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EXISTENCE OF ¥Y-BOUNDED SOLUTIONS FOR A SYSTEM OF
DIFFERENTIAL EQUATIONS

AUREL DIAMANDESCU

ABSTRACT. In this article, we present a necessary and sufficient condition for
the existence of solutions to the linear nonhomogeneous system =’ = A(t)z +
f(t). Under the condition stated, for every Lebesgue W-integrable function f
there is at least one W-bounded solution on the interval (0, 400).

1. INTRODUCTION

We give a necessary and sufficient condition for the nonhomogeneous system
= A(t)x + f(t) (1.1)

to have at least one ¥-bounded solution for every Lebesgue U-integrable function
f, on the interval Ry = [0, 4+00). Here ¥ is a continuous matrix function, instead
of a scalar function, which allows a mixed asymptotic behavior of the components
of the solution.

The problem of W-boundedness of the solutions for systems of ordinary differ-
ential equations has been studied by many authors; see for example Akinyele [I],
Constantin [3], Avramescu [2], Hallam [5], and Morchalo [6]. In these papers, the
function ¥ is a scalar continuous function: Increasing, differentiable, and bounded
in [I]; nondecreasing with ¥(¢) > 1 on R, in [3]).

Let R? be the Euclidean d-space. Elements in this space are denoted by = =
(71,22,...74)T and their norm by ||z|| = max{|z1|, |z2],...|r4|}. For d x d real
matrices, we define the norm |A| = sup), < [|Az]].

Let ¥; : Ry — (0,00), 7 =1,2,...d, be continuous functions, and let

U = diag[\Ill, \:[12, N \I/d]
Then the matrix ¥(t) is invertible for each ¢ > 0.
Definition. A function ¢ : Ry — RY is said to be U-bounded on R if U (t)p(t) is
bounded on Ry.

Definition. A function ¢ : R, — R? is said to be Lebesgue W-integrable on R if
©(t) is measurable and U(t)p(t) is Lebesgue integrable on R .

By a solution of (|1.1)), we mean an absolutely continuous function satisfying the
system for almost all ¢ > 0.
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Let A be a continuous d X d real matrix and the associated linear differential
system be
y = A@)y. (1.2)
Also let Y be the fundamental matrix of (1.2)) with Y (0) = I, the identity d x d
matrix.
Let X; denote the subspace of R? consisting of all vectors which are values of
W-bounded solutions of (1.2)) at ¢ = 0. Let X5 be an arbitrary closed subspace of

R?, supplementary to X;. Let P, P» denote the corresponding projections of R¢
onto X7, Xs.

2. THE MAIN RESULTS

In this section, we give the main results of this Note.

Theorem 2.1. If A is a continuous d x d real matriz, then (1.1) has at least one
W-bounded solution on Ry for every Lebesque V-integrable function f on Ry if and

only if there is a positive constant K such that
[ T(Y ()PY ()T (s)| < K, for0<s<t, 21)
[T () PY L(s)UL(s)| < K, for0<t<s. '

Proof. First, we prove the “only if” part. We define the sets:
Cy = {z: Ry — R?: 2 is U-bounded and continuous on R},
B ={z:R; — R?: z is Lebesgue W-integrable on R},
D = {z:R; — R?: z is absolutely continuous on all intervals J C Ry, ¥-bounded
on Ry, z(0) in Xo, a'(t) — A(t)z(t) in B}.
It is well-known that C'y is a real Banach space with the norm

2llcy = sup [[¥(t)z(t)]-
t>0

Also, it is well-known that B is a real Banach space with the norm

lelle = [ Ie(®a(o)ld.
0
The set D is obviously a real linear space and
Izl = sup||¥(t)z@)| + [l2" — A(t)z||
>0
is a norm on D.
Now, we show that (D, | - ||p) is a Banach space. Let (z,), be a fundamental

sequence in D. Then, (z,), is a fundamental sequence in Cy. Therefore, there
exists a continuous and bounded function x : Ry — R? such that

lim U(t)x,(t) = z(t), uniformly on R,.
Denote Z(t) = ¥~ 1(t)z(t) € Cy. From

lzn (t) = 2O < [T O[Oz (t) — 2(B)]),

it follows that lim,, o, z,(t) = Z(t), uniformly on every compact of Ry. Thus,
z(0) € Xo.
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On the other hand, (f,(t)), where f,(t) = ¥ (¢t)(z],(t) — A(t)z,(t)), is a funda-
mental sequence in L, the Banach space of all vector functions which are Lebesgue
integrable on Ry with the norm

111 = [ 1wl
Thus, there is a function f in L such that

lim [ (t) = f(#)[ldE = 0.
n—oo 0
Putting f(t) = U~1(¢)f(t), it follows that f(t) € B
For a fixed, but arbitrary, ¢ > 0, we have

#(0) = 50) = Jim (@, (1) = 2,(0)
= lim t x) (s)ds

n—oo 0

= lim | [(2,(s) = A(s)zn(s)) + A(s)2n(s)]ds

n—oo 0

:/0 [f(s) + A(s)Z(s)]ds.

It follows that Z'(t) — A(t)Z(t) = f(t) € B and Z(t) is absolutely continuous on all
intervals J C Ry. Thus, Z(t) € D. From lim,,_,o ¥ (t)x,(t) = ¥(¢)Z(t), uniformly
on Ry and

) 1 @)[(2, () = A(H)an(t) — (&' (t) — A(B)z(®))]]|dt = O,

it follows that lim,, . ||z, — Z||p = 0. Thus, (D, | -||p) is a Banach space.

Now, we define

T:D— B, Tx=2a2—A(t)z.

Clearly, T is linear and bounded, with ||T|| < 1. Let Tz = 0. Then, 2’ = A(t)z,z €
D. This shows that z is a ¥-bounded solution of ((1.2)). Then, 2(0) € X1NX5 = {0}.
Thus, « = 0, such that the operator T is one-to-one.

Now, let f € B and let x(t) be the U-bounded solution of the system (1.1). Let
z(t) be the solution of the Cauchy problem

Z=At)z+ f(t), =2(0) = Pxz(0).

Then, z(t)—z(t) is a solution of with Py(2(0)—2(0)) = 0, i.e. (0)—2(0) € X;.
It follows that x(t) — z(¢) is ¥-bounded on Ry. Thus, z(t) is ¥-bounded on Ry. It
follows that z(t) € D and Tz = f. Consequently, the operator T is onto.

From a fundamental result of Banach: “If T is a bounded one-to-one linear
operator from Banach space onto another, then the inverse operator T~ is also

bounded, we have that there is a positive constant K = ||T~!|| — 1 such that, for
f € B and for the solution « € D of (L.1)),

sup [T ()] < K / Tl ).

t>0
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For s >0, 0 > 0, £ € RY, we consider the function f: R, — R?,

f(t) = {‘I’_l@)& for s <t<s+4

0, elsewhere.

Then, f € B and ||f||z = d||¢||. The corresponding solution « € D is

5+0
o(t) = / G(t, u)du,

where
Y(t)P Y ! for 0 <u<t
Gty = | ¥ DAY (W), for0sus
-Y()PY H(u), for0<t<u.
Clearly, GG is continuous except on the line ¢ = u, where it has a jump discontinuity.
Therefore,

s+0
W (@) ()]l = H/ V()G (t,u) ¥ (w)édull < K6

It follows that
TGt )T (s)€]| < K[]l.
Hence,
[U(6)G(t,s)¥ ™ (s)| < K,
which is equivalent with . By continuity, remains true also in the case
t=s.
Now, we prove the “if” part. We consider the function

a:(t)z/o Y(t)PlY‘l(s)f(s)ds—/too V(&) P,Y 1 (s)f(s)ds, t > 0,

where f is a Lebesgue U-integrable function on R It is easy to see that x(t) is a
W-bounded solution on Ry of (|1.1)). The proof is now complete. d

Remark. By taking ¥(¢) = I; in Theorem the conclusion in [4, Theorem 2,
Chapter V] follows.

Theorem 2.2. Suppose that:

(1) The fundamental matriz Y (t) of satisfies the conditions:
(a) limsoo ¥(2)Y (t)P1 = 0;
(b) (W)Y (t)PLY L(s)U1(s) < K, for0 < s <t,
W)Y () PY ()0 1(s)| < K, for 0 <t <s,
where K is a positive constant and Py, and Py are as in the Introduction
(2) The function f: Ry — R? is Lebesgue V-integrable on R, .
Then, every ¥-bounded solution x(t) of is such that

Jim [ (6)a(t)| = 0.

Proof. Let x(t) be a ¥-bounded solution of ([1.1)). There is a positive constant M
such that ||[¥(t)z(¢)|| < M, for all t > 0. We consider the function

y@xwY@HMmAYVWleﬁ@@+ZmY@&YI®ﬂ$%

for all t > 0.
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From the hypotheses, it follows that the function y(¢) is a U-bounded solution
of ([.2). Then, y(0) € X;. On the other hand, P;y(0) = 0. Therefore, y(0) =
Py(0) € X5. Thus, y(0) = 0 and then y(¢) =0 for ¢ > 0.

Thus, for t > 0 we have

2(t) = Y(8) Piz(0 / V() PY 1 (s)f(s)ds — /t T Y () PY 1 (5) f(s)ds.

Now, for a given € > 0, there exists t; > 0 such that

o €
/t ||\Il(s)f(5)||ds<ﬁ, for ¢t > t;.

Moreover, there exists t5 > t1 such that, for ¢t > to,

@Y ()P < 5 [2(0)] + / YA s) A lds]

Then, for ¢t > t5 we have

@)z @) < @)Y (@) Pr[[<(0)] +/0 [ OY (P [Y () () ds

[T ()Y~ ()8 (s)[[|(5) f (s)llds

t1

-/ T OY (P ()0 (S 19 £ ()]s
< [w()Y (t)P [||w<o>|| + / YA s) (s s

—|—K/ 1T (s)f(s)|lds < e.
t1

This shows that limt¢ — oo||¥(¢)z(t)|| = 0. The proof is now complete. O

Remark.Theorem generalizes a result in Constantin [3].

Note that Theorem is no longer true if we require that the function f be
U-bounded on R, instead of condition (2) of the Theorem. Even if the function f
is such that

lim ¢ — oo W(1) /(1) = 0,
Theorem does not apply. This is shown by the next example.
Example. Consider the linear system with A(t) = Oz. Then Y(t) = L is a
fundamental matrix for . Consider

ax 0

B

o= (7,1
We have U(t)Y (t) = ¥(¢), such that

1 0 0 0
P1=<0 0>7 P2=<O 1)

It follows that the first hypothesis of the Theorem is satisfied with K = 1. When
we take f(t) = (VE+1,(t+ 1)’2)T, then lim;_ ||¥(¢)f(t)|| = 0. On the other
hand, the solutions of the system (|1.1)) are

o(t) = < (t+1)3fc—;— cl)

t+1
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It follows that the solutions of the system (1.1)) are ¥-unbounded on R.
Remark. When in the above example we consider

F) = (t+1) @+ 1737,
then we have -
| v =
On the other hand, the solutions of the system are

o In(t+1)+a
2(t) = (;(t +1)72 4 Cz)
It is easy to see that these solutions are ¥-bounded on R, if and only if ¢; = 0. In
this case, lim;_, || (¢)z(t)]| = 0.
Note that the asymptotic properties of the components of the solutions are not
the same. This is obtained by using a matrix ¥ rather than a scalar.
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