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ABSTRACT

The study of antiferromagnetic transition-metal oxides is an extremely active area

in the physical sciences, where condensed matter physics, inorganic chemistry, and 

materials science blend together. The sheer number of potential commercial applications 

is staggering, but much of the fundamental science remains unexplained. This is not due 

to a lack of effort, however, as theorists have been struggling to understand these 

materials for decades – particularly the character of the band edges and first optical 

transitions. The difficulty lies in the strong correlation or Coloumb attraction between the

electrons in the anisotropic d orbitals, which conventional band theory cannot describe 

adequately. The correlation problem is approached here by the well-accepted method of 

adding a Hubbard potential energy term to the ground state Hamiltonian, calculated 

within Density Functional Theory. The frequency-dependent complex dielectric function 

is calculated within the Independent Particle Approximation, and optical transitions are 

evaluated in multiple different ways. 

Peaks in the imaginary part of the dielectric function are compared energetically 

to orbitally decomposed density of states calculations. Optical transitions are typically 

analyzed in terms of atomic orbitals, which, strictly speaking, gives misleading results. 

Here, however, from the calculated data, two alternative interpretations are analyzed for 

each material studied. The first employs rigorous group theoretical analysis to determine 

allowed electric-dipole transitions, taking into account both orbital hybridization and 
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crystal symmetry. The second interpretation is that of metal cation site hopping. In this 

interpretation, carriers hop from the x2 – y2 d orbital of one metal cation lattice site to the 

next metal cation site which is antiferromagnetically aligned. At times, thoughout this 

work, one interpretation is favorable to the other. 

Which interpretation is most valid depends on the material considered. For 

example, simple rock-salt transition-metal oxides are quite different from the high 

temperature superconducting cuprates. A range of materials is studied here, in order to 

gain a greater understanding of optical transitions in highly-correlated systems. In this 

work, O vacancies are introduced in NiO, along with Fe impurities, to understand better 

the band filling in the insulating behavior observed experimentally. These results are 

compared with those of La2NiO4, La2CuO4, La2-xSrxNiO4, and La2-xSrxCuO4. to elucidate 

the mechanisms behind the symmetry breaking phenomena in the Sr doped systems. 

As it turns out, indeed, the x2 – y2 orbital in these materials plays a critical role in 

spatial charge distribution, magnetic, and spin densities which are coupled to the dopant 

position in the lattice. The in-depth study of electronic and optical properties of 

transition-metal oxides presented here provides theoretical characterization of the 

infamous pseudogap in the cuprates – one of the greatest mysteries of modern solid state 

physics. In addition, via Density Functional Perturbation Theory, the phonon coupling 

with charge-density wave is explored in La2-xSrxNiO4 and found to be the dominant 

contributing factor to the colossal dielectric constant.

xiv



1. INTRODUCTION

The present work is a theoretical dissertation on structural, electronic, magnetic, 

and optical properties in transition metal oxides, within Density Functional Theory 

(DFT). Deficiencies in DFT in the study of these materials are alleviated by employing a 

Hubbard potential energy U (DFT + U), which accounts for electron-electron interaction 

of d orbitals in these highly-correlated systems. The effects of dopants and other 

symmetry-breaking phenomena are investigated and analyzed by group theoretical 

methods, bringing new insight and understanding to this distinct class of materials. 

Before detailing the theoretical background, a short review on electronic applications of 

the materials studied is warranted, in order to convey the motivation behind this work. 

The electronics revolution of modern times began with a single commercially 

viable transistor in 1959 and has since evolved to the point where microprocessors can 

contain over a billion transistors, while flash memory chips have tens of billions, in 

accordance with the famous Moore's Law.1,2 As demand to store more data at less cost 

increases, conventional flash memory devices approach fundamental physical limits.3–

5 The traditional method of increasing memory density in random-access memory (RAM)

devices, based on complimentary metal-oxide-semiconductor (CMOS) technology, is by 

scaling down in size, thus increasing the number of transistors per unit area. As oxide 

thickness approaches tens of nanometers (nm), quantum mechanical tunneling occurs, 

causing leakage current through the gate of CMOS transistors.6 Therefore, new 

nonvolatile memory technology, with non-charge based memory storage, for use in 
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RAM, is necessary for the future of integrated electronics.7

Emerging RAM technologies include magnetic RAM (MRAM), ferroelectric 

RAM (FeRAM), spin-transfer torque RAM (STT-RAM), phase-change RAM (PRAM), 

and resistive RAM (RRAM or ReRAM), among others. RRAM is especially promising 

due to the ease of integration in CMOS technology, durability, low energy consumption, 

nonvolatility, and fast switching speed in the tens of nanoseconds (ns).4,5 While materials 

of interest for the insulating active layer in RRAM vary from metal oxides, organic 

materials, and chalcogenides,8 NiO is particularly attractive, due to its simplicity, high 

endurance, and excellent retention.9–11 This dissertation will focus heavily on theoretically

characterizing optical and electronic properties of NiO and the physical effects of O 

vacancies and Fe dopants on such properties. 

The methods used to study NiO can be extended to more complex transition metal

oxides, such as La2NiO4 and La2CuO4. The intrinsic materials are not of much interest for 

electronic applications; however, upon hole doping, interesting physical properties 

emerge, such as a colossal dielectric constant (CDC) in the nickelate and high-

temperature superconductivity (HTSC) in the cuprate. A unitless value, the dielectric 

constant describes the extent to which an electric field can propagate through a material 

when multiplied by the permittivity of free space. CDC materials are sought for 

supercapacitors which can store a much larger amount of energy in the form of charge 

than conventional capacitors. As integrated circuits (ICs) become smaller, the passive 

components, such as capacitors, must become smaller and require enhanced performance.

Furthermore, supercapacitors, based on CDC materials, could replace rechargeable 
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batteries in the near future, due to their potentially superior lifetimes and energy densities.

Sr-doped La2NiO4,  La2-xSrxNiO4 (LSNO), where Sr substitutionally replaces La in the 

lattice, is particularly promising, since it maintains a CDC at high frequency, which is 

desirable for modern electronic devices. 

Not only is LSNO promising for engineering applications, but the complex 

mechanisms responsible for its CDC, including charge and spin-ordered phenomena, 

make LSNO an important material for studying emerging solid state physics. The 

scientific community has uncovered a host of ordered phenomena in related materials 

since the discovery of HTSC in a doped antiferromagnetic (AF) cuprate in 1986,12 for 

which the authors Bednorz and Müller won the Nobel Prize in Physics in 1987. La2-

xSrxCuO4 (LSCO) is a material exhibiting HTSC which is isostructural to LSNO. HTSC 

is an active area of research, both experimentally and theoretically, since the relationships

between order, disorder, and coupling of complex mechanisms, as well as the influence of

competing orders due to charge, spin, orbital, and lattice fluctuations are heavily 

debated.13 The relationship between the notorious pseudogap (PG) and HTSC is 

uncertain, as well. The origin of the PG is one of the most prominent unsolved problems 

in condensed matter physics. In addition to the PG, the superconducting gap (SC gap) is 

present in HTSC materials, as well as in type I and type II superconductors. The 

relationship between the SC gap and superconductivity in type I and type II 

superconductors is well described by Bardeen–Cooper–Schrieffer (BCS) theory, for 

which they received the Nobel Prize in Physics in 1972. However, the mechanism(s) 

behind HTSC in the cuprates is thought to be different from that of the traditional (type I 
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and type II) superconductors. Here, physical properties of insulating LSNO are compared

to those of superconducting LSCO to explore these mechanisms and help illuminate the 

mysteries surrounding them. 

Before addressing the new physics, some background on physical mechanisms in 

the materials studied is included for a full comprehension of the impact of the work 

presented here. The following sections review the relevant literature surrounding the 

current understanding of RRAM as it relates to NiO (1.1) and of stripe physics as it 

relates to applications of LSNO and LSCO (1.2). Chapter 2 reviews theoretical 

background extensively, and results are presented in Chapter 3, along with discussion and

comparison with previous work, when possible. In many cases, the subject matter of 

Chapter 3 consists of theoretical predictions, which are presented here, for the first time. 

The most notable findings here include a description of the mechanism behind the CDC 

in LSNO and the origin of the pseudogap (PG) (discussed below) in LSCO. 

1.1 Resistive Random Access Memory

Metal-insulator-metal (MIM) interfaces which exhibit resistive switching from a 

high resistance state (HRS) to a low resistance state (LRS), under an applied bias, form 

the basis for RRAM technology. Applying a threshold voltage – at which the insulator, 

typically a transition metal oxide, exhibits dielectric breakdown – results in a switching 

from HRS to LRS called the “set” process. The “reset” process, which is the switching 

from a LRS to a HRS, can be unipolar or bipolar. A MIM system that can be reset by 

applying the same voltage polarity as the set process is unipolar, and if opposite voltage 
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polarities result in equivalent behavior, the unipolar system is said to be nonpolar. If 

bipolar, the set process is achieved through applying an opposite voltage polarity as that 

of the reset process.4,5 Although oxides exhibiting both a HRS and LRS have been 

observed since the 1960s,4,5,14–16 the physical mechanism behind the switching process has

been understood only recently and will be covered in the following sub-section (Section 

1.1.1).   

1.1.1. Physical Mechanism

The dielectric breakdown process, where a MIM interface switches from a HRS 

to a LRS under an applied bias, is the result of conductive filaments (CFs) forming 

through the oxide (Figure 1),17 from one electrode to the other, and can be observed in 

both unipolar and bipolar switching cases.4,5,18 Upon removing an electrode, CF formation

has been experimentally confirmed on the surface of the oxides NiO, TiO2, HfO2, and 

SrTiO3, among others, by atomic force microscopy (AFM).5,9–13 CFs are initially formed 

in what is aptly called the “forming” process, where dielectric soft breakdown results 

from an applied voltage across the MIM interface, sufficient to produce an electric field >

10 MV/cm, which stresses the oxide, creating grain boundaries.4,22 Further, the electric 

field causes the O ions to diffuse through the grain boundaries toward the anode, leaving 

behind O vacancies and/or metal precipitates, which make up the stoichiometry of the 

CFs.5,23–27 Two less common models describing a conducting path through the oxide 

include that of electron or hole trap states28,29 or that of a Mott transition from carriers 

doped at the interface.30 The set process (HRS to LRS) is essentially the same as the 
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forming process; however, less voltage is required, and the MIM device must be set and 

reset numerous times in order to stabilize the CFs, before reliable operation can be 

achieved.4,5,10 

While the bulk of recent literature agrees that the physics of the forming and set 

processes (HRS to LRS) can be universally attributed to diffusion of O vacancies, 

resulting in CFs, the reset process (LRS to HRS) is generally thought to be different for 

unipolar and bipolar cases. Bipolar switching in RRAM is perhaps the simplest, since the 

reset process is just the opposite of the set process: the applied bias in the opposite 

direction diffuses the O ions back into the grain boundaries, thus bonding again with the 

6

Figure 1. Schematic Model of RRAM Mechanism. Filaments indicate paths of least 
electronic resistance, where O vacancies are most prevalent. The schematic is taken from 
Reference 17.



cations, disrupting the CFs. In the unipolar case, however, a reset voltage less than that of

the set voltage, but with the same polarity, thermally oxidizes the excess metal ions in the

CFs, i.e., Ni in NiO.4,5,18 In essence, the voltage is high enough to generate heat, diffusion,

and oxidation of the metal cations, yet low enough not to exert a substantial force to push 

O anions away from the attractive positively charged vacancies. The physical differences 

in unipolar and bipolar switching are such that bipolar switching MIM RRAM devices 

have greater stability.31 NiO can exhibit both unipolar and bipolar switching.9,32 

1.1.2 NiO

In recent years, NiOy has been studied for numerous applications ranging from 

use as the pseudocapacitor electrode in electrochemical supercapacitors,33,34 the spin filter

in spintronics applications,35 the electrochromic (EC) material in EC devices,36 the 

sensing material in gas sensor devices,37 and perhaps most noteworthy, the resistive 

switching material in RRAM.8–10,32,38–42 The y in NiOy represents a non-stoichiometric 

concentration of O, with a value less than unity indicating O vacancies or Ni precipitates, 

and with a value greater than unity indicating Ni vacancies or excess O interstitials. 

Being the functional material in all of the mentioned applications, clearly, the physical 

properties of NiOy are of great interest for the next generation of electronic devices. 

To assist in characterization of such devices, this work will investigate the 

frequency-dependent dielectric function in relation to the partial density of states (PDOS)

and band structure, for both intrinsic NiO and the case with O vacancies (Sections 3.1.1 

and 3.1.2, respectively). The stoichiometry of the CFs, consisting of O vacancies, results 
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in different electronic properties from the bulk, which can be characterized via optical 

measurements. Recently, by the Independent Particle Approximation (IPA)43 (Section 

2.3.2), the author of this work has shown for the first time that an additional optical 

transition occurs at lower energy when O vacancies are introduced to the system, 

resulting from a reduced direct band gap caused by an impurity energy level.44 With 

transparent electrodes, this transition could be detected during the switching process. The 

static dielectric constant is calculated as well, within Density Functional Perturbation 

Theory (DFPT), and compared to the IPA results, as well as experiment.45

In addition to electronic and optical characterization, regardless of the type of 

switching, understanding the diffusion of oxygen is paramount to developing improved 

RRAM devices. Improvements are necessary, before commercial viability of NiO RRAM

is possible. Device operation can be improved by reducing the reset current and reducing 

fluctuation in resistance during the switching process.18,39,46 Therefore, in addition to 

studying the electronic structure and optical properties, energy barrier and tangential 

force of diffusion of the O anions is calculated here by the Nudged Elastic Band 

method.47 The calculations of the present work will serve to assist in understanding 

fundamental physics of NiO and developing future RRAM devices.

1.1.3 Ni1-xFexO

While NiO has been studied extensively, little work has been done with 

antiferromagnetic Ni1-xFexO (Fe:NiO), also known as permalloy oxide (PyO). A 

ferromagnetic alloy of Ni and Fe (permalloy) is used in magnetic recording heads. Ni1-

8



xFexO has been considered undesirable in industry, since oxidation changes the magnetic 

order, due to spinel precipitates.48 However, some recent experimental works have 

focused on ferromagnetic (FM) Ni1-xFexO for applications in spintronics devices. These 

studies use solution-based preparation of nanoparticles, in oxygen-rich conditions, 

resulting in formation of Fe2O3 and NiFe2O4 crystallites for Fe concentrations in FM Ni1-

xFexO, for x ranging from 0.02 to 0.05.49–53 The high surface to volume ratio of the 

nanoparticles results in the interesting FM properties.54 With sputter deposition – a type 

of physical vapor deposition – oxygen levels can be finely tuned to achieve near-

stoichiometric or oxygen-poor AF Ni1-xFexOy thin films. The phase diagram of the Ni-Fe-

O system reports a stable rock salt structure for iron concentrations up to x = 0.4 in a low 

oxygen atmosphere.55 Reports of dual ion beam sputtered Ni1-xFexO (x = 0.19) and radio 

frequency magnetron sputtered Ni1-xFexO confirm the rock salt crystal structure for films 

sputtered at low oxygen pressure.48,56,57  At lower concentrations, Yan, et al. have found a 

NaCl rock-salt phase for pulsed laser deposition grown Ni1-xFexO (x = 0.02), as well.58 

In this work, the antiferromagnetic rock-salt phase of Ni1-xFexO is investigated 

theoretically for the first time by ab initio methods. The previously mentioned NiO 

calculations are compared to those of the Fe-doped system, with x = 0.125 and 0.25 in 

Section 3.3, and varying O vacancy concentrations are included in the analysis in Section 

3.4. Fe-doping effects on electronic structure, optical properties, dielectric properties, and

diffusion of O anions will be evaluated, with a particular emphasis on how addition of Fe 

affects RRAM switching capability.
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1.2 Stripe Physics in Transition-Metal Oxides

The ordering mentioned previously in LSNO and LSCO includes, but certainly is 

not limited to, charge-density waves (CDWs) and spin-density waves (SDWs). A CDW is

self-organized charge density, generally from hole-doping or oxygen interstitials, 

arranged in periodic patterns at the atomic scale, below a charge-ordering temperature 

TCO. Magnetization is frustrated at sites where the excess charge density is greatest. These

frustrated sites act as domain walls to AF order, and a SDW manifests as the resulting 

periodic magnetic order, of lattice period twice that of the CDW, occurring below a spin-

10

Figure 2. Schematic of stripes in the Ni-O plane of La2-xSrxNiO4 (LSNO). Shown is 
the commensurate x = 1/3 case. Triangles indicate spin direction on Ni atoms, while red 
triangles indicate magnetically frustrated Ni sites where charge-density waves are 
densest. 



ordering temperature TSO, where generally TSO < TCO. A combination of CDW and SDW 

aligns in “stripes” in the two-dimensional Cu-O or Ni-O bonding planes, which are 

separated by Mott insulating layers (Mott insulators are discussed in detail in Section 

3.1). A schematic of commensurate stripes in the plane of x = 1/3 La2-xSrxNiO4  (LSNO) is

shown in Figure 2. Stripe physics is an active area of research, both experimentally and 

theoretically, since the relation between stripes and the formation, coupling, and filling to 

HTSC, as well as the influence of competing orders due to charge, spin, orbital, and 

lattice fluctuations are heavily debated.13 

Hücker et al. found convincing experimental evidence that the enhanced 

commensurability of stripes at x = 1/8, in La2-xBaxCuO4, resulted in suppression of 

HTSC.59 They showed that the same composition can exhibit slight SC behavior in the 

Cu-O planes.60,61 For Sr concentration slightly less than 1/8, replacing Ba by Sr, in 

electrochemically oxygen-doped La2-xSrxCuO4+δ, excess oxygen congregates as 

interstitials, such that hole concentration in the bulk equals 1/8.62 Due to the yet-

unexplained physics associated with this highly commensurate concentration, it has come

to be known as the 1/8 anomaly.63 Nearly isostructural yet insulating La2-xSrxNiO4 

(LSNO) is well known to exhibit stripes and have a colossal dielectric constant (CDC) 

into the GHz range, with its highest values reported being ~106–107 for a Sr concentration

of x = 1/8, where the colossal value is interpreted as resulting from spatial modulation of 

hole charge.64,65 However, x-ray diffraction and inelastic neutron scattering measurements

on LSNO have shown that neither the charge ordering transition nor the magnetic 

ordering transition is well defined.66,67 
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In addition to being of interest for oxide electronics, comparing stripe physics of 

LSNO with La2-xSrxCuO4 (LSCO) can help illuminate the mechanism(s) behind HTSC in 

the cuprates, by analyzing the different carrier filling. Recently, Coslovich, et al. detected 

a mid-infrared optical gap in LSNO, with x = ¼.68 They interpreted it as having PG 

characteristics, which they attributed to electronic localization (disorder), rather than 

stripes (order). In the cuprates, two d orbital gaps of Cu x2 – y2 (i.e., d orbital) character 

are present – the PG and the SC gap. The SC gap is the lower energy gap where Cooper 

pair formation is thought to occur in the Cu-O plane below a critical temperature TC, 

while the PG is at higher energy and is present below a temperature T*, where T* > TC. 

Both gaps exhibit a Fermi surface along the nodal bonding direction in the Cu-O plane 

and have Cu x2–y2 and O p character. The origin of the PG in the cuprates is heavily 

debated63,69 and is one of the most prominent unsolved problems in condensed matter 

physics, along with the mechanism(s) behind HTSC, and whether a connection between 

the two is significant. 

In this work, charge and spin ordering, electronic structure, and dielectric 

response are theoretically characterized for highly commensurate x=1/3 LSNO and x=1/4

LSCO from first principles. Experimentally, below x = 1/2, the nickelate remains 

insulating,70,71 while the cuprate is past the SC limit at x = 0.3 and is semi-metallic72. The 

concentration of x = 1/3 has been found to show the most commensurate stripe ordering 

for x < 1/2 in LSNO.71,73 At these critical Sr doping concentrations, well-defined fillings 

of the stripe atoms in the Ni-O and Cu-O planes may occur. The two nearly isostructural 

layered materials crystallize in the tetragonal crystal system with I4/mmm space group 
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without doping. They are model materials to study the interplay of charge, spin, and 

lattice degrees of freedom. In particular, the d-electron shells of the transition metal 

atoms Ni and Cu, which differ by only one electron, allow investigations of the influence 

of band filling. Electronic structure of the resulting stripe phases are analyzed by band 

structure and projected density of states (PDOS). The frequency-dependent dielectric 

tensor allows conclusions about interband transitions and the static dielectric constants of 

LSNO. The phonon contribution to the static dielectric constants is calculated via Density

Functional Perturbation Theory, where it is found that significant phonon-CDW coupling 

accounts for the huge values of the CDC. The dielectric functions of LSCO are not 

calculated, because of its semi-metallic band structure, which would require the inclusion

of Drude-like terms to account for intraband transitions; however, the electronic structure 

is compared to the results of LSNO. The dopant concentrations studied in the nickelate 

and the cuprate are chosen to be highly commensurate with the lattice, resulting in a net 

magnetic moment of zero for the unit cell, simulating bulk samples.

1.2.1 Colossal Dielectric Constant in La2-xSrxNiO4 (LSNO)

New materials which exhibit extremely high dielectric constants are sought for 

use in reducing the size of passive components in emerging electronic devices. As 

transistors, microprocessors, and memory chips get smaller, the passive components in 

integrated circuits (ICs), which are resistors, inductors, and capacitors, encompass a 

growing fraction of real estate in electronic devices. Current technology allows capacitors

to be fabricated as thin films, reducing the footprint;74 however, often, the capacitors must
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be external to the IC, because the capacitance required for device operation is higher than

can be achieved in the silicon chip.75 Electrolytic capacitors typically have a higher 

capacitance per unit volume ratio than thin film capacitors, but they are prone to failure.76

Therefore, new materials, with a CDC, are sought for use in thin film capacitors with 

much greater capability. A CDC material is one with a unitless dielectric constant k 

greater than 103.77 LSNO is one of the best performing CDC materials. A key 

consideration in choosing a material for such an application is its dielectric loss, which 

corresponds to how much energy is lost in operation, through heat. Dielectric loss can be 

found from the following relation 

Lαα(ω)=−Imag (
1

ϵαα (ω)
) ,
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Figure 3. Frequency-Dependent Dielectric Function of LSNO vs CCTO. The real 
component of the dielectric function is shown over a broad frequency range for LSNO
and CCTO. Figure taken from Reference 64.



where α corresponds to the direction of applied field and response, ω is the angular 

frequency, and ε is the complex permittivity

ϵ=ϵ1+i ϵ2 .

εαα corresponds to the dielectric response in the α direction from a field applied in the α 

direction.  

CaCu3Ti4O12 (CCTO) is the current material of choice for non-electrolytic 

capacitor thin films for CDC applications. The problem with CCTO is that it loses its 

CDC at higher frequency, beginning around 1 megahertz (MHz or 106 Hz). At 1 gigahertz

(GHz or 109 Hz), the dielectric constant is reduced to only about 100, at room 

temperature.77 LSNO, on the other hand, maintains its CDC at about 400 MHz and is 

predicted to go into the GHz range, at room temperature (Figure 3). This is an important 

observation, since modern applications require operation into the GHz range.78 

1.2.2 High-Temperature Superconductivity (HTSC) in La2-xSrxCuO4 (LSCO)

The complex orders observed in LSNO are also present in isostructural LSCO; 

however, in the case of the cuprate, the relation between ordered phases and HTSC is 

unclear. Superconductivity can be described as a state of zero electronic resistance which 

expels magnetic fields up to an inherent critical field. While type I and some type II 

superconductors can be explained by BCS theory, the origins of HTSC in cuprates remain

an unsolved problem in physics. In BCS theory, type I superconductors at extremely low 

temperature are described as having Cooper pairs that are coupled electrons which attract 

rather than repel due to fluctuations in the lattice from phonons. Each electron attracts 
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local atomic nuclei in the lattice causing an attractive force on the other electron. This 

pairing causes the electrons to behave as bosons rather than fermions, allowing them to 

condense into the same energy level, since bosons are not restricted by the Pauli 

exclusion principle of fermions. Metals which have strong vibronic interactions exhibit 

superconductivity below a critical temperature slightly above absolute zero. 

While type I superconductors are pure metals, type II superconductors are alloys 

which exhibit superconductivity at slightly higher temperatures than type I cases and 

have higher critical fields, allowing for higher current densities. The critical field is the 

minimum magnetic field strength which can penetrate the material, which extinguishes 

superconductivity, yielding nonzero resistance, where current density is dependent upon 

the curl of the magnetic field, by Maxwell's equations. Still, even type II superconducting

materials have to be cooled by liquid helium, limiting practical applications. In 1986, 

Bednorz and Müller discovered the first case of HTSC behavior in the doped ceramic La2-

xBaxCuO4, with a critical temperature of 30 K.12 They won the Nobel prize in physics in 

1987 for their discovery. Soon after, several similar cuprates were found to have a critical

temperature above 77 K, which can be cooled by liquid Nitrogen, a much less expensive 

coolant than helium, making superconducting applications a practical reality. Such 

potential applications include maglev trains, low loss electrical grids, magnetic resonance

imaging (MRI), supercomputers with new architecture and logic, and particle 

accelerators, some of which are closer to commercial viability than others. 

While applications are being developed, theorists struggle to explain fundamental 

aspects of HTSC materials. However, much progress has been achieved in the past 30 
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years, and is mentioned above (Section 1.2). The cuprates exhibiting HTSC are doped 

Mott insulators (Mottness is discussed in Section 3.1). A wide variety of AF cuprate 

insulators exhibit HTSC upon hole doping, whether that doping be with Sr, Ba, or excess 

O interstitials. While all the HTSC cuprates are inherently complex and exhibit multiple 

symmetry breaking phases, including CDWs and SDWs, LSCO is perhaps the simplest. 

Being isostructural to LSNO and of similar composition, direct comparisons between the 

CDC insulating nickelate and the HTSC cuprate are calculated here within an almost 

parameter-free ab initio approach for the first time. By this comparison, the origin of the 

pseudogap in the cuprates is predicted to be directly related to the CDW.

1.3 Overview

Before discussing calculation results, some theoretical background is necessary, 

and Chapter 2 will provide a comprehensive overview. The bulk of the present work is in 

Chapter 3, where calculation results are presented, discussed, analyzed, and compared to 

the relevant literature when available. Each intrinsic material and each doped or vacancy-

containing material has its own section in Chapter 3, where optical transitions are 

analyzed in relation to electronic structure and symmetry arguments. A large part of 

Chapter 3 is dedicated to the study of intrinsic NiO (Section 3.1), which is a particularly 

appropriate and deceptively simple introduction to physical properties of AF transition-

metal oxides, and the chapter will become progressively more complex. Effects of 

varying concentrations of Fe dopants on physical properties of NiO, without O vacancies 

(Section 3.2.1) and with O vacancies (Section 3.2.2), are presented for the first time. 
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Energy barriers of O diffusion in NiO will be compared with cases of heavily Co- or Fe-

doped NiO in Section 3.2.2. A short section on intrinsic La2NiO4 (Section 3.3.1) will be 

followed by analysis of calculations on LSNO, where the physical mechanism behind the 

colossal dielectric constant will be revealed for the first time in Section 3.3.2. In 

preparation for the final section, Section 3.4.1 will discuss physical properties of intrinsic 

La2CuO4. Finally, the answer to one of the greatest mysteries in modern solid state 

physics will be addressed in Section 3.4.2 – the origin of the pseudogap in the HTSC 

cuprates. Conclusions and future work will be discussed in Chapter 4.
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2. THEORETICAL BACKGROUND

It is the intent of the author to follow a pedagogical approach such that all of the 

information contained herein will be accessible to persons of the appropriate 

mathematical background. For this reason, the key points of the theories employed in the 

present work will be covered in this chapter. Density Functional Theory (DFT) is treated 

here with brevity (Section 2.1), since the author has written an extensive account in his 

master's thesis,79 beginning with the many-body problem, and including topics such as 

exchange-correlation approximations and the projector-augmented wave methodology. 

Extensions to DFT, including the effective Hubbard potential U – J (Section 2.2), a short 

discussion on density of states (2.3), the Independent Particle Approximation (IPA) 

(Section 2.4), and Density Functional Perturbation Theory (DFPT) (Section 2.5) are 

covered here. Group theory as it pertains to optical transitions and crystal field splitting 

are fundamental to understanding analysis throughout Chapter 3, and the relevant 

background is in Section 2.6. Section 2.7 is a short account of the theory of the Nudged 

Elastic Band (NEB) method. 

2.1 Density Functional Theory (DFT)

Energy is perhaps the most useful physical property in science, and theorists 

working in materials science, solid state physics, and chemistry use DFT as the tool of 

choice for calculating it. Due to the impact DFT has made on the scientific community, 

Walter Kohn and John Pople shared the Nobel Prize in Chemistry in 1998 – Kohn for the 
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underlying theory, and Pople for computational advances in the theory. The Hohenberg-

Kohn theorems state that the fundamental electron density function n(r) – with which 

ground-state energy E is solely determined, via a functional form of the many-body 

Schrödinger equation – has just one density, which is dependent upon position r. The 

ground-state energy dependent upon this exact n(r) is lower than the total ground-state  

energy calculated from any other nR(r). The potential energy between nuclei and 

electrons is described by just one value for V̂ne , as well.

The total potential energy V in the time-independent Schrödinger equation,

Ĥ ψ=(−
ℏ

2

2m
∇2+V )ψ=Eψ , (2.1.1)

can be broken down into constituent parts, making it more tractable in the many-body 

quantum mechanical case. The caret over the Hamiltonian H indicates that it is an 

operator which acts on the wavefunction ψ. The kinetic energy term encompasses the ħ, 

which is Planck's constant, the nabla operator, which is the three-dimensional vector 

derivative with respect to position, and the mass m. The reason to decompose V is 

because electron-electron Coulombic interaction is particularly difficult to determine, 

except in the simplest cases, due to the wavelike nature of the electron. Thus, the new 

equation becomes (in Dirac notation)

⟨ ψ|Ĥ|ψ ⟩=⟨ ψ|(T̂+V̂ ne+Û ee)|ψ ⟩+U nn=Ε , (2.1.2)

where T̂ is the kinetic energy operator, V̂ne is the potential energy between nuclei 

and electrons, Û ee is the potential energy between electrons, and Unn is the potential 

energy between nuclei, which is not an operator in the Born-Oppenheimer approximation,
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where nuclei are approximated to have no kinetic energy. Unn is frequently omitted when 

discussing total energy. 

Now that the potential energy is decomposed into multiple components, the 

electron-electron potential energy can be split further to account for correlation and 

exchange. Correlation corresponds to a potential energy term that takes into account the 

probability that an electron at position r has a low chance of being close to another 

electron at r' – with n(r) and n(r') being in a dual space within the same volume – and a 

high chance of being farther away, due to the Coulomb repulsion. Here, this probability 

will be represented as g(r, r'). Due to the wavelike nature of electrons, g(r, r') for 

correlation is not simple to calculate and is only known for homogeneous systems. 

Exchange, on the other hand, can be calculated very precisely. Exchange arises from the 

Pauli Exclusion Principle, which states that electrons of the same spin cannot occupy the 

same position (orbital); however, an electron of opposite spin can. Therefore, Uee can be 

described as

U ee=
1
2


n (r )n(r ')
|r−r '|

d3 r d3 r '+
1
2


n(r )n(r ')
|r−r '|

[g(r , r ')−1]d3 r d3 r ' . (2.1.3)

The first term on the right-hand side is known as the Hartree potential, which is classical 

and electrostatic, and the second term on the right-hand side is the combined exchange 

and correlation correction energy, εXC, from quantum mechanics, which includes the 

probability g(r, r'). The Hartree potential is the largest contribution to Uee and known 

exactly, followed by the exchange, which can be calculated precisely also, and the 

smallest contribution is the correlation, which must be approximated. 

 Ignoring spin density, the full Kohn-Sham ground-state energy equation becomes
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E=−∑
i=1

Nϕ

⟨ ϕ i
|∇ 2|ϕi ⟩−∑

j=1

P


Z j nR(r)

|R j−r|
d3 r+

1
2
∑
j≠k

Z j Zk

|R j−Rk|

+
1
2


nR(r )nR(r ')
|r−r '|

d3 r d3 r '+nR(r )ϵXC [nR(r)]d
3 r .

(2.1.4)

Hartree notation is used here for convenience. Z corresponds to the number of protons in 

each nucleus, φ is the wavefunction of each individual electron, R refers to position of 

nuclei, and the density nR(r) is a reference electron density,

nR(r )=2∑
i=1

Nϕ

|ϕ i(r )|
2
, (2.1.5)

which is iteratively improved, along with the total energy and εXC, until the ground state 

reaches the desired accuracy. The iterative equations are as follows – first

V̂ ne+Û ee nR(r ' )d3 r ' (2.1.6)

is calculated by the initial approximation of nR(r). Next, the exchange and correlation 

contribution to the chemical potential is calculated by

μXC [n(r )]=
δ EXC

δnR(r )
. (2.1.7)

Kohn and Sham's idea was to find a system of non-interacting electrons which had the 

same electronic density as that of the interacting system and treat it as homogeneous. 

Once the non-interacting density is exactly the same as the interacting one, the chemical 

potential μ will be the same in both cases; otherwise, charge would flow from one to the 

other, if they were adjacent. This is called the Local Density or Local Spin-Density 

Approximation (LDA or LSDA). LSDA will be used in this work, along with a more 

sophisticated technique called the Generalized Gradient Approximation (GGA), which 

treats valence electron distribution closer to the core as more dense than that further 
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away. Hybrid functionals combine DFT with Hartree Fock theory to determine εXC. The 

exchange-correlation functionals used in this work include the LSDA of Ceperly and 

Alder,80 the so-called PBE functional in the GGA, named for Perdew, Burke, and 

Ernzerhof,81 and the hybrid functional HSE06 of Heyd, Scuseria, and Ernzerhof, where 

the term hybrid corresponds to a mixing of Hartree-Fock Theory with DFT.82 For more 

information on treatment of εXC, along with a summary of the projector-augmented wave 

(PAW) method,83 see the author's master's thesis.79 

Finally, eigenvalues εi and eigenvector wave functions φi can be found from the 

set of one-orbital Schrödinger equations:

{−
1
2
∇2+V̂ ne+Û ee nR (r ')d3 r '+μ XC [nR (r )]}ϕ i [nR(r )]=ϵiϕ i[nR (r )] . (2.1.8)

A new charge density, nRout(r), that is no longer homogeneous and changes with r, can be 

calculated by:

nRout
(r )=2∑

i=1

Nϕ

|ϕ i|
2 . (2.1.9)

The process can be repeated iteratively, achieving a more and more accurate electron 

density (accurate up to ∇
4 ), until the desired accuracy for E and the eigenvalues εi is 

obtained. The computational software Vienna Ab Initio Simulation Package 

(VASP),84,85 which is used for all ground-state energy and eigenvalue calculations in this 

work, is based on these fundamental self-consistent equations of Kohn-Sham theory.

For completeness, it should be noted that an infinite crystal has potential energy 

which is periodic with the lattice and can be represented by a unit cell. The solutions to 

the Schrödinger equation in a periodic potential have the form
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ψk(r)=uk (r )exp(i k⋅r ) ,

which is called the Bloch theorem, where uk(r) has the period of the lattice, and k is a 

reciprocal lattice vector. Unit cells for each material will be described in each respective 

section in Chapter 3. The symmetries associated with each cell have an effect on various 

physical properties. How these properties relate to symmetry and group theory will be 

discussed in Section 2.6.

2.2 Effective Hubbard U – J Potential Energy in the Dudarev Approximation

For many materials which contain ions with partially-filled d or f shells, 

conventional DFT (LSDA) either incorrectly predicts metallic behavior or greatly 

underestimates the energy band gap. In other cases, HTSC materials are found to not have

magnetic properties described correctly. Materials with partially filled d or f orbitals are 

said to be highly-correlated, meaning correlation, as described in the previous section, is 

particularly strong between electrons in d or f orbitals which are partially filled. The 

Coulomb energy required to place two d electrons at the same site can be described by the

Hubbard parameter 

U=E (dn+ 1
)+E(dn−1

)−E (dn
), (2.2.1)

where n is the number of d electrons in the neutral ground-state of energy E. In LSDA, 

interactions such as the Hubbard potential energy are assumed to be small compared to 

the valence bandwidth, but this is not the case for Mott-like insulators. Here, a Mott-like 

insulator is one which has substantial d states near the band gap. In LSDA, spin in nR(r) is

dependent upon Hund's-rule exchange energy (J), but in Mott-like insulators, spin is 
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predominantly dependent upon the Hubbard potential energy. The problem is that the 

Hubbard potential energy (U) is roughly an order of magnitude greater than the exchange 

energy.86 

Since all materials studied in this work have Mott-like valence bandwidths and 

band gaps involving 3d states, an effective Hubbard U – J Hamiltonian, following the 

Dudarev approach,87 is added to the Hamiltonian in Equation 2.1.4 in all calculations in 

this work. The addition is as follows:

Ĥ=
U
2
∑

m, m' ,σ

n̂m,σ n̂m' ,−σ+
(U−J )

2
∑

m≠m' ,σ

n̂m,σ n̂m' ,σ , (2.2.2)

where orbital degeneracy of the 3d shell is taken into account. The n̂σ=âσ
† âσ , is an 

operator for the number of electrons located at a site, and m and σ are the magnetic and 

spin quantum numbers, respectively. At the end of the iterative process, the total ground-

state energy becomes

ELSDA+U=ELSDA+
(U−J )

2
∑
l , j ,σ

ρlj
σ
ρ jl
σ , (2.2.3)

where ρ jl
σ is the density matrix of d electrons. The ½ in Equations 2.2.2 and 2.2.3 are to

prevent double-counting. For more details on the Dudarev approach to the Hubbard 

potential energy as implemented in DFT, see Reference 87.

In VASP, both U and J are introduced to the program as user-supplied constants. 

Commonly, these values are determined empirically by varying over a range and 

choosing appropriate values based on agreement of physical properties with experimental

quantities. It has been shown recently that certain values of U – J can result in greater 

agreement with some experimental physical properties, while other values result in 
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greater agreement with other physical properties.88 Thus, care must be taken when 

choosing appropriate values. Chapter 3 discusses in detail the values used for the U – J 

values in the different systems studied here.

2.3 Density of States

Frequently in Chapter 3, density of states will be used to characterize the band 

structure and optical transitions, so a short definition is in order. Converting the 

eigenvalues in Equation 2.1.8 to be functions of k, the density of states can be found 

independently for each spin by

gn(ϵ)=∫
d k

4π3 δ(ϵ−ϵn(k)), (2.3.1)

where the integral is over the primitive cell.89 

2.4 The Independent Particle Approximation (IPA)

The IPA is a powerful theoretical tool for the calculation of the frequency-

dependent complex dielectric function in the long-wavelength limit. The Brillouin zone 

(BZ) is reduced to an irreducible wedge of the crystal symmetry group (symmetry 

discussed in Section 2.6), where the following limit is evaluated:

εαβ
(2)
(ω)=

4 π2 e2

Ω lim
q→0

1
q2 ∑

c, v , k

2wkδ(ϵc k−ϵv k−ω)×⟨uc k+eα q|uv k⟩⟨uc k+eβ q|uv k ⟩
* . (2.4.1)

The imaginary part (indicated by the 2) of the dielectric tensor is indicated by ε, where α 

and β indicate the tensor components, as functions of ω. The electron charge and 

primitive cell volume are represented by e and Ω, respectively. The limit is evaluated as 
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the wave vector q approaches zero (wavelength approaches infinity). The indices c, v, and

k stand for conduction bands, valence bands, and reciprocal lattice vectors, respectively. 

The weights of k, wk, sum to unity. The є indicates eigenvalues of valence or conduction 

bands, depending on index. The eα and eβ are representative of Cartesian unit vectors. The

u characters indicate Bloch quantum mechanical wave vectors, where orthogonality will 

yield zero, which indicates an optical transition at that energy/frequency is forbidden. The

* represents a complex conjugate, and the δ is the Dirac delta function.

Transitions are allowed at non-zero values, in accordance with quantum 

mechanics. Since the limit is evaluated numerically, with wavefunctions calculated from 

density functional theory, information about the character of the transition is not given 

from the equation directly. Therefore, some analysis of density of states (Section 2.3), 

along with group theory analysis and quantum mechanical selection rules (Section 2.6) 

can help to interpret results. From the imaginary part, the real part of the frequency-

dependent dielectric tensor can be calculated by the Kramers-Kronig transformation:

εαβ
(1)
(ω)=1+

2
π P∫

0

∞ εαβ
(2)
(ω ')ω '

ω '2−ω2 dω ' , (2.4.2)

where the 1 indicates the real portion, and P indicates the Cauchy principle value, which 

accounts for the singularity at ω' = ω.89 

It should be noted that the excitonic contribution to the dielectric function is not 

included in this approximation, which is based on PAWs. A similar approach which is 

much more expensive, yet approaches more accurate conduction band eigenvalues and 

includes quasiparticle effects, is the IPQA, where the Q designates quasiparticle. 

However, for a full excitonic study which also includes local field effects (LFE), the 
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extremely expensive method of solving the Bethe-Salpeter equation is recommended. The

IPA calculations in this work do not include excitonic effects but do include LFEs in DFT.

LFEs are microscopic electric fields present from local dipoles in the periodic cell which, 

in this case, are included by exchange and correlation contributions to the wavefunctions. 

For more information on the IPA and how it relates to PAWs, see Reference 43. 

2.5 Density Functional Perturbation Theory (DFPT)

In DFPT, the electronic and vibrational degrees of freedom are separated within 

the Born-Oppenheimer adiabatic approximation. The electronic Hamiltonian can be 

solved as in Section 2.1, and the linear response of a lattice distortion perturbation can be 

described by differentiating the Hellmann-Feynman forces with respect to atomic core 

coordinates by 

∂
2 E (R)

∂Ri∂R j

≡
∂Fi

∂R j

=∫
∂n(r )
∂R j

∂V ne (r )

∂Ri

d r

+∫ n(r )
∂

2V ne (r )

∂R i∂ R j

d r+
∂

2 EN (R)

∂Ri∂R j

,

(2.5.1)

where notation is consistent with Section 2.1.

Currently, within the PAW methodology implemented in VASP, only static values 

of the dielectric tensor can be calculated via the polarization induced by perturbations in 

Equation 2.5.1. The DFPT method is based entirely upon the ground-state which does not

depend on conduction bands. The equation for the vibronic component of the static 

dielectric tensor in DFPT is

ε∞ (q̂)=1−
8π e2

Ω ∑
v, k

2wk ⟨ q̂βv k|ϕv k ⟩ , (2.5.2)
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where q̂ represents the three Cartesian unit vectors, and β and φ are the polarization 

vector and perturbed wave function, respectively, for valence band v, where φ is 

determined from Equation 2.1.8. Again, wk represents the weights of each k point, which 

sum to unity. Finally, the total static dielectric constant εij
∞
(0) can be given by the sum 

of Equations 2.4.2 and 2.5.2. Here, the zero indicates zero frequency. For more 

information on the dielectric constant within DFPT, see References 90 and 43.

2.6 Symmetry, Crystal Field, and Selection Rules 

Much of the analysis in Chapter 3 is derived from group theory arguments, which 

is discussed briefly in this section. Several different symmetries are explored in this work,

which are dependent upon the crystal symmetry of the respective material studied. 

Vacancies, dopants, magnetic order, CDW, and SDW are explored in Chapter 3, and all of

them break crystal symmetry to a certain extent. When symmetry is broken, degeneracy 

of partially filled d orbitals is lifted, leading to crystal field splitting. Since NiO, La2NiO4,

La2CuO4, and all the variants studied here have d states present near the Fermi energy, 

this splitting is particularly important when evaluating optical transitions, and each 

optical transition in this work is scrutinized by the quantum mechanical selection rules of 

crystals within group theory.

First, it should be noted that the crystal field in 3d transition-metal oxides is much

stronger than the spin-orbit interaction (SOI),91 so SOI is neglected throughout this study, 

and spin is treated as collinear. By collinear, it is meant that the charge density of Section 

2.1 for each spin channel is treated as non-interacting. In the binary cubic rock-salt 
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structure, the crystal field is octahedrally coordinated, with Oh symmetry, leading to the d 

level splitting into doublet eg and triplet t2g states. The g indicates even parity, which 

originates from the German word for even – gerade (the subscript u denotes ungerade or 

odd). The eg states have basis functions (√3)(x2 – y2) and 3z2 – r2, and the t2g states have 

basis functions xy, yz, and zx, where basis functions and their orthogonality are explained

in Appendix B. If symmetry is reduced from a cubic crystal to a tetragonal one of 

symmetry D4h, the eg level splits further into A1g and B1g nondegenerate states with basis 

functions z2 and x2 – y2,, and the t2g level splits into a doublet Eg level (xz, yz) and a 

nondegenerate B2g level (xy), as indicated in the schematic in Figure 4 for the symmetry 

D4. Note that the first letter of the orbital symmetry can be upper or lower-case, and both 

notations are used here, interchangeably. The h in Oh and D4h represents a horizontal 

reflection symmetry, so a g is added to the states of O and D4 in Figure 4.

While group theory only determines whether the splitting occurs and cannot 
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Coordination. Figure adapted from Reference 91.



determine the energies, the density of states from Section 2.3 gives quantitative energetic 

information about these levels called the projected or partial density of states (PDOS). 

The selection rules of quantum mechanics and group theory combined with PDOS and 

the frequency-dependent complex dielectric function from the IPA (Section 2.4) can 

predict which optical transitions are possible. 

The traditional quantum mechanical selection rules for an atomic electric-dipole 

transition include angular momentum quantum number Δl = ± 1; magnetic quantum 

number Δml = -1, 0, or 1; spin quantum number Δms = 0; and, initial (φ) and final (ψ) 

states must be of opposite parity.91 Going a step further, the relation governing the 

selection rule of an electric-dipole transition in group theory is as follows:

ψα '
i ' ⊗ Ĥβ

j ⊗ϕα
i , (2.6.1)

where  represents a direct matrix product, i and i' are irreducible representations of ⊗

symmetry operations, α and α' are partners of irreducible representations Γi and Γi', and 

the electric-dipole Hamiltonian is 

Ĥβ
j
=−

e
2mc

p̂⋅A . (2.6.2)

The p̂ term is the electron momentum operator, and A is the vector potential of an 

external electromagnetic field. Magnetic-dipole and electric-quadrupole transitions are 

known to be weak and will not be addressed in the present work. Equation 2.6.1 can 

determine whether an electric-dipole transition is allowed or forbidden. An allowed 

transition has nonzero matrix element(s) upon evaluating Equation 2.6.1, and a forbidden 

optical transition will not.

However, it has been pointed out by Rödl and Bechstedt that a purely atomic 
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electric-dipole interpretation of optical transitions in transition-metal oxides can be highly

deceptive.92 Here, optical transitions of hybrid orbitals are considered, as well. In any 

case, for any transition, precisely to which symmetries a given symmetry is allowed to 

transition can be determined by 

aλμν=
1
h∑Cα

NCα
[Χ

(λ)
(Cα)Χ

(μ)
(Cα)][Χ

(ν )
(Cα)]

*, (2.6.3)

where h is the order of the group (number of group elements), NCα is the number of 

elements in the class Cα, and X(i)(Cα) are irreducible representations of a group, where the 

product is a linear combination of the irreducible representations:

Χ
(λ)
(R)Χ(μ )

(R)=∑
ν

aλμνΧ
(ν)
(R) . (2.6.4)

Equation 2.6.3 will be used frequently in the analysis in Chapter 3. Incidentally, 

symmetry of hybrid orbitals can be predicted in this way, as well, in what is known as 

ligand field theory. Further, since high-symmetry points in the Brillouin zone have their 

own symmetry operations, the equation can be applied to optical transitions in specific 

regions of k space, where the Bloch states mentioned in Section 2.1 are described 

accordingly. For more information on group theory, see References 91, 93, and 94.

2.7 The Nudged Elastic Band (NEB) Method 

As an ion diffuses through a bulk crystal, it will encounter an energy barrier 

between stable sites, corresponding to a local maximum. The minimum energy along this 

path is aptly referred to as the minimum energy path (MEP). Since a continuous 

calculation within DFT would be prohibitively expensive, in the NEB method within 

VASP, the user chooses a set number of steps, or data points to calculate, named images. 
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Each image corresponds to an ion's position along the path, and the total ground-state 

energy is calculated for the entire system, as outlined in Section 2.1, for each image of the

ion along the path, resulting in an MEP curve. 

The force at each image i along the MEP is given by

Fi=Fi
s
−Fi

t , (2.7.1)

where the spring force Fs = kx is given for each image by

Fi
s
=k (|Ri+1−Ri|−|Ri−Ri−1|)⋅τ̂ i , (2.7.2)

and the true force is given for each image by

Fi
t
=∇ E (Ri)−∇ E(Ri)⋅τ̂ i . (2.7.3)

The constant k is the spring constant, and τ̂ i is the normalized local tangent at image i. 

More information can be found in references 95 and 47.
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3. CALCULATION RESULTS AND DISCUSSION

Structural, magnetic, spin, electronic, optical, and dielectric properties are 

calculated within DFT for NiO (Section 3.1), Fe:NiO (Section 3.2), La2NiO4 (Section 

3.3), La2-xSrxNiO4 (Section 3.4), La2CuO4 (Section 3.5), and La2-xSrxCuO4 (Section 3.6). 

Results are presented, and analysis is carried out in each respective section, comparing 

with previous works, both experimental and theoretical, when possible. All calculations 

were performed on the STAR cluster, at Texas State University. For a discussion of new 

key findings, see Chapter 4. 

 

3.1 NiO

Nickel (II) Oxide (NiO) is an antiferromagnetic (AF) insulator with structural 

space group Fm3m (isostructural to rock salt or NaCl). The NiO (NaCl) unit cell can be 

described as two interlaced face-centered cubic cells which are separated by half of the 

lattice constant. The result of this description is a cubic cell (octahedral or Oh symmetry) 

with alternating anions and cations and can be seen in Figure 5(a). The structural 

primitive cell has two atoms; however, due to antiferromagnetism at room temperature, 

with a Néel temperature TN of ~525 K, the magnetic primitive cell must contain at least 

four atoms, in order to contain both spin up and spin down Ni. The four atoms are 

highlighted in green in Figure 5(a), and the magnetic primitive cell is shown in Figure 

5(b). The lattice vectors for the magnetic primitive cell in Figure 5(b) are 
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a1=a x̂+
a
2

ŷ+
a
2

ẑ ,

a2=
a
2

x̂+a ŷ+
a
2

ẑ ,

a3=
a
2

x̂+
a
2

ŷ+a ẑ ,

(3.1.1)

where x̂ , ŷ , and ẑ are the Cartesian unit vectors. The cubic representation can be 

reduced by 1/8 of Figure 5(a), by sampling one of the eight cubes outlined in gray. The 

trigonal (a type of rhombohedral cell) primitive cell in Figure 5(b) has half the volume 

and half the number of atoms of one eighth of Figure 5(a), making the calculation with 

the unit cell in Figure 5(b) more computationally efficient. Magnetization vectors 

(indicated by arrows in Figure 5) are parallel in the (111) plane (type II AF ordering), 

with Ni in each adjacent plane in the [111] direction having antiparallel magnetization. 

Bonding is mostly ionic, with charge of Ni 2+ and O 2-.

Ni 4s23d8 and O 3s23p4 electrons were treated as valence in the PBE-generated 

PAWs, whereas inner orbitals were taken to be frozen in the core. Cutoff energy was 

chosen to be 320 eV, where plane waves with kinetic energy larger than the cutoff energy 
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Figure 5. Primitive Cell of NiO. Ni are gray, and O are red. Arrows indicate local 
magnetization of Ni (111) planes. The (a) cubic representation, with lattice vectors 2a 
can be reduced to a (b) trigonal magnetic primitive cell by sampling only the four green 
atoms. 



are excluded from the calculation. A 4 × 4 × 4 gamma-centered k-point mesh was used to 

calculate the ground state in 32 atom 2 × 2 × 2 cells. The 32 atom cell was used in even 

the intrinsic case in order to compare directly with cases with vacancies and/or Fe 

dopants.

3.1.1 Intrinsic NiO

The lattice parameter, a, was optimized by varying the value sufficiently, fitting to

the Birch-Murnaghan Equation of State96

P(V )=
3 B0

2
[(

V 0

V
)

7
3−(

V 0

V
)

5
3 ][1+

3
4
(B0

'
−4)[(

V 0

V
)

2
3−1]] , (3.1.2)

where P is pressure, V is volume, and V0 and B0 are the volume and bulk modulus at zero 

pressure, respectively, where

B0=−V
∂P
∂V

, (3.1.3)

evaluated at P equal to zero. The interpolated minimum energy corresponds to the 

optimized volume, with the structural lattice parameter for this particular unit cell being 

a0=
1
2
(16 V 0)

1/3
, (3.1.4)

which is 7.915 Bohr radii or 4.189 Å. The 16 originates from the fact that Figure 5(a) has 

16 times the volume and number of atoms as Figure 5(b), whereas the 2 indicates that 

each lattice vector in Figure 5(a) is twice the length of the lattice constant. Two cubic unit

cells in each direction illustrate this. The excellent Birch-Murnaghan fit can be seen in 

Figure 6. 

Electronic structure and other physical properties of intrinsic NiO were calculated
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here and compared to previous works to illustrate the accuracy of the methods used. 

Table 1 shows a comparison of the physical properties of NiO calculated here with those 

of experiment and theory, and a high level of agreement can be seen. As expected, an 

increase in the band gap was observed when using the HSE06 functional. The magnitude 

of the magnetic dipole moment of each Ni is indicated by μ (Bohr magnetons), where Ni 

in adjacent (111) planes have opposite sign. The value listed for the band gap of NiO is 

that of the indirect gap. The static optical dielectric constant, ε(∞), of Table 1 was 

calculated within the long wavelength limit of the Independent Particle 

approximation43 (IPA) (Section 2.4), and the total static dielectric constant, ε(0), was 
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Figure 6. Birch-Murnaghan Fit of Intrinsic NiO. Calculated energies for each volume 
considered are indicated by squares. The Murnaghan fit was performed using equation 
3.1.2, where V0 is at the minimum of the curve, and 1 Rydberg = 13.6 eV.



calculated by summing the optical contribution (IPA) with the vibronic contribution from 

Density Functional Perturbation Theory90 (DFPT) (Section 2.5). HSE06 values of the 

band gap are listed for comparison and can be seen to overestimate conduction band 

eigenvalues substantially. For this reason, and since the GGA + U calculations show 

excellent agreement with previous work, both experimental and theoretical, DFT + U 

(Sections 2.1 – 2.2) is used throughout the rest of this study. An effective U – J value of 

5.3 eV was used in all NiO calculations, because previous theoretical works have found 

this value to give excellent quantitative agreement with experimental physical 

properties.41,97 

To analyze physical properties related to electronic structure and optical 

transitions, first, the band structure is calculated along high-symmetry lines in the BZ. 

The reciprocal lattice vectors, high-symmetry points, and path through the BZ can be 

seen in Figure 7. The high-symmetry points, in reciprocal lattice units of 2π/a, are
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Table 1. Physical properties of intrinsic NiO. Comparisons with previous works are 
shown, both theoretical and experimental, where a is lattice constant, B is bulk modulus, 
μ is magnetic dipole moment of Ni, Eg is the indirect band gap energy, and ε is the 
dielectric constant. Theoretical results from this work and others were calculated with 
VASP-PAW, within GGA+U, with an effective U = 5.3 eV. These values are compared to 
our HSE06 calculations, as well.



F = (0.5, 0.0, 0.5);

Γ = (0.0, 0.0, 0.0);

T = (0.5, 0.5, 0.5);

K = (0.375, 0.375, 0.75);

L = (0.0, 0.0, 0.5).

This path gives a representative sampling of the relevant BZ by symmetry, and the 

resulting band structure calculation, within GGA + U, can be seen in Figure 8. For 

comparison, the band structure calculated within HSE06 is shown in Figure 9. In both 

cases, an indirect band gap can be seen, with the valence band maximum (VBM) at T and
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Figure 7. Primitive Brillouin Zone of Antiferromagnetic NiO. 
Primitive vectors are shown in blue, and the path of the band 
structures in Figures 7 and 8 is shown in green.



the conduction band minimum (CBM) at Γ, whereas the minimum direct band gap is at 

the T point. All of the eigenvalues in both figures are adjusted to the Fermi energy, which 

is taken to be zero, and is shown as a red dashed line. 

The optical band gap of approximately 4.0 eV has undergone considerable 

scrutiny over the years, and while originally thought to be a Mott insulator, the current 

consensus is that NiO is either a charge-transfer insulator or possibly having 

characteristics of both types.40,98–104 The gap of a Mott insulator consists of a d-d 

transition, as a result of exchange and crystal field splitting, whereas the gap of a charge-

transfer insulator consists of a transition typically from the anion valence band to the 

cation conduction band.99 Most works report a valence band comprised of a mix between 
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Figure 8. Calculated GGA + U Band Structure of Intrinsic NiO. An indirect band gap
of 3.29 eV can be seen between the Γ and T points. The smallest direct band gap is 3.81 
eV, at the T point. The red dashed line indicates the Fermi Energy, taken to be zero.



O p and Ni t2g states and a Ni eg conduction band.40,98–104 However, some recent works 

indicate that the lowest energy conduction band is Ni s.105,106 Here, only a very small 

contribution of Ni s is shown to be near the CBM, which is predominantly Ni eg. 

However, Rödl et al. suggest the dispersive CBM at the Γ point is of s character.98 In 

subsequent work, Rödl and Bechstedt concluded from expensive GW calculations, in 

conjunction with the Bethe-Salpeter Equation, that the first optical transition is intra-

atomic from t2g of one Ni site to eg of the same Ni.92 The d orbitals of Ni are split into t2g 

and eg states by the crystal field induced by the octahedral (Oh) coordination of Ni-O 

bonds (Section 2.6). 
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Figure 9. Calculated HSE06 Band Structure of Intrinsic NiO. Clear similarity is seen 
between the HSE06 and GGA + U band structures, yet the HSE06 functional, which is 
thought to be more rigorous, overestimates the experimental band gap in Table 1 
considerably. This illustrates the effectiveness of the GGA + U method used in this work. 
Again, the Fermi Energy is taken to be zero and is indicated by the red dashed line.



From a pure crystal-field theory interpretation, the calculations presented here 

indicate that the VBM is predominantly O p, and the CBM is predominantly eg, aligning 

with the charge-transfer insulator point-of-view. However, taking the more rigorous 

interpretation of ligand field theory, where overlap of metal d orbitals with ligand orbitals

is taken into account, in Oh symmetry, it is clear that the t2g orbitals conform to a π 

bonding set which does not interact with the oxygen. This is evident from decomposing 

the reducible representation of all possible π orbitals, as shown by Cotton.107 The result of

the decomposition via Equation 2.6.3 becomes

Γπ = 3t1g + 3t2g + 3t1u + 3t2u.

Of these representations, t2g matches the triplet 3d orbitals of Ni with basis functions xy, 
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Figure 10. PDOS of Non-Interacting Ni d3 π Orbital of t2g Symmetry in Intrinsic 
NiO. Density is normalized per unit cell. Fermi energy is taken to be zero and is 
indicated by the red dashed line. 



xz, and yz, while t1u matches the symmetry of the p orbitals of Ni. The other two 

representations, while possible mathematically, have no physical meaning. The t1u p 

orbitals of Ni can be excluded from π bonding, as will be made clear below, so the result 

is a d3 Ni π bond of t2g symmetry, which is noninteracting with oxygen. The calculated t2g 

PDOS is shown in Figure 10, for completeness.

However, it is the s, p, and eg (d) orbitals of Ni, which overlap with O p in 

octahedrally-coordinated NiO, creating σ bonds. The σ bonds take precedence over π 

bonding, so the Ni p orbitals are reserved for this configuration. The PDOS of these 

orbitals is shown in Figure 11. Again, applying Equation 2.6.3, 

Γσ = a1g + 2eg + 3t1u,
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Figure 11. PDOS of the Orbitals involved in σ bonds in Intrinsic NiO. Density is 
normalized per unit cell. Fermi energy is taken to be zero and is indicated by the red 
dashed line. 



where each representation corresponds to a σ bond between O p and Ni s (a1g), Ni d (eg), 

and Ni p (t1u). With this interpretation, the valence band maximum (VBM) at the T point 

is a σ orbital of eg symmetry. Incidentally, the conduction band minimum (CBM) at Γ is 

missing any contribution from O p, being solely comprised of Ni s and Ni eg, making the 

intra-atomic optical transition of Rödl and Bechstedt appear likely. For the other high-

symmetry points, the CBM is clearly composed of a σ* anti-bonding orbital of symmetry 

eg. The first optical transition will be investigated further below. For now, comparing 

DOS with experiment, the bremsstrahlung isochromat spectroscopy (BIS) measurements 

in Figure 12 of Zimmerman, et al.108 show two peaks at ~2 eV and ~6 eV below the 
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Figure 12. Comparison of measured photoemission with 
inverse photoemission (BIS) spectra. Figure adapted from 
Reference 108.



VBM, in excellent agreement with PDOS results presented here in Figure 11. 

 While the eg orbitals of Ni are only partially filled, giving rise to the AF nature of 

the material, the t2g orbitals are completely occupied. Locally, the DOS of each Ni lies 

within a strong ligand field, resulting in a large splitting between the eg and t2g states, as 

shown in previous work of Petersen, et al.,44 and as will be analyzed further in the next 

section. In addition, results obtained for the real and imaginary parts of the complex 

dielectric function and related optical properties will be shown, analyzed, and compared 

with the results of the cases with O vacancies (NiOy).

3.1.2 O Vacancies in NiOy

While the conducting filaments (CFs) consist of O vacancies and/or metal 

precipitates, the most stable defect in NiO is Ni vacancies which give NiO its intrinsic p-

type character. However, in RRAM, as the metal electrode scavenges O anions upon an 

applied threshold voltage, creating the CFs, this results in a Ni-rich condition where 2+ O 

vacancies become increasingly more stable at higher Fermi Energies (EF).38,109–111 In other 

words, the O vacancy behaves as a 2+ charge which bonds with the Ni valence. For this 

reason, up to a threshold concentration of O vacancies, the system remains insulating. 

While not labeled explicitly, all O vacancies in this work should be considered 2+. 

Therefore, the electrodes should be chosen carefully and may determine whether O ions 

are scavenged effectively and whether the switching is unipolar or bipolar.9 Since bipolar 

switching is desirable, as mentioned above in Section 1.1.1, understanding electronic and 

dielectric properties in the Ni-rich condition is a large focus of this work. 
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Since the composition of interest with respect to RRAM is such that O vacancies 

are present in the bulk, further characterization of NiO with O vacancies by PDOS is 

presented in Figure 13 and compared to the stoichiometric case. Each supercell with 

vacancies underwent full ionic relaxation, reducing forces on each ion to < 10 meV/Å. 

Upon relaxation, the Ni ions move 2.9% closer to the vacancy site than if no vacancy 

were present, which agrees fully with the findings of Park, et al.41 Vacancy concentrations

considered are 6.25%, 12.5%, and 25% and will be referred to by y = 0.9375, y = 0.875, 

and y = 0.75, respectively. 2 × 2 × 2 supercells grown in the direction of each lattice 

vector, consisting of 32 atom supercells were used in the calculation of the PDOS in 

Figure 13. Figure 13(a) is the case of y = 1 and is displayed for comparison, while Figure 

13(b) corresponds to y = 0.9375, 13(c) is y = 0.875, and 13(d) is y = 0.75. In the cases of 

multiple O vacancies, each O lattice site was tested as a vacancy, until the lowest energy 

(most thermodynamically stable) configuration was found. Each Ni has prominent crystal

field splitting, indicating a strong ligand field, that is reduced at sites which are nearest-

neighbor to an O vacancy. 

The oxygen vacancy induced levels nearest in energy on either side of the Fermi 

energy in Figures 13(b) and 13(c) show σ bonded Ni d and O p of symmetry eg, with a 

low-lying level occupied by the two orphaned electrons being shared among the six 

octahedrally-coordinated Ni atoms, making up the new VBM. The other set of introduced

energy levels are of Ni eg character, as well, and lie just below the intrinsic CBM and are 

unoccupied. Yet, the system remains insulating until a threshold O vacancy limit is 

reached somewhere between y = 0.875 – 0.75, where the system becomes n-type. In 
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Figure 13(d), for y = 0.75, the O vacancy concentration has crossed the limit, and a Fermi

surface of Ni eg character is introduced. Even though scattering plays a role in resistance, 

clearly, from the reduced band gap in the electronic structure alone, it can be concluded 

that the resistance decreases as filamentary stoichiometry is approached, providing 

further evidence for the filament model of NiO RRAM. 

Figure 14 displays the calculated local site-projected density of states (LDOS). In 

Figure 14(a), the y = 1 case is displayed for comparison. As discussed above, the eg state 

is only partially filled. Figure 14(b) is for an arbitrary Ni in the y = 0.9375 concentration, 

where all states can be seen to be shifted to lower energy. Figure 14(c) shows the LDOS 

for a Ni which is nearest-neighbor to a vacancy in the y = 0.9375 concentration. In this 
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Figure 13. PDOS Showing Crystal Field Splitting in NiOy. Ni eg, Ni t2g, and O p states 
are shown for (a) y = 1, (b) y = 0.9375, (c) y = 0.875, and (d) y = 0.75. The Fermi 
energy is taken to be zero and is indicated by the red dashed lines. 



case, an alternate spin configuration is found where total spin is reduced by an introduced

Ni eg state originating from the O vacancy. It is this vacancy effect that decreases the 

band gap. In the band structure for the y = 0.9375 case (one vacancy in the 2 × 2 × 2 unit 

cell), Figure 15 clearly shows a reduced band gap at the L point which is direct. In this 

case, the bands comprising the CBM are highly localized, while the VBM shows some 

dispersion.  

While confirming a reduced band gap experimentally would prove challenging in 

situ during the switching process, using transparent electrodes would make measurements

of optical transitions during operation possible. For this reason, calculations of optical 
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Figure 14. LDOS of NiOy. Ni eg and t2g states are shown for (a) arbitrary Ni with y = 
1, (b) arbitrary Ni with x = 0.9375, and (c) Ni nearest to an O vacancy with x = 0.9375. 
The Fermi energy is taken to be zero and is indicated by the red dashed lines.



transitions with and without an O vacancy are presented in Figure 16. The PDOS 

elucidates the type of transition which occurs, and the band structures give an indication 

of the range of energies allowed for the first optical transitions. While DFT + U cannot 

provide precise quantitative conduction eigenvalues, qualitative spectral conclusions can 

be drawn. Figure 16 shows the real and imaginary parts of the complex dielectric 

function, without (a) and with (b) an O vacancy. The characteristic transition is apparent 

in both cases, while a lower energy transition can be seen in the case of the O vacancy at 

the reduced direct band gap energy. This lower energy peak is due to the transition from 

the occupied O vacancy-induced level to the conduction band. This result was shown for 

the first time in 2016 by Petersen, et al.44 Some further analysis is necessary, however. 
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Figure 15: Calculated GGA + U Band Structure of NiO0.9375. Even with just one O 
vacancy in the unit cell (y = 0.9375), the band gap is reduced significantly to 1.91 eV. 
Dispersion in the new VBM is evident, yet the reduced band gap is direct at the L point.  



Without vacancies, due to the dispersion in the band structure in Figure 8, the 

direct band gap differs, depending upon which symmetry point is considered, ranging 

from 3.81 eV at the T point to 4.69 eV at the F point. This range leads to a broad peak in 

the first series of optical transitions in intrinsic NiO in Figure 16(a). The transitions are 

evident from the Imaginary component of the frequency-dependent dielectric function 

(ε2). The minimum direct band gap at the T point is indicated by a dotted black line at the 

energy of the onset of the increase of ε2, and the peak is broad until the direct band gap 

energy of the F point. From the PDOS in Figure 11, it can be seen that a multitude of 

transitions should be analyzed to determine which are allowed by electric-dipole 
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Figure 16. Complex Frequency-Dependent Dielectric Function of NiO and NiO0.9375. 
Real (ε1) and imaginary (ε2) components of the dielectric function were calculated for (a) 
intrinsic NiO and (b) NiO0.9375 with one vacancy in the unit cell (6.25%). A lower energy 
optical transition is evident in the case with the vacancy.



transition selection rules and equation 2.6.3. First, realizing that the perturbing 

Hamiltonian of the electric-dipole field in Equation 2.6.2 is of symmetry t1u in an Oh 

crystal-field, a direct matrix product of valence states with t1u yields possible final states 

of allowed transitions. Rather than treat the orbitals as atomic, due to the evident mixing 

of states in the valence in particular, here, they are treated as hybrid orbitals, as discussed 

in Section 3.1.1. Reducible representations were generated from the direct matrix product

in Equation 2.6.1. From this result, the decomposition formula (Equation 2.6.3) yields the

following two possible transitions:

t1u (σ) ↔ t2g (π);

eg (σ) ↔ t1u (σ);

It should be mentioned that both of these possibilities are available in the PDOS, as 

determined in the previous section. Also, the same logic determines that the transitions 

between even parity states in an electric-dipole perturbative field are not possible, at least

at the Γ point.

These results can be compared directly with the cases with O vacancies. In Figure

16(b), the first optical transition is at lower energy, due to the O vacancy-induced reduced

direct band gap. The peak in ε2 shows that this transition is narrower in energy, resulting 

from the localization of the CBM and narrow range of energy in the dispersion of the 

VBM. The dotted line indicates the narrowest direct band gap at the L point. The VBM is 

clearly of eg symmetry now; so, with this interpretation, there is only one possible 

transition – eg to t1u.

However, another interpretation of this transition is that of site-hopping. This is 
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the typical description of excitation in a transition-metal oxide, where, in this case, an eg 

carrier hops from one Ni site to the nearest Ni of opposite spin alignment.112 This 

possibility can be understood in terms of a Wannier-Mott exciton, where the radius of the 

photon-generated electron-hole pair is larger in size than the lattice spacing. Furthermore,

the transfer integral can be described by 

⟨χi |χ j⟩=cos (
θij

2
), (3.1.1)

where i and j are initial and final spin states χ, and θ is the angle between them. In the 

simple collinear approach in this work, clearly the angle can take only one of two values 

– 0 or π – thus, the transition is possible only for aligned spins where kinetic energy gain 

is maximized. From Figure 14(a), it is clear that the spin-up channel of eg of Ni is 

occupied, while the spin-down channel of eg is not. Since the nearest Ni will have 

opposite spin configuration, due to the magnetic ordering, this nearest Ni will have an 

empty eg state of aligned spin with the occupied initial Ni eg state. Similarly, the same 

argument holds for the case of an O vacancy, although the hopping distance is only from 

O vacancy site to nearest-neighbor Ni. Certainly, the theoretical methods used in this 

work could be more rigorous, and the hopping mechanism between eg states should be 

confirmed with calculations of exciton radius and oscillator strength of the optical 

transition.

Frequency-dependent optical properties are analyzed further in Figure 17, where 

blue lines represent intrinsic NiO, and green lines represent the material with one O 

vacancy. These properties are calculated by the equations in Appendix A. Figures 17(a) 

and 17(b) compare the complex refractive index of the two cases, where Figure 17(a) is 
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the real part, and Figure 17(b) is the imaginary part or extinction coefficient. Clearly, 

phase velocity of transmission depends on frequency, and attenuation is evident in the 

energy ranges of the respective transitions. Reflectivity (Figure 17(c)), which is 

frequently the optical property directly measured, has local maxima at the transition 

energies where the greatest reflection occurs. Refractive index, extinction coefficient, 

reflectivity, and absorption (Figure 17(d)) show excellent agreement with the 

experimental results of Powell and Spicer.113 However, their absorption data has several 

local maxima in a narrow energy range near the lowest energy transition. The theoretical 

methods used in the present work are limited by numerical approximations which cannot 
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Figure 17. Optical Properties of NiO and NiO0.9375. Here, electronic components of (a) 
refractive index, (b) extinction coefficient, (c) reflectivity, (d) absorption, (e) optical 
conductivity, and (f) dielectric loss were calculated for intrinsic NiO (blue) and NiO0.9375 
with one O vacancy (green). Dotted lines in (d) represent the lowest energy direct band 
gaps in the respective systems. 



necessarily distinguish between peaks in such a narrow energy range; however, the 

analysis presented above indicates that these transitions are characteristic of the several 

direct band gaps at high-symmetry points in the Brillouin zone. The real optical 

conductivity in Figure 17(e), related to the electric field strength corresponding to 

dielectric breakdown, shows peaks associated with the transition energies, as expected, 

indicating the energy at which electronic excitation occurs. The peaks in dielectric loss in 

Figure 17(f) display the energies at which electromagnetic energy is dissipated 

electronically. It is not surprising that this occurs at the energies corresponding to optical 

transitions. 

While much information can be gleaned from frequency-dependent optical 

properties, device operation of RRAM is below infra-red frequency, so static values of 

the dielectric constant ϵij
∞
=ϵij (0) are calculated for the case of zero, one, and two 

vacancies, i.e., y = 1, 0.9375, and 0.875. Electronic and ionic contributions are calculated 

separately, totaled, and compared in Table 2. A clear trend of increasing dielectric 

constant is evident as O vacancy concentration is increased. Local field effects play a 

small role in NiO, but the ionic and electronic contributions to the static dielectric 
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Table 2. Static Dielectric Constant of NiOy. LFE indicates whether local field effects 
were taken into account or not.



constants are quite different. The majority of the static electric field impeded by the 

material is due to vibronic interactions or polarization which is enhanced by O vacancies.

While comparing the static dielectric constants may give an indication of the ease 

of diffusion of O,114 a more rigorous method is to calculate energy barriers and tangential 

forces of O diffusion. Both were calculated here within the Nudged Elastic Band 

Method,47 in the case of y = 0.75 (1 vacancy in an 8 atom cell, leaving 7 atoms), and the 

results can be seen in Figure 18, where data points were fit with Akima splines. The peak 

energy barrier in the [110] direction – the energy required to move an O ion from one 

lattice site to the nearest-neighboring non-Ni site – was found to be approximately 4 eV 
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Figure 18. Nudged Elastic Band Calculations of O Diffusion in the [110] Direction of
NiO. Energy barrier (a) and tangential force (b) are fit to Akima splines, so extrema can 
be seen clearly.



per cubic unit cell in Figure 18(a). The force curve required to overcome such a barrier is 

shown in Figure 18(b) and was calculated from Equation 2.7.1. The peak force has a 

magnitude of approximately 4 eV/Å. 

The energy barrier of diffusion of O (vacancies) of NiOy, Ni1-xFexOy, and Ni1-

xCoxOy will be compared at the end of the following section. Electronic and optical 

properties will be analyzed for NiOy and Ni1-xFexOy as well, with particular emphasis on 
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Figure 19. Supercell of 32 atom Ni1-xFexO. Fe is red, Ni is gray, and O is blue. The cell 
is outlined in gray. Black arrows indicate local dipole moments of metal ions in the (111) 
planes, and colored arrows indicate the lattice vectors. Numbers indicate the order in 
which added Fe atoms orient in the supercell, according to enthalpy. 



whether addition of Fe improves RRAM operation.

3.2 Ni1-xFexOy (Fe:NiO)

For purpose of comparison, the same 32 atom unit cell was used in the case of Ni1-

xFexOy as with NiOy. Thus, the BZ is the same, as well. Fe 4s23d6 electrons were treated 

as valence in the PBE-generated PAWs, whereas inner orbitals were taken to be frozen in 

the core. Again, energy cutoff was chosen to be 320 eV, with a gamma-centered 4 × 4 × 4 

k-point mesh. Since little experimental data is available for Ni1-xFexO, and almost no 

theoretical work, an effective U – J value cannot be determined empirically. For this 
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Figure 20. LDOS of d orbitals for Fe impurity in NiO. Arrows indicate the spin of the 
filling of d orbitals in the octahedral field. The Fermi energy is taken to be zero and is 
indicated by the red dashed line.



reason, the same value for Fe as Ni of 5.3 eV is used throughout this work. Due to the 

excellent description of physical properties of NiOy with DFT + U, highly expensive 

HSE06 calculations – which significantly overestimate the band gap in NiO – are not 

performed on the present system doped with Fe. 

Due to Fe having greater magnetic susceptibility than Ni, an even number of Fe 

must be present in the unit cell to ensure a net magnetic moment of zero in the AF 

system. Therefore, Fe concentrations of x = 0.125 and x = 0.25 are presented here, 

58

Figure 21. Electronic Structure and First Optical Transition of Ni0.875Fe0.125O. Shown 
is the (a) band structure, (b) PDOS, (c) LDOS, and (d) the imaginary component of the 
dielectric function ε2. The arrows indicate the direct energy band gap in the band 
structure at the F point. The Fermi energy is taken to be zero and is indicated by the red 
dashed line. The density of the LDOS in (c) is magnified 3 times the density of the PDOS 
in (b) for illustrative purposes.



corresponding to two and four Fe in the unit cell. Ground state energy was calculated, 

adding one Fe at a time to all possible lattice sites, in order to obtain the atomic positions 

of the most thermodynamically stable configuration. The resulting Fe positions are shown

in the unit cell of Figure 19, where Fe replaced Ni directly, and the supercell underwent 

ionic relaxation to reduce forces on each ion to < 20 meV/Å. O ions move < 1% away 

from the Fe impurity sites. The 1 and 2 in Figure 19 correspond to the most stable 

configuration of two Fe in the x = 0.125 system, whereas 1-4 represent the four most 

stable Fe positions in the x = 0.25 composition. 
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Figure 22. Electronic Structure and First Optical Transition of Ni0.75Fe0.25O. Shown is
the (a) band structure, (b) PDOS, and (c) the imaginary component of the dielectric 
function ε2. The arrows indicate the direct energy band gap in the band structure at the F 
point. The Fermi energy is taken to be zero and is indicated by the red dashed line. 



3.2.1 Ni1-xFexO Without Vacancies

For both x = 0.125 and 0.25, the magnitude of the magnetic dipole moments of Ni

and Fe sites is found to be 1.70 and 3.75 Bohr magnetons, respectively, with the AF-

aligned magnetic dipole moments summing to a net magnetization of zero in the ground 

state. As can be seen from the LDOS in Figure 20, the 3d6 electrons in Fe take on a vastly

different role than the 3d8 electrons in Ni upon substitution in the lattice. The much larger

magnetic dipole moment of Fe results from the high spin configuration. The arrows in the
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Figure 23. Optical properties of NiO vs Ni0.75Fe0.25O. Shown is (a) the complex 
dielectric function, (b) complex refractive index, (c) reflectivity, (d) absorption, (e) 
optical conductivity, and (f) dielectric loss. Figure adapted from Petersen, et al.115



figure indicate the filling, where the three spin-up electrons in the t2g symmetry form a d3 

π bond, similar to what is seen in intrinsic NiO. However, the one spin-down t2g electron 

is unpaired yet completely occupied. Two spin-up eg electrons can be seen in the LDOS, 

as well. Clearly, without an even number of Fe impurities in the cell which are 

antiferromagnetically aligned, the experimentally observed net magnetization of zero 

would not be present. 

With the ground state accurately described, the band structure was calculated, first

for the case without O vacancies (Figure 21(a)), for Ni0.875Fe0.125O.  With the substitution 

of Fe, the indirect band gap of NiO becomes direct at the F point. While the minimum 

direct energy band gap of intrinsic NiO was calculated to be 3.81 eV at the T point, 

Ni0.875Fe0.125O has a direct band gap of 2.61 eV. A highly-localized band is introduced with

the addition of Fe at the VBM. To characterize this band, along with the rest of the 

electronic structure, calculated PDOS and LDOS are shown in Figures 21(b) and 21(c), 
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Figure 24. Ni1-xFexOy Supercell. Ni are gray, Fe are red, O are blue, and O vacancy sites
are green.



respectively. This reduction in the band gap from the t2g level of Fe has little effect on the 

optical properties, as can be seen from the onset of ε2 in Figure 21(d). 

Figure 22 shows a similar figure for x = 0.25. In Figure 22(a), the direct band gap 

can be seen to be reduced by 0.37 eV from the x = 0.125 concentration. Figure 22(b) 

displays the calculated PDOS which differs only from the lesser concentration by having 

more density of Fe levels. In Figure 22(c), the first optical transition can be seen to occur 

at lower frequency, as expected with the reduced energy band gap. At first glance, this 

may be misleading, however. The lone spin-down t2g electron of the VBM neither bonds 

with O nor participates in the first optical transition, nor does it create a Fermi surface. 

Octahedral symmetry forbids an electric-dipole transition from a state with t2g symmetry 
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Figure 25. Electronic Structure and ε2 in Ni0.875Fe0.125O0.9375. The (a) band structure, (b) 
PDOS, and (c) imaginary part of the dielectric function are shown.



to one of eg, so the first optical transition is nearly identical to that of intrinsic NiO – 

again, the transition can be interpreted as being from t1u to eg. The transitions can be seen 

further in Figures 23(a) – (f), adapted from Petersen, et al.,115 where peaks in optical 

properties, such as absorption, are at lower energy than NiO, merely due to the lowering 

of energy of the anti-bonding eg state in the CBM, consisting of Ni eg and O p. Again, 

however, the hopping transition in Equation 3.1.1 from eg of one Ni to eg of the next Ni 

along the bonding direction gives a more accurate description, assuming the created 

exciton is sufficiently large.
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Figure 26. PDOS of Ni0.875Fe0.125NiOy. Here, (a) displays y = 1, (b) y = 0.0625, (c) y = 
0.125, and (d) 0.25. 



3.2.1 Ni1-xFexOy With O Vacancies

As was done for the Fe impurities, O vacancy sites were tested for 

thermodynamic stability, where the most stable positions are indicated in green in Figure 

24. It should be noted that the vacancy sites are most stable adjacent to Ni sites, rather 

than Fe sites. This is due to the propensity of Fe to have a higher oxidation state than Ni. 

Again, the Ni sites move closer to the 2+ vacancy sites upon relaxation. 

Contrary to NiOy and Ni1-xFexO, the energy band gap of Ni0.875Fe0.125O0.9375 in 

Figure 25(a) is indirect. The t2g Fe d level (Figure 25(b)) is still highly localized in the 

valence, but it is no longer the VBM. As in NiOy, the eg Ni d and t1u O p hybridize to an 

anti-bonding σ state of eg symmetry, comprising the new VBM, which exhibits 
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Figure 27. PDOS of Ni0.75Fe0.25NiOy. Here, (a) displays y = 1, (b) y = 0.0625, (c) y = 
0.125, and (d) 0.25. 



substantial dispersion in the band structure. Again, the only possible electric-dipole 

transition from this state is to the anti-bonding t1u σ state in the CBM, comprised of the p 

orbitals of Ni and O. However, again, the site-hopping transition of Equation 3.1.1 is a 

strong possibility.

Depending on Ni site location in the supercell relative to O vacancies, eg Ni d 

states take on various energy levels in the Ni0.875Fe0.125NiOy PDOS, as is evident in Figure 

26. Figure 26(a) is the y = 1 case for reference, and Figures 26(b), 26(c), and 26(d) 

increase O vacancy concentration as y = 0.9375, y = 0.875, and y = 0.75, respectively. 
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Figure 28. Frequency-Dependent Complex Dielectric Function of Ni1-xFexNiOy. The 
figures (a) show the calculated real component and (b) the imaginary component for 
various concentrations of Fe dopants and O vacancies. 



Clearly, the energy band gap decreases with increasing O vacancy concentration. A 

combination of eg Ni d and t1u O p comprise the new VBM, with the t2g Fe d state brought 

to a lower energy level, until y = 0.75, where a Fermi surface and a reorganization of 

states can be seen. Figures 27(a), (b), (c), and (d) show little difference in electronic 

structure upon doubling Fe concentration in NiO.

To further analyze the trend of various concentrations of Fe dopants and O 

vacancies, the complex dielectric function is shown in Figure 28 for various 

concentrations. The real portion of the static value (Figure 28(a)) clearly increases as O 
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Figure 29: Calculated NiO and Ni1-xFexOy vs Experiment. The figures (a) show the 
calculated real component and (b) the imaginary component for various concentrations 
of  Fe dopants and O vacancies. 



vacancy concentration increases. The greater concentration of O vacancies indicate 

greater intensity (Figure 28(b)) in the first transition and a decreased intensity in the 

second. In Figure 29, some experimental data is compared to the calculations of the 

67

Figure 30. Experimental optical properties of Ni1-xFexO (PyO). Figure adapted from 
Reference 48.

Figure 31. Calculated Optical Properties of NiO vs Ni0.75Fe0.25O. Shown is (a) 
refractive index, (b) extinction coefficient, and (c) absorption.



frequency-dependent complex dielectric function of this work. For intrinsic NiO, 

reasonable agreement can be seen with the measurements of Ghosh, et al.105 However, the

calculated peak in the real component in Figure 29(a) is substantially greater, broader, 

and at higher energy. The energetic difference could be explained by the chosen values 

for the effective Hubbard potential U-J of Ni and Fe, as the band gap is particularly 

sensitive to this value. A possibility for the greater peak could be the neglected local field 

effects (LFE Section 2.4), which can cause an underestimation of field 

screening.92 Stoichiometries of the two experimental samples are unknown, so it is 

difficult to compare the case of O vacancies with experiment. Furthermore, the peak in 
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Figure 32. Optical properties of Ni0.75Fe0.25O vs Ni0.75Fe0.25O0.9375. Shown is (a) 
refractive index, (b) extinction coefficient, (c) reflectivity, (d) absorption, (e) optical 
conductivity, and (f) dielectric loss.



the measurement of Ni0.81Fe0.19NiO of Cui et al.116 is difficult to discern. 

Therefore, the next comparison is with optical measurements of Compton, et al. 

on Ni1-xFexO.48 Excellent agreement can be seen with measured values in Figure 30 and 

calculated values in Figure 31, where all peaks for Ni1-xFexO are lower than those from 

NiO. However, again, stoichiometry of measured samples is unknown. Further calculated

optical properties are shown in Figure 32. The first transition due to the oxygen vacancy 

is evident. 

In addition to frequency dependent optical properties, the static dielectric constant

was calculated within DFPT and tabulated in Table 3 for different concentrations of Fe 

impurities and O vacancies. Here, the electronic and vibronic quantities are totaled to 

give ε∞(0). It is clear that the increase in dielectric constant with increase in O vacancy 

concentration is independent of Fe concentration in the compositions considered. As Fe 

concentration is increased, the dielectric constant slightly decreases, even though intrinsic

FeO has about twice the dielectric constant as NiO.117
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Table 3. Calculated Real Static Dielectric Constants for Ni1-xFexOy. The first column, 
which does not include local-field effects (LFE), is not included in the total.



While dielectric and optical measurements can help characterize the material, the 

energy barrier of diffusion of O vacancies is directly related to the operation of RRAM. 

NEB calculations are performed for Ni0.75Fe0.25O0.75 and Ni0.75Co0.25O0.75 and compared to 

the results for intrinsic NiO0.75 in Section 3.1. Two paths of O diffusion are evaluated in 

the NEB calculations, which are indicated in Figures 33(a) and 33(b). In 33(a), the 

vacancy begins in octahedrally coordinated Ni field and ends at a site nearest-neighbor to 

two Fe (Co) and four Ni. In Figure 33(b), the octahedral coordination is equivalent at the 

initial and final positions. Figure 34 contains energy barrier data and the force 

corresponding to Equation 2.7.1 along the [110] path. Even though the Fe-doped system 

in Figure 34(a) has the highest energy barrier, the difference in energy from the local 

minimum at the 3 Å position to the maximum is less than the energy barrier for the other 

two materials. Along the path in (b), clearly intrinsic NiO has the lesser energy barrier. In 
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Figure 33. Two O diffusion paths in Ni0.75Fe0.25O0.75. Ni is gray, Fe or Co are red, and O
is small and dark red. The highlighted green O represent the path which corresponds to 
the path of diffusion in the NEB calculations. Path (a) begins with a vacancy at site 1 and
the diffusing O at site 2. Throughout the calculations, the O at site 2 moves in steps 
toward site 1. A similar argument follows for path (b).



(c), the average force required to cross the energy barrier is greatest in magnitude in the 

Fe-doped material. In (d), the forces are all comparable. It should be noted that since it is 

the potential energy which is proportional to the voltage, the energy barrier is perhaps the

more important quantity in this figure when discussing RRAM. Both Co-doped and Fe-

doped NiO should diffuse O nearly as well as intrinsic NiO; however, the undoped 

material requires less force to cross a lower energy barrier. 
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Figure 34. Nudged Elastic Band Calculations of O Diffusion in the [110] Direction of
Ni0.75Fe0.25O0.75. Shown are two [110] direction paths, relative to dopant position. Data 
are shown by shapes, and lines are Akima spline fits. The path in (a) corresponds to the 
path in Figure 32(a), and the path in (b) corresponds to the path in Figure 32(b). Graphs
(c) and (d) represent the forces necessary to cross the energy barriers in (a) and (b), 
respectively.



3.3 La2NiO4

La2NiO4 is an AF insulator of tetragonal space group I4/mmm, with crystal 

symmetry D4h, where structurally equivalent unit cells are shown in Figure 35. Similar to 

a perovskite, the structure is known as a Ruddlesden-Popper phase, and the structural 

primitive cell is shown in Figure 35(a), with orthogonal lattice vectors c > a. To describe 

AF order, which sets in at a Néel temperature of 70 K,118 the cell must be increased in size

to include Ni sites of opposite magnetic dipole moments. Figure 35(b) displays a 2a × 2a 

× c AF version, where Ni nearest-neighbors are of opposite magnetic dipole moments. 

The magnetic primitive version of this cell is shown in Figure 35(c), where lattice vectors

are √2a × √2a × c. The local spin density approximation (LSDA) within the Ceperly-

Alder formulation80 is used throughout the study of La2NiO4, as well as the three 

materials in the next three sections, including an effective Hubbard potential U-J (LSDA 

+ U), within the Dudarev approximation.87

Contrary to NiO, there is not enough theoretical work using an effective Hubbard 

potential U-J in the literature for La2NiO4, so the values were found here empirically. 

Effective U – J values were varied from 0 – 8 eV, with steps of 0.5 eV, and Murnaghan 

fits were performed for each step. The Γ-centered k point mesh used in these calculations 

was 4 × 4 × 2. Again, cutoff energy is 320 eV. The optimized lattice constants were found

at each step from Equation 3.1.2, using the cell shown in Figure 35(b), where tilt of NiO6 

octahedra was neglected. For each step, once lattice parameters were optimized, magnetic

coupling constants (MCCs) were calculated with the following formula

Δ E=J s2 Z (3.3.1)
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from Reference 119, where ΔE is the difference in total ground-state energy between 

ferromagnetic and AF phases, s is total spin of Ni, which is 1, Z is the nearest number of 

magnetic ions, which is 4, and the MCC is in units of energy. Essentially, the MCC is 

inter-atomic exchange. Figure 36 summarizes the results for various physical properties, 

as the effective Hubbard potential U – J is varied. As is typical for the LDA, lattice 

constants slightly underestimate the experimental value in Figure 36(a) of a = 3.86 Å and 

c = 12.68 Å,120 even with the inclusion of U – J. The critical physical property in this 

work – the MCC (Figure 36(b)) – can be seen to cross the experimental value of 30 

meV121 for two values of U – J. Since the energy band gap (Figure 36(c)) is zero at the 

first crossing, the second crossing is determined to be the accurate value for U – J. 

Yamamoto, et al. chose their U – J value to be 6.6,122 based on the work of Anisimov, et 

al.86 While they apply U – J using a different approach than Dudarev, the analysis 

presented here indicates this value yields a highly accurate description of the physical 

properties of interest and will be used for La2NiO4 and the Sr doped case of LSNO. For 

this value of U – J, the magnitude of the magnetic dipole moment of Ni calculated here is

found to be precisely the experimental value of 1.68 μB.123 

Once the magnetic ground-state was described with a high level of accuracy, NiO6

octahedral tilt was introduced by ionic relaxation. At this stage, electronic excitations 

were calculated. The high-symmetry path in the BZ in Figure 37 was used in the band 

structure calculation in Figure 38(a). In the Sr doped case, in the following section, it will

become clear why the xy plane of the BZ is the region of interest. Here, the structure used

in the calculations is that of Figure 35(c), which is not only more computationally 
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efficient than the one in Figure 35(b), but results can be more readily compared to the 

doped case in the following section. 

The immediately apparent feature in the band structure is the extreme dispersion 

in the CBM along Γ-X and Γ-Y, which can be attributed to minor states of La f character 

in the PDOS of Figure 38(b), as is found in the calculations on La2NiO4 and La2CuO4 by 

Takegahara, et al.124,125 These early LSDA calculations incorrectly described the electronic

structure, however, due to valence bandwidth creating a Fermi surface which should not 

be present. A notable exception is the work of Guo and Temmerman,126 who employ a 

Stoner parameter as the average exchange interaction. While they clearly show that La 

states comprise much of the CBM, they did not decompose the states to individual atomic

orbital character. Though there is little to compare with, indeed the CBM is comprised of 
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Figure 35. La2NiO4 Unit Cells in Three Structurally Equivalent Crystal 
Representations. La is shown in green, Ni in gray, and O in red. Structure (a) is the 
primitive structural cell, (b) is a 2 × 2 × 1 AF version, and (c) is a √2 × √2 × 1 primitive 
AF cell.  



La f. It should be noted that f levels exhibit crystal field splitting, as well, and in D4h 

symmetry, f orbitals split to singlet a2u, b1u, b2u and fourfold-degenerate eu states.107 The 

state corresponding to the CBM at Γ is the singlet f orbital of b1u symmetry. Clearly, the 

dispersion of the CBM indicates a light fermion at Γ. Dispersion is evident in the VBM, 

as well, where the energy bands are comprised of Ni d and O p states. The elongated Ni-

O bonds in the z direction create a tetragonal crystal field, which causes further splitting 

of d levels (Section 2.6) than in the octahedrally coordinated cases of Ni1-xFexOy. Thus, eg 

Ni d splits into nondegenerate a1g and b1g levels, which are frequently referred to by their 
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Figure 36. Effect of Variation of Effective Hubbard U - J on Physical Properties of 
La2NiO4. Above, (a) displays the optimized lattice parameter after a Murnaghan fit, over
the range of U – J, (b) displays the calculated MCCs, from Equation 3.3.1, and (c) 
displays the energy band gap. Experimental values (see text) are indicated by red dashed 
lines. Data points are connected by an Akima spline fit.



basis functions z2 and x2 – y2, respectively. 

Furthermore, the electric-dipole transition operator symmetry is split (in the same 

way O p is split) in the D4h field to a2u and eu, where a2u applies to light polarized in the z 

direction, and eu applies to light polarized in the xy plane.91 To determine the nature of the

first optical transition, again, this problem is approached within ligand field theory and 

group theory. First, the nature of the hybridization between the b1g Ni d level and that of 

eu O p level needs to be determined. The hybridization is found to be of b1g symmetry by 

Miessler and Tarr127 by familiar group theory logic. Incidentally, an optical transition 

from light polarized along the c axis (z) from the a1g state (Ni z2 hybridized with O pz) to 

neither b1u nor eu La f is possible from Equation 2.6.1. Such a transition is unfavorable 

from the small oscillator strength, as well. Due to this fact, along with the indirect band 

gap, the first major peaks in ε2 are seen well above the CBM in Figure 38(c). A slight a2u 

state of Ni pz hybridized with O pz is present at the VBM (not shown), such that a 
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Figure 37. Brillouin Zone of La2NiO4. The path used in the band 
structure calculation is highlighted in green, where arrows indicate 
the direction of the path. High symmetry points along the path are 
labeled in the order Z, Γ, X, M, Y, and Γ. Reciprocal lattice vectors 
are in blue.



transition to the a1g state at approximately 3.2 eV is certainly possible with light polarized

in the z direction. This compares favorably with the experimentally found optical 

gap.128 However, with light polarized in the xy plane, the VBM state of b1g symmetry (Ni 

x2 – y2 hybridized with O px and O py) has no available state with which to transition 

optically. In this case – within the Ni-O plane of La2NiO4 – contrary to the case of NiO, 

the xy plane-polarized optical transitions in La2NiO4 can be explained only by site-

hopping of carrier from one Ni site to another of opposite spin configuration. 
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Figure 38. Electronic and Optical Properties of La2NiO4. Electronic structure 
calculations are shown, where (a) is the band structure, (b) is the PDOS, and (c) is the 
imaginary component of the dielectric function.



3.4 La5/3Sr1/3NiO4 (LSNO)

 The tetragonal undoped primitive cell was translated to an orthorhombic 

supercell, with CDW and SDW commensurability in mind. A schematic which illustrates 

the commensurability in the Ni-O bonding plane is shown in Figure 39 (adapted from 

Figure 2). The unit cell was increased to a supercell of dimensions 3√2a × √2a × c for x =

1/3 LSNO, such that each of the two Ni-O planes has two stripe-centered Ni and four 

non-stripe-centered Ni, in agreement with Yamamoto, et al.122 The √2 is introduced to 

describe CDW periodicity, since stripes in LSNO are oriented at 45 degrees to Ni-O 

bonds in the Ni-O planes. CDW periodicity is then 3√2a/2, while it is 3√2a for SDW. It 

should be noted that this supercell should be considered an approximation. Zimmerman, 

et al. showed experimentally that stripes are rotated 90 degrees in adjacent planes in 

La1.48Nd0.4Sr0.12CuO4.129 To consider the rotation here, a larger unit cell for LSNO should 

have dimensions 3√2a × 3√2a × sc, where the integer s > 1 would allow simulation of 

staggering, or periodic shifting, of stripes every other layer in the z direction.59 The unit 

cell approximation here is necessary, due to the sheer number of atoms in the calculation  

– 84, rather than 252 × s. 

To maintain commensurability, the size of the cell depends critically on Sr 

concentration, since the sites at which La is substituted by Sr are found to affect CDW 

and SDW ordering drastically. This agrees with the results of Lloyd, et al., which indicate

pinning of CDW to impurity location.130 Thus, care was taken in choosing the initial 

magnetization on each Ni site and the position of the Sr atoms in each cell before 

minimizing the total energy in the ground state. Only certain configurations of Sr dopants
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were found to produce CDW and SDW in the Cu-O or Ni-O planes. The hole density 

congregates on the Cu or Ni nearest to the Sr, depending on spin, indicating that CDW 

and SDW are intimately related and dependent upon Sr position. The Sr positions are 

ordered with the same lattice periodicity as the CDW. The original lattice symmetry is 

spontaneously broken. There have been several cases of experimentally observed oxygen 

interstitial lattice ordering in La2NiO4.125.131–134 Moreover, Lee, et al. observed interstitial 

oxygen order every fourth La2O2 layer in the HTSC La2CuO4.11.135 Contrary to the case of 
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Figure 39. Commensurate LSNO Magnetic Unit Cell in 2D Ni-O plane. Triangles 
indicate Ni lattice sites in the Ni-O plane, where triangles facing up indicate a positive 
magnetic dipole moment, and triangles pointing down indicate a negative magnetic 
dipole moment. Red triangles indicate partially magnetically frustrated sites where the 
CDW is densest. The green outline indicates the atomic sampling of the unit cell.



oxygen interstitials, several experimental reports show Sr dopants are disordered in 

LSNO, which prevents long-range stripe order.73,134,136,137 With CDW localization being 

dependent upon dopant position in the lattice, Sr disorder will result in a smectic phase at 

temperatures approaching 0 K, and may be nematic at finite temperatures, as found 

recently in experiment.138 A smectic charge distribution refers to anisotropy within the 2D

Ni-O plane, whereas a nematic system has anisotropic charge throughout the bulk. The 

magnetic unit cells, which are twice the lateral periodicity of the CDW, are 

commensurate with the SDW at this concentration of Sr. The Ni-O planes are separated 

by insulating LaO2 layers, which are doped periodically with Sr. Each Sr provides one 

hole to one Ni in the nearest plane.
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Figure 40. 3D CDW in LSNO. La is gray, Sr is blue, Ni is green, and O is red. The 
CDW of the CBM is shown in yellow.



Figure 40 displays the CDW clearly confined to the Ni-O plane, calculated from 

the square of the modulus of the wavefunction of the first excited state:

nCBM (r )=|ϕCBM|
2 . (3.4.1)

Taking a slice through the plane, the periodicity of the CDW can be seen more clearly in 
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Figure 41. 2D CDW in LSNO. The scale on the left indicates density, where red is 
densest. Arrows were added for schematic effect, where up arrows indicate positive 
magnetic dipole moment, and down arrows indicate negative magnetic dipole moment. 
Black arrows indicate Ni sites with no magnetic frustration, and gray arrows indicate 
partially magnetically frustrated Ni sites. 



Figure 41. The charge and spin distributions in Figure 41 are repeated along the vertical 

axis in a Bloch-like fashion (3x) to better illustrate the resulting density waves. Peaks 

correspond to holes donated by nearest-neighbor Sr which is out of the plane. Partially 

magnetically frustrated sites have a gray arrow, where the magnetically frustrated sites 

coincide with greatest charge density. Since the Ni atoms form square lattices bridged by 

O neighbors, with a distance of a = 3.81 Å, stripes of hole charge are aligned at 45 

degrees to the Ni-O bonding direction in LSNO, giving rise to CDWs separated by two 

Ni of opposite spin. This finding is in complete agreement with neutron scattering data.139

At Ni sites nearest to Sr, where the CDW has the greatest density in LSNO, the 

magnetization is frustrated by ~0.7 μB. A complex spin pattern is visible far away from 

the linear antiferromagnetic ordering along the stripes. In each case, CDW nodes are 

found to be centered on one Ni ion with additional localization on neighboring O ions in 

the 2D plane (Figure 41), indicating coupling between Sr position, CDW, and SDW. In 

LSNO, Sr and CDW periodicities are both 3√2a / 2, while SDW periodicity is 3√2a. This 

result suggests that large primitive cell sizes should be considered when determining 

wave vectors in experimental characterization of similar materials exhibiting stripes. The 

SDW corresponds to magnetizations on Ni sites normal to Ni-O bonding plane of -1.62, 

1.62, 0.92, -1.63, 1.63, -0.92 μB, where frustrated Ni sites with stripe localization have 

local magnetic moments of 0.92 μB. Commensurability is satisfied, and the total magnetic

moment of the unit cell is zero. 

Which La sites are substituted by Sr affects results significantly, especially the 

commensurability of CDW and SDW. The concentration x = 1/3 leads to high 
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commensurability between the density waves and the underlying atomic lattice, for 

periodic Sr. Alternative Sr concentrations and positions in the lattice modify charge 

density and spin orientation, resulting in incommensurate CDWs and SDWs in the 

chosen unit cells, along with a net magnetic moment which is to be avoided. It should be 

noted that the charge density of the first excited state in the (001) plane, at z = 1/2, 

slightly “bleeds” into the z = 0 layer in Figure 40. This indicates that some electronic 

correlation between layers is present, meaning the orthorhombic supercell approximation 

could be improved by the exact 3√2a × 3√2a × sc representation mentioned above. 

However, the CDW in the z = 0 layer is just as commensurate when plotted (not shown), 

so in the collinear spin limit, the orthorhombic cell is an excellent approximation which is

used throughout the rest of the study; however, it should be noted that a calculation with 

noncollinear spins gave rise to more pronounced interlayer coupling, in an un-relaxed test

calculation. Spin-dependent charge density of the spin-up and spin-down degenerate 

bands have similar magnitudes at each stripe location in the plane. 

Electronic structure was calculated for the obtained CDW and SDW ground states

of x = 1/3 LSNO. First, however, a comparison between the x2 – y2 orbital of Ni in 

various environments is warranted. In Figure 42(a), both spin channels of the orbital are 

shown for one Ni in NiO. It is clear that the spin-up channel (red) is fully occupied, and 

the spin-down channel (black) is fully unoccupied, as expected. In Figure 42(b), the spin-

down channel (black) in La2NiO4 is fully occupied, and while the spin-up channel 

appears fully occupied, a state is present at approximately -1.3 eV. Having a state with the

possibility of being both occupied and unoccupied is called resonance, and this 
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phenomenon is well-known in benzene. Anderson predicted resonance in La2CuO4 in 

1987 within his Resonating Valence Bond (RVB) theory of cuprate 

superconductivity.140 Isostructural La2NiO4 has remarkable similarities, even though the d 

orbital filling is quite different in Ni than Cu. Upon doping with Sr, the x2 – y2 orbital of a

stripe-centered Ni in LSNO (Figure 42(c)) is quite clearly resonant in both spin channels.

With that in mind, the band structure in Figure 43(a) and PDOS (b-d) of LSNO 

clearly show an insulating ground state. A fundamental direct gap of 1 eV is found at the 

Y point of the Brillouin zone (BZ). In Figure 43(a), the degeneracy of hole bands is lifted,

with respect to the plane in which the hole is localized, however degeneracy remains 
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Figure 42. Comparison of DOS of the x2 – y2 Orbital of Ni in Different 
Environments. Only one Ni is considered in each case. Spin-up is red, and spin-down is 
black. The top figure (a) displays the x2 – y2 orbital of Ni in NiO, (b) is in La2NiO4, and 
(c) is in LSNO. The black dashed line indicates the Fermi energy, taken to be zero. 



throughout most of the BZ. The four bands of the conduction band minimum (CBM) are 

degenerate throughout most of the BZ, but degeneracy is lifted along the high symmetry 

lines M to Y and Γ to Y. The four bands correspond to two different nodes of the CDW in

each of the two Ni-O planes in the noncollinear calculation (not shown, because the spin 

degeneracy makes the band dispersion in the collinear calculation identical). It is the 

planar degeneracy that is lifted – not that of spin. To characterize the bands, figures 43(b),

43(c), and 43(d) correspond to PDOS calculations projected onto non-stripe-centered Ni, 

stripe-centered Ni, and O, respectively. The results widely agree with those of Yamamoto,
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Figure 43. Electronic structure for both spin channels and optical transitions in 
LSNO. (a) Band structure, (b) PDOS for non-stripe-centered Ni, (c) PDOS for stripe-
centered Ni, (d) PDOS for O p (e) and imaginary parts of frequency-dependent dielectric 
function. Fermi energy taken as zero is shown by red dashed line.



et al.;122 however, here, a much larger band gap along with more states above the Fermi 

energy are observed. Technically speaking, more states are observed due to the points 

used to calculate the PDOS, along with a small broadening parameter used for Gaussian 

smearing. In the electronic structure, a CBM state exists for each change in energy related

to high symmetry points in the BZ. These states are mostly localized to the stripe-

centered Ni sites, along with some contributions from neighboring O (Figures 43(b) and 

(c)). Each of these two states gives rise to an optical transition for in-plane light 

polarization, resulting in a peak in Figure 43(e). Although the LSDA + U approach cannot

provide accurate conduction band eigenvalues relative to the VBM, the character and 

symmetry of the bands are well described, so one can make qualitative spectral rather 

than quantitative energetic conclusions. The imaginary parts of the frequency-dependent 

dielectric function characterize the optical absorption parallel to the Ni-O plane (εxx) and 

parallel to the c-axis (εzz). Two transitions, one at Y, for light polarized parallel to stripe 

direction in the Ni-O plane, from O py to Ni x2 – y2, and a higher transition at X, 

perpendicular to stripe direction yet in the Ni-O plane, from O px to Ni x2 – y2. Both 

fulfill the angular momentum selection rule. Transitions are forbidden for polarization 

along the c-axis at low energy. Only those at the zone boundary are visible. Since Ni p is 

present in both the VBM and CBM, the same group theory argument as the intrinsic case 

can be made, where an a2u to a1g optical transition is possible with incident light polarized 

along the c (z) axis. For xy plane-polarized light, x2 – y2 hopping from Ni 2+ sites to Ni 

3+ sites is likely. 

While no pseudogap (PG) character is found in LSNO, it should be noted that the 
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electronic structure calculations of Figure 43 were performed within the Born-

Oppenheimer approximation. Coslovich, et al. measured a PG at finite temperatures in x 

= ¼ LSNO, with a decrease in optical conductivity with temperature at low energy.68 As 

they suggest, the PG may be attributed to contributions of the vibrating lattice in the 

stripe-ordered geometry. The results of Homes, et al. confirm that low energy mid-gap 

states are not present at low temperature.131 Lloyd-Hughes et al. found negligible optical 

conductivity at low temperature for x = 1/3 yet a substantial increase for incommensurate 

x = 0.275.130 Our calculations suggest that the optical conductivity (imaginary part of the 

dielectric function multiplied by the frequency) of the PG reduces to zero at zero 

temperature for commensurate samples, yet transitions are apparent at approximately 1 

eV in the present calculation. For this reason, reflectivity measurements, such as those of 

Ido, et al.128 at room temperature will differ from the present calculation significantly.

The real parts of the calculated dielectric functions (not shown) describe light 

refraction and propagation. Their ω →0 limits determine the electronic contribution to the

dielectric properties of LSNO. The dielectric results are summarized in Table 4. We find 

static electronic dielectric constants ϵij
∞
=ϵij (0) of the order of magnitude known for 

semiconductors with similar fundamental gaps. Thereby, the components parallel to the 

layers are somewhat larger than the component in the c direction. Local field effects 

increase (decrease) the dielectric constants perpendicular (parallel) to the c axis slightly. 

Adding the static polarizabilities αij of the vibrating lattice, the tensor of the static 

dielectric constants ϵij
0
=ϵij

∞
+αij appear. The anisotropic phonon contributions to the 

dielectric properties of x = 1/3 LSNO with stripe ordering are investigated in the DFPT 
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framework.90 The lattice polarizabilities in Table 4, the phonon contributions, are much 

larger than the static electronic polarization contributions. Moreover, they show a large 

effect due to the stripe anisotropy. In particular, large in-plane values of the order of 42 

appear. CDCs of about 50 are predicted by the present ab initio calculations. The 

dielectric tensor is diagonal in agreement with the structural finding of the primitive 

orthorhombic character of the LSNO system. Our results compare qualitatively well with 

the low temperature measurements of Filippi, et al.70 They attribute the value of about 

100 to charge ordering in the Ni-O plane, whereas the results presented here indicate that 

it is the phonon interaction with the CDW in the Ni-O plane that is the dominant 

mechanism behind the CDC in LSNO. 

3.5 La2CuO4

Since the MCC in the intrinsic material is fundamental to the description of the 

SDW in the following section including Sr dopants, here, it is calculated over a range of 

U – J values, similar to the calculations in Section 3.3. The results can be seen in Figure 

44, where the MCC plateaus at a U – J value which is approximately 5 eV. The peak 

MCC value of 117 meV is found at a U – J value of 5 eV, and the experimental value has 
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Table 4. Components of Static Dielectric Tensors of LSNO. The pure electronic 
contributions are listed with and without local-field effects. For comparison, 
experimental results of Filippi, et al.70 are also given.



been shown to range within the particularly high values of 128-135 meV.141,142 Thus, 5 eV 

is chosen as the effective Hubbard U – J value for all calculations in this section and the 

next. The corresponding magnetic-dipole moment of Cu is calculated here to be 0.53 μB, 

whereas the experimental value has been measured to be 0.4 μB by Vaknin, et al.143 The U 

– J value which corresponds to the experimental magnetic-dipole moment is 2 eV, in 

which case the band gap is closed and the MCC is only 29 meV. The MCC should be as 

close to experiment as possible, and the energy band gap should be open, in order to 

describe SDW in the doped case effectively, since the SDW depends directly on Cu 

nearest to each other in the Cu-O plane.

La2CuO4 is isostructural to La2NiO4, described by the tetragonal I4/mmm unit 

cell. The lattice constants (for U – J = 5 eV) from a Murnaghan fit (Equation 3.1.1) are a 

= b = 3.75 Å and c = 12.95 Å. Upon full ionic relaxation resulting in forces < 10 meV/Å, 

tilt of the CuO6 octahedra is evident and taken into account in all subsequent calculations.

It should be noted that the path through the BZ in La2CuO4 differs from the case of 

89

Figure 44: Magnetic Coupling Constant vs Effective Hubbard U – J in La2CuO4. 
Calculated data points are displayed as squares, and the Akima spline fit is shown as the 
connecting solid black line. The Experimental value, represented by a red dashed line, is 
averaged between the experimental values in References 141,142.



La2NiO4 and can be seen in Figure 45. In Section 3.3, the unit cell used for the band 

structure calculation is that of Figure 35(c). In the present case, the band structure is 

calculated from the unit cell in Figure 35(b). The reason for this will become apparent in 

the Sr-doped material in Section 3.6 – stripes in LSCO are aligned differently from 

LSNO. For a direct comparison with LSCO, here, the unit cell of Figure 35(b) and BZ of 

Figure 45 are the geometries of interest. 

This BZ is used in the calculation of the band structure in Figure 46(a). Here, an 

indirect gap can be seen between the M and Γ points. Both the VBM and CBM, at the M 

and Γ points, respectively, are comprised of a mixture of O p and Cu x2 – y2 levels, as 

indicated in Figure 44(b). Contrary to La2NiO4, La f states are neither present near the 

Fermi energy nor the first optical transition, which can be seen in Figure 44(c). This 

contrasts with the results of Takegahara, et al., as well.125 However, the present 

calculations should be considered an improvement, due to the inclusion of the effective 

Hubbard potential U. Here, light polarized parallel to the Cu-O plane gives rise to an 

optical transition from O p to Cu x2 – y2, as can be seen from the imaginary component of
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Figure 45: Brillouin Zone of La2CuO4. The path used in the band 
structure calculation is highlighted in green, where arrows indicate the 
direction of the path. High symmetry points along the path are labeled 
in the order Z, Γ, Y, M, Γ, and X. Reciprocal lattice vectors are in blue.



the frequency-dependent dielectric function. This transition is allowed from both the 

angular momentum selection rule and Equation 2.6.1. Alternatively, the more likely 

scenario is hopping of the resonant x2 – y2 orbital. Incidentally, the experimental optical 

gap is approximately 2 eV.128

3.6 La7/4Sr1/4CuO4  (LSCO)

A direct comparison between the electronic properties of x = 1/3 LSNO and x = 

1/3 LSCO is not very helpful, since x = 1/3 LSCO is overdoped and slightly metallic (not
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Figure 46. Electronic Structure and Optical Properties in La2CuO4. Band structure is
shown in (a), (b) displays PDOS, and (c) displays the imaginary part of the dielectric 
function. The Fermi energy is taken to be zero and is indicated by the red dashed line.



superconducting). The system considered here is x = ¼ LSCO, which is between the 

optimal doping concentration of x = 0.17 and the SC limit of x = 0.3.72 While charge 

stripes are aligned at 45 degree angles to the Ni-O bonding direction in LSNO, they are 

aligned parallel to the Cu-O bonds in LSCO.59 Therefore, the unit cell used in this case is 

an orthorhombic supercell version of the unit cell in Figure 35(b). Similarly to the case of

LSNO, the supercell is grown in only one direction, under the assumption that interplanar

correlation is minimal. However, instead of the 45 degree angle growth direction in the 

case of LSNO, due to the parallel bonds in LSCO, the cell is multiplied along the bonding

direction, resulting in an 8a × 2a × c supercell of 224 atoms, with commensurability of 

CDW and SDW in mind. The resulting structure with the CDW of the first excited x2 – y2

state (PG state) can be seen in Figure 47. Care was taken in choosing the initial 

magnetization on each Cu site and the position of the Sr atoms in each cell before 

minimizing the total energy in the ground state. Only certain configurations of Sr dopants

were found to produce CDW and SDW in the Cu-O planes. The hole density congregates 

on the Cu or Ni nearest to the Sr, depending on spin, indicating that CDW and SDW are 

intimately related and dependent upon Sr position. The Sr positions are ordered with the 

same lattice periodicity as the CDW, and the original lattice symmetry is spontaneously 

broken.

In order to illustrate both density wave formations in Figure 47, the formation of 

stripes in the Cu-O plane is shown in Figure 48 at z = 0.5c, perpendicular to the c axis. 

The magnetic unit cell, which is twice the lateral periodicity of the CDW, is 

commensurate with the SDW. The Cu-O planes are separated by insulating LaO2 layers, 
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which are doped periodically with Sr. As with LSNO, here, in LSCO, each Sr provides 

one hole to one Cu in the nearest plane. The charge and spin distributions in Figure 48 is 

repeated along the vertical axis in a Bloch-like fashion (4x) to better illustrate the 

resulting density waves. Peaks correspond to holes donated by nearest-neighbor Sr which

is out of the plane. Magnetically frustrated sites have a gray circle, and the magnetically 

frustrated sites coincide with greatest charge density in the excited state considered, 

forming zig-zag chains. Both CDW and SDW are coupled to Sr position. Magnetic 

dipole-moments on Cu sites normal to the Cu-O plane are found to be 0.08, 0.41, -0.46, 

0.47, -0.08, -0.41, 0.46, -0.47 μB, where frustrated Cu sites with stripe localization have 

local magnetic moments approaching zero μB. Commensurability is satisfied, and the total

magnetic moment of the unit cell is zero. Both the Cu z2 / O pz hybridization and local 

magnetizations are described effectively in the doped system with the chosen U – J 

parameter. 
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Figure 47. 3D CDW of LSCO. La is gray, Sr is light blue, Cu is green, and O is red. The
CDW is shown in yellow.



The other d orbital of interest – the x2 – y2 orbital – is shown in various 

environments in Figure 49. In Figure 49(a), this orbital is shown for one Cu (2+) in 

La2CuO4, where resonance can be seen, even in the intrinsic case, as predicted by 

Anderson in 1987.140 Figure 49(b) displays the x2 – y2 orbital for a non-stripe-centered Cu

(2+) in LSCO, which is remarkably similar to the intrinsic case. The key difference is due

simply to the method used to calculate the DOS in each case. Since the intrinsic material 

is insulating, a Gaussian smearing technique is applied, with a smearing parameter of 

0.03 eV, whereas in the doped case, since a Fermi surface is present, the Methfessel-

Paxton technique is applied, with a smearing parameter of 0.1 eV. Figure 49(c) shows the 
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Figure 48. 2D CDW in LSCO. The scale on the left indicates density, where red is 
densest. Arrows were added for schematic effect, where up arrows indicate positive 
magnetic dipole moment, and down arrows indicate negative magnetic dipole 
moment. Black arrows indicate Cu sites with no magnetic frustration, and gray 
circles indicate completely magnetically frustrated Cu sites. 



same orbital but for stripe-centered Cu (3+). The local extrema at the VBM in Figures 

49(a) and 49(b) is shifted to the CBM upon hole-doping, effectively emptying this state. 

However, due to resonance, the situation may not be so simple. 

For clarity, Figure 50 displays the full relevant electronic structure of the material.

The semi-metallic character can be seen clearly from the Fermi surface in the band 

structure (Figure 50(a)) along Γ – M, i.e., the nodal direction, from (0,0) to (π,π). The 

Fermi energy crosses the uppermost two valence bands, leading to hole pockets near the 

zone boundaries. Two series of conduction bands not present in the undoped case appear 
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Figure 49. Comparison of DOS of the x2 – y2 Orbital of Cu in Different 
Environments. Only one Cu is considered in each case. Spin-up is red, and spin-down is
black. The top figure (a) displays the x2 – y2 orbital of Cu in La2CuO4, (b) is Cu 2+ in 
LSCO, and (c) is Cu 3+ in LSCO. The black dashed line indicates the Fermi energy, 
taken to be zero. 



in the band structure between 0.2 and 0.7 eV. The lower one is related to the SC gap, 

whereas the one above that is the PG. The conduction states above the two gaps of the 

doped system form the normal gap, correspondent to the intrinsic x = 0 gap. The PDOS in

Figure 50(d) shows that along with the SC gap, PG, and normal gap all have a strong O 

2p character. The Cu x2 – y2 and O p bond leads to hopping optical transitions to the SC 

gap and the PG along Γ – X with the same character, as found in the case of LSNO. The 

Cu z2 / O pz hybridization can be seen at the Fermi surface. The x2 – y2 state ascribed to 

non-stripe-centered Cu forms the normal gap (Figure 50(b)), while the SC gap and PG of 
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Figure 50. Electronic Structure of LSCO. Band structure is shown in (a), DOS of non-
stripe-centered (2+) Cu d orbitals are shown in (b), DOS of stripe-centered (3+) Cu d 
orbitals are shown in (c), and DOS of O p is shown in (d). The Fermi energy is taken to 
be zero and is indicated by the red dashed line.



x2 – y2 character are directly related to the stripe-centered Cu sites (Figure 50(c)). Our 

results clearly prove the proposal of Tranquada, et al., that only states aligned with the 

stripes are gapped.61 This fact confirms again that the PG is directly caused by CDW, i.e., 

the symmetry break.

The nature of the SC gap is more complex, however, due to potentially boson-like

Cooper-pair formation as a result of phonon-like interaction with the carrier pair, as is 

typical in BCS superconducting materials. However, Anderson's interpretation of 

superconductivity in the HTSC cuprates140 has gained considerable attention over the 

years. His claim that the origin of SC in the HTSC cuprates is mostly electronic and 

magnetic, and that phonon interactions merely favor the state, is likely the correct 

interpretation. From Figure 50(c), it can be seen that up and down-spin states have their 

antisymmetric counterparts within the stripe-centered totals. It could be argued that the 

relaxation of the lattice around the Sr impurity and stripe formation is sufficient to 

overcome the repulsion between carriers of opposite spin at k and -k, thus coupling the 

pair within the coherence length. This coupling is indicated by degenerate states of 

opposite spin within the valence, of x2 – y2 character, which have resonant states above 

the Fermi energy corresponding to the SC gap and PG. 
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4. REVIEW AND FUTURE WORK

Transition metal oxides, such as NiO, La2NiO4, La2CuO4, and their doped 

counterparts, have a wide variety of interesting physical properties, including, but 

certainly not limited to resistive switching, a colossal dielectric constant, and high-

temperature superconducting behavior. After an overview of theoretical techniques 

employed here, including DFT + U, the IPA, DFPT, and the NEB, original calculations of

electronic and optical properties were interpreted in two ways. First, electronic excitation 

in terms of orbital hybridization was evaluated in terms of group theory. Second, the 

common view that x2 – y2 orbital site hopping is the dominant excitation mechanism was 

presented as an alternative interpretation. Since disentanglement of atomic states from 

hybridization within a crystal is not straightforward, calculation of the oscillator strength 

of electric-dipole transitions was not employed as an analysis technique. While such a 

numerical method can give conclusive evidence of an optical transition, the 

wavefunctions involved in such a calculation are linear combinations which do not 

necessarily give an intuitive explanation for the origin and destination of an optical 

transition. Thus, the interpretations presented here were chosen as a matter of preference 

for clarity and conceptual physical understanding. Certainly, calculations of oscillator 

strength of each material, on a case-by-case basis, would be an interesting comparison to 

the results presented here. Ground states calculated within the highly expensive 

quasiparticle GW approach, along with solving the Bethe-Salpeter equation to determine 

optical properties would certainly be ideal, but with current computational technology, 
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such analysis is out of reach, since it would be prohibitively expensive when dealing with

unit cells of the size considered in this work. Future calculations could explore these 

avenues to bring further clarity. 

That being said, significant conclusions were made throughout this work, using 

more computationally efficient methods, appropriate for the large and resource-

demanding systems studied. In Ni1-xFexOy, the first optical transition was found by group 

theoretical techniques to involve the p orbitals of Ni, where they hybridize with p orbitals

of O in an anti-bonding σ* orbital. Within this interpretation, the first optical transition to 

this orbital should originate from Ni eg hybridized with O p, which is a bonding σ orbital 

at the VBM. The alternative explanation is site hopping from the eg orbital of one Ni to 

the eg orbital of the next nearest Ni. This explanation is likely, due to excitons in 

transition metal oxides being Wannier-Mott-like with a large radius. Furthermore, it fits 

with the observed electronic structure when including oxygen vacancies. Future excitonic

calculations can confirm.

In electronic devices, it is often the static dielectric constant which is of interest, 

and since iron dopants and oxygen vacancies in NiO were a large focus of this work, due 

to the grant support, comparisons were made for various concentrations of both. While 

clearly oxygen vacancies increase the dielectric constant, addition of iron surprisingly 

decreases it, even though the static value for FeO is about twice that of NiO. The 

screening from addition of iron certainly affects the diffusion of oxygen, as well, which is

critical in RRAM. The NEB calculations presented here indicate that oxygen diffusion in 

intrinsic NiO may have a lower energy barrier than iron-doped NiO. However, further 
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confirmation could be obtained by calculating the diffusion coefficient and activation 

energy of oxygen in each case.

Dopants (Sr) were added to La2NiO4 and La2CuO4, as well, and the doped 

materials were directly compared theoretically via ab initio methods, for the first time. 

Two main conclusions are to be drawn from these sections. First, the colossal dielectric 

constant in LSNO is a direct result of the coupling of lattice vibrations with the CDW. 

Second, the PG state in LSCO is attributed to the CDW, from hopping within the resonant

x2 – y2 orbital. Resonance of the x2 – y2 orbital, which is the first excited state, was 

observed in both materials. 

The PG being directly related to the resonant x2 – y2 conduction band is the most 

important discovery made in this work, which indicates validity of Anderson's RVB 

theory. While the author certainly does not presume to fully explain HTSC in the 

cuprates, it should be noted that with the characterization of the PG presented here, it 

would not take a great leap in logic to extend this understanding to the similar SC gap 

and develop a theoretical framework for the mechanism behind HTSC in the cuprates. 

With a better understanding of the mechanism, materials exhibiting HTSC could be 

engineered with improved physical properties. 

The second major contribution here is that of the CDC in LSNO being a direct 

result of vibronic coupling of the lattice with the CDW in the Ni-O plane. With further 

understanding, CDC devices become closer to commercial application. In addition to this,

the densest portion of the CDW is located in the metal-oxygen plane nearest to the Sr 

impurity in both LSCO and LSNO, at low temperature. 
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APPENDIX A: OPTICAL PROPERTIES

Equations of optical properties which can be directly calculated from the 

frequency-dependent complex dielectric function are presented here. For more 

information, see Ashcroft and Mermin.89 The refractive index can be calculated by

nii (ω)=√|ϵii(ω)|+ℜϵii(ω)

2
.

The extinction coefficient follows as:

k ii (ω)=√|ϵii(ω)|−ℜϵii (ω)

2
,

where the ℜ indicates the real portion, and ij represents the ij tensor component. 

Optical conductivity can be found from

ℜσ ii(ω)=
ω
4π

ℑϵii(ω),

where ℑ represents the imaginary portion. Reflectivity can be calculated from 

Rii(ω)=
(n ii−1)2+k ii

2

(nii+1)2+k ii
2 .

Absorption coefficient is calculated by

A ii (ω)=
2ωk ii(ω)

c
,

where c is the speed of light. Loss function is found from

Lii(ω)=−ℑ(
1

ϵii(ω)
).

Finally, optical conductivity can be calculated by 
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ℜσ ii(ω)=
ω

4π
ℑϵii(ω).
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APPENDIX B: BASIS FUNCTIONS AND D ORBITALS

From the familiar images in Figure 51, the t2g orbitals in Oh (octahedral) symmetry

shown by (a), (b), and (c) can be taken into each other by inversion, which is a type of 

symmetry operation. The theorems of group theory will not be derived here. Rather, only 

practical application of group theory will be presented here and explained pedagogically, 

as is relevant to the analysis of the solid state physics in this work. In the systems 

considered here, with octahedral (cubic) or dihedral (tetragonal) symmetry, the t2g orbitals

are not along the bonding direction, so not only do they not contribute to bonding, they 
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Figure 51. Schematic Images of the d Orbitals. Schematics (a), (b), and (c) represent 
the t2g orbitals, and (d) and (e) represent the eg orbitals. Blue and orange orbitals 
represent opposite parity. Open source figure adapted from chem.libretexts.org.



exhibit limited further crystal field splitting in a dihedral field. On the contrary, the eg 

orbitals in (d) and (e) are along the bonding direction. Thus, they are directly involved in 

bonding. They are degenerate in energy in octahedral symmetry, yet another splitting 

occurs in a dihedral crystal field. The orbitals in (d) are also related geometrically by π/2 

rotations; however, in (e), the case is not as simple. While crystal field splitting can be 

observed in both t2g and eg orbitals, here, the present work is primarily concerned with the

eg orbitals in (d) and (e). Upon splitting in a dihedral field, the degeneracy is lifted, and 

the now non-degenerate eg orbitals can be expressed in real finite form. As such, a 

symmetry operation R, which can be represented by the matrix D(R), operates on the 

basis functions corresponding to the orbitals in question.

Basis functions in what is known as carrier space are analogous to unit vectors in 

Cartesian space. Being an abstract concept, an example is helpful for clarity, and since it 

is the eg orbitals which are the orbitals of importance in the present work, the symmetry 

operations on these orbitals in Oh and D4h symmetries will be presented explicitly. For the

eg orbitals (d) and (e) in the group Oh, the basis functions are √3(x2 – y2) and 3z2 – r2, 

where the √3 is commonly omitted in the former, and the latter can be equally expressed 

as 2z2 – x2 – y2 by the Pythagorean Theorem in three dimensions. Thus, the basis 

functions in an octahedral crystal field can be represented as follows:

X 1=2 z2
−x2

− y2;

X2=√3(x2
− y2

).

The symmetry operations which bring these basis functions into new linear combinations 

of each other are 
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D(C4
z
)=(1 0

0 −1) ,

and

D(C3
xyz
)=(

−
1
2

−
√3
2

√3
2

−
1
2
) .

The former operates as a 2π/4 rotation about the z axis, and the latter operates as a 2π/3 

rotation about the [111] axis. The matrices can be constructed using tables from any 

crystallography text, noting that

Oh = O  i,⊗

where i is the inversion operator

i=(−1 0
0 −1) ,

and  represents a direct matrix product. Symmetry operations on basis functions can be ⊗

described by 

D(R)(X1

X2
)=(X '1

X '2) .

Explicitly, in Oh symmetry,

(1 0
0 −1)(2 z2

−x2
− y2

√3(x2
− y2

) )=(
2 z2

−x2
− y2

√3( y2
−x2

) ) ,
and

(
−

1
2

−
√3
2

√3
2

−
1
2
)(2z2

−x2
− y2

√3(x2
− y2

) )=(
2 y2

−x2
−z2

√3 (z2
−x2

) ) .
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Thus, a π/2 rotation about the z axis leaves X1, the orbital in Figure (e), invariant, 

whereas X2 has changed sign, effectively going from blue to orange in Figure (d). The 

2π/3 rotation about the [111] axis effectively permutes (x, y, z) to (z, x, y). The Cartesian 

axes are still right-handed, but the orbitals in Figures (d) and (e) have rotated with the 

crystal, along with the gray cone in Figure (e). For more information, see Reference 93.
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