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EXISTENCE OF Ψ-BOUNDED SOLUTIONS FOR A SYSTEM OF
DIFFERENTIAL EQUATIONS

AUREL DIAMANDESCU

Abstract. In this article, we present a necessary and sufficient condition for

the existence of solutions to the linear nonhomogeneous system x′ = A(t)x +
f(t). Under the condition stated, for every Lebesgue Ψ-integrable function f
there is at least one Ψ-bounded solution on the interval (0, +∞).

1. Introduction

We give a necessary and sufficient condition for the nonhomogeneous system

x′ = A(t)x + f(t) (1.1)

to have at least one Ψ-bounded solution for every Lebesgue Ψ-integrable function
f , on the interval R+ = [0,+∞). Here Ψ is a continuous matrix function, instead
of a scalar function, which allows a mixed asymptotic behavior of the components
of the solution.

The problem of Ψ-boundedness of the solutions for systems of ordinary differ-
ential equations has been studied by many authors; see for example Akinyele [1],
Constantin [3], Avramescu [2], Hallam [5], and Morchalo [6]. In these papers, the
function Ψ is a scalar continuous function: Increasing, differentiable, and bounded
in [1]; nondecreasing with Ψ(t) ≥ 1 on R+ in [3]).

Let Rd be the Euclidean d-space. Elements in this space are denoted by x =
(x1, x2, . . . xd)T and their norm by ‖x‖ = max{|x1|, |x2|, . . . |xd|}. For d × d real
matrices, we define the norm |A| = sup‖x‖≤1 ‖Ax‖.

Let Ψi : R+ → (0,∞), i = 1, 2, . . . d, be continuous functions, and let

Ψ = diag[Ψ1,Ψ2, . . . Ψd].

Then the matrix Ψ(t) is invertible for each t ≥ 0.
Definition. A function ϕ : R+ → Rd is said to be Ψ-bounded on R+ if Ψ(t)ϕ(t) is
bounded on R+.
Definition. A function ϕ : R+ → Rd is said to be Lebesgue Ψ-integrable on R+ if
ϕ(t) is measurable and Ψ(t)ϕ(t) is Lebesgue integrable on R+.

By a solution of (1.1), we mean an absolutely continuous function satisfying the
system for almost all t ≥ 0.
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Let A be a continuous d × d real matrix and the associated linear differential
system be

y′ = A(t)y. (1.2)

Also let Y be the fundamental matrix of (1.2) with Y (0) = Id, the identity d × d
matrix.

Let X1 denote the subspace of Rd consisting of all vectors which are values of
Ψ-bounded solutions of (1.2) at t = 0. Let X2 be an arbitrary closed subspace of
Rd, supplementary to X1. Let P1, P2 denote the corresponding projections of Rd
onto X1, X2.

2. The Main Results

In this section, we give the main results of this Note.

Theorem 2.1. If A is a continuous d× d real matrix, then (1.1) has at least one
Ψ-bounded solution on R+ for every Lebesgue Ψ-integrable function f on R+ if and
only if there is a positive constant K such that

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)| ≤ K, for 0 ≤ s ≤ t,

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)| ≤ K, for 0 ≤ t ≤ s.

(2.1)

Proof. First, we prove the “only if” part. We define the sets:
CΨ = {x : R+ → Rd : x is Ψ-bounded and continuous on R+},
B = {x : R+ → Rd : x is Lebesgue Ψ-integrable on R+},
D = {x : R+ → Rd : x is absolutely continuous on all intervals J ⊂ R+, Ψ-bounded
on R+, x(0) in X2, x′(t)−A(t)x(t) in B}.

It is well-known that CΨ is a real Banach space with the norm

‖x‖CΨ = sup
t≥0

‖Ψ(t)x(t)‖.

Also, it is well-known that B is a real Banach space with the norm

‖x‖B =
∫ ∞

0

‖Ψ(t)x(t)‖dt.

The set D is obviously a real linear space and

‖x‖D = sup
t≥0

‖Ψ(t)x(t)‖+ ‖x′ −A(t)x‖B

is a norm on D.
Now, we show that (D, ‖ · ‖D) is a Banach space. Let (xn)n be a fundamental

sequence in D. Then, (xn)n is a fundamental sequence in CΨ. Therefore, there
exists a continuous and bounded function x : R+ → Rd such that

lim
n→∞

Ψ(t)xn(t) = x(t), uniformly on R+.

Denote x̄(t) = Ψ−1(t)x(t) ∈ CΨ. From

‖xn(t)− x̄(t)‖ ≤ |Ψ−1(t)|‖Ψ(t)xn(t)− x(t)‖,

it follows that limn→∞ xn(t) = x̄(t), uniformly on every compact of R+. Thus,
x̄(0) ∈ X2.
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On the other hand, (fn(t)), where fn(t) = Ψ(t)(x′n(t) − A(t)xn(t)), is a funda-
mental sequence in L, the Banach space of all vector functions which are Lebesgue
integrable on R+ with the norm

‖f‖ =
∫ ∞

0

‖Ψ(t)f(t)‖dt.

Thus, there is a function f in L such that

lim
n→∞

∫ ∞

0

‖fn(t)− f(t)‖dt = 0.

Putting f̄(t) = Ψ−1(t)f(t), it follows that f̄(t) ∈ B
For a fixed, but arbitrary, t ≥ 0, we have

x̄(t)− x̄(0) = lim
n→∞

(xn(t)− xn(0))

= lim
n→∞

∫ t

0

x′n(s)ds

= lim
n→∞

∫ t

0

[(x′n(s)−A(s)xn(s)) + A(s)xn(s)]ds

= lim
n→∞

∫ t

0

{Ψ−1(s)[fn(s)− f(s)] + f̄(s) + A(s)xn(s)}ds

=
∫ t

0

[f̄(s) + A(s)x̄(s)]ds.

It follows that x̄′(t)−A(t)x̄(t) = f̄(t) ∈ B and x̄(t) is absolutely continuous on all
intervals J ⊂ R+. Thus, x̄(t) ∈ D. From limn→∞Ψ(t)xn(t) = Ψ(t)x̄(t), uniformly
on R+ and

lim
n→∞

∫ ∞

0

‖Ψ(t)[(x′n(t)−A(t)xn(t))− (x̄′(t)−A(t)x̄(t))]‖dt = 0,

it follows that limn→∞ ‖xn − x̄‖D = 0. Thus, (D, ‖ · ‖D) is a Banach space.
Now, we define

T : D → B, Tx = x′ −A(t)x.

Clearly, T is linear and bounded, with ‖T‖ ≤ 1. Let Tx = 0. Then, x′ = A(t)x, x ∈
D. This shows that x is a Ψ-bounded solution of (1.2). Then, x(0) ∈ X1∩X2 = {0}.
Thus, x = 0, such that the operator T is one-to-one.

Now, let f ∈ B and let x(t) be the Ψ-bounded solution of the system (1.1). Let
z(t) be the solution of the Cauchy problem

z′ = A(t)z + f(t), z(0) = P2x(0).

Then, x(t)−z(t) is a solution of (1.2) with P2(x(0)−z(0)) = 0, i.e. x(0)−z(0) ∈ X1.
It follows that x(t)− z(t) is Ψ-bounded on R+. Thus, z(t) is Ψ-bounded on R+. It
follows that z(t) ∈ D and Tz = f . Consequently, the operator T is onto.

From a fundamental result of Banach: “If T is a bounded one-to-one linear
operator from Banach space onto another, then the inverse operator T−1 is also
bounded, we have that there is a positive constant K = ‖T−1‖ − 1 such that, for
f ∈ B and for the solution x ∈ D of (1.1),

sup
t≥0

‖Ψ(t)x(t)‖ ≤ K

∫ ∞

0

‖Ψ(t)f(t)‖.
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For s ≥ 0, δ > 0, ξ ∈ Rd, we consider the function f : R+ → Rd,

f(t) =

{
Ψ−1(t)ξ, for s ≤ t ≤ s + δ

0, elsewhere.

Then, f ∈ B and ‖f‖B = δ‖ξ‖. The corresponding solution x ∈ D is

x(t) =
∫ s+δ

s

G(t, u)du,

where

G(t, u) =

{
Y (t)P1Y

−1(u), for 0 ≤ u ≤ t

−Y (t)P2Y
−1(u), for 0 ≤ t ≤ u.

Clearly, G is continuous except on the line t = u, where it has a jump discontinuity.
Therefore,

‖Ψ(t)x(t)‖ = ‖
∫ s+δ

s

Ψ(t)G(t, u)Ψ−1(u)ξdu‖ ≤ Kδ‖ξ‖.

It follows that
‖Ψ(t)G(t, s)Ψ−1(s)ξ‖ ≤ K‖ξ‖.

Hence,
|Ψ(t)G(t, s)Ψ−1(s)| ≤ K,

which is equivalent with (2.1). By continuity, (2.1) remains true also in the case
t = s.

Now, we prove the “if” part. We consider the function

x(t) =
∫ t

0

Y (t)P1Y
−1(s)f(s)ds−

∫ ∞

t

Y (t)P2Y
−1(s)f(s)ds, t ≥ 0,

where f is a Lebesgue Ψ-integrable function on R+ It is easy to see that x(t) is a
Ψ-bounded solution on R+ of (1.1). The proof is now complete. �

Remark. By taking Ψ(t) = Id in Theorem 2.1, the conclusion in [4, Theorem 2,
Chapter V] follows.

Theorem 2.2. Suppose that:
(1) The fundamental matrix Y (t) of (1.2) satisfies the conditions:

(a) limt→∞Ψ(t)Y (t)P1 = 0;
(b) |Ψ(t)Y (t)P1Y

−1(s)Ψ−1(s) ≤ K, for 0 ≤ s ≤ t,
|Ψ(t)Y (t)P2Y

−1(s)Ψ−1(s)| ≤ K, for 0 ≤ t ≤ s,
where K is a positive constant and P1 and P2 are as in the Introduction

(2) The function f : R+ → Rd is Lebesgue Ψ-integrable on R+.
Then, every Ψ-bounded solution x(t) of (1.1) is such that

lim
t→∞

‖Ψ(t)x(t)‖ = 0.

Proof. Let x(t) be a Ψ-bounded solution of (1.1). There is a positive constant M
such that ‖Ψ(t)x(t)‖ ≤ M , for all t ≥ 0. We consider the function

y(t) = x(t)− Y (t)P1x(0)−
∫ t

0

Y (t)P1Y
−1(s)f(s)ds +

∫ ∞

t

Y (t)P2Y
−1(s)f(s)ds

for all t ≥ 0.
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From the hypotheses, it follows that the function y(t) is a Ψ-bounded solution
of (1.2). Then, y(0) ∈ X1. On the other hand, P1y(0) = 0. Therefore, y(0) =
P2y(0) ∈ X2. Thus, y(0) = 0 and then y(t) = 0 for t ≥ 0.

Thus, for t ≥ 0 we have

x(t) = Y (t)P1x(0) +
∫ t

0

Y (t)P1Y
−1(s)f(s)ds−

∫ ∞

t

Y (t)P2Y
−1(s)f(s)ds.

Now, for a given ε > 0, there exists t1 ≥ 0 such that∫ ∞

t

‖Ψ(s)f(s)‖ds <
ε

2K
, for t ≥ t1.

Moreover, there exists t2 > t1 such that, for t ≥ t2,

|Ψ(t)Y (t)P1| ≤
ε

2

[
‖x(0)‖+

∫ t1

0

‖Y −1(s)f(s)‖ds
]−1

.

Then, for t ≥ t2 we have

‖Ψ(t)x(t)‖ ≤ |Ψ(t)Y (t)P1|‖x(0)‖+
∫ t1

0

|Ψ(t)Y (t)P1|‖Y −1(s)f(s)‖ds

+
∫ t

t1

|Ψ(t)Y (t)P1Y
−1(s)Ψ−1(s)|‖Ψ(s)f(s)‖ds

+
∫ ∞

t

|Ψ(t)Y (t)P2Y
−1(s)Ψ−1(s)|‖Ψ(s)f(s)‖ds

≤ |Ψ(t)Y (t)P1|
[
‖x(0)‖+

∫ t1

0

‖Y −1(s)f(s)‖ds
]

+ K

∫ ∞

t1

‖Ψ(s)f(s)‖ds < ε.

This shows that lim t →∞‖Ψ(t)x(t)‖ = 0. The proof is now complete. �

Remark.Theorem 2.2 generalizes a result in Constantin [3].
Note that Theorem 2.2 is no longer true if we require that the function f be

Ψ-bounded on R+, instead of condition (2) of the Theorem. Even if the function f
is such that

lim t →∞‖Ψ(t)f(t)‖ = 0,
Theorem 2.2 does not apply. This is shown by the next example.
Example. Consider the linear system (1.2) with A(t) = O2. Then Y (t) = I2 is a
fundamental matrix for (1.2). Consider

Ψ(t) =
(

1
t+1 0
0 t + 1

)
We have Ψ(t)Y (t) = Ψ(t), such that

P1 =
(

1 0
0 0

)
, p2 =

(
0 0
0 1

)
It follows that the first hypothesis of the Theorem is satisfied with K = 1. When
we take f(t) = (

√
t + 1, (t + 1)−2)T , then limt→∞ ‖Ψ(t)f(t)‖ = 0. On the other

hand, the solutions of the system (1.1) are

x(t) =
(

2
3 (t + 1)3/2 + c1

− 1
t+1 + c2

)
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It follows that the solutions of the system (1.1) are Ψ-unbounded on R+.
Remark. When in the above example we consider

f(t) =
(
(t + 1)−1, (t + 1)−3

)T
,

then we have ∫ ∞

0

‖Ψ(t)f(t)‖dt = 1.

On the other hand, the solutions of the system (1.1) are

x(t) =
(

ln(t + 1) + c1

− 1
2 (t + 1)−2 + c2

)
It is easy to see that these solutions are Ψ-bounded on R+ if and only if c2 = 0. In
this case, limt→∞ ‖Ψ(t)x(t)‖ = 0.

Note that the asymptotic properties of the components of the solutions are not
the same. This is obtained by using a matrix Ψ rather than a scalar.
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