
2/6

Workshop Notebook 3: Process a Single Image with Pillow

Mandatory Disclosures
1. This is a whirlwind introduction, not exhaustive instruction
2. All images are by courtesy of the University Archives at Texas State University: http://www.univarchives.txstate.edu

(http://www.univarchives.txstate.edu)
3. img_qc_workshop is licensed under the GNU General Public License v3.0,

https://github.com/photosbyjeremy/img_qc_workshop/blob/master/LICENSE
(https://github.com/photosbyjeremy/img_qc_workshop/blob/master/LICENSE)

4. Any and all code provided is done so without any warranty or expectation of support by Jeremy Moore, Todd Peters, or Texas State
University

In []: # import necessary modules
from pathlib import Path
from PIL import Image
import matplotlib.pyplot as plt
import img_qc.img_qc as img_qc

In []: # matplotlib options

magic that lets us plot directly in the notebook
%matplotlib inline

parameters for matplotlib to increase our default figure size -- NOTE: figure sizes are in INCHES
plt.rcParams["figure.figsize"] = (20, 12) # set as needed for your screen and eyes (width, height)

on a high-dpi monitor this will increase the quality of plots on-screen
%config InlineBackend.figure_format = 'retina'

In []: # set current_directory with Path function cwd() [Current Working Directory]
current_directory = Path.cwd()

path to access our image
image_path = current_directory.joinpath('data/workshop-3/AS-36-T4-E9-1943-c2_0002.tif')

print(f'current_directory: {current_directory}')
print(f'image_path: {image_path}')

In []: # open image with Pillow
image = Image.open(image_path)

display image with MatPlotLib
plt.imshow(image)

Rotate Image
In []: # rotate image 23 degrees clockwise

rotated_image = image.rotate(-23) # negative angle is Clockwise

show rotated image
plt.imshow(rotated_image)

Interpolation
Rotating in anything other than 90 degree increments will result in the interpolation of pixel data -- the computer has to make up new tones. There
are different algorithms available for interpolation while rotating and there's a trade-off between performance (how intensive the calculations are)
and quality.

shift+tab keyboard shortcut will show options

Performance < ----- > Quality

Nearest Neighbor <> Bilinear <> Bicubic

Always TEST and VERIFY which algorithm is right for your use case.

http://www.univarchives.txstate.edu/
https://github.com/photosbyjeremy/img_qc_workshop/blob/master/LICENSE

3/6

http://pillow.readthedocs.io/en/5.1.x/handbook/concepts.html#filters (http://pillow.readthedocs.io/en/5.1.x/handbook/concepts.html#filters)

In []: # rotate with higher quality interpolation and expand size to not crop
rotated_image = image.rotate(-23, resample=Image.BICUBIC, expand=True) # negative angle is Clockwise

show rotated image
plt.imshow(rotated_image)

Resize with Image.resize()
In []: # resize image

image_resized = image.resize((500, 500)) # (width, height)

show resized image
plt.imshow(image_resized)

Resize with image.thumbnail() WARNING!!
In []: # create a copy of our image as Image.thumbnail() MODIFIES THE IMAGE IN-PLACE

thumbnail = image.copy()

resize the image with thumbnail
thumbnail.thumbnail((500,500))

show the resized image
plt.imshow(thumbnail)

Resize with img_qc.get_image_resized_pillow()
In []: # resize image

image_resized = img_qc.get_image_resized_pillow(image, width=500) # (width, height)

show resized image
plt.imshow(image_resized)

Jupyter Magic: %timeit
Compare the speed of 3 different interpolation settings for rotate on image_resized

In []: # create resample dictionary with names and Pillow resize methods
resample_dictionary = {'Nearest Neighbor': Image.NEAREST, 'Bilinear 2x2': Image.BILINEAR, 'Bicubic 4x4': I
mage.BICUBIC}

for name in resample_dictionary:

 print(name)

 # get resample_method by accessing the resample_dictionary with the key `name`
 resample_method = resample_dictionary[name]

 # call magic %timeit to time this line in our loop
 %timeit rotated_image = image_resized.rotate(-23, resample=resample_method, expand=True) # negative a
ngle is Clockwise

Crop
As previously mentioned, digital images are graphs of pixels channels and intensities in a 2D plane.

The graph's origin (0, 0) is the starting point of the image and the x-value increases with each pixel of width.

Even though we're technically graphing into negative y-values, the y-value increases with each pixel of height and extends BELOW the image.

We will use this coordinate system to crop our image.

http://pillow.readthedocs.io/en/5.1.x/handbook/concepts.html#coordinate-system
(http://pillow.readthedocs.io/en/5.1.x/handbook/concepts.html#coordinate-system)

http://pillow.readthedocs.io/en/5.1.x/handbook/concepts.html#filters
http://pillow.readthedocs.io/en/5.1.x/handbook/concepts.html#coordinate-system

4/6

In []: # Pillow needs a box with upper-left (x, y) values and lower-right (x, y) values to crop an image
image_cropped = image.crop(box=(0, 0, 500, 500)) # start in upper-left and go right 500 pixels, down 500
 pixels

plt.imshow(image_cropped)

In []: # show image
plt.imshow(image)

In []: # crop image around page and color bar
image_cropped = image.crop(box=(2450, 800, 6450, 6000))

print width & height
print(f'width: {image_cropped.size[0]}') # (width, height)
print(f' height: {image_cropped.size[1]}')

show image
plt.imshow(image_cropped)

Channels
Our RGB image has 3 color channels that we can access using Pillow

In []: # split into separate channels
red_channel, green_channel, blue_channel = image_cropped.split()

figure, (red, green, blue) = plt.subplots(ncols=3, figsize=(18, 8)) # figsize is (width, height) in inches

red.imshow(red_channel)
red.set_title("Red Channel")

green.imshow(green_channel)
green.set_title("Green Channel")

blue.imshow(blue_channel)
blue.set_title("Blue Channel")

some MatPlotLib code that draws subplots close together while padding axes so they don't overlap
plt.tight_layout()

In []: # Let's crop our cropped image down to the color bar to better see our different color channels
color_bar = image_cropped.crop(box=(0, 4600, 4000, 5200))

plt.imshow(color_bar)

In []: # split into separate channels
red_channel, green_channel, blue_channel = color_bar.split()

figure, (color, red, green, blue) = plt.subplots(nrows=4, figsize=(20, 15)) # figsize is (width, height)
 in inches

color.imshow(color_bar)
MatPlotLib code to remove the tick marks on the respective x- and y-axis
color.set_xticks([]), color.set_yticks([])
color.set_title("RGB Image")

red.imshow(red_channel)
red.set_xticks([]), red.set_yticks([])
red.set_title("Red Channel")

green.imshow(green_channel)
green.set_xticks([]), green.set_yticks([])
green.set_title("Green Channel")

blue.imshow(blue_channel)
blue.set_xticks([]), blue.set_yticks([])
blue.set_title("Blue Channel")

#plt.tight_layout()

Convert to Grayscale
http://pillow readthedocs io/en/5 1 x/handbook/tutorial html?highlight=convert#color-transforms

http://pillow.readthedocs.io/en/5.1.x/handbook/tutorial.html?highlight=convert#color-transforms

5/6

http://pillow.readthedocs.io/en/5.1.x/handbook/tutorial.html?highlight=convert#color-transforms

When converting from color to grayscale a choice is made on how much to weigh the intensity of each color band on each pixel. By default, Pillow
uses the ITU-R 601-2 luma transform:

L(umninance) = Red * 299/1000 + Green * 587/1000 + Blue * 114/1000

http://pillow.readthedocs.io/en/5.1.x/reference/Image.html#PIL.Image.Image.convert

In []: # convert image to grayscale
image_grayscale = color_bar.convert(mode='L')

parameters for matplotlib to increase our default figure size -- NOTE: figure sizes are in INCHES
plt.rcParams["figure.figsize"] = (20,12) # set as needed for your screen and eyes (width, height)

show grayscale image
plt.imshow(image_grayscale)

Convert to Bitonal with Image.convert()
When converting from color (RGB) or grayscale (L) to Bitonal (1) using Image.convert the default is to use the Floyd-Steinberg dither, which we
DON'T want if we're converting images for OCR

We can alternatively set the dither to Image.NONE, but this just converts non-zero to white according to the documentation.

In []: # convert image to bitonal with Floyd-Steinberg dithering
image_bitonal_floyd_steinberg = image_grayscale.convert(mode='1')

convert image to bitonal with no dithering
image_bitonal_no_dithering = image_grayscale.convert(mode='1', dither=Image.NONE)

plt.figure()
show bitonal image with Floyd-Steinberg dithering
plt.imshow(image_grayscale)

plt.figure()
show bitonal image with Floyd-Steinberg dithering
plt.imshow(image_bitonal_floyd_steinberg)

plt.figure()
show bitonal image with no dithering
plt.imshow(image_bitonal_no_dithering)

The documentation is wrong
If you look at our third image with dither=Image.NONE, it actually looks like it used a 50% threshold. Values up to 50% of the intensity range round
down to 0 (black) and those above 50% round up to 255 (white).

Convert to Bitonal with Image.point()
We can convert our image to bitonal and choose a threshold using the Image.point() function.

Image.point() does something to every pixel in the image. We can set a threshold value and use lambda with point to process each pixel in the
image.

In []: # set threshold value on 0-255 scale
threshold = 85

threshold image where every pixel with value
image_bitonal_85 = image_grayscale.point(lambda pixel: pixel > threshold and 255)

plt.figure()
show image
plt.imshow(image_bitonal_85)

set threshold value on 0-255 scale
threshold = 120

threshold image where every pixel with value

image bitonal 120 = image grayscale.point(lambda pixel: pixel > threshold and 255)

http://pillow.readthedocs.io/en/5.1.x/handbook/tutorial.html?highlight=convert#color-transforms
http://pillow.readthedocs.io/en/5.1.x/reference/Image.html#PIL.Image.Image.convert

6/6

plt.figure()
show image
plt.imshow(image_bitonal_120)

Process Page into Bitonal

crop scan down to the page
image_page_crop = image_cropped.crop(box=(300, 125, 3800, 4600))

convert to grayscale
image_page_gray = image_page_crop.convert(mode='L')

set threshold value
threshold = 185

convert to bitonal with Image.point() method
image_page_bitonal = image_page_gray.point(lambda pixel: pixel > threshold and 255)

show image
plt.imshow(image_page_bitonal)

In []:

