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CHAPTER 1 

INTRODUCTION 

1.1 The Multi-core Shift 

As personal computers have become more prevalent and more applications have been 

designed for them, the end-user has seen the need for a faster, more capable system 

[19]. Speedup has been achieved by increasing clock speeds and more recently, adding 

multiple processing cores to the same chip [19]. Having multiple-cores on a single chip 

opens up opportunities for thread-level parallelism and dramatically increases the 

performance potential of applications running on these systems [18]. This is of 

enormous importance in the current power and heat limited environment because lower 

frequencies imply lower power consumption and less heat [18]. 

Sadly, however, the state-of-the-art in performance enhancing software is far 

from adequate in exploiting the hardware features of multicore architectures [18]. As a 

result, much of the performance capabilities of multi-core systems are yet to be 

explored [18]. In order to realize the full potential of CMP systems much of the 

responsibility to find and exploit opportunities for parallelism is now placed on 

software and programmers [18]. Programmers have to write applications with 

subroutines able to be run on different cores, meaning that data dependencies will have  
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to be resolved or accounted for (e.g. latency in communication or using a shared 

cache)[19]. Also, Applications developed should be load-balanced, if one core is being 

used much more than another, the programmer is not taking full advantage of the 

multicore system [19]. Thus, the problem of finding and exploiting opportunities for 

parallelism in software is a difficult one and will require a great deal of effort if CMPs 

are to deliver at their performance and power capacities [18]. 

1.2 Shared Cache Problem  

Further complicating the potential payoffs from the shift toward CMPs is the fact that at 

some level, memory resources are shared among different processing cores [18]. Sharing 

of cache resources can have both favorable and unfavorable impact on performance. 

Consider the scenario shown in Figure 1(a), where the cache is shared among threads T1 

and T2. Let us suppose, T1 makes a read request for data element B , then the element 

will be retrieved from memory and brought into shared cache S and placed in some cache 

line i . After a while, if T2 makes a read request for same element B, then it can be 

T1                                T2                        

 B  

 
 B  

 

                            R                                 R                         

S 

       B    

   0         1           2      ………    i          …….          n 

                                 Cache Lines 

Figure 1(a): Read-Read 

T1                                T2                        

 B  

 
 B  

 

                            R                                W                         

S 

       B    

   0         1           2      ………    i          …….          n 

                                 Cache Lines 

Figure 1(b):Read-Write 
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retrieved from the same cache line i. Thus, this leads to reducing latency and thereby 

boosting performance. Contrary to above case, Let us consider read-write scenario among 

thread T1 and T2 as shown in Figure 1(b) .The problem that may occur with this scenario 

is when T1 is reading a value and at same time if T2 is writing a value to same location i 

in shared cache S, then T1 may not have the updated value. This leads to corruption of 

data, producing incorrect output. To avoid this data corruption, access by T1 needs to be 

serialized, leading to degraded performance. Lastly, let us consider a scenario where two 

threads T1 and T2 access different data elements A and B, both of which map to the 

cache location i in the shared cache line S as shown in Figure 2. This scenario may cause 

accesses by T1 to evict T2’s data, or vice–versa. These conflict misses can lead to serious 

system performance loss because the system is spending a disproportionate amount of 

time if thrashing on the shared cache line. Because of this multitude of effects on 

performance, it is important to understand the behavior of shared cache on multicore 

architectures. 

                              T1                                            T2                   

 A  

 

                                       Cache Lines                                                                           

       A, B    

                                     0         1           2      ………                  i          …….          …….      n 

                                                                                        

 

Figure 2: Thrashing Effect 

 B  

  A     B  
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1.3 Understanding Shared Cache Behaviour 

This research aims to understand the locality effects and communication costs among 

threads in relation to a shared cache. To facilitate this, we implemented two strategies. 

First, we have developed a tool for generating comprehensive reuse distance for 

multithreaded applications. Although the use of reuse distance analysis is quite prevalent 

for memory optimizations for sequential programs, their use in analyzing parallel 

applications has been limited. This is mainly due to difficulties in measuring reuse 

distance for multithreaded code. Our research addresses this problem and provides a 

solution for measuring reuse distance for parallel applications using Pin tool frame work. 

Second, we develop two micro benchmarks to estimate the amount of cache sharing in 

multithreaded applications and also to determine how code transformation affects 

performance of parallel code.
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CHAPTER 2 

BACKGROUND 

The background is divided into three sections. In the first section, description of all the 

tools used to capture data for experiments is presented. In second section, all the 

benchmarks used for experiments are described. In last section, some of the terminology 

used in this documentation is defined. 

2.1 Tools Used 

For this study, we use a set of performance measurement tools like Performance 

Application Programming Interface (PAPI). It is a portable interface to hardware 

performance counters on modern microprocessors and is widely used to collect low level 

performance metrics (e.g. instruction counts, clock cycles, cache misses) [2]. We also use 

HPCToolkit, a performance toolkit for accurately measuring and pinpointing 

performance bottlenecks. It uses novel techniques for measurement and analysis of 

parallel programs [23]. In particular, it uses statistical sampling of hardware performance 

counters and attributes metrics to both the calling context in which they occur and 

program structure, including loops and inlined procedures [23]. Lastly, we make use of 

Pin tool for getting memory trace for all our benchmarks. Pin tool is designed for 

dynamic instrumentation of program by inserting arbitrary code (written in C or C++) in 

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Hardware_counter
http://en.wikipedia.org/wiki/Hardware_counter
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Instruction
http://en.wikipedia.org/wiki/Clock_cycle
http://en.wikipedia.org/wiki/Cache_miss
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arbitrary Places in the executable [7]. Thus, we could get trace of each individual thread 

and its specific memory reference. 

2.2 Benchmarks 

The proposed research focuses on evaluating reuse distance and cache sharing effects on 

shared cache performance using several programs from four different benchmarks suites. 

First, Matrix multiplication benchmark was used with blocking optimization. We used 

optimized Matrix multiplication to validate the relation among data locality and 

parallelism in relation to shared cache. Second, mgrid and swim benchmarks were taken 

from SPEC CPU2000 suit. mgrid demonstrates the capabilities of a very simple multigrid 

solver in computing a three dimensional potential field where as swim consists of weather 

prediction program for comparing the performance of current supercomputers [8 ]. Third, 

the stream benchmark was taken from the HPCC benchmark suit. Stream is a simple 

synthetic benchmark program that measures sustainable memory bandwidth (in GB/s) 

and the corresponding computation rate for simple vector kernel [14]. Lastly, 

blackscholes and freqmine benchmarks were taken from PARSEC benchmark suit. 

Blackscholes application calculates the prices for a portfolio of European options 

analytically with the Black-Scholes partial differential equation (PDE) whereas freqmine 

application employs an array-based version of the FP-growth (Frequent Pattern-growth) 

method for Frequent Itemset Mining (FIMI)[1]. 

2.3 Terminology 

 Reuse Distance: In multicore architecture instructions are executed in parallel 

and hence reuse distance will consist of memory access from different threads. 
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Figure 3 shows an example for reuse distance. The reuse distance of D is two 

because two distinct data elements, A and C, are accessed in between [3]. 

 

A 

                    Reuse Distance of C = 1                 C 

                                                     D              Reuse Distance of A = 2 

                                                                            C 

                                                      A               Reuse Distance of D = 2               

                    Reuse Distance of C = 1                 C 

D 

Figure  3: Reuse Distance Example 

 Temoral Locality: Temporal locality is the tendency of an application to 

reference the same memory addresses that it referenced recently [26][9].  

 Spatial Locality: Spatial locality is the tendency of applications to access 

memory addresses near other recently accessed addresses [26][9].  
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CHAPTER 3 

RELATED WORK 

The related work is divided into two sections. First, work related to optimizations of 

shared cache is presented. Second, we explore the research that pertains to reuse distance 

based analysis of shared cache. 

3.1 Optimization of Shared Cache Performance 

There has been some worked done in the past to study the behavior of shared cache on 

various platforms and also suitable transformations have been applied at software level. 

Nikolopoulos talks about optimizing performance of Simultaneous multithreading 

(SMT) processors which uses shared cache at all levels. Sharing a cache between 

simultaneously executing threads causes excessive conflict misses. This paper proposes 

software solutions for partitioning shared caches on SMT processors, based on standard 

program transformations and additional support from the OS, or information collected 

from the processor hardware counters. Experimental results show that when cache is 

shared between threads from the same address space, performance is improved by 16-

29% on average [16]. In another paper Nikolopoulos proposes a methodology for 

dynamically partitioning a shared cache among threads in simultaneous multithreaded 

architectures. The proposed methodology involves using two tile sizes, one that occupies
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the entire cache and another that occupies a fraction of the cache inversely proportional to 

the number of threads sharing the cache. By switching between the two tile sizes 

dynamically at run-time, Nikolopoulos’ methodology reduces unnecessary conflict 

misses that would otherwise occur when two or more threads of execution attempt to 

utilize loop tile sizes that would occupy the entire shared cache. Nikolopoulos notes that 

this dynamic tiling implementation would benefit all processors that make use of a shared 

data cache, including CMPs [17]. 

Jeremiassen and Eggers analyze the effectiveness of compile time analysis and 

shared data transformation in reducing false sharing in explicit parallel programs. 

According to them changing the way shared data is laid out in memory to better conform 

to the memory reference patterns, false sharing can be eliminated. In particular, their 

methodology consists of grouping all data that is accessed by the same processor together 

and separating individual data from multiple processors. Thus, leading to overall effect of 

reducing cache misses [10]. 

Kandemir et al. presented a mathematical framework for studying the interaction 

between false sharing and locality for programs on shared-memory multiprocessors. They 

found that in those cases where the compiler can obtain outermost loop parallelism, it 

might be possible to simultaneously enhance spatial locality and reduce false sharing 

using memory layout transformations, which do not affect parallelism decisions already 

made by the compiler. They suggest detailed profile information can be useful in making 

their decisions [11]. In later work, Kandemir et al. present a compiler directed code 

restructuring scheme for enhancing locality of shared data in CMP’s. The unique 

characteristic of this scheme is that, using two complementary steps (allocation, which 
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determines the set of loop iterations assigned to each core, and scheduling, which 

determines the order in which the iterations assigned to a core are executed), it 

restructures the application code such that different cores operate on shared data blocks at 

the same time, to the extent allowed by data dependencies. This results in reducing the 

reuse distances for the shared data, and thus reducing the number of inter-core conflict 

misses [12]. 

3.2 Reuse Distance Based Analysis 

Fu and Wang introduce the design and implementation of a cache performance tuning 

tool named CTuning, which employs a source level instrumentation method to gather 

program data access information, and uses a limited reuse distance model to analyze 

cache behavior. Experiments show that CTuning is useful in helping  programmers 

transform their code by locating cache performance bottlenecks and perform data 

reorganization through analysis of cache behavior relation of some variables [4]. 

Fang et al. have shown that reuse distance can effectively predict locality and 

miss rates on a per instruction basis. Their experiments have shown that using reuse 

distance without cache simulation to predict miss rates of instruction is superior to using 

cache simulations on a single representative data set to predict miss rates on various data 

sizes. In addition, their analysis identified the critical memory operations that are likely to 

produce a significant number of cache misses for a given data size. With this information, 

compilers can target cache optimization, specifically to the instructions that can benefit 

from such optimizations most [5]. In later work, Fang et al. investigates the relationship 

between locality patterns and execution paths by analyzing reuse distance distribution 

along each dynamic path to an instruction. They relate branch history to particular 
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locality patterns in order to determine exactly when a particular reuse distance will be 

exhibited by a memory operation. They suggest that being able to determine when a 

particular locality pattern will occur for a memory instruction allows the compiler and 

architecture to cooperate in targeting when to apply memory optimizations [6]. 

Marin and Mellor-Crummey describe an approach that uses memory reuse 

distance to identify an application’s most significant memory access patterns causing 

cache misses and provide insight into ways of improving data reuse. They demonstrate 

the effectiveness of their approach in two scientific codes: one for simulating neutron 

transport and a second for simulating turbulent transport in burning plasmas. Their tools 

pinpoint opportunities for enhancing data reuse. Using this feedback as a guide, they 

transform the codes, reducing their misses at various levels of the memory hierarchy by 

integer factors and reducing their execution time by as much as 60% and 33%, 

respectively [15]. 
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CHAPTER 4 

MICROBENCHMARKS FOR ESTIMATING CACHE-SHARING EFFECTS 

In this chapter, we first describe a synthetic microbenchmark we developed that enables 

us to estimate the amount of cache-sharing in parallel applications. Next, we described a 

parallel version of matrix-matrix multiplication. Finally, we present experimental Results. 

4.1 Synthetic Micro-benchmark 

On CMP’s shared cache can have significant impact on performance because of a variety 

of reasons.  First, since cache is shared among processors, it reduced resources 

underutilization, i.e. if one core idles, the other core takes all the shared cache [22]. 

Secondly, it allows data sharing opportunity for threads running on separate cores [22]. 

Finally, it reduces data storage redundancy as same data only need to be stored once [22]. 

Therefore several techniques are introduced to optimize shared cache performance. In 

one case application code is restructured such that the different cores operate on shared 

data block at same time, this helps in reducing reuse distance for the shared data and 

improves on- chip cache performance [13]. In another case, a dynamic cache partition 

scheme was introduced that explicitly allocates cache space among simultaneously 

executing process and minimizes over cache misses [20]. However, these techniques are 

not so successful because optimizations are not able to accurately estimate cache sharing. 

Therefore, it is important to get a deeper understanding of sharing to optimize programs. 
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Here, we present a micro benchmark that estimates cache sharing behavior. The 

basic idea in constructing this cache sharing benchmark was to have two data- structures 

accessing shared cache iteratively as shown in Figure 4. Micro-benchmarks have been 

used often in performance analysis of applications and architectures. For example, Cade 

and Qasem use a syntactic benchmark to encapsulate memory reuse patterns and 

parallelism characteristics of producer-consumer workloads [18]. Micro-benchmarks 

have also been used in the X-ray toolset for measuring hardware parameters values [24]. 

 

 

                  Original Array    

 

 

Figure 4: Data access patterns in Micro Benchmark 

C[1] C[2] C[3] C[4] ……. C[n] 

Iterati
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                               Thread1                                                                   Thread2  Array 
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 I=1 B[1] B[2] B[3] ……… B[n] 
 

A[1] A[2] A[3] …….. A[n] 
 

  2n 

I=2 A[1] A[2] A[3] …….. A[n]/ B[1]  B[2] B[3] ….. B[n] 
 

 2n-1 

I=3 A[1] A[2] A[3] ….. A[n-1]/ B[1]  A[n]/B[2] B[3] … B[n] 
 

 2n-2 

. 

. 

. 

. 

. 

. 

. 
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. 
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. 
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I=n-1 A[1] A[2]/B[2] A[3]/B[3] …..    A[n]/B[n-1] B[n] 
 

n+1 

I=n A[1]/B[1] A[2]/B[2] A[3]/B[3] …….. A[n]/B[n] 
 

   n 
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The major computational component of the synthetic benchmark involves a large 

array C of size n as shown in Figure 5. During execution the array of elements to be 

accessed are divided into two threads, such that one thread access elements from C[i] ...C 

[n/2] and other from C [n/2]...C[n].This leads to running two threads separately on two 

cores. For simplicity we consider, Thread1 to access the first half of array as A[i]...A[n] 

and other half accessed by Thread2 as B [i] …B[n]. During each iteration, each member 

of Thread1 is made to overlap with Thread 2 depending upon the number of elements to 

be shared among cores. 

The synthetic benchmark is made to run on two different cores using two threads 

ID’s as shown in Figure 4. To predict the amount of sharing among Thread1 and 

Thread2, we consider two factors Threshold and Decrement. The Threshold is taken as 

the ending point for Thread1 accessing arrays from A[i]...A[n], where n is Threshold. 

Decrement is taken as the starting point for Thread2 accessing arrays from B[i]...B [i+n], 

where i is Decrement. The Overlap region is identified by Thread1 running by same 

amount for every iteration, i.e 0-50000 , whereas Thread2 running from 500001 to 

100000 in first iteration and then decrementing by 1000 for every iteration until it 

completely overlaps with Thread1. 

// Threshold= 49 

 //Decrement = 50 

//n = 100 

for (i=0; i<n; i++) 

{ 

  c[i]=i; 

} 

omp_set_num_threads(2); 

#pragma omp parallel private(j) shared(Threshold) 

{  

    int ID = omp_get_thread_num(); 

  

      if(ID == 0) 
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      { // thread 0 

         #pragma omp for shared   

            for(j=0;j<Threshold;j++) 

               a[j]= c[j]+ 17; 

      }   

      else if(ID ==1) 

      { 

        // thread 1 

#pragma omp for shared   

         for(j=Decrement;j<Threshold+Decrement;j++) 

         b[j]=c[j]+17; 

      } 

} 

 

Figure 5: Pseudo code for Cache Sharing Algorithm 

Thus, during execution of the above algorithm the overlap region increases as the 

decrement factor is reduced. To calculate how the amount of sharing among threads has 

an effect on cache parameters, we concentrate on three important points during the 

execution of program. First, when there is no overlap among both threads, i.e Threshold = 

50,000 and Decrement =50001. Second, when there is 50 % overlap, i.e Threshold = 

50,000 and Decrement = 2500. Lastly, when there is complete sharing, i.e Threshold = 

50,000 and Decrement = 50,000. Ideally, the miss rates can be considered to be inversely 

proportional to overlap region. For example, when there is no sharing involved then two 

threads will access elements independently and there will be at least once access to 

memory and thus contributing to compulsory misses, so this scenario may contribute to 

100% misses, However with overlap region increasing and finally completely 

overlapping the other thread, the misses will be reduced to 50 %, as elements requiring 

access by one thread may have already been brought in by other thread. The above 

scenario can be justified by substituting the overlap region and size of array values in the 

below formula: 
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Let’s consider, O = Overlap 

 T1= Size of Thread1- Overlap 

 T2= Size of Thread2- Overlap 

  S= Total Size of Array 

             M= Missrate 

Therefore, M = ((T1+T2+O)/S)*100 

For following cases, let us consider S= 1000, Size of Thread1= 500, Size of Thread2 = 

500.  

Case 1: For no overlap, S= 1000; T1= 500; T2 = 500; O=0 

M= (1000/1000)*100 = 100 % 

 

Case 2: For 50 per cent overlap, S= 1000; T1= 250; T2 = 250; O=250 

M= (750/1000)*100 = 75 % 

Case 3: For 100 per cent overlap, S= 1000; T1=0; T2 = 0; O=500 

M= (500/1000)*100 = 50 % 

Ideally, the performance should increase by two fold when no sharing scenario is 

compared with complete sharing. Recall the read–read scenario discussed in Chapter-1. 

When Thread1 reads the data into cache, then it can be used by Thread2 which overlaps 

with Thread1 for access to same elements, this leads reducing number of access to 

memory and thus reducing latency and improving performance. However, this may not 

be the case when considering read-write situation.  As, Thread1 may read data at the 

same time when Thread2 will be writing to same location, then Thread1 may get an 

invalid value next time when it makes a request for access to same location. Thus the 
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performance will be degraded with incorrect data. Also, when threads are accessing the 

same data within shared cache then there will be lot of contention for shared resources 

and hence will lead to lot of conflict misses.  

4.2 Block-Parallel Matrix Multiplication 

One more scenario that makes shared cache optimization more critical is during use of 

pipelined parallel application. In case of pipelined parallelism, the problem is 

decomposed into chain of independent stages as shown in Figure 6[25]. Each stage is 

then related to its temporal neighbor in a producer-consumer fashion where P is the 

producer and C is the consumer [25]. In other words, each stage consumes output from a 

previous stage and provides input to future stages as shown in Figure 7[25]. This strategy 

of pipelined parallelism have positive impact in reducing the missrates and also utilizing 

bandwidth effectively [25]. But, the negative side of this strategy comes into picture 

when data locality and parallelism becomes related, when considering a cache is being 

shared among multiple processors [18].  

                   

Figure 6: Producer-Consumer Model 
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Figure 7: Producer-Consumer Working Model 

Consider a pipeline – parallel application model as shown in Figure 8. In first 

case, if we have lot of locality of data to be processed among different threads, then data 

remains in cache for longer period and thus decreasing capacity misses [18]. But, on the 

other hand to achieve this positive impact, we need to delay threads for longer periods, 

this leads to unexploited parallelism [18]. In second case, if we divide the data to be 

processed among multiple cores, then there will be a significant impact on performance 

because of parallelism [18]. But, on the down side as parallelism is increased by addition 

of more cores or threads then there will be more contention for shared memory resources 

[18]. Thus the benefit of increased parallelism is then gained with an associated cost of 

reduced data locality [18]. 

Case 1 

 

Case 2 

 

 

Figure 8: Locality and Parallelism related Model 
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To validate the above scenario, we optimize Matrix- Matrix multiplication for 

both parallel and sequential versions. First a Sequential matrix multiplication is 

implemented using three two dimensional arrays of fixed size. In sequential version, the 

three for loops to initialize the arrays are executed sequentially as show in Figure 9. After 

initialization, matrix multiplication is performed using blocking optimization. With 

blocking, each matrix is divided into blocks of smaller matrices i.e. 16, 32...etc., and the 

algorithm multiplies two submatrices, storing their product before moving on to the next 

two submatrices. This better exploits cache locality so that data in the cache can be 

reused before being replaced. 

 //n = size of array 

//bs= Block Size 

 

for (i=0; i<n; i++) 

{for (j=0; j<n; j++)     

     a[i][j]= i+j;} 

 

for (i=0; i<n; i++) 

 {  for (j=0; j<n; j++)   

     b[i][j]= i*j;} 

 

for (i=0; i<n; i++) 

{  for (j=0; j<n; j++)  

      c[i][j]= 0;} 

 

for(j=0; j<n; j+=bs) 

 for(k=0; k<n; k+=bs) 

     for (i=0; i<n; i++) 

        for(kk=k;kk<MIN(k+bs,n);kk++) 

            for(jj=j;jj<MIN(j+bs,n);jj++) 

              c[i][jj] += a[i][kk] * b[kk][jj];    

 

  }   /*** End of sequential region ***/ 

 

 

 

 

 

 

#pragma omp parallel shared(a,b,c,nthreads,chunk) 

private(tid,i,j,k,ii,jj,kk) 

{  tid = omp_get_thread_num(); 

 /*** Initialize matrices ***/ 

 

#pragma omp for schedule (static, chunk)  

for (i=0; i<n; i++) 

{for (j=0; j<n; j++)    a[i][j]= i+j;} 

 

 #pragma omp for schedule (static, chunk)  

 for (i=0; i<n; i++) 

 {  for (j=0; j<n; j++)  b[i][j]= i*j;} 

 

#pragma omp for schedule (static, chunk)  

 for (i=0; i<n; i++) 

{  for (j=0; j<n; j++) c[i][j]= 0;} 

 

 #pragma omp barrier   /*** Barrier***/ 

 

#pragma omp for schedule (static, chunk) 

for(j=0; j<n; j+=bs) 

 for(k=0; k<n; k+=bs) 

     for (i=0; i<n; i++) 

        for(kk=k;kk<MIN(k+bs,n);kk++) 

            for(jj=j;jj<MIN(j+bs,n);jj++) 

              c[i][jj] += a[i][kk] * b[kk][jj];    

 

  }   /*** End of parallel region ***/ 

 

 

 

 Figure 9: Sequential Matrix Multiplication         Figure 10: Parallel Matrix Multiplication 
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The parallel version of matrix multiplication is implemented as shown in Figure 

10.The for loops that were serialized before are parallelized using pragma API’s 

provided by OpenMp. With for loops being parallelized, initialization of arrays is done in 

parallel among different threads. Also, a barrier API is used, so that all threads are done 

with initialization before staring matrix multiplication. With blocking optimization, 

blocks of different sizes are applied to threads, which are computing different 

submatrices in parallel. Thus, the parallel version of matrix multiplication with blocking 

is ideal for finding the relation between locality and parallelism in context of shared 

caches. 

4.3 Evaluation 

In this section, we first present the results from synthetic microbenchmark that was 

developed to measure the amount of cache-sharing among threads. Next, the results of 

Optimized Matrix-matrix multiplication for both parallel and sequential versions are 

presented. 

4.3.1 Synthetic Micro-benchmark Results 

The code for synthetic microbenchmark is written in C/C++ and then parallelized using 

OpenMP. Number of threads used for running the benchmark is fixed to 2. For running 

our benchmark, a 2.33 GHz Intel Core 2 Duo E6550 (Core2, dual core) system is used. 

The system consists of 2 physical cores and a 4 MB L2 Cache shared among the two 

cores. The benchmark is compiled executed using GCC 4.3.2  on Linux 2.6.24.To 

facilitate probing of hardware performance counters through PAPI, the linux kernel is 

patched with the perfctr module.  HPCToolkit profiler and PAPI are used to collect 

measurement of CPU cycles, L2 cache sharing, and L2 misses of benchmark. 
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Figure 11: Total execution Cycle 

 

 

 

Figure 12: L2 Misses 

We present charts for four different performance metrics of hardware 

performance counters. Each chart’s x- axis consist of an overlap region value (35000, for 

example is 35000 values of thread2 array which overlaps with thread 1). The y-axis 
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represents the normalized values of different hardware counters. In Figure 11, the total 

execution cycle for synthetic benchmark is shown.  As seen in the graph, change in clock 

cycle varies with a difference less that 20 % for every overlapping region, thus indicating 

less significant effect of cache sharing on execution time. However, Figure 12 shows a 

gradual decrease in the number of misses from L2 cache as the overlapping region is 

increased, which means there is more reuse of data in cache and thus less no of access is 

to main memory. 

The amount of sharing among threads and number of access to shared cache is 

validated using counters like L2_CA_SHR and L2_Rqsts_Both_cores_Any _S.  Figure 

13 shows the amount of sharing two threads will do, when they are made to overlap. The 

results show that as the overlap region is increased, at first the sharing increases 

gradually, but after reaching a point it starts to descend. Figure 14, also shows the same 

random scenario when access is made to shared cache.  

 

 

Figure 13: L2 cache shared 
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Figure 14: L2 requests to shared cache 

4.3.2 Block-Parallel Matrix-Matrix Multiplication Results 

A serial version of Matrix - Matrix multiplication is written in C/C++ and then 

parallelized using OpenMP. Number of threads for parallel version was fixed to 2. Both 

version of matrix multiplication is compiled and executed using GCC 4.3.2 on Linux 

2.6.24. 

We present charts for parallel and sequential version of matrix multiplication 

using four different performance metrics. Each chart’s x- axis consists of block size i.e. 

16, 32.etc. The y-axis represents the normalized values of different hardware counters. In 

Figure 15, the total execution cycle of parallel version and sequential version is shown 

.As seen in the graph, the execution time of sequential version is less for smaller block 

sizes, but thereafter increases randomly. Whereas for parallel version the case is reverse, 

as the execution time is more for smaller blocks, but later decreases and stabilizes for 

larger ones. Thus, blocking can have significant impact on performance. 
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Figure 15: Total execution cycle for parallel and sequential 

 

Figure 16, shows the number of L2 misses for both parallel and sequential version of 

matrix multiplication. As per the graph shown, the number of L2 misses for parallel 

version and sequential version decreases significantly with varied block size. However, 

the L1 misses in Figure 17 shows significant difference in both versions.  

 

Figure 16: L2 Cache Misses for parallel and sequential 



25 

 

 

 

 

Figure 17: L1 Cache Misses for parallel and sequential 

 

Finally, we obtain the data for both parallel and sequential versions accesses to shared 

cache as shown in Figure 18. The sharing among threads for parallel version shows a 

significant change with block size varied, whereas for sequential version the data is 

negligible as shown in Figure 19. 

 

  Figure 18:  Parallel version shared cache data 
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Figure 19:  Sequential version shared cache data
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CHAPTER 5 

REUSE DISTANCE FOR SHARED-CACHES 

5.1 Computing Reuse Distance in Multi-Threaded Code 

In multicore architecture instructions are executed in parallel and hence reuse distance 

will consist of memory references from different threads. When threads run on cores that 

share a cache, the locality of each thread is affected by the behavior of other threads in 

several ways [21]. First, one thread accessing data will effectively prefetch the data for all 

other threads that share the same [21]. Second, all threads sharing cache can use just one 

copy of a given widely-read data element, reducing unnecessary replication and using the 

cache capacity more efficiently [21]. Third, different threads may have different working 

set sizes and thus require different partitions of total capacity, possibly freeing up space 

for other threads, or taking space away from them [21]. 

Reuse distances represent a measure of locality, with shorter distances being more 

likely to hit and longer ones less likely [21]. However, if one thread has written to the 

same address between two reuses of that address by another thread with a different cache, 

invalidation may take place and the access will miss regardless of how short the reuse 

distance is [21]. Thus, reuse distance alone does not consistently correspond to locality in 

multicore systems [21].
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Our strategy provides an implementation–independent measure of locality, by 

computing reuse distance based on individual words accessed by different threads. Our 

tool is built on top of the Pin tool framework for performance analysis. The memory trace 

of all references was generated using Pin tool. Since the memory trace file provided by 

Pin tool only corresponds to single stream of references, we modify the trace file, so that 

it can capture read and write instructions of each thread and give their corresponding 

memory reference. The sample code for getting memory trace of each thread using Pin 

tool is shown in Figure 20.  

 

 

VOID ThreadStart(THREADID threadid, 

CONTEXT *ctxt, INT32 flags, VOID *v) 

{ 

    GetLock(&lock, threadid+1); 

    fprintf(out, "thread begin 

%d\n",threadid); 

    fflush(out); 

    ReleaseLock(&lock); 

} 

 

VOID ThreadFini(THREADID threadid, 

const CONTEXT *ctxt, INT32 code, 

VOID *v) 

{ 

    GetLock(&lock, threadid+1); 

    fprintf(out, "thread end %d code 

%d\n",threadid, code); 

    fflush(out); 

    ReleaseLock(&lock); 

} 

 

 

thread begin 0 

thread 0 address : R 0x7fff032c6f68 

thread 0 address : W 0x7fff032c6f70 

thread 0 address : W 0x7fff032c6f78 

thread 0 address : R 0x7fff032c6f80 

thread begin 1 

thread 1 address : R 0x40800200 

thread 1 address : W 0x40800208 

thread 0 address : W 0x7fff032c7068 

thread 0 address: R 0x2b58bb1da3e8 

thread 1 address : R 0x40800208 

thread 0 address : R 0x7fff032c6fd8 

thread begin 2 

thread 2 address : R 0x40800200 

thread 2 address : W 0x408001f8 

thread 1 address : R 0x408000f8 

thread end 1 

thread 1 address : W 0x40800d30 

thread 0 address : R 0x7fff032c7080 

thread begin 3 

 

Figure 20: Pseudo code for Memory Trace       Figure 21: Memory trace with threads 
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After successfully compiling all the benchmarks, the executable of every 

benchmark is made to run with the memory trace file for getting corresponding memory 

trace as shown in Figure 21. The trace file generated consists of individual thread’s 

memory reference in hexadecimal format and their corresponding read and write 

instructions. The trace file also describes when the thread is created during execution. For 

example, In Figure 21, beginning of thread1 in the trace file is shown as “thread1 begin” 

and corresponding trace of thread1 is “thread 1 address: R 0x408000f8”. The generated 

output of the memory trace is fed as input to our reuse distance algorithm, for calculating 

all the distinct memory references between two identical references. Since the trace 

generated for each benchmark is very large, to calculate the corresponding reuse 

distances the file is broken down in 2MB size each. 

The reuse distance algorithm is implemented as shown in Figure 22. First all 

memory references are retrieved from the trace file and stored, After that all the unique 

memory references are retrieved from the file and stored. Then for each unique memory 

reference the first occurrence of that reference is found. If first occurrence found then all 

the distinct memory elements within that reference is stored in a list.  After the end of the 

first occurrence the value of the corresponding count is retrieved and the list is deleted. 

This loop repeats, until all the reuse distance corresponding to particular unique reference 

is calculated. Finally, after getting all reuse distance counts for a particular reference and 

storing that in a reuse distance profile file, next unique reference is taken and compared 

for first occurrence and all the above tasks are repeated until all the reuse distance for all 

unique references are calculated and stored. 
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//c= range of unique references; 

//n= range of all references 

 

for (i=0;i<c;i++)  // unique element range 

   {   

        for (j=0;j<=n;j++)  //n is range of elements in 

list 

  {    

               if (a[i]==b[j]) 

   {  

                    if (flag == 0) 

{//cout<<"List is empty " <<endl;                                                                 

c1.deletefirst();  

    }  

    else 

    {  

               //cout<<"Element  :" <<  b[j] <<"     

             //"<<"count :"<<c1.count<<endl; 

            c1.deletefirst();     

    } 

                  flag++; 

   } 

    else  

      { mem2 = b[j];  

                             cout<<mem2<<endl; 

         c1.insertlast(mem2); 

         c1.display_list(); 

      } 

  if(j==n) 

            c1.deletefirst();    

              } 

 flag=0;    

 } 

} 

 

Figure 22: Reuse Distance Algorithm 

The reuse distance file consisting of all reuse distance counts of all the unique 

memory references is used to get reuse distance histogram. For calculating the number of 

unique memory references with same reuse distance count an array reuse[i] is used, such 

that the index i correspond to the count value .For example, reuse [2] corresponds to 

unique reference with count 2.  To find all the unique references with same count the 
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array reuse[] is increment by 1 for every occurrence of same count, this leads to capturing 

all the reuse distance for a particular count and thus generating a graph that will map 

reuse distance with memory references. 

5.2 Evaluation  

We present results of applying our reuse distance based strategy to some of the high 

performance computing benchmarks. The benchmarks used for these experiments 

consisted of a streaming application taken from the HPCC suite, swim and mgrid 

applications taken from SPEC2000 suite, and lastly blackscholes and frequmine 

applications taken from PARSEC suite. The description of all the above mentioned 

benchmarks is provided in Chapter 2. The benchmarks are available in sequential form, 

but for gaining insight into performance bottlenecks of multicore environment, these 

applications were parallelized using OpenMp. Number of threads used in each parallel 

variant is 4 and 8. For running our experiments, a 2.40 GHz Intel Core 2 Quad Q6600 

(Quad, 4-core) system is used. The system consists of 4 physical cores and two 4MB L2 

caches, with each L2 cache shared between two cores in each socket. The benchmark 

tests were run with GCC 4.3.2 compiler on Linux 2.6.24 with the perfctr module 

installed. The memory trace of all the benchmarks was generated by dynamically 

instrumenting the executable of the application with Pin tool. The HPCToolkit profiler 

with Hardware PAPI counters was used to measure the performance metrics as discussed 

in Chapter 4. 

We present two sets of charts for each suite of benchmarks and applications. The 

first chart gives a visual representation of raw histogram output of the reuse distance tool 

formed by 4 threads and the second represents one formed by 8 threads. Each histogram 
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bucket along the x-axis represents a range of distances (16, for example, is shortened for 

less than 16 and greater than 8 and represents distances 8 - 15) and the value of a bucket 

along the y-axis is the percentage of total references whose reuse distance fell within that 

range. 

 

 

 

Figure 23: Reuse Distance Histogram of Blackscholes(PARSEC) 
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Figure 23 shows the reuse distance histogram for blackscholes. As shown in the graphs, 

change in locality for both charts is non-uniform and significant variations are observed. 

70 % of all references for 8 threads are concentrated in first half of chart, while for 4 

threads the references are distributed throughout.  

 

 

Figure 24: Reuse Distance Histogram of Frequmine(PARSEC) 
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Figure 24 shows the reuse distance histogram for frequmine.  The reuse distance profile 

for frequmine is very different from the profile for blacksholes. For both the 4 thread and 

8 thread versions, over 90% of locality is concentrated within RD< 80. For 4 threads we 

observe some variations going from RD 16 to RD 32. For the 8 thread versions this 

difference is much smaller. 

 

 

Figure 25: Reuse Distance Histogram of Mgrid(SPEC 2000) 
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Figure 25 shows the reuse distance histogram for mgrid. As shown in graphs, locality 

changes by a huge margin from 0-16 to 16–32 for 4 threads, whereas for 8 threads the 

locality increase is relative. 50 % of all localities for 4 threads are concentrated in first 

quarter, whereas for 8 threads the locality is distributed throughout the chart, with very 

few references falling in 0-48 buckets. 

 

 

Figure 26: Reuse Distance Histogram of Swim (SPEC 2000) 
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Figure 26 shows the reuse distance histogram for swim. This profile is somewhat similar 

to freqmine with a high concentration of refs in the range 0-48. However, there is no 

significant difference between profiles for 4 threads and 8 threads.  

 

 

Figure 27: Reuse Distance Histogram of Stream (HPCC) 
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Figure 27 shows the reuse distance histogram for stream. This profile is somewhat similar 

to as show in graphs, change in locality varies proportionally while going from 4 threads 

to 8 threads. For both threads 70 % locality if concentrated within first half of chart. 

 

Benchmarks L1 

missrates 

L2 

missrates 

L2 

shared 

Total 

references 

Unique 

references 

Mgrid_4 23.23 10.50 32.50 3,79,904 55,515 

Mgrid_8    3,79,129 49,188 

Blackscholes_4 2.69 .31 7.40 3,57,797 53,330 

Blackscholes_8 2.62 .20 7.72 3,54,361 54,662 

Frequmine_4 2.71 1.14 9.30 3,39,183 17,386 

Frequimen_8 2.31 .93 7.05 3,40,294 16,300 

Stream_4 22.86 22.19 2.90 3,60,307 96,868 

Stream_8 22.80 22.04 3.13 3,58,405 95,926 

Swim_4 14.92 12.45 1.87 3,69,672 1,75,027 

Swim_8 14.92 12.46 1.94 3,69,850 1,71,741 

 

Table 1: Missrates and Locality Values for Parallel Benchmarks 

Table 1 shows the missrates and locality values for parallel benchmarks. As seen in table, 

highest locality is for Frequmine benchmark, whereas lowest is for Swim benchmark. 

There is no much difference in L1and L2 Missrates, when going from 4 threads to 8 

threads. Lastly, for Mgrid though the L1 and L2 Missrates are higher, L2 sharing is very 

high whereas for Stream and Swim though the Missrates are more, sharing is very 
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minimal. Although frequmine and swim exhibit widely varying locality their RD profiles 

are very similar. 
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CONCLUSION 

This thesis presented two methods of evaluating shared-cache behavior. In first case, we 

constructed a microbenchmark. Experiments with this benchmark showed, as the overlap 

region is increased among threads, the number of L2 misses is progressively reduced. 

However, the sharing pattern among threads shown by L2_CA_SHR was randomly 

distributed instead of a gradual increase. We also presented a parallel matrix-multiply 

kernel. The experiments with this kernel showed, that the execution time of parallel 

version is less sensitive to block size, whereas for sequential this factor shows a random 

variation. Also, by using blocking optimization the number of L2 misses was reduced by 

a significant amount. Finally, we presented a method for computing Reuse distance 

profiles for parallel applications. The collected profiles show significant variations in 

reuse distances. However, the values of missrates show little variation when number of 

threads is increased. 



 

40 

BIBLIOGRAPHY 

[1] C.Bienia, S. Kumar,J.P. Singh,K. Li, “The PARSEC Benchmark Suite: 

Characterization and Architectural ImplicationsPrinceton ,”University Technical Report 

TR-811-08,2008. 

[2] J. Dongarra, K. London, S. Moore, P. Mucci,  D. Terpstra, “Using PAPI for hardware 

performance monitoring on Linux systems,” in Conference on Linux Clusters: The HPC 

Revolution, 2001. 

[3] C. Ding, Y. Zhong,  “Reuse Distance Analysis,” University of Rochester, Rochester, 

NY, 2001. 

[4] X. Fu, R. Wang, “Ctuning: A reuse distance based cache performance tuning tool,” 

Journal of Electronics (China), 2009. 

[5] C. Fang, S. Carr, S. Önder, Z. Wang,  “Reuse-distance-based miss-rate prediction on a 

per instruction basis,” Proceedings of the 2004 workshop on Memory system 

performance, 2004. 

[6] C. Fang, S. Carr, S. Önder, Z. Wang, “Path-based reuse distance analysis,” High 

Performance Computing and Communications, Vol. 4208, 2006. 

[7] K. Hazelwood and A. Klauser, “A dynamic binary instrumentation engine for the 

ARM architecture,” In Proceedings of the 2006 International Conference on Compilers, 

Architecture and Synthesis For Embedded Systems, pp. 261-270,2006.



41 

 

[8] J. L. Henning, “SPEC2000: Measuring CPU Performance in the New Millennium,” 

IEEE Computer, 2000. 

[9] J. L. Hennessy, D. A. Patterson, A. C. Arpaci-Dusseau, “Computer architecture: a 

quantitative approach,” ISBN 0123704901, 2007. 

[10] T. E. Jeremiassen, S. J.  Eggers, “Reducing false sharing on shared memory 

multiprocessors through compile time data transformations,” Proceedings of the fifth 

ACM SIGPLAN symposium on Principles and practice of parallel programming, pp. 

179–188, 1995. 

[11] M. Kandemir, A. Choudhary, J. Ramanujam, P. Banerjee, “Reducing false sharing 

and improving spatial locality in a unified compilation framework,” IEEE Transactions 

on Parallel and Distributed Systems, Volume 14, 2003. 

[12] M. Kandemir, S.P. Muralidhara, S.H.K.  Narayanan, Y. Zhang, O. Ozturk, 

“Optimizing shared cache behavior of chip multiprocessors,” IEEE Trans. Parallel 

Distrib.Syst., pp. 337–354, 2003. 

[13] M. Kandemir , S.P. Muralidhara , S. H. K. Narayanan , Y. Zhang , O. Ozturk, 

“Optimizing shared cache behavior of chip multiprocessors,” Proceedings of the 42nd 

Annual IEEE/ACM International Symposium on Microarchitecture, 2009. 

[14] J. D. McCalpin, "Memory Bandwidth and Machine Balance in Current High 

Performance Computers", IEEE Computer Society Technical Committee on Computer 

Architecture (TCCA) Newsletter, 1995. 

[15] G. Marin, J. Mellor-Crummey, “Pinpointing and Exploiting Opportunities for 

Enhancing Data Reuse,” IEEE ISPASS, 2008. 



42 

 

[16] D. Nikolopoulos, "Code and Data Transformations for Improving Shared Cache 

Performance on SMT Processors," International Symposium of High Performance 

Computing, vol. 2858, pp. 54-69, 2003. 

[17] D. Nikolopoulos, “Dynamic tiling for effective use of shared caches on multi-

threaded processors,” International Journal of High Performance Computing and 

Networking, vol. 2, no. 1, pp. 22–35, 2004. 

[18] A. Qasem, M. J. Cade, “Balancing Locality and Parallelism on Shared-cache Mulit-

core Systems,” High Performance Computing and Communications, 2009. 

[19] B. Schauer, “Multicore Processors – A Necessity”, ProQuest LLC, 2008. 

[20] G. E. Suh , L. Rudolph , S. Devadas, “Dynamic Partitioning of Shared Cache 

Memory,” The Journal of Supercomputing, v.28, pp.7-26, 2004.    

[21] D. L. Schuff, B. S. Parsons, V. S. Pai, “Multicore –Aware Reuse Distance Analysis” 

Technical Report TR-ECE-09-08, Purdue University, 2009. 

[22] T. Tian, C. Shih, "Software Techniques for Shared-Cache Multi-Core Systems"  

Intel(R) Software Network, 2009. 

[23] N. Tallent, J. Mellor-Crummey, L. Adhianto, M. Fagan, M. Krentel, “ HPCToolkit: 

Performance tools for scientific computing,” Journal of Physics: Conference Series, 

2008. 

[24]  R. Taylor, X. Li, "A Micro-benchmark Suite for AMD GPUs," 39th International 

Conference on Parallel Processing Workshops, pp.387-396, 2010. 

[25] S. N. Vadlamani, S. F. Jenks, “The synchronized pipelined parallelism model,” In 

The 16th IASTED International Conference on Parallel and Distributed Computing and 

Systems, 2004. 



43 

 

[26] J. Weinberg , M. O. McCracken , E. Strohmaier,  A. Snavely, “Quantifying Locality 

In The Memory Access Patterns of HPC Applications,” Proceedings of the 2005 

ACM/IEEE conference on Supercomputing, p.50, 2005. 



 

44 

VITA 

Suman Vara was born in Andhra Pradesh, India on February 28, 1984, the son of S.S Rao 

Vara and Lakshmi Vara.  After completing his high school at Sri Chaitanya Jr. College in 

Andhra Pradesh, India, in 2002, he entered Sree Nidhi Institute of Science and 

Technology, Ghatkesar, India. He received the degree of Bachelor of Science from Sree 

Nidhi Institute of Science and Technology in July 2006. In fall 2007, he entered the 

Graduate College of Texas State University-San Marcos. 

 

Permanent Address: 327 W Wood Street, Apt 406 

San Marcos, Texas 78666 

 

This thesis was typed by Suman Vara. 


