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INFINITELY MANY SOLUTIONS FOR A NONLOCAL TYPE

PROBLEM WITH SIGN-CHANGING WEIGHT FUNCTION

ELHOUSSINE AZROUL, ABDELMOUJIB BENKIRANE,

MOHAMMED SRATI, CÉSAR TORRES

Abstract. In this article, we study the existence of weak solutions for a

fractional type problem driven by a nonlocal operator of elliptic type

(−∆)sa1
u− λa2(|u|)u = f(x, u) + g(x)|u|q(x)−2u in Ω

u = 0 in RN \ Ω.

Our approach is based on critical point theorems and variational methods.

1. Introduction

The aim of this article is to study the existence of weak solutions of the nonlocal
problem

(−∆)sa1u− λa2(|u|)u = f(x, u) + g(x)|u|q(x)−2u in Ω

u = 0 in RN \ Ω,
(1.1)

where Ω is a Lipschitz open bounded subset of RN , N ≥ 1, q : Ω → (1,+∞) is a
bounded continuous function, s ∈ (0, 1), λ is a positive real parameters, f : Ω×R→
R is a Carathéodory function with a subcritical growth conditions and (−∆)sa1 is a
nonlocal integro-differential operator of elliptic type defined as

(−∆)sa1u(x) = 2 lim
ε↘0

∫
RN\Bε(x)

a1

( |u(x)− u(y)|
|x− y|s

)u(x)− u(y)

|x− y|s
dy

|x− y|N+s
,

for x ∈ RN , and a1 : R→ R to be specified later.
In the previous decade, great attention has been devoted to the study of nonlinear

problems in modular spaces, in particular quasilinear problems involving the Φ-
Laplacian operator, see for instance [6, 7, 9, 19]. These kind of operator appear in
several problems in Mathematical physics, for example in nonlinear elasticity [23]
when

Φ(t) = (1 + t2)α − 1, α ∈ (1,
N

N − 2
).

In plasticity [24] when

Φ(t) = tp ln(1 + t), p ∈
(−1 +

√
1 + 4N

2
, N − 1

)
, N ≥ 3.
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In biophysics and physics of plasmas [25] when

Φ(t) =
1

p
|t|p +

1

q
|t|q, 1 < p < q < N, q ∈ (p, p∗).

Recently we have seen an increasing development of the theory of nonlocal oper-
ators; such operators arise naturally in the context of stochastic Lévy processes
with jumps and have been studied thoroughly both from the point of view of Prob-
ability and Analysis as they proved to be accurate models to describe different
phenomena in physics, finance, image processing, and ecology; see for instance
[2, 3, 4, 14, 17, 31, 21] and references therein.

When q(x) = q a positive constant for all x ∈ Ω, a1(t) = tp1−2 and a2(t) = tp2−2,
the problem (1.1) is the well known fractional p1-Laplacian problem

(−∆)sp1u− λ|u|
p2−2u = f(x, u) + g(x)|u|q−2u in Ω

u = 0 in RN \ Ω,
(1.2)

where (−∆)sp1 is the fractional p-Laplacian operator defined as

(−∆)sp1u(x) = 2 lim
ε↘0

∫
RN\Bε(x)

|u(x)− u(y)|p1−2(u(x)− u(y))

|x− y|N+sp1
dy .

Problem (1.2) have been extensively investigated in recent years and many existence
results have been obtained under general hypotheses [10, 11, 12, 18, 27, 29, 32, 33].
Bartolo and Bisci [12] studied the multiplicity of weak solutions to problem (1.2)
with g(x) = 0. Mosconi et al. [32] studied the existence of weak solution of (1.2)
with g(x) = 0 and f(x, u) = |u|p∗s−2u. We also mention the recent work by Bueno
et al. [18], where they have considered the existence and multiplicity of solution for
problem (1.2) with exponential growth.

Inspired by the previous works, the aim of this paper is to study the existence
of a weak solutions for (1.1). Before stating our results let us introduce the main
ingredients involved in our approach. Regarding the functions f , g, and φ we
assume that:

(A1) f : Ω× R→ R is a Carathéodory function satisfying:

f(x, t) = o(a1(|t|)t) as t→ 0 uniformly in x,

f(x, t) = o(a2(|t|)t) as t→∞ uniformly in x ;

(A2) there exists µ ∈ (φ+
1 , φ

−
2 ) such that tf(x, t) ≥ µF (x, t) > 0 for all |t| ≥ 0

and a.e. x ∈ Ω, where F (x, t) :=
∫ t

0
f(x, τ) dτ and φ+

1 , φ
−
2 are given in (A1);

(A3) f(x,−t) = −f(x, t) for all (x, t) ∈ Ω× R;
(A4) 0 ≤ g ∈ L∞(Ω);

(A5) limt→∞
Φ2(kt)

(Φ1)∗(t) = 0 for all k > 0.

To simplify the notation, we put

Dsu :=
u(x)− u(y)

|x− y|s
, dµ =

dx dy

|x− y|N
∀(x, y) ∈ Ω× Ω,

and for any i = 1, 2, we put

ξmi (t) = min{tφ
−
i , tφ

+
i }, ξli(t) = max{tφ

−
i , tφ

+
i },

and we put

ξm3 (t) = min{tq
−
, tq

+

}, ξl3(t) = max{tq
−
, tq

+

},
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So we say that u ∈W s
0LΦ1

(Ω) is a weak solution of problem (1.1) if,∫
Ω

∫
Ω

a1(|Dsu|)DsuDsv dµ− λ
∫

Ω

a2(|u)uv dx

−
∫

Ω

f(x, u)v dx−
∫

Ω

g(x)|u|q(x)−2uv dx = 0, ∀v ∈W s
0LΦ1(Ω).

Now we are in position to states our main results.

Theorem 1.1. Assume λ = 0 and (A1), (A2), (A4), (A5) hold. Then there exists
λ0 > 0 such that for ‖g‖q̂(x) < λ0, problem (1.1) has at lest one nontrivial solution.

Theorem 1.2. Assume g(x) = 0 and (A1)–(A3) hold. Then problem (1.1) has
infinitely many nontrivial solutions.

This article is organized as follows: In the second section, we collect some pre-
liminaries on fractional Orlicz-Sobolev spaces that will be used later. In the third
section, by using the mountain pass theorem and Fountain Theorem in critical point
theory, we obtain the existence and multiplicity of nontrivial solutions of problem
(1.1).

2. Preliminaries results

We introduce the fractional Orlicz-Sobolev space to investigate problem (1.1).
Let us recall the definitions and some elementary properties of this spaces. We refer
the reader to [1, 8, 21] for further reference and for some of the proofs of the results
in this section.

Let Ω be an open subset of RN , N ≥ 1. For i = 1, 2, we assume that ai : R→ R
in (1.1) is such that φi : R→ R defined by

φi(t) =

{
ai(|t|)t for t 6= 0,

0 for t = 0,

is increasing homeomorphism from R onto itself. Let

Φi(t) =

∫ t

0

φi(τ) dτ for all t ∈ R, i = 1, 2.

Then, for any i = 1, 2, Φi is N -function, i.e. Φi : R+ → R+ is continuous, convex,

increasing function, with Φi(t)
t → 0 as t→ 0 and Φi(t)

t →∞ as t→∞, see [1].
For the functions Φi i = 1, 2, we introduce the Orlicz space,

LΦi(Ω) =
{
u : Ω→ R measurable

∫
Ω

Φi(λ|u(x)|) dx <∞ for some λ > 0},

which are Banach spaces endowed with the Luxemburg norm

‖u‖Φi = inf{λ > 0 :

∫
Ω

Φi
( |u(x)|

λ

)
dx ≤ 1}.

The conjugate N -function of Φi i = 1, 2, is defined by

Φi(t) =

∫ t

0

φi(τ) dτ,
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where φi : R → R i = 1, 2, is given by φi(t) = sup{s : φi(s) ≤ t}. Furthermore, it
is possible to prove a Hölder type inequality,∣∣ ∫

Ω

uv dx
∣∣ ≤ 2‖u‖Φi‖v‖Φi

∀u ∈ LΦi(Ω), v ∈ LΦi
(Ω), i = 1, 2. (2.1)

Throughout this paper, we assume that

1 < φ−i := inf
t≥0

tφi(t)

Φi(t)
≤ φ+

i := sup
t≥0

tφi(t)

Φi(t)
< +∞, i = 1, 2. (2.2)

The above relation implies that for any i = 1, 2, Φi ∈ ∆2 i.e. Φi satisfies the global
∆2-condition:

Φi(2t) ≤ KiΦi(t) for all t ≥ 0, i = 1, 2,

where Ki i = 1, 2, are positive constants, for more details see [30].
Furthermore, for i = 1, 2, we assume that

the function [0,∞) 3 t 7→ Φi(
√
t) is convex. (2.3)

From this condition we have that LΦi
(Ω) is a uniformly convex space (see [30]).

Lemma 2.1 ([15]). Assume that Φi ∈ ∆2 for i = 1, 2. Then

Φi(φi(t)) ≤ cΦi(t) for all t ≥ 0, i = 1, 2, (2.4)

where c is a positive constant.

Proposition 2.2 ([30]). Suppose that (2.2) holds. Then

‖u‖φ
−
i

Φi
≤
∫

Ω

Φi(|u|) dx ≤ ‖u‖
φ+
i

Φi
, ∀u ∈ LΦi

(Ω) with ‖u‖Φi
> 1, i = 1, 2,

‖u‖φ
+
i

Φi
≤
∫

Ω

Φi(|u|) dx ≤ ‖u‖
φ−
i

Φi
, ∀u ∈ LΦi(Ω) with ‖u‖Φi < 1, i = 1, 2.

Definition 2.3. Let A, B be two N-functions. A is stronger (resp. essentially
stronger) than B, A � B (resp. A �� B), if

B(x) ≤ A(ax), x ≥ x0 ≥ 0,

for some (resp. for each) a > 0 and x0 (depending on a).

Remark 2.4 ([1, Section 8.5]). A �� B is equivalent to

lim
x→∞

B(λx)

A(x)
= 0,

for all λ > 0.

Now, we define the fractional Orlicz-Sobolev space

W sLΦ1
(Ω) =

{
u ∈ LΦ1

(Ω) :

∫
Ω

∫
Ω

Φ1

( |u(x)− u(y)|
|x− y|s

) dx dy

|x− y|N
<∞

}
.

This space is equipped with the norm

‖u‖s,Φ1 = ‖u‖Φ1 + [u]s,Φ1 , (2.5)

where [·]s,Φ1
is the Gagliardo seminorm

[u]s,Φ1 = inf
{
λ > 0 :

∫
Ω

∫
Ω

Φ1

( |u(x)− u(y)|
λ|x− y|s

) dx dy

|x− y|N
≤ 1
}
.
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The space W sLΦ1
(Ω) is a separable Banach space (resp. reflexive) space if and only

if Φ1 ∈ ∆2 (resp. Φ1 ∈ ∆2 and Φ1 ∈ ∆2). Furthermore if Φ1 ∈ ∆2 and Φ1(
√
t) is

convex, then the space W sLΦ1(Ω) is uniformly convex, see [15].
Let W s

0LΦ1(Ω) denote the closure of C∞0 (Ω) in the norm ‖·‖s,Φ1 defined in (2.5).
Then we have the following result.

Theorem 2.5 (Generalized Poincaré inequality [8]). Let Ω be a bounded open subset
of RN , and let s ∈ (0, 1). Then there exists a positive constant µ such that

‖u‖Φ1
≤ µ[u]s,Φ1

for all u ∈W s
0LΦ1

(Ω).

Therefore, if Ω is bounded, then ‖ ·‖ := [·]s,Φ1
is a norm of W s

0LΦ1
(Ω) equivalent

to ‖ · ‖s,Φ1
.

Remark 2.6. By Theorem 2.5, there exists a positive constant λ1 such that∫
Ω

Φ1(|u|) dx ≤ λ1

∫
Ω

∫
Ω

Φ1

( |u(x)− u(y)|
|x− y|s

) dx dy

|x− y|N
, (2.6)

for all u ∈W s
0LΦ1

(Ω).

Proposition 2.7 ([8]). Assume (2.2) is satisfied. Then

[u]
φ−
1

s,Φ1
≤ Ψ(u) ≤ [u]

φ+
1

s,Φ1
, ∀u ∈W sLΦ1

(Ω) with [u]s,Φ1
> 1, (2.7)

[u]
φ+
1

s,Φ1
≤ Ψ(u) ≤ [u]

φ−
1

s,Φ1
, ∀u ∈W sLΦ1

(Ω) with [u]s,Φ1
< 1, (2.8)

where

Ψ(u) =

∫
Ω

∫
Ω

Φ1

( |u(x)− u(y)|
|x− y|s

) dx dy

|x− y|N
.

Theorem 2.8 ([8]). Let Ω be a bounded open subset of RN . Then

C∞0 (Ω) ⊂ C2
0 (Ω) ⊂W s

0LΦi(Ω) i = 1, 2.

In this article, we assume the following two conditions:∫ 1

0

Φ−1
1 (τ)

τ
N+s
N

dτ <∞, (2.9)∫ ∞
1

Φ−1
1 (τ)

τ
N+s
N

dτ =∞. (2.10)

We define the inverse Sobolev conjugate N-function of Φ1 as follows,

(Φ1)−1
∗ (t) =

∫ t

0

Φ−1
1 (τ)

τ
N+s
N

dτ. (2.11)

Theorem 2.9 ([8]). Let Ω be a bounded open subset of RN with C0,1-regularity
and bounded boundary. If (2.10), (2.11) and (2.2) hold, then

W sLΦ1
(Ω) ↪→ L(Φ1)∗(Ω). (2.12)

Theorem 2.10 ([8]). Let Ω be a bounded open subset of RN with C0,1-regularity
and bounded boundary. If (2.10), (2.11) and (2.2) hold, then

W sLΦ1(Ω) ↪→ LB(Ω), (2.13)

is compact for all B ≺≺ (Φ1)∗.
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Remark 2.11. We have some examples of functions φ : R → R which are odd,
increasing homeomorphisms from R into R and satisfy conditions (2.2) (see [20]).

(1) Let φ(t) = p|t|p−2t for t ∈ R, with p > 1. For this function it can be
proved that φ− = φ+ = p. Furthermore, in this particular case the corresponding
Orlicz space LΦ(Ω) is the classical Lebesgue space Lp(Ω) while the fractional Orlicz-
Sobolev space W sLΦ(Ω) is the fractional Sobolev spaces in this particular case.

(2) Consider
φ(t) = log(1 + |t|)|t|p−2t, ∀t ∈ R

with p > 1. In this case it can be proved that φ− = p and φ+ = p+ 1.
(3) Let

φ(t) =
|t|p−2t

log(1 + |t|)
, if t 6= 0, φ(0) = 0

with p > 2. In this case we have φ− = p− 1 and φ+ = p.

Next, we recall some useful properties of variable exponent spaces. For more
details we refer the reader to [22, 26], and the references therein. Consider the set

C+(Ω) = {q ∈ C(Ω) : q(x) > 1 for all x ∈ Ω}.
For q ∈ C+(Ω), we define

q+ = sup
x∈Ω

q(x) and q− = inf
x∈Ω

q(x).

For any q ∈ C+(Ω), we define the variable exponent Lebesgue space as

Lq(x)(Ω) =
{
u : Ω→ R measurable :

∫
Ω

|u(x)|q(x)dx < +∞
}
.

This vector space endowed with the Luxemburg norm

‖u‖Lq(x)(Ω) = inf
{
λ > 0 :

∫
Ω

∣∣u(x)

λ

∣∣q(x)
dx ≤ 1

}
is a separable reflexive Banach space.

Let q̂ ∈ C+(Ω) be the conjugate exponent of q, that is, 1
q(x) + 1

q̂(x) = 1. Then we

have the following Hölder-type inequality.

Lemma 2.12 (Hölder inequality). If u ∈ Lq(x)(Ω) and v ∈ Lq̂(x)(Ω), then∣∣ ∫
Ω

uvdx
∣∣ ≤ ( 1

q−
+

1

q̂−

)
‖u‖Lq(x)(Ω)‖v‖Lq̂(x)(Ω) ≤ 2‖u‖Lq(x)(Ω)‖v‖Lq̂(x)(Ω).

A very important role in manipulating the generalized Lebesgue spaces with
variable exponent is played by the modular of the Lq(x)(Ω) space, which defined by
ρq(·) : Lq(x)(Ω)→ R

u 7→ ρq(·)(u) =

∫
Ω

|u(x)|q(x)dx.

Proposition 2.13. Let u ∈ Lq(x)(Ω), then we have

(1) ‖u‖Lq(x)(Ω) < 1 (resp. = 1, > 1) if and only if ρq(·)(u) < 1 (resp. = 1, > 1);

(2) ‖u‖Lq(x)(Ω) < 1 implies ‖u‖q+
Lq(x)(Ω)

≤ ρq(·)(u) ≤ ‖u‖q−
Lq(x)(Ω)

,

(3) ‖u‖Lq(x)(Ω) > 1 implies ‖u‖q−
Lq(x)(Ω)

≤ ρq(·)(u) ≤ ‖u‖q+
Lq(x)(Ω)

.

Proposition 2.14. If u, uk ∈ Lq(x)(Ω) and k ∈ N, then the following assertions
are equivalent
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(1) limk→+∞ ‖uk − u‖Lq(x)(Ω) = 0,

(2) limk→+∞ ρq(·)(uk − u) = 0,
(3) uk → u in measure in Ω and limk→+∞ ρq(·)(uk) = ρq(·)(u).

We conclude this section by recalling a version of the mountain pass Theorem
and Fountain Theorem.

Theorem 2.15 ([5, 28]). Let X be a real Banach space and I ∈ C1(X,R) satisfies
the (PS)c with I(0) = 0. Suppose that the following conditions hold:

(A6) There exists ρ > 0 and r > 0 such that I(u) ≥ r for ‖u‖ = ρ.
(A7) There exists e ∈ X with ‖e‖ > ρ such that I(e) ≤ 0.

Let Γ = {γ ∈ C([0, 1], X); γ(0) = 0, γ(1) = e}. Then

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) > r

is a critical value of I.

Let X be a reflexive and separable Banach space and X∗ its dual space, then
from [34] there are {φn}n∈N ⊂ X and {φ∗n}n∈N ⊂ X∗ such that

X = span{φn, n ∈ N},

X∗ = span{φ∗n, n ∈ N},

〈φn, φm〉 =

{
1 n = m

0 n 6= m.

For k = 1, 2, . . . , let Yk = span{φ1, . . . , φk} and Zk = span{φk, φk+1 . . . }.

Theorem 2.16 ([13]). Assume that the even functional I ∈ C1(X,R) satisfies the
(PS)c condition and for almost every k ∈ N, there exists ρk, rk >0 such that

(a) bk := infu∈Zk,‖u‖=rk I(u)→∞ as k →∞
(b) ak := maxu∈Yk,‖u‖=ρk I(u) ≤ 0.

Then I has a sequence of critical points {un} such that I(uk)→∞ as k →∞.

3. Main results

In this section, we prove Theorems 1.1 and 1.2. We start our analysis with the
following Remark.

Remark 3.1. (1) By (A5), we can apply Theorem 2.10 and obtain that W s
0LΦ1

(Ω)
is compactly embedded in LΦ2

(Ω); that is,

‖u‖Φ2
≤ c1‖u‖ (3.1)

where c1 > 0. On the other hand, since q+ ≤ φ−2 , that is

q+ ≤ tφ2(t)

Φ2(t)
∀t > 0,

this implies that for t > t0 > 0,

|t|q
+

≤ cΦ2(t) ∀t > t0

then we obtain that W s
0LΦ1(Ω) is compactly embedded in Lq

+

(Ω) on particular in
Lq(x)(Ω), that is,

‖u‖q(x) ≤ c2‖u‖ (3.2)
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where c2 > 0. Thus, a solution for a problem of type (1.1) will be sought in
W s

0LΦ1(Ω).
(2) The dual space of (W s

0LΦ1(Ω), ‖ · ‖) is denoted by
(
(W s

0LΦ1(Ω))∗, ‖ · ‖∗
)
.

To prove our main results, we introduce the functional J in W s
0LΦ1

(Ω) defined
by

Jλ(u) = Ψ(u)− λ
∫

Ω

Φ2(u) dx−
∫

Ω

F (x, u) dx− 1

q(x)

∫
Ω

g(x)|u|q(x)dx

with

Ψ(u) =

∫
Ω

∫
Ω

Φ1

( |u(x)− u(y)|
|x− y|s

) dx dy

|x− y|N
.

By a standard argument [9, Lemma 3] and [8, Lemma 6], we can use (A1) to show
that Jλ ∈ C1 (W s

0LΦ1
(Ω),R) and

〈J ′λ(u), v〉 =

∫
Ω

∫
Ω

a1(|Dsu|)DsuDsv dµ− λ
∫

Ω

a2(|u)uv dx−
∫

Ω

f(x, u)v dx

−
∫

Ω

g(x)|u|q(x)−2uv dx,

for all u, v ∈ W s
0LΦ1

(Ω). Therefore, the critical points of J are weak solution of
(1.1).

Lemma 3.2. Suppose that (A1), ((A5) hold, and let un ⇀ u weakly in W s
0LΦ1

(Ω).
Then, up to a subsequence, we have∫

Ω

a2(|un|)un(un − u) dx→ 0, (3.3)∫
Ω

g(x)|un|q(x)−2un(un − u) dx→ 0, (3.4)∫
Ω

f(x, un)(un − u) dx→ 0. (3.5)

Proof. From Remark 3.1, up to a subsequence, we see that un → u strongly in
LΦ2

(Ω), and by dominated convergence theorem, there exists a subsequence, still
denoted by un, and h1 ∈ LΦ2

(Ω), such that, for almost every x on Ω,

|un(x)| ≤ h1(x) ∀n ∈ N,
un(x)→ u(x) ∀n ∈ N.

From the Hölder inequality and Lemma 2.1, we have∣∣ ∫
Ω

a2(|un|)un(un − u) dx
∣∣ ≤ ∫

Ω

|a2(|h1|)h1||un − u|dx

≤ ‖a2(h1)|h1| ‖Φ2
‖un − u‖Φ1

→ 0.

Next, we have W s
0LΦ1(Ω) is compactly embedded in Lq(x)(Ω) passing the a subse-

quence if necessary, to obtain

un → u strongly in Lq(x)(Ω)

and by the dominated convergence theorem, there exists a subsequence, still denoted
by un, and h2 ∈ Lq(x)(Ω), such that, for almost everywhere on Ω,

|un(x)| ≤ h2(x) ∀n ∈ N
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and un(x)→ u(x) for all n ∈ N. From the Hölder inequality, we have∣∣ ∫
Ω

g(x)|un|q(x)−2un|un − u| dx
∣∣ ≤ ∫

Ω

g(x)|h2|q(x)−1|un − u| dx

≤ ‖g‖∞
∫

Ω

|h2|q(x)−1|un − u| dx

≤ ‖g‖∞‖h1‖q(x)−1
q̂(x) ‖un − u‖q(x) → 0.

On the other hand, from (A1), for ε > 0 there exists cε > 0 such that

|f(x, t)| ≤ εφ1(t) + cεφ2(t) ∀(x, t) ∈ Ω× R.

Since W s
0LΦ1

(Ω) is compactly embedded in LΦ1
(Ω) and in LΦ2

(Ω). Then un → u
strongly in LΦi

(Ω) for any i = 1, 2, so by dominated convergence theorem, for any
i = 1, 2 there exist hi ∈ LΦi

(Ω) such that, for almost everywhere on Ω

|un(x)| ≤ hi(x) ∀n ∈ N i = 1, 2

and un(x)→ u(x) ∀n ∈ N. So, we have∣∣ ∫
Ω

f(x, un)(un − u) dx
∣∣ ≤ ε∫

Ω

φ1(un)(un − u) dx+ cε

∫
Ω

φ2(un)(un − u) dx

≤ ε
∫

Ω

φ1(h1)|un − u| dx+ cε

∫
Ω

φ2(h2)|un − u| dx

≤ ε‖φ1(h1)‖Φ1
‖un − u‖Φ1

+ cε‖φ2(h2)‖Φ2
‖un − u‖Φ2

→ 0.

This completes the proof. �

Definition 3.3. We say that a sequence {un} ⊂W s
0LΦ1

(Ω) is a (PS)c sequence of
Jλ if

Jλ(un)→ c in R and J ′λ(un)→ 0 in (W s
0LΦ1

(Ω))∗.

Lemma 3.4. There exist positive numbers ρ, δ, λ0 such that J0(u) ≥ δ with ‖u‖ = ρ
for all g satisfying ‖g‖∞ < λ0.

Proof. From (A1) for ε > 0 there exists cε > 0 such that

|F (x, t)| ≤ εΦ1(t) + cεΦ2(t) ∀(x, t) ∈ Ω× R. (3.6)

Then

J0(u) = Ψ(u)−
∫

Ω

F (x, u) dx− 1

q(x)

∫
Ω

g(x)|u|q(x)dx

≥ Ψ(u)− ε
∫

Ω

Φ1(u)− cε
∫

Ω

Φ2(u) dx− 1

q−

∫
Ω

g(x)|u|q(x)dx

≥ (1− ελ1)Ψ(u)− cε
∫

Ω

Φ2(u) dx− 1

q−

∫
Ω

g(x)|u|q(x)dx

≥ (1− ελ1)ξm1 (‖u‖)− cεξl2(‖u‖Φ2)− 1

q−
‖g‖∞ξl3(‖u‖q(x))

≥ (1− ελ1)ξm1 (‖u‖)− cεξl2(c1‖u‖)−
1

q−
‖g‖∞ξl3(c2‖u‖).



10 E. AZROUL, A. BENKIRANE, M. SRATI, C. TORRES EJDE-2021/16

For ρ > 0 sufficiently small such that ρ = ‖u‖ < min{1, 1
c1
, 1
c2
}, we have

J0(u) ≥ (1− ελ1)‖u‖φ
−
1 − cεcφ

+
2

1 ‖u‖φ
+
2 − cq

+

2

q−
‖g‖∞‖u‖q

+

= ‖u‖q
+[

(1− ελ1)‖u‖φ
−
1 −q

+

− cεc
φ+
2

1 ‖u‖φ
+
2 −q

+

− cq
+

2

q−
‖g‖∞

]
.

Note that ε may be chosen small enough and 1 < q+ < φ−1 < φ+
2 , and we easily

obtain ρ, δ0 > 0 small enough such that

(1− ελ1)ρφ
−
1 −q

+

− cεc
φ+
2

1 ρφ
+
2 −q

+

≥ δ0.

Take λ0 = q−δ0

2cq
+

2

, then we have

J0(u) ≥ ρq
+
(
δ0 −

cq
+

2

q−
‖g‖∞

)
≥ ρq

+
(
δ0 −

cq
+

2

q−
λ0

)
=
δ0
2
ρq

+

,

with ‖u‖ = ρ. Therefore, we can choose δ = δ0
2 ρ

q+ such that the conclusion
holds. �

Lemma 3.5. There exists e ∈W s
0LΦ1(Ω) with ‖e‖ > ρ such that J0(e) < 0, where

ρ is given in Lemma 3.4.

Proof. From (A2), we have F (x, tu) ≥ tµF (x, u) for all t ≥ 1 and all u ∈W s
0LΦ1(Ω).

By Theorem 2.8, we can fix u0 ∈ C∞0 (Ω), such that ‖u0‖ = 1 and let t ≥ 1, then

J0(tu0) = Ψ(tu0)−
∫

Ω

F (x, tu0) dx− 1

q(x)

∫
Ω

g(x)|tu0|q(x)dx

≤ ‖tu0‖φ
+
1 − tµ

∫
Ω

F (x, u0) dx− tq
−

q+

∫
Ω

g(x)|u0|q(x)dx

≤ tφ
+
1 − tµ

∫
Ω

F (x, u0) dx− tq
−

q+

∫
Ω

g(x)|u0|q(x)dx.

Note that µ > φ+
1 > q− > 1, so there exists t0 > 0 large enough such that

‖t0u‖ > ρ and J0(t0u) < 0. The proof is completed by taking e = Tu with T > 0
large enough. �

Lemma 3.6. Suppose that {un} ⊂W s
0LΦ1

(Ω) is a (PS)c sequence of J0 with c 6= 0.
Then {un} has a convergent subsequence in W s

0LΦ1
(Ω).

To prove the lemma above, we recall the following result.

Lemma 3.7 ([9, 16]). Assume that the sequence {un} converges weakly to u in
W s

0LΦ1
(Ω) and

lim sup
n→∞

〈Ψ′(un), un − u〉 ≤ 0. (3.7)

Then the sequence {un} is convergence strongly to u in W s
0LΦ1

(Ω).
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Proof of Lemma 3.6. From (A2) we have

c+ 1 + ‖un‖

≥ J0(un)− 1

µ
〈J ′0(un), un〉

= Ψ(un)−
∫

Ω

F (x, un) dx− 1

q(x)

∫
Ω

g(x)|un|q(x)dx

−
∫

Ω

∫
Ω

φ(|Dsun|)Dsun dµ+

∫
Ω

f(x, un)un dx+

∫
Ω

g(x)|un|q(x)dx

≥
(

1− φ−1
µ

)
Ψ(un)−

( 1

q−
− 1

µ

)∫
Ω

g(x)|un|q(x)dx

≥
(

1− φ−1
µ

)
‖un‖φ

−
1 −

( 1

q−
− 1

µ

)
‖g‖∞cq

+

2 ‖un‖q
+

.

(3.8)

Note that φ−1 > q+ > 1, so (3.8) implies that {un} is bounded in W s
0LΦ1(Ω). Thus,

passing to a subsequence, we obtain that un ⇀ u in W s
0LΦ1

(Ω) weakly, and we
have

〈J ′0(un), un − u〉 = 〈Ψ′(un), un − u〉 −
∫

Ω

f(x, un)(un − u) dx

−
∫

Ω

g(x)|un|q(x)−2un(un − u) dx.

Note that, 〈J ′0(un), un − u〉 → 0 as n→∞, from Lemma 3.2, we obtain

〈Ψ′(un), un − u〉 → 0 as n→∞.

Then by Lemma 3.7 and that un ⇀ u weakly, we have un → u strongly in
W s

0LΦ1(Ω). �

Proof Theorem 1.1. From Lemmas 3.4–3.6 and by the mountain pass theorem 2.15,
J0 has a positive critical value c, that is, there exists u ∈ W s

0LΦ1(Ω), such that
J(u) = c > 0 and J ′0(u) = 0. Thus u is a solution for (1.1). This completes the
Proof. �

Now we prove Theorem 1.2. Since W s
0LΦ1

(Ω) is a separable reflexive Banach
space, then from [34] there are {φn}n∈N ⊂W s

0LΦ1
(Ω) and {φ∗n}n∈N ⊂ (W s

0LΦ1
(Ω))∗

such that

W s
0LΦ1(Ω) = span{φn, n ∈ N},

(W s
0LΦ1(Ω))∗ = span{φ∗n, n ∈ N},

〈φn, φm〉 =

{
1 n = m

0 n 6= m.

For k = 1, 2, . . . , let Yk = span{φ1, . . . , φk} and Zk = span{φk, φk+1 . . . }. We first
given some preliminary lemmas.

Lemma 3.8. Under the assumptions of Theorem 1.2 we have

bk := inf
u∈Zk,‖u‖=rk

Jλ(u)→∞ as k →∞,

ak := max
u∈Yk,‖u‖=ρk

Jλ(u) ≤ 0.
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Proof. By (A2), there exist d1 > 0, M > 0 such that

F (x, t) ≥ d1|t|µ, ∀|t| ≥M, x ∈ Ω . (3.9)

By (A1), for every ε > 0 and all |t| ≤M , we have

|F (x, t)| ≤ εΦ1(t) + cεΦ2(t)

≤ εΦ1(t) + cεΦ2(M)

= εΦ1(t) + c′ε.

Then combining this with (3.9), we have

F (x, t) ≥ d1|t|µ − εΦ1(t)− c′ε, ∀(x, t) ∈ Ω× R. (3.10)

Then, from (3.10) it follows that

Jλ(u) = Ψ(u)− λ
∫

Ω

Φ2(u) dx−
∫

Ω

F (x, u) dx

≤ ξl1(‖u‖) +

∫
Ω

c′ε + εΦ1(u)− d1|u|µdx

≤ ξl1(‖u‖) + c′ε|Ω|+ εξl1(‖u‖Φ1
)− d1‖u‖µL1 .

≤ ‖u‖φ
+
1 + c′ε|Ω|+ εd

φ+
1

2 ‖u‖φ
+
1 − d1d

µ
3‖u‖µ,

(3.11)

the above inequality is given because all norms are equivalent on the finite dimen-
sional space Yk. So, since µ > φ+

1 > 1, there exists dk ≥ max{1, 1
d2
, 1
d3
} large

enough such that

J(u) ≤ 0 for every u ∈ Yk and ‖u‖ ≥ dk. (3.12)

On the other hand, letting

B1(k) = sup
u∈Zk,‖u‖=1

‖u‖φ1 , B2(k) = sup
u∈Zk,‖u‖=1

‖u‖φ2 ,

we have Bi(k)→ 0 as k →∞. Now for u ∈ Zk with ‖u‖ = rk = 1
B1(k)+B2(k) , from

(3.11), we obtain

Jλ(u) = Ψ(u)− λ
∫

Ω

Φ2(u) dx−
∫

Ω

F (x, u) dx

≥ Ψ(u)− λ
∫

Ω

Φ2(u) dx− ε
∫

Ω

Φ1(u) dx− c′ε
∫

Ω

Φ2(u) dx

≥ ‖u‖φ
∓
1 − λ‖u‖φ

∓
2

Φ2
− ε‖u‖φ

∓
1

Φ1
− c′ε‖u‖

φ∓
2

Φ2

≥ ‖u‖φ
∓
1 − λBφ

∓
2

2 (k)‖u‖φ
∓
2 − εBφ

∓
1

1 (k)‖u‖φ
∓
1 − c′εB

φ∓
1

1 (k)‖u‖φ
∓
2

≥ rφ
∓
1

k − λ− ε− c
′
ε →∞ as k →∞.

(3.13)

Hence,

bk := inf
u∈Zk,‖u‖=rk

Jλ(u)→∞ as k →∞.

Combining this with (3.12), we can take ρk = max{dk, rk + 1} and we have

ak := max
u∈Yk,‖u‖=ρk

Jλ(u) ≤ 0.

This completes the proof. �
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Lemma 3.9. Under the assumptions of Theorem 1.2, every (PS)c sequence has a
convergence of subsequence.

Proof. Let {un} be a (PS)c sequence of Jλ. Then Jλ(un)→ c in R and J ′λ(un)→ 0
as n→∞. we claim that {un} is bounded. Indeed, note that

Jλ(un)− 1

µ
〈J ′λ(un), un〉 = Ψ(un)− 1

µ

∫
Ω×Ω

φ1(Dsun)Dsun dµ− λ
∫

Ω

Φ2(un) dx

+
λ

µ

∫
Ω

φ2(un)un dx−
∫

Ω

F (x, un) dx+
1

µ
f(x, un)un dx;

consequently

λ
(φ−2
µ
− 1
)∫

Ω

Φ2(u) dx

≤ λ

µ

∫
Ω

φ2(un)un dx− λ
∫

Ω

Φ2(un) dx

= Jλ(un)− 1

µ
〈J ′λ(un), un〉 −Ψ(un) +

1

µ

∫
Ω×Ω

φ1(Dsun)Dsun dµ

+

∫
Ω

F (x, un) dx− 1

µ
f(x, un)un dx,

≤ ‖un‖+ 1 + c+
(φ+

1

µ
− 1
)

Ψ(un)

≤ ‖un‖+ 1 + c.

So, ∫
Ω

Φ2(un) dx ≤ c(‖un‖+ 1).

Then, by (2.6) and (3.6) we have

Ψ(un) = Jλ(un) + λ

∫
Ω

Φ2(un) dx+

∫
Ω

F (x, un) dx

≤ Jλ(un) + λ

∫
Ω

Φ2(un) dx+ ε

∫
Ω

Φ1(un) dx+ cε

∫
Ω

Φ2(un) dx

≤ c+ on(1) + (λ+ cε)

∫
Ω

Φ2(un) dx+ ελ1Ψ(un).

This implies

(1− ελ1)Ψ(un) ≤ c(1 + ‖un‖) + on(1).

Since ε is arbitrary, then for ε sufficiency small and for n sufficiently large, we have

Ψ(un) ≤ c(1 + ‖un‖).
If ‖un‖ > 1, by proposition 2.7, it following that

‖un‖φ
−
1 ≤ c(1 + ‖un‖).

Using that φ−1 > 1, the above inequality shows that {un} is bounded in W s
0LΦ1(Ω).

From Lemma 3.6, we obtain the desired assertion. �

Proof Theorem 1.2. By (A3) f is odd, then Jλ is an even functional. From Lemmas
3.8 and 3.9, the functional Jλ satisfies all the conditions of the Fountain theorem
2.16 Hence, Jλ has an unbounded sequence of critical values, that is there exists
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a sequence {un} ⊂ W s
0LΦ1

(Ω) such that J ′λ(uk) = 0 and Jλ(uk) → ∞ as k → ∞.
This completes the proof. �
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