λp

∫
{|∇u|≥λ;|u|≤k}

|∇u|pdx

1
λp

∫
{|u|≤k}

|∇u|pdx =
1
λp

∫
Q

|∇Tk(u)|pdx ≤ Ck

λp
;

(5.2)

while for the last term, thanks to (i), we can write

meas{|∇u| ≥ λ; |u| > k} ≤ meas{|u| ≥ k} ≤ C

Kσ
,

with σ = p− 1 + p
N . So, finally, we obtain

meas{|∇u| ≥ λ} ≤ C

kσ
+
Ck

λp
,

and we obtain a better estimate by taking the minimum over k of the right-hand
side; the minimum is achieved for the value

k0 =
(σC
C

) 1
σ+1λ

p
σ+1

and so we obtain the desired estimate

meas{|∇u| ≥ λ} ≤ Cλ−γ

with γ = p( σ
σ+1 ) = Np+p−N

N+1 = p − N
N+1 . Then, we found that u (resp v) is

uniformally bounded in the Marcinkiewicz space Mp−1+ p
N (Q) and ∇u (resp ∇v)

is equibounded in Mγ(Q), with γ = p− N
N+1 . �

From now we always assume that (aε), a0 are functions satisfying H(c0, c1, c2, b0)
and (3.1), that µ ∈ Mb(Q) is decomposed as f + F + gt + µs, f ∈ L1(Q), F ∈
Lp
′
(0, T ;W−1,p′(Ω)), gt ∈ Lp(0, T ;V ), µs ∈Ms(Q), and that (µs) is a sequence of

measure in Mb(Q), which have a splitting (fε, Fε, gε, λ⊕ε , λ
	
ε ) converging to µ. We

shall denotes by uε a renormalized solution of (3.4) with µε as datum. Hence it
satisfies: ∫ T

0

〈(vε)t, ϕ〉 dt+
∫
Q

a(t, x, uε,∇uε) · ∇ϕdx dt

=
∫
Q

fεϕdx dt+
∫ T

0

〈Fε, ϕ〉 dx dt+
∫
Q

ϕ d(λ⊕ε − λ	ε ),

(5.3)

for all ϕ ∈ Lp(0, T ;W 1,p
0 (Ω))∩L∞(Q), ϕt ∈ Lp

′
(0, T ;W−1,p′(Ω)), with ϕ(T, 0) = 0.
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As a first step, we find a function u ∈ L∞(0, T ;L1(Ω)) such that Tk(u) ∈
Lp(0, T ;W 1,p

0 (Ω)) which is the limit, up to a subsequence, of (uε) in suitable topolo-
gies.

Proposition 5.2. Let µε ∈ Mb(Q), (u0,ε) ∈ L1(Ω), with supε|µε(Q)| < ∞ and
‖u0,ε‖1,Ω < ∞. Let (uε) be a sequence of renormalized solutions of (3.4), and let
vε = uε − gε. Then there exists C > 0 such that

‖uε‖L∞(0,T ;L1(Ω)) ≤ C,
∫
Q

|∇Tk(uε)|pdx dt ≤ Ck,

‖vε‖L∞(0,T ;L1(Ω)) ≤ C,
∫
Q

|∇Tk(vε)|pdx dt ≤ C(k + 1),
(5.4)

for every ε and for every k > 0. Moreover there exists a subsequence, still denoted by
uε (resp vε) and a measurable function u (resp v) such that the following convergence
hold.

(i) uε (resp (vε)) converges to u (resp v) a.e. in Q;
(ii) u (resp v) belongs to L∞(0, T ;L1(Ω)) and for every k > 0, the sequence

(Tk(uε)) (resp Tk(vε)) converges to Tk(u) (resp Tk(v)) ∈ Lp(0, T ;W 1,p
0 (Ω))

in the weak topology of Lp(0, T ;W 1,p
0 (Ω));

(iii) ∇uε (resp (∇vε)) converges to ∇u (resp ∇v) a.e. in Q;
(iv) aε(t, x, uε,∇uε) converges to a0(t, x, u,∇u) in the strong topology of the

space Lq(0, T ;W 1,q
0 (Ω)) for every q < p − N

N+1 , while aε(t, x, u,∇Tk(uε))
converges to a0(t, x, u,∇Tk(u)) in the weak topology of (Lp

′
(Q))N for every

k > 0.

Proof. Step 1. a priori estimates. Let us choose Tk(uε) as test function in (5.3)
and we integrate in ]0, t[ to obtain∫

Ω

Θk(uε(t)) dx+
∫ t

0

∫
Ω

a(t, x, uε,∇uε)∇Tk(uε) dx dt

=
∫ t

0

∫
Ω

Tk(uε)dµε +
∫

Ω

Θk(u0,ε) dx
(5.5)

using (3.1) and the fact that ‖u0,ε‖L1(Ω) and ‖µε‖L1(Q) are bounded:∫
Ω

Θk(uε)(t) dx+
∫ t

0

∫
Ω

|∇Tk(uε)|pdx dt ≤ Ck

Since Θk(s) ≥ 0 and |Θ1(s)| ≥ |s| − 1, we obtain∫
Ω

|uε(t)| dx+
∫ t

0

∫
Ω

|∇Tk(uε)|pdx dt ≤ C(k + 1), ∀k > 0,∀t ∈ [0, T ].

Taking the supremum on (0, T ). As a consequence we obtain the estimate of uε in
L∞(0, T ;L1(Ω))

‖uε‖L∞(0,T ;L1(Ω)) ≤ C,
We repeat here the same argument to get the estimate on vε: let us choose Tk(vε) as
test function in (5.3). by integration by parts (recall that gε has compact support
in Q, so that (vε(0) = uε(0) = u0,ε)) and using (3.1)∫

Ω

Θ(vε)(t) dx+ α

∫ t

0

∫
Ω

|∇uε|pχ{|vε≤k|} dx ds
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≤
∫

Ω

Θk(u0,ε) dx+
∫
Q

fεTk(vε) dx dt+
∫ t

0

∫
Ω

Gε · ∇uεχ{|vε≤k|}dxds

−
∫ t

0

∫
Ω

Gε · ∇gεχ{|vε≤k|}dxds+
∫ t

0

∫
Ω

a(s, x, uε,∇uε)∇gεχ{|vε|≤k}dsds

+
∫
Q

Tk(vε)dλ⊕ε −
∫
Q

Tk(vε)dλ	ε .

thanks to (3.2) and young’s inequality,∫
Ω

Θ(vε)(t) dx+
α

2

∫ t

0

∫
Ω

|∇uε|pχ{|vε≤k|} dx ds

≤
∫
Q

|fε|dx dt+ C

∫
Q

|Gε|p
′
dx dt+ C

∫
Q

|∇gε|pdx dt

+ C

∫
Q

|b(t, x)|p
′
dx dt+ k

∫
Ω

|u0,ε|dx+ k

∫
Q

dλ⊕ε + k

∫
Q

dλ	ε .

Using that Gε is bounded in Lp
′
(Q), gε is bounded in Lp(0, T ;W 1,p

0 (Ω)), fε, λ⊕ε
and λ	ε are bounded in L1(Q) and u0,ε is bounded in L1(Ω), we have∫

Ω

Θ1(vε) dx ≤ C ∀t ∈ [0, T ],

In this way the same estimate of uε follows for vε in L∞(0, T ;L1(Ω)):

‖vε‖L∞(0,T ;L1(Ω)) ≤ C,∫
Q

|∇uε|pχ{|vε|≤k}dx dt ≤ C(k + 1),

which yields that Tk(vε) is bounded in Lp(0, T ;W 1,p
0 (Ω)) for any k > 0 (recall that

gε itself is bounded in Lp(0, T ;W 1,p
0 (Ω))). Then∫

Q

|∇Tk(vε)|pdx dt ≤ C(k + 1).

Step 2. Up to a subsequence, uε is a Cauchy sequence in measure. We are going to
prove now that, up to subsequences, uε converges almost everywhere in Q towards a
measurable function u. Lemma 5.1 gives the usual estimates for parabolic equation
with measure data, that is to say uε is bounded in Lq(0, T ;W 1,q

0 (Ω)) for every
q < p− N

N+1 and in L∞(0, T ;L1(Ω)), for which we can deduce that

lim
k→+∞

meas{(x, t) ∈ Q : |uε| > k} = 0 uniformly with respect to u.

From (5.4) we have that Tk(uε) is bounded in Lp(0, T ;W 1,p
0 (Ω)) for every k > 0.

Now, if we multiply the approximating equation by T ′k(vε), where Tk(s) is a C2(R),
nondecreasing function such that Tk(s) = s for |s| ≤ k

2 and Tk(s) = k for |s| > k,
we obtain

(Tk(vε))t − div(a(t, x, uε,∇uε)T ′k(vε)) + a(x, t, uε,∇uε) · ∇vεT ′′k (vε)

= T ′k(vε)fε + T ′′k (vε)Gε · ∇vε − div(GεT ′k(vε)) + (λ⊕ε − λ	ε )T ′k(vε).

in the sense of distributions. This implies, thanks to the last equality and to the fact
that T ′k has compact support, that Tk(vε) is bounded in Lp(0, T ;W 1,p

0 (Ω)) while
its time derivative (Tk(vε))t is bounded in Lp(0, T ;W−1,p′(Ω)) + L1(Q), hence a
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classical compactness result (see [26]) allows us to conclude that Tk(vε) is compact in
L2(Q). Thus for a subsequence, it also converges in measure, and almost everywhere
in Q. Since we have, for σ > 0,

meas{(x, t) : |vn − vm| > σ}

≤ meas{(x, t) : |vn| >
k

2
}+ meas{(x, t) : |vn| >

k

2
}

+ meas{(x, t) : |Tk(vn)− Tk(vm)| > σ, }

by (5.4) for every fixed ε > 0 we can choose k large enough to have

meas{(x, t) : |vn − vm| > σ} ≤ meas{(x, t) : |Tk(vn)− Tk(vm)| > σ}+ ε, (5.6)

for all n,m ∈ N. The fact that Tk(vε) converges in measure for every k > 0 implies,
using (2.8), that, up to subsequences, vε also converges in measure and almost
everywhere in Q. In particular, we have found out that there exists a measurable
function v in L∞(0, T ;L1(Ω))∩Lq(0, T ;W 1,q

0 (Ω)) for every q < p− N
N+1 such that

Tk(v) belongs to Lp(0, T ;W 1,p
0 (Ω)) for every k > 0, and for a subsequences, not

relabeled,

Tk(vε)→ Tk(v) weakly in Lp(0, T ;W 1,p
0 (Ω)), strongly in Lp(Q) and a.e. in Q.

We deduce that
vε → v a.e. in Q,

and since gε strongly converges to g in Lp(0, T ;W 1,p
0 (Ω)), there exists a measurable

function u such that
uε → u a.e. in Q,

The estimate (5.4) also imply that u ∈ L∞(0, T ;L1(Ω)). Indeed, using Fatou’s
Lemma on the first term of the left-hand of∫

Ω

|uε(t)| dx+
∫ t

0

∫
Ω

|∇Tk(uε)|pdx dt ≤ C(k + 1), ∀k > 0,∀t ∈ [0, T ].

where
Tk(uε) ⇀ Tk(u) weakly in Lp(0, T ;W 1,p

0 (Ω))
and in addition∫

Q

|∇Tk(u)|pdx dt ≤ Ck,
∫
Q

|∇Tk(v)|pdx dt ≤ C(k + 1), (5.7)

that is property (ii) holds.
Step 3. ∇uε is a Cauchy sequence in measure. Let us show that ∇uε is a Cauchy
sequence in measure, which will yields ∇uε → ∇u almost everywhere, for a conve-
nient subsequence. Given δ > 0 for every η > 0 and k > 0 one has

{(t, x), |∇un −∇um| ≥ δ}
⊆ {(t, x), |un| > k} ∪ {(t, x), |um| > k}
∪ {(t, x), |∇un| > k} ∪ {(t, x), |∇um| > k} ∪ {(t, x), |un − um| > η}
∪
{

(t, x), |∇un −∇um| ≥ δ, |un ≤ k|, |∇un| ≤ k,
|un| ≤ k, |∇um| ≤ k, |un − um| ≤ η

}
.

(5.8)

We will denote A1 to A6 the six sets of the right hand side. One could remark, in
the sequel of the proof, that only the upper bound of the measure of A6 uses the



14 M. ABDELLAOUI, E. AZROUL EJDE-2018/132

equation of which un and um are solutions. The other bounds use the boundedness
of (un) and (∇un).

Let us bound meas(A1) and meas(A2), we have

kmeas(A1) ≤
∫
A1

|∇un|dx dt ≤
∫ T

0

∫
Ω

|∇un| dx dt

hence

meas(A1) ≤ 1
k

∫ T

0

∫
Ω

|∇un|dx dt ≤
C

k
≤ ε,

for k large enough, because (∇un) is bounded in Lq((0, T ) × Ω) for q < p − N
N+1

and hence in L1((0, T )× Ω). Let us fix k such that

meas(A1) ≤ ε and meas(A2) ≤ ε for all n,m ∈ N,
Now let us bound meas(A3), we have (un) is a Cauchy sequence in L1((0, T )× Ω)
hence for a given n, there exist n0 such that for n,m ≥ n0 one has

meas(A3) ≤ ε
it is now sufficient to bound meas(A4), and to choose η. Thanks to the monotonicity
of A, we have [a(t, x, s, ζ1) − a(t, x, s, ζ2)](ζ1 − ζ2) > 0 for ζ1 − ζ2 6= 0. Since the
set of (ζ1, ζ2) such that: {(t, x), |s| ≤ k, |ζ1| ≤ k, |ζ2| ≤ k and |ζ1 − ζ2| ≥ δ} is
compact and a is continuous with respect to ζ for almost all t and x, [a(t, x, s, ζ1)−
(a(t, x, s, ζ2)](ζ1 − ζ2) reaches on this compact its minimum that we will denotes
γ(t, x), and that verifies γ(t, x) > 0 a.e. Since γ(t, x) > 0 a.e., there exists ε′ > 0
such that, for all measurable set A ⊂ (0, T )× Ω,∫

A

γ ≤ ε′ =⇒ meas(A) ≤ ε

hence, to obtain meas(A4) ≤ ε, it is sufficient to show that∫
A4

γ ≤ ε′ (5.9)

By definition of γ and A4, we have∫
A4

γ ≤
∫
A4

(a(t, x, un,∇um)− a(t, x, um,∇um))(∇un −∇um)χ{|un−um|≤η}.

Moreover the term to be integrated is non negative and ∇Tη(un − um) = (∇un −
∇um)χ{|un−um|≤η}, hence we have∫

A4

γ ≤
∫ T

0

(a(t, x, un,∇un)− a(t, x, um,∇um)) · ∇Tη(un − um),

if one chooses ϕ = Tη(un−um) ∈ Lp(0, T ;W 1,p(Ω))∩L∞(0, T ;L1(Ω)), which satis-
fies Tη(un − um)t ∈ Lp

′
(]0, T [;W−1,p′(Ω)), in equation in the sense of distributions

written successively with un and um one gets∫ T

0

〈(un − um)t, Tη(un − um)〉

+
∫ T

0

∫
Ω

(a(t, x, un,∇un)− a(t, x, um,∇um))∇Tη(un − um)

=
∫ T

0

∫
Ω

(µn − µm)Tη(un − um).
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that is (using Θη the primitive of Tη)∫
Ω

Θη(un − um)(T )−
∫

Ω

Θη(un − um)(0)

+
∫ T

0

∫
Ω

(a(t, x, un,∇un)− a(t, x, um,∇um))∇Tη(un − um)

=
∫ T

0

∫
Ω

(µn − µm)Tη(un − um)

Since the first term is non-negative (Θη(x) ≥ 0), and Θη(x) ≤ η|x| one has∫ T

0

∫
Ω

(a(t, x, un,∇un)− a(t, x, um,∇um)) · ∇Tη(un − um)

≤ η
∫ T

0

∫
Ω

|µn − µm|+ η

∫
Ω

|un0 − um0 |

≤ 2η(‖µ(Q)‖+ ‖u0‖1,Ω) .

Then for η small enough, one has
∫
A4
γ ≤ ε′ and thus meas(A4) ≤ ε and therefore

for all n,m ≥ n0 we have

meas({|(∇un −∇um)(x)| ≥ δ}) ≤ 4ε,

thus, we obtain that ∇uε is a Cauchy sequence in measure. Passing to a subse-
quence, we assume that

∇uε → ∇u almost everywhere in Q.

Similarly, we obtain the convergence a.e of vε, this gives

∇vε → ∇v almost everywhere in Q.

that is property (iii) holds.
It remains to prove (iv). By (5.5), Lemma 5.1, and (2.2), a(t, x, uε,∇uε) is

bounded in Lq(0, T ;W 1,q
0 (Ω)) for every q < p − N

N+1 . Moreover, by (3.1), (i)
and (iii), aε(t, x, uε,∇uε) converges to a0(t, x, u,∇u) a.e. in Q. Hence by Vitali’s
Theorem, we have that aε(t, x, uε,∇uε) converges to a0(t, x, u,∇u) in the strong
topology of Lq(0, T ;W 1,q

0 (Ω)), 1 ≤ q < p − N
N+1 . Finally, by (ii) and (2.2), the

sequence (aε(t, x, uε,∇Tk(uε)) is bounded in Lp
′
(Q), which easily implies that it

converges to a0(t, x, u,∇Tk(u)) in the weak topology of Lp
′
(Q). �

6. Proof of Theorem 3.5

At this point we have a subsequence (uε) of renormalized solutions to (3.4) and
a measurable function u with Tk(u) ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(0, T ;L1(Ω)) such
that all the convergences stated in Proposition 5.2 hold. We have to prove that
the function u is a renormalized solution to (3.5). By Proposition 5.2 (ii) condition
(a) of Definition 2.1 is satisfied, while by (5.7) and Lemma 5.1, we obtain that u
satisfies condition (2.7) of Definition 2.1. Hence, it is enough to prove (2.8). Let
S ∈ W 2,∞(R), and let ϕ ∈ C1

0 ([0, T ] × Ω). We choose S′(vε)ϕ as test function in
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the equation solved by uε, obtaining

−
∫

Ω

S(u0,ε)ϕ(0) dx−
∫ T

0

〈ϕt, S(vε)〉+
∫
Q

S′(vε)aε(t, x, uε,∇uε) · ∇ϕdx dt

+
∫
Q

S′′(vε)aε(t, x, uε,∇vε) · ∇vεϕdx dt

=
∫
Q

S′(vε)ϕdµ̂ε +
∫
Q

S′(vε)ϕdλ⊕ε −
∫
Q

S′(vε)ϕdλ	ε .

(6.1)

As supp(S′) ⊂ [−M,M ], we have∫
Q

aε(x, t, uε,∇uε) · ∇vεS′′(vε)ϕdx dt =
∫
Q

aε(x, t, uε,∇TM (vε)ϕ) dx dt

To pass to the limit in this term, we need the following improvement of Proposition
5.2 (ii).

Proposition 6.1. Let (aε), a0 be functions satisfying H(c0, c1, c2, b0) and (3.1). Let
µ ∈Mb(Q) be fixed, and µ = f+F +gt+µs, f ∈ L1(Q), F ∈ Lp′(0, T ;W−1,p′(Ω)),
µs ∈Ms(Q). Assume that (µε) is a sequence of measures inMb(Q) having a split-
ting (fε, Fε, gt,ε, λ⊕ε , λ

	
ε ) which converges to µ. Let (uε) a sequence of renormalized

solutions of (3.4), and let u be its limit in the sense of Proposition 5.2. Then for
every k > 0 the sequence (Tk(uε)) converges strongly in Lp(0, T ;W 1,p

0 (Ω)) to Tk(u)
as ε goes to 0.

Proof. It is sufficient to follow the lines of the long and not easy proof of the same
result, for a fixed operator independent of u, for the elliptic case in [12, sections
5–8], for the parabolic case in [23, section 7]. The assumptions on aε allow to obtain
some estimates for varying operators explicitly depending on u.

For any δ, η > 0, let ψ+
δ , ψ

+
η , ψ

−
δ and ψ−η as in Lemma 4.3 and let E+ and E−

be the sets where, respectively, µ+
s , µ

−
s are concentrated; setting

Φδ,η = ψ+
δ ψ

+
η + ψ−δ ψ

−
η .

Suppose that, the estimate near E,

I1 =
∫
{|vε|≤k}

Φδ,ηa(x, t, uε,∇uε) · ∇(vε − Tk(v)ν) ≤ ω(ε, ν, δ, η), (6.2)

and far from E,

I2 =
∫
{|vε|≤k}

(1− Φδ,η)a(t, x, uε,∇uε) · ∇(vε − Tk(v)ν) ≤ ω(ε, ν, δ, η). (6.3)

Putting these statements together we obtain

lim sup
ν→0 ,ε→0

∫
{|vε|≤k}

a(t, x, uε,∇uε) · ∇(vε − Tk(v)ν) ≤ 0, (6.4)

so that using the convergence of (Tk(v)ν) to Tk(v) in X we deduce

lim sup
ε→0

∫
{|vε|≤k}

a(t, x, uε,∇uε) · ∇(vε − Tk(v)) ≤ 0, (6.5)

since by the weak convergence of Tk(vε) to Tk(v) in X, Proposition 5.2 implies that∫
{|vε|≤k}

a(t, x, u,∇(Tk(v) + gε)) · ∇(Tk(vε)− Tk(v)) = ω(ε). (6.6)
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then we obtain∫
{|vε|≤k}

(a(t, x, uε,∇uε)− a(t, x, u,∇(Tk(v) + gε))) · ∇(uε − (Tk(v) + gε)) = ω(ε).

we also have, using the convergence of ∇uε to ∇u a.e. in Q

(a(t, x, uε,∇uε)) ⇀ a(t, x, u,∇u) in (Lp
′
(Q))N , (6.7)

then we obtain

lim sup
ε→0

∫
Q

a(t, x, uε,∇uε) · ∇Tk(vε) ≤
∫
Q

a(t, x, u,∇u) · ∇Tk(v).

so that by Proposition 5.2, since (a(t, x, uε,∇(Tk(vε + gε)) converges weakly in
(Lp

′
(Q))N to some Fk, it follows that Fk = a(t, x, u,∇(Tk(u) + g)). We get

lim sup
ε→0

∫
Q

a(t, x, uε,∇(Tk(vε) + gε)) · ∇(Tk(vε) + gε)

≤ lim sup
ε→0

∫
Q

a(t, x, uε,∇vε) · ∇Tk(vε) + lim sup
ε→0

∫
Q

a(t, x,∇(Tk(vε) + gε)) · ∇gε

≤
∫
Q

a(t, x, u,∇(Tk(v) + h)) · ∇(Tk(v) + g).

We finally deduce

(Tk(vε)) converges to Tk(v) strongly in X for all k > 0. (6.8)

�

The next Lemma is devoted to establish the preliminary essential estimate.

Lemma 6.2. Near E we have the estimate

I1 =
∫
{|vε|≤k}

Φδ,ηa(t, x, uε,∇uε) · ∇(vε − Tk(v)ν) ≤ ω(ε, ν, δ, η).

Proof. We have

I1 =
∫
Q

Φδ,ηa(t, x, uε,∇uε) · ∇Tk(vε)−
∫
{|vε|≤k}

Φδ,ηa(t, x, uε,∇uε) · ∇(Tk(v))ν .

so that, from Proposition 5.2 (iv) and since a(t, x, uε,∇Tk(vε) + gε)∇Tk(v)ν con-
verges weakly in L1(Q) to Fk∇(Tk(v))ν , χ{|vε|≤k} converges to χ{|v|≤k} a.e in Q,
Φδ,η converges to 0 a.e. in Q as δ → 0 and Φδ,η takes its values in [0, 1], using
Lemma 4.1, we have the first integral∫

{|vε|≤k}
Φδ,ηa(t, x, uε,∇uε) · ∇(Tk(v))ν

=
∫
Q

χ{|vε|≤k}Φδ,ηa(t, x, uε,∇(Tk(vε) + gε)) · ∇(Tk(v))ν

=
∫
Q

χ{|v|≤k}Φδ,ηFk · ∇(Tk(v))ν + ω(ε)

= ω(ε, ν, δ).

To obtain the second integral, we set, for any n > k > 0, and any s ∈ R

Ŝn,k(s) =
∫ s

0

(k − Tk(r))Hn(r)dr
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where Hn is defined at Remark 3.2. We take (S, ϕ) = (Ŝn,k, ψ+
δ ψ

+
η ) as test function

in (6.1), and we obtain

A1 +A2 +A3 +A4 +A5 +A6 = 0,

where

A1 = −
∫
Q

(ψ+
δ ψ

+
η )tŜn,k(vε) dx dt,

A2 =
∫
Q

(k − Tk(vε))Hn(vε)a(t, x, uε,∇uε) · ∇(ψ+
δ ψ

+
η ) dx dt,

A3 = −
∫
Q

ψ+
δ ψ

+
η a(t, x, uε,∇uε) · ∇Tk(vε) dx dt,

A4 =
2k
n

∫
{−2n<vε≤−n}

ψ+
δ ψ

+
η a(t, x, uε,∇uε) · ∇vε dx dt,

A5 = −
∫
Q

(k − Tk(vε))Hn(vε)ψ+
δ ψ

+
η dµ̂0,ε,

A6 =
∫
Q

(k − Tk(vε))Hn(vε)ψ+
δ ψ

+
η d(λ⊕ε + λ	ε )

Therefore, as in [23], using the fact that (Ŝn,k(vε)) weakly converges to Ŝn,k(v) in
X, Ŝn,k(v) ∈ L∞(Q) and (4.6) we obtain

A1 = −
∫
Q

(ψ+
δ )tψ+

η Ŝn,k(v)−
∫
Q

ψ+
δ (ψ+

η )tŜn,k(v) + ω(ε) = ω(ε, δ).

Now since vε = T2n(vε) on supp(Hn(vε)) it follows from Proposition 5.2, (iv) that
sequence (a(t, x, uε,∇(T2n(vε)+gε)))·∇(ψ+

δ ψ
+
η ) weakly converges to F2n ·∇(ψ+

δ ψ
+
η )

in L1(Q). From Lemma 4.1 and the convergence of ψ+
δ ψ

+
η in X to 0 as δ tends to

0, we obtain

A2 =
∫
Q

(k − Tk(vε))Hn(vε)F2n · ∇(ψ+
δ ψ

+
η ) + ω(ε) = ω(ε, δ).

Because 0 ≤ ψ+
δ ≤ 1 (resp 0 ≤ ψ−δ ≤ 1). we then deduce

A4 =
2k
n

∫
−2n<vε≤−n

a(t, x, uε,∇(T2n(vε) + gε)) · ∇(T2n(vε) + gε)

−∇gε]ψ+
δ ψ

+
η dx dt

≤ 2k
n

∫
{−2n<vε≤−n}

a(t, x, uε,∇uε) · ∇vεψ+
η dx dt+ ω(ε, δ, n).

Therefore Lemma 4.2 implies

A4 = ω(ε, δ, n, η).

From the weak convergence of ((k−Tk(vε))Hn(vε)ψ+
δ ψ

+
η ) to (k−Tk(v))Hn(v)ψ+

δ ψ
+
η

in X and of the weak * convergence of (k − Tk(vε))Hn(vε) to (k − Tk(v))Hn(v) in
L∞(Q) and a.e. in Q, the weak convergence of (fε) to f in L1(Q) and the strong
convergence of (gε) to g in (Lp

′
(Q))N . From Lemma 4.1 and the convergence of

ψ+
δ ψ

+
η to 0 in X and a.e. in Q as δ → 0

A5 =
∫
Q

(k − Tk(vε))Hn(v)ψ+
δ ψ

+
η dµ̂0 + ω(ε) = ω(ε, δ),
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We claim that the last term

A6 ≤ 2k
∫
Q

ψ+
δ ψ

+
η d(λ⊕ε + λ	ε ) = 2k

∫
Q

ψ+
δ ψ

+
η d(µ+

s + µ−s ) + ω(ε).

Indeed, from Lemma 4.2 we have

A6 ≤ ω(ε, δ, η),

because A3 does not depend on n. We then deduce from
∑6
i=1Ai = 0

A3 =
∫
Q

ψ+
δ ψ

+
η a(t, x, uε,∇uε) · ∇Tk(vε) ≤ ω(ε, δ, η).

Similarly, we take (S, ϕ) = (Ŝn,k, ψ−δ ψ
−
η ) as test function in (6.1), where Ŝn,k(s) =

−Ŝn,k(−s), we have, as before∫
Q

ψ−δ ψ
−
η a(t, x, uε,∇uε) · ∇Tk(vε) ≤ ω(ε, δ, η).

So that using the two last inequalities we obtain∫
Q

Φδ,ηa(t, x, uε,∇uε) · ∇Tk(vε) ≤ ω(ε, ν, δ, η).

We finally deduce

I1 =
∫
{|vε|≤k}

Φδ,ηa(t, x, uε,∇uε) · ∇(vε − Tk(v)ν) ≤ ω(ε, ν, δ, η).

�

Remark 6.3. Note that: It is precisely for this estimate that we need the double
cut functions ψ+

δ ψ
+
η .

This results turns out to hold true even for more general functions ψ+
η and ψ−η

in W 1,∞(Q), which satisfy

0 ≤ ψ+
η ≤ 1, 0 ≤ ψ−η ≤ 1,

0 ≤
∫
Q

ψ+
η dµ

−
s ≤ η, 0 ≤

∫
Q

ψ−η dµ
+
s ≤ η.

Lemma 6.4. Far from E we have the estimate

I2 =
∫
{|vε|≤k}

(1− Φδ,η)a(t, x, uε,∇uε) · ∇(Tk(vε)− Tk(v)ν).

Proof. Now we follow the ideas in [22, 24], for any h > 2k > 0, we define

wε = T2k(vε − Th(vε) + Tk(vε)− Tk(v)ν),

Note that ∇wε = 0 if |vε| > h+ 4k. As a consequence of the estimate on Tk(vε) in
Proposition 5.2 we have wε is bounded in Lp(0, T ;W 1,p

0 (Ω)); we easily obtain

wε → T2k(v − Th(v) + Tk(v)− Tk(v)ν))

since ‖Tk(v)ν‖L∞(Q) ≤ k, we have also

wε = 2k sign(vε), in {|vε| > h+ 2k}, |wε| ≤ 4k, wε = w(ε, ν, h) a.e. in Q,

lim
ε
wε = Th+k(v − (Tk(v))ν)− Th−k(v − Tk(v)), a.e. in Q and weakly in X.
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Let us take wε(1− Φδ,η) as test functions in (5.3). We obtain

A1 +A2 +A3 = A4 +A5,

where

A1 =
∫ T

0

〈vt,ε, wε(1− Φδ,η)〉 dt,

A2 =
∫
Q

a(t, x, uε,∇uε) · ∇wε(1− Φδ,η),

A3 = −
∫
Q

a(t, x, uε,∇uε) · ∇Φδ,ηwεdx dt,

A4 = wε(1− Φδ,η)dµ̂0,

A5 =
∫
Q

wε(1− Φδ,η)d(λ⊕ε − λ	ε )

Using the weak convergence of fε, again from the decomposition (3.2)

A4 =
∫
Q

fεwε(1− Φδ,η) dx dt+
∫
Q

Gε · ∇(wε(1− Φδ,η)) dx dt,

since fε converges to f weakly in L1(Q), from Lemma 4.1, we obtain∫
Q

fεwε(1− Φδ,η) dx dt = ω(ε, ν, h).

Lemma 6.5. Let h, k > 0, and uε and Φδ,η as before, then∫
{h≤|vε|<h+k}

|∇uε|p(1− Φδ,η) = ω(ε, h, δ, η).

For a proof of the above lemma see [23, Lemma 7].
Note that (gε) converges to g strongly in (Lp

′
(Q))N , and Tk(v)ν converges to

Tk(v) strongly in X. Then we deduce from Young’s inequality and Lemma 6.5,∫
Q

Gε · ∇(wε(1− Φδ,η)) dx dt

=
∫
Q

(1− Φδ,η)G · ∇(Th+k(v − Tk(v))− Th−k(v − Tk(v))) dx dt+ ω(ε, ν)

=
∫
{h≤v<h+2k}

(1− Φδ,η)G · ∇v dx dt+ ω(ε, ν, h)

= ω(h, δ, η).

Then
A4 = ω(ε, ν, h, δ, η).

To estimate of A5, we have |wε| ≤ 2k and reasoning as in the proof of Lemma
6.5, and thanks to (4.8) - (4.11); we obtain

A5 = ω(ε, δ, η).

To estimate of A1, we observe that, since |Tk(v)ν | ≤ k, wε can be written in the
following way:

wε = Th+k(vε − Tk(v)ν)− Th−k(vε − Tk(vε)).
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Hence, setting G(t) =
∫ t

0
Th−k(s− Tk(s))ds, we have∫ t

0

〈(vε)t, wε(1− Φδ,η)〉 dt

=
∫ t

0

〈(Tk(v)ν)t, Th+k(vε − Tk(v)ν)(1− Φδ,η)〉 dt

+
∫
Q

Sh+k(vε − Tk(v)ν)t(1− Φδ,η) dx dt−
∫
Q

G(vε)t(1− Φδ,η) dx dt

and since |Tk(v)ν | ≤ k, using the definition of Tk(v)ν we obtain∫ t

0

〈(Tk(v)ν)t, Th+k(vε − Tk(v)ν)(1− Φδ,η)〉 dt

= ν

∫
Q

(Tk(v)− Tk(v)ν)Th+k(vε − Tk(v)ν) dx dt,

so that as ε tends to infinity, we have∫ t

0

〈(Tk(v))t, Th+k(vε − Tk(v)ν)(1− Φδ,η)〉 dt

= ω(ε) + ν

∫
Q

(Tk(v)− Tk(v)ν)Th+k(v − Tk(v)ν)(1− Φδ,η) dx dt

= ω(ε) + ν

∫
{|v|≤k}

(v − Tk(v)ν)Th+k(v − Tk(v)ν)(1− Φδ,η) dx dt

+
∫
{v>k}

(k − Tk(v)ν)Th+k(v − Tk(v)ν)(1− Φδ,η) dx dt

+
∫
{v<−k}

(−k − Tk(v)ν)Th+k(v − Tk(v)ν)(1− Φδ,η) dx dt.

since |Tk(v)ν | ≤ k, last three terms are positives, hence we deduce by letting ε and
ν to ∞,∫ t

0

〈(vε)t, wε(1− Φδ,η)〉 dt

= ω(ε) +
∫
Q

Sh+k(vε − Tk(v)ν)t(1− Φδ,η) dx dt−
∫
Q

G(vε)t(1− Φδ,η) dx dt

= ω(ε) +
∫
Q

Sh+k(vε − Tk(v)ν)
∂Φδη
dt

dx dt−
∫
Q

G(vε)
∂Φδη

dx dt

+
∫

Ω

Sh+k(vε − Tk(v)ν)(T ) dx−
∫

Ω

Sh+k(u0,ε − zν) dx

−
∫

Ω

G(vε)(T ) dx+
∫

Ω

G(u0,ε) dx.

Now we define the function R(y) = Sh+k(y − z) ·G(y), with |z| ≤ k. Then

R(y) = Sh+k(y + z) ≥ 0, |y| ≤ k,
R′(y) = Th+k(y − z)− Th−k(y − Tk(y)) ≥ 0, y ≥ k ≥ z,

R′(y) ≤ 0, y ≤ −k ≤ z.
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Hence for every z, |z| ≤ k, we have R(y) ≥ 0 for every y in R, we obtain∫
Ω

Sh+k(vε − Tk(v)ν)(T ) dx−
∫

Ω

G(vε)(T ) dx ≥ 0,

letting ε and ν go to their limits,∫
Ω

G(uu0,ε) dx−
∫

Ω

Sh+k(u0,ε−zν) dx =
∫

Ω

G(u0)−
∫

Ω

Sh+k(u0−Tk(u0))+ω(ε, ν),

Since we have |G(u0) − Sh+k(u0 − Tk(u0))| ≤ 2k|u0|χ{|u0|>k}, it follows that by
letting h to +∞,∫

Ω

G(u0,ε) dx−
∫

Ω

Sh+k(u0,ε − zν) dx = ω(ε, ν, h) .

By the definition of Tk(v)ν ,∫
Q

Sh+k(vε − Tk(v)ν)
dΦδη
dt

dx dt−
∫
Q

G(vε)
dΦδη
dt

dx dt

=
∫
Q

(Sh+k(v − Tk(v)−G(v))
dΦδη
dt

dx dt+ ω(ε, ν).

So, if |v| ≤ h−k, Sh+k(v−Tk(v))−G(v) = 0, then Sh+k(v−Tk(v))−G(v) converges
a.e. to 0 on Q, and since v ∈ L1(Q), by dominated convergence theorem∫

Q

Sh+k(vε − Tk(v)ν)
dΦδη
dt

dx dt−
∫
Q

(vε)
dΦδη
dt

dx dt ≥ ω(ε, ν, h),

and so ∫ T

0

〈(vε)t, wε(1− Φδη)〉 ≥ ω(ε, ν, h).

Now we estimate of A2. Note that ∇wε = 0 if |vε| > h + 4k; then if we set
M = h+ 4k, splitting the integral (A2) on the sets {|vε| > k} and {|vε| ≤ k}, using
the fact that Th(vε) = Tk(vε) = vε in {|vε| ≤ k} and ∇Tk(vε)χ|vε|>k = 0. Then for
{|vε| ≤M} and h ≥ 2k, we have

A2 =
∫
Q

a(t, x, uε,∇uε) · ∇wε(1− Φδη) dx dt

=
∫
{|vε|≤k}

a(t, x, uε,∇uε) · ∇(vε − Tk(v)ν)(1− Φδη) dx dt

+
∫
{|vε|>k}

a(t, x, uε,∇uε) · ∇[(vε − Th(vε))− (Tk(v)ν)](1− Φδη) dx dt

=
∫
{|vε|≤k}

a(t, x, uε,∇uε) · ∇(vε − Tk(v)ν)(1− Φδη) dx dt

+
∫
{|vε|>h}

a(t, x, uε,∇uε) · ∇[(vε − Th(vε))(1− Φδη) dx dt

+
∫
{|vε|>k}

a(t, x, uε,∇uε) · ∇(Tk(v)ν − Tk(v)) +∇Tk(v)(1− Φδη) dx dt

=
∫
{|vε|≤k}

a(t, x, uε,∇uε) · ∇(vε − Tk(v)ν)(1− Φδη) dx dt

+
∫
{h<|vε|>h+4k}

a(t, x, uε,∇uε) · ∇vε(1− Φδη) dx dt
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+
∫
{|vε|>k}

a(t, x, uε,∇uε) · ∇(Tk(v)ν − Tk(v))(1− Φδη) dx dt

+
∫
{|vε|>k}

a(t, x, uε,∇uε) · ∇Tk(v)(1− Φδη) dx dt .

Using assumption (2.2), young’s inequality, equi-integrability and Lemma 6.5, we
see that for some C = C(p, c2),∫

{h≤|vε|<h+4k}
a(t, x, uε,∇uε) · ∇vε(1− Φδη) dx dt

≤ C
∫
{h≤|vε|<h+4k}

(|∇uε|p + |∇g|p + |b0(t, x)|p
′
)(1− Φδη) dx dt

≤ ω(ε, h, δ, η) .

Thanks to Proposition 5.2 and the fact that Tk(v)ν converges strongly to Tk(v) in
Lp(0, T ;W 1,p

0 (Ω)), we have∫
{|vε|>k}

a(t, x, uε,∇uε) · ∇Tk(v)(1− Φδη) dx dt = ω(ε),∫
{|vε|>k}

a(t, x, uε,∇uε) · ∇(Tk(v)ν − Tk(v))(1− Φδη) dx dt = ω(ε, ν),

Therefore,

A2 =
∫
{|vε|≤k}

a(t, x, uε,∇uε) · ∇(vε − Tk(v)ν)(1− Φδη) dx dt+ ω(ε, ν, h, δ, η).

�

Next we conclude the proof of Theorem 3.5.

Lemma 6.6. The function u is a renormalized solution of (1.1).

Proof. (i) Let ϕ ∈ X ∩ L∞(Q) such that ϕt ∈ X ′ + L1(Q), ϕ(·, T ) = 0, and
S ∈W 2,∞(R), such that S′ has compact support on R, S(0) = 0. Let M > 0 such
that suppS′ ⊂ [−M,M ]. Taking successively (ϕ, S), (ϕ,ψ+

δ ) and (ϕ,ψ−δ ) as test
functions in (6.1) applied to uε, we can write

A1 +A2) +A3 +A4 = A5 +A6 +A7,

(A2)+
δ + (A3)+

δ + (A4)+
δ = (A5)+

δ + (A6)+
δ + (A7)+

δ ,

(A2)−δ + (A3)−δ + (A4)−δ = (A5)−δ + (A6)−δ + (A7)−δ
where

A1 = −
∫

Ω

ϕ(0)S(u0,ε)dt, A2 = −
∫
Q

ϕtS(vε) dx dt,

A3 =
∫
Q

S′(vε)a(t, x, uε,∇uε) · ∇ϕdx dt,

A4 =
∫
Q

S′′(vε)ϕa(t, x, uε,∇uε) · ∇vεdx dt,

A5 =
∫
Q

S′(vε)ϕµ̂ε, A6 =
∫
Q

S′(vε)ϕdλ⊕ε
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A7 = −
∫
Q

S′(vε)ϕdλ	ε ,

and

(A2)+
δ = −

∫
Q

(ϕψ+
δ )tS(vε) dx dt,

(A3)+
δ =

∫
Q

S′(vε)a(t, x, uε,∇uε) · ∇(ϕψ+
δ ) dx dt,

(A4)+
δ =

∫
Q

S′′(vε)ϕψ+
δ a(t, x, uε,∇uε) · ∇vεdx dt,

(A5)+
δ =

∫
Q

S′(vε)ϕψ+
δ dλ

⊕
ε ,

(A6)+
δ = −

∫
Q

S′(vε)ϕψ+
δ dλ

	
ε .

Since (u0,ε) converges to u0 in L1(Ω), and (S(vε)) converges to S(v), strongly in
X, and weak * in L∞(Q), it follows that

A1 =
∫

Ω

ϕ(0)S(u0) dx+ ω(ε), A2 = −
∫
Q

ϕtS(v) + ω(ε),

(A2)+
δ = ω(ε, δ), (A2)−δ = ω(ε, δ) .

Moreover, TM (vε) converges to TM (v), then TM (vε) + hε converges to Tk(v) + h
strongly in X. Therefore,

A3 =
∫
Q

S′(vε)a(t, x, uε,∇(TM (vε) + hε) · ∇ϕ,

= ω(ε) +
∫
Q

S′(v)a(t, x, uε,∇(TM (v) + h)) · ∇ϕ,

= ω(ε) +
∫
Q

S′(v)a(t, x, u,∇u) · ∇ϕ,

and

A4 =
∫
Q

S′′(vε)ϕa(t, x, uε,∇(TM (vε) + hε)) · ∇TM (vε)

= ω(ε) +
∫
Q

S′′(v)ϕa(t, x, u,∇(TM (v) + h)) · ∇TM (v)

= ω(ε) +
∫
Q

S′′(v)ϕa(t, x, u,∇u) · ∇v .

In the same way, since ψ+
δ , ψ

−
δ converges to 0 in X,

(A3)+
δ = ω(ε) +

∫
Q

S′(v)a(t, x, u,∇u) · ∇(ϕψ)+
δ = ω(ε, δ),

(A3)−δ = ω(ε) +
∫
Q

S′(v)a(t, x, u,∇u) · ∇(ϕψ−δ ) = ω(ε, δ),

(A4)+
δ = ω(ε) +

∫
Q

S′′(v)ϕψ+
δ a(t, x, u,∇u) · ∇v = ω(ε, δ),
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(A4)−δ = ω(ε) +
∫
Q

S′′(v)ϕψ−δ a(t, x, u,∇u) · ∇v = ω(ε, δ),

and (gε) strongly converges to g in (Lp
′
(Ω))N . Therefore,

(A5) =
∫
Q

S′(vε)ϕfε +
∫
Q

S′(vε)gε · ∇ϕ+
∫
Q

S′′(vε)ϕgε · ∇TM (vε)

= ω(ε) +
∫
Q

S′(v)ϕf +
∫
Q

S′(v)g · ∇ϕ+
∫
Q

S′′(v)ϕg · ∇TM (v)

= ω(ε) +
∫
Q

S′(v)ϕdµ̂0

Now, thanks to Proposition 5.2 and the proprieties of ψ+
δ and ψ−δ , we readily have

(A5)+
δ = ω(ε) +

∫
Q

S′(v)ϕψ+
δ dµ̂ε = ω(ε, δ),

(A5)−δ = ω(ε) +
∫
Q

S′(v)ϕψ−δ dµ̂ε = ω(ε, δ).

Then
(A6)+

δ + (A7)+
δ = ω(ε, δ),

and thanks to (4.9),

(A7)+
δ ≤ |

∫
Q

S′(vε)ϕψ+
δ dλ

	
ε | ≤ c

∫
Q

ψ+
δ dλ

	
ε = ω(ε, δ),

(A7)−δ = ω(ε, δ) .

Then

(A6)+
δ =

∫
Q

S′(vε)ϕψ+
δ dλ

⊕
ε = ω(ε, δ).

Moreover,

A6 =
∫
Q

S′(vε)ϕdλ	ε

=
∫
Q

S′(vε)ϕψ+
δ dλ

⊕
ε +

∫
Q

S′(vε)ϕ(1− ψ+
δ )dλ⊕ε

≤ ω(ε, δ) +
∫
Q

|S′(vε)ϕ|(1− ψ+
δ )dλ⊕ε

≤ ω(ε, δ) + ‖S‖W 2,∞(R)‖ϕ‖L∞(Q)

∫
Q

(1− ψ+
δ )dλ⊕ε

≤ ω(ε, δ) .

Hence
A6 = ω(ε) and (A7) = ω(ε).

Therefore, we finally obtain

−
∫

Ω

ϕ(0)S(u0) dx−
∫
Q

ϕtS(v) +
∫
Q

S′(v)a(t, x, u,∇u) · ∇ϕ

+
∫
Q

S′′(v)ϕa(t, x, u,∇u) · ∇v
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=
∫
Q

S′(v)ϕdµ̂0

with ϕ ∈ C1
0 ([0, T ]×Ω). By density argument we have (2.8) for any ϕ ∈ X∩L∞(Q)

such that ϕt ∈ X ′ + L1(Q) and ϕ(·, T ) = 0.
(ii) Next, we prove (2.9). We take ϕ ∈ C∞c (Q) and (ϕ, S) = ((1 − ψδ−)ϕ,Hn)

as test functions in (2.8) and the same test functions in (6.1) applied to uε, we can
write

Bn1 +Bn2 = Bn3 +Bn4 +Bn5 ,

Bn1,ε +Bn2,ε = Bn3,ε +Bn4,ε +Bn5,ε,

where

Bn1 = −
∫
Q

((1− ψ−δ )ϕ)tHn(v) dx dt,

Bn2 =
∫
Q

Hn(v)a(t, x, u,∇u) · ∇((1− ψ−δ )ϕ) dx dt,

Bn3 =
∫
Q

Hn(v)(1− ψ−δ )ϕdµ̂0,

Bn4 =
1
n

∫
{n<v≤2n}

(1− ψ−δ )ϕa(t, x, u,∇u) · ∇v dx dt,

Bn5 = − 1
n

∫
{−2n≤v<−n}

(1− ψ−δ )ϕa(t, x, u,∇u) · ∇v dx dt,

and

Bn1,ε = −
∫
Q

((1− ψ−δ )ϕ)tHn(vε) dx dt,

Bn2,ε =
∫
Q

Hn(vε)a(t, x, uε,∇uε) · ∇((1− ψ−δ )ϕ) dx dt,

Bn3,ε =
∫
Q

Hn(vε)(1− ψ−δ )ϕd(µ̂ε,0 + λ⊕ε − λ	ε ),

Bn4,ε =
1
n

∫
{n<vε≤2n}

(1− ψ−δ )ϕa(t, x, uε,∇uε) · ∇vε dx dt,

Bn5,ε = − 1
n

∫
{−2n≤vε<−n}

(1− ψ−δ )ϕa(t, x, uε,∇uε) · ∇vε dx dt .

In the last terms, we go to the limit as n → +∞, since (Hn(vε)) converges to 0,
weakly in (Lp(Q))N , we obtain the relation

B1,ε +B2,ε = B3,ε +Bε

where

B1,ε = −
∫
Q

((1− ψ−δ )ϕ)tvε,

B2,ε =
∫
Q

a(t, x, uε,∇uε) · ∇((1− ψ−δ ϕ),

B3,ε =
∫
Q

(1− ψ−δ )ϕdµ̂ε,0,
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Bε =
∫
Q

(1− ψ−δ )ϕd(λ⊕ε,0 − λ
	
ε,0) +

∫
Q

(1− ψ−δ )ϕd(λ⊕ε,s − λ	ε,s) .

Clearly, (Bi,ε)− (Bni ) = ω(ε, n) for i = 1, 3, from (4.9) - (4.11), we obtain

Bn5 = ω(ε, n, δ),
1
n

∫
{n<v≤2n}

ψ−δ ϕa(t, x, u,∇u) · ∇v = ω(ε, n, δ) .

Thus

Bn4 =
1
n

∫
{n<v≤2n}

ϕa(t, x, u,∇u) · ∇v dx dt+ ω(ε, n, δ)

since

|
∫
Q

(1− ψ−δ )ϕdλ	ε | ≤ ‖ϕ‖L∞
∫
Q

(1− ψ−δ )dλ	ε ,

it follows that
∫
Q

(1 − ψ−δ )ϕdλ	ε = ω(ε, n, δ) from (4.11). And |
∫
Q
ψ−δ ϕdλ

⊕
ε | ≤

‖ϕ‖L∞
∫
Q
ψ−δ dλ

⊕
ε . Thus from (4.8) and (4.9),

∫
Q

(1 − ψ−δ )ϕdλ⊕ε =
∫
Q
ϕdµ+

s +
ω(ε, n, δ). Then

Bε =
∫
Q

ϕdµ+
s + ω(ε, n, δ).

Therefore, by subtraction, we obtain successively

1
n

∫
{n<v≤2n}

ϕa(t, x, u,∇u) · ∇v dx dt =
∫
Q

ϕdµ+
s + ω(ε, n, δ),

lim
n→+∞

1
n

∫
{n<v≤2n}

ϕa(t, x, u,∇u) · ∇v =
∫
ϕ

dµ+
s ,

which proves (2.9) when ϕ ∈ C∞c (Q). Next assume only ϕ ∈ C∞(Q). Then

lim
n→+∞

1
n

∫
{n≤v<2n}

ϕa(t, x, u,∇u) · ∇v dx dt

= lim
n→+∞

1
n

∫
{n≤v<2n}

ϕψ+
δ a(t, x, u,∇u) · ∇v dx dt

+ lim
n→+∞

1
n

∫
{n≤v<2n}

ϕ(1− ψ+
δ )a(t, x, u,∇u) · ∇v dx dt

=
∫
Q

ϕψ+
δ dµ

+
s + lim

n→+∞

1
n

∫
{n≤v<2n}

ϕ(1− ψ+
δ )a(t, x, u,∇u) · ∇v dx dt

=
∫
Q

ϕdµ+
s +D

where

D =
∫
Q

ϕ(1−ψ+
δ )dµ+

s + lim
n→+∞

1
n

∫
{n≤v<2n}

ϕ(1−ψ+
δ )a(t, x, u,∇u)∇v dx dt = ω(ε).

Therefore, (2.9) still holds for ϕ ∈ C∞(Q), and we deduce (2.9) by density, and
similarly the second convergence. This complete the proof of Theorem 3.5. �
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