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SUBCRITICAL PERTURBATIONS OF RESONANT LINEAR
PROBLEMS WITH SIGN-CHANGING POTENTIAL

TEODORA-LILIANA DINU

Abstract. We establish existence and multiplicity theorems for a Dirichlet
boundary-value problem at resonance. This problem is a nonlinear subcritical

perturbation of a linear eigenvalue problem studied by Cuesta, and includes a

sign-changing potential. We obtain solutions using the Mountain Pass lemma
and the Saddle Point theorem. Our paper extends some recent results of

Gonçalves, Miyagaki, and Ma.

1. Introduction and main results

Let Ω be an arbitrary open set in RN , N ≥ 2, and let V : Ω → R be a variable
potential. Then we consider the eigenvalue problem

−∆u = λV (x)u in Ω , u ∈ H1
0 (Ω). (1.1)

Problems of this type have a long history. If Ω is bounded and V ≡ 1, problem
(1.1) is related to the Riesz-Fredholm theory of self-adjoint and compact operators
(see, e.g., Brezis [3, Theorem VI.11]). The case of a non-constant potential V
was first considered in the pioneering papers of Bocher [2], Hess and Kato [7],
Minakshisundaran and Pleijel [10] and Pleijel [11]. Minakshisundaran and Pleijel
[10], [11] studied the case where Ω is bounded, V ∈ L∞(Ω), V ≥ 0 in Ω and V > 0
in Ω0 ⊂ Ω with |Ω0| > 0. An important contribution in the study of Problem
(1.1) if Ω and V are not necessarily bounded has been given recently by Cuesta
[5] (see also Szulkin and Willem [14]) under the assumption that the sign-changing
potential V satisfies

V + 6= 0 and V ∈ Ls(Ω) , (1.2)

where s > N/2 if N ≥ 2 and s = 1 if N = 1. As usual, we have denoted
V +(x) = max{V (x), 0}. Obviously, V = V +−V −, where V −(x) = max{−V (x), 0}.

To study the main properties (isolation, simplicity) of the principal eigenvalue
of (1.1), Cuesta [5] proved that the minimization problem

min
{∫

Ω

|∇u|2dx; u ∈ H1
0 (Ω),

∫
Ω

V (x)u2dx = 1
}
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has a positive solution ϕ1 = ϕ1(Ω) which is an eigenfunction of (1.1) corresponding
to the eigenvalue λ1 := λ1(Ω) =

∫
Ω
|∇ϕ1|2dx.

Our purpose in this paper is to study the existence of solutions of the perturbed
nonlinear boundary-value problem

−∆u = λ1V (x)u+ g(x, u) in Ω,
u = 0 on ∂Ω,
u 6≡ 0 in Ω,

(1.3)

where V satisfies (1.2) and g : Ω × R → R is a Carathéodory function such that
g(x, 0) = 0 with subcritical growth, that is,

|g(x, s)| ≤ a0 · |s|r−1 + b0, for all s ∈ R, a.e. x ∈ Ω, (1.4)

for some constants a0, b0 > 0, where 2 ≤ r < 2∗. We recall that 2∗ denotes the
critical Sobolev exponent; that is, 2∗ := 2N/(N − 2) if N ≥ 3 and 2∗ = +∞ if
N ∈ {1, 2}.

Problem (1.3) is resonant at infinity and has been first studied by Landesman
and Lazer [8] in connection with concrete problems arising in Mechanics.

By multiplication with ϕ1 in (1.3) and integration over Ω we deduce that this
problem has no solution if g 6≡ 0 does not change sign in Ω. The main purpose of
this paper is to establish sufficient conditions on g in order to obtain the existence
of one or several solutions of the nonlinear Dirichlet problem (1.3).

Set G(x, s) =
∫ s

0
g(x, t)dt. For the rest of this paper, we assume that there exist

k, m ∈ L1(Ω), with m ≥ 0, such that

|G(x, s)| ≤ k(x), for all s ∈ R, a.e. x ∈ Ω (1.5)

lim inf
s→0

G(x, s)
s2

= m(x), a.e. x ∈ Ω . (1.6)

The energy functional associated to Problem (1.3) is

F (u) =
1
2

∫
Ω

(|∇u|2 − λ1V (x)u2)dx−
∫

Ω

G(x, u)dx ,

for all u ∈ H1
0 (Ω).

From the variational characterization of λ1 and using (1.5) we obtain

F (u) ≥ −
∫

Ω

G(x, u(x))dx ≥ −|k|1 > −∞ ,

for all u ∈ H1
0 (Ω) and, consequently, F is bounded from below. Let us consider

un = αnϕ1, where αn → ∞. Then the estimate
∫
Ω
|∇ϕ1|2dx = λ1

∫
Ω
V (x)ϕ2

1dx

yields F (un) = −
∫
Ω
G(x, αnϕ1)dx ≤ |k|1 <∞. Thus, limn→∞ F (un) <∞. Hence

the sequence (un)n ⊂ H1
0 (Ω) defined by un = αnϕ1 satisfies ‖un‖ → ∞ and F (un)

is bounded. In conclusion, if we suppose that (1.5) holds, then the energy functional
F is bounded from below and is not coercive.

Our first result is the following.

Theorem 1.1. Assume that for all ω ⊂ Ω with |Ω \ ω| > 0 we have∫
ω

lim sup
|s|→∞

G(x, s)dx ≤ 0 and
∫

Ω\ω
G(x, s)dx ≤ 0 (1.7)
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and ∫
Ω

lim sup
|s|→∞

G(x, s)dx ≤ 0 . (1.8)

Then Problem (1.3) has at lest one solution.

Denote V := Sp(ϕ1). Since 1 = dimV <∞, there exists a closed complementary
subspace W of V , that is, W ∩ V = {0} and H1

0 (Ω) = V ⊕W . For such a closed
complementary subspace W ⊂ H1

0 (Ω), denote

λW := inf
{ ∫

Ω
|∇w|2dx∫

Ω
V (x)w2dx

; w ∈W, w 6= 0
}
.

The following result establishes a multiplicity result, provided G satisfies a cer-
tain subquadratic condition.

Theorem 1.2. Assume that the conditions of Theorem 1.1 are fulfilled and that

G(x, s) ≤ λW − λ1

2
V (x) s2, for all s ∈ R, a.e. x ∈ Ω . (1.9)

Then Problem (1.3) has at least two solutions.

In the next two theorems, we prove the existence of a solution if V ∈ L∞(Ω) and
under the following assumptions on the potential G:

lim sup
|s|→∞

G(x, s)
|s|q

≤ b <∞ uniformly a.e. x ∈ Ω , q > 2; (1.10)

lim inf
|s|→∞

g(x, s)s− 2G(x, s)
|s|µ

≥ a > 0 uniformly a.e. x ∈ Ω; (1.11)

lim sup
|s|→∞

g(x, s)s− 2G(x, s)
|s|µ

≤ −a < 0 uniformly a.e. x ∈ Ω . (1.12)

Theorem 1.3. Assume that conditions (1.10), (1.11) [or (1.12)] and

lim sup
s→0

2G(x, s)
s2

≤ α < λ1 < β ≤ lim inf
|s|→∞

2G(x, s)
s2

uniformly a.e. x ∈ Ω , (1.13)

with µ > 2N/(q − 2) if N ≥ 3 or µ > q − 2 if 1 ≤ N ≤ 2. Then Problem (1.3) has
at least one solution.

Theorem 1.4. Assume that (1.12) [or (1.11)] is satisfied for some µ > 0, and

lim
|s|→∞

G(x, s)
s2

= 0 uniformly a.e. x ∈ Ω . (1.14)

Then Problem (1.3) has at least one solution.

The above theorems extend to the anisotropic case V 6≡ const. some results of
Gonçalves and Miyagaki [6] and Ma [9].

2. Compactness conditions and auxiliary results

Let E be a reflexive real Banach space with norm ‖ ·‖ and let I : E → R be a C1

functional. We assume that there exists a compact embedding E ↪→ X, where X
is a real Banach space, and that the following interpolation type inequality holds:

‖u‖X ≤ ψ(u)1−t‖u‖t , for all u ∈ E , (2.1)
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for some t ∈ (0, 1) and some homogeneous function ψ : E → R+ of degree one. An
example of such a framework is the following: E = H1

0 (Ω), X = Lq(Ω), ψ(u) = |u|µ,
where 0 < µ < q < 2∗. Then, by the interpolation inequality (see Brezis [3,
Remarque 2, p. 57]) we have

|u|q ≤ |u|1−t
µ |u|t2∗ , where

1
q

=
1− t

µ
+

t

2∗
.

The Sobolev inequality yields |u|2∗ ≤ c‖u‖, for all u ∈ H1
0 (Ω). Hence

|u|q ≤ k|u|1−t
µ ‖u‖t , for all u ∈ H1

0 (Ω)

and this is a (H1) type inequality.
We recall below the following Cerami compactness conditions.

Definition 2.1. (a) The functional I : E → R is said to satisfy condition (C) at
the level c ∈ R [denoted (C)c] if any sequence (un)n ⊂ E such that I(un) → c and
(1 + ‖un‖) · ‖I ′(un)‖E∗ → 0 possesses a convergent subsequence.
(b) The functional I : E → R is said to satisfy condition (Ĉ) at the level c ∈ R
[denoted (Ĉ)c] if any sequence (un)n ⊂ E such that I(un) → c and (1 + ‖un‖) ·
‖I ′(un)‖E∗ → 0 possesses a bounded subsequence.

We observe that the above conditions are weaker than the usual Palais-Smale
condition (PS)c: any sequence (un)n ⊂ E such that I(un) → c and ‖I ′(un)‖E∗ → 0
possesses a convergent subsequence.

Suppose that I(u) = J(u) − N(u), where J is 2-homogeneous and N is not 2-
homogeneous at infinity. We recall that J is 2-homogeneous if J(τu) = τ2J(u), for
all τ ∈ R and for any u ∈ E. We also recall that the functional N ∈ C1(E,R) is
said to be not 2-homogeneous at infinity if there exist a, c > 0 and µ > 0 such that

|〈N ′(u), u〉 − 2N(u)| ≥ aψ(u)µ − c , for all u ∈ E . (2.2)

We introduce the following additional hypotheses on the functionals J and N :

J(u) ≥ k‖u‖2 , for all u ∈ E (2.3)

|N(u)| ≤ b‖u‖q
X + d , for all u ∈ E , (2.4)

for some constants k, b, d > 0 and q > 2.

Theorem 2.2. Assume that (2.1), (2.2), (2.3), (2.4) are fulfilled, with qt < 2.
Then the functional I satisfies condition (Ĉ)c, for all c ∈ R.

Proof. Let (un)n ⊂ E such that I(un) → c and (1 + ‖un‖)‖I ′(un)‖E∗ → 0. We
have

|〈I ′(u), u〉 − 2I(u)| = |〈J ′(u)−N ′(u), u〉 − 2J(u) + 2N(u)|
= |〈J ′(u), u〉 − 2J(u)− (〈N ′(u), u〉 − 2N(u))| .

However, J is 2-homogeneous and

J(u+ tu)− J(u)
t

= J(u)
(1 + t)2 − 1

t
.

This implies 〈J ′(u), u〉 = 2J(u) and

|〈I ′(u), u〉 − 2I(u)| = |〈N ′(u), u〉 − 2N(u)| .
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From (2.2) we obtain

|〈I ′(u), u〉 − 2I(u)| = |〈N ′(u), u〉 − 2N(u)| ≥ aψ(u)µ − c .

Letting u = un in the inequality from above we have:

aψ(un)µ ≤ c+ ‖I ′(un)‖E∗‖un‖+ 2|I(un)| .
Thus, by our hypotheses, for some c0 > 0 and all positive integer n, ψ(un) ≤ c0
and hence, the sequence {ψ(un)} is bounded. Now, from (H1) and (H4) we obtain

J(un) = I(un) +N(un) ≤ b‖un‖q
X + d0 ≤ bψ(un)(1−t)q‖un‖qt + d0 .

Hence
J(un) ≤ b0‖un‖qt + d0 , for all n ∈ N ,

for some b0, d0 > 0. Finally, (H3) implies

c‖un‖2 ≤ b0‖un‖qt + d0 , for all n ∈ N .

Since qt < 2, we conclude that (un)n is bounded in E. �

Proposition 2.3. Assume that I(u) = J(u)−N(u) is as above, where N ′ : E → E∗

is a compact operator and J ′ : E → E∗ is an isomorphism from E onto J ′(E). Then
conditions (C)c and (Ĉ)c are equivalent.

Proof. It is sufficient to show that (Ĉ)c implies (C)c. Let (un)n ⊂ E be a sequence
such that I(un) → c and (1+‖un‖)‖I ′(un)‖E∗ → 0. From (Ĉ)c we obtain a bounded
subsequence (unk

)k of (un)n. But N ′ is a compact operator. Then N ′(unkl
) l→ f ′ ∈

E∗, where (unkl
) is a subsequence of (unk

). Since (unkl
) is a bounded sequence and

(1 + ‖unkl
‖)‖I ′(unkl

)‖E∗ → 0, it follows that ‖I ′(unkl
)‖ → 0. Next, using the

relation
unkl

= J
′−1

(I ′(unkl
) +N ′(unkl

)) ,
we obtain that (unkl

) is a convergent subsequence of (un)n. �

3. Proof of Theorem 1.1

We first show that the energy functional F satisfies the Palais-Smale condition at
level c < 0: any sequence (un)n ⊂ H1

0 (Ω) such that F (un) → c and ‖F ′(un)‖H−1 →
0 possesses a convergent subsequence.

Indeed, it suffices to show that such a sequence (un)n has a bounded subsequence
(see the Appendix). Arguing by contradiction, we suppose that ‖un‖ → ∞. We
distinguish the following two distinct situations.
Case 1: |un(x)| → ∞ a.e. x ∈ Ω. Thus, by our hypotheses,

c = lim inf
n→∞

F (un)

= lim inf
n→∞

{
1
2

∫
Ω

|∇un|2dx−
λ1

2

∫
Ω

V (x)u2
ndx−

∫
Ω

G(x, un(x))dx
}

≥ lim inf
n→∞

(
−
∫

Ω

G(x, un(x)))dx
)

= − lim sup
n→∞

∫
Ω

G(x, un(x))dx

= − lim sup
|s|→∞

∫
Ω

G(x, s)dx.
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Using Fatou’s lemma we obtain

lim sup
|s|→∞

∫
Ω

G(x, s)dx ≤
∫

Ω

lim sup
|s|→∞

G(x, s)dx .

Our assumption (1.8) implies c ≥ 0. This is a contradiction because c < 0. There-
fore, (un)n is bounded in H1

0 (Ω).
Case 2: There exists ω ⊂⊂ Ω such that |Ω \ ω| > 0 and |un(x)| 6→ ∞ for all x ∈
Ω \ ω. It follows that there exists a subsequence, still denoted by (un)n, which is
bounded in Ω \ ω. So, there exists k > 0 such that |un(x)| ≤ k, for all x ∈ Ω \ ω.
Since I(un) → c we obtain some M such that I(un) ≤M , for all n. We have

1
2
‖un‖2 − λ1

2

∫
Ω

V (x)u2
ndx− |k|1 ≤ I(un) ≤M as ‖un‖ → ∞ .

It follows that
∫
Ω
V (x)u2

ndx→∞. We have∫
Ω

V (x)u2
ndx =

∫
Ω\ω

V (x)u2
ndx+

∫
ω

V (x)u2
ndx ≤ k2|Ω \ ω| ‖V ‖L1 +

∫
ω

V (x)u2
ndx .

This shows that
∫

ω
V (x)u2

ndx→∞. If (un)n is bounded in ω, this yields a contra-
diction. Therefore, un 6∈ L∞(ω). So, by Fatou’s lemma and our assumptions (1.7)
and (1.8),

c = lim inf
n→∞

F (un)

≥ − lim sup
n→∞

∫
Ω

G(x, un(x))dx

= − lim sup
n→∞

(∫
Ω\ω

G(x, un(x))dx+
∫

ω

G(x, un(x))dx

)

≥ − lim sup
n→∞

∫
Ω\ω

G(x, un(x))dx− lim sup
n→∞

∫
ω

G(x, un(x))dx

≥ − lim sup
n→∞

∫
Ω\ω

G(x, un(x))dx−
∫

ω

lim sup
|s|→∞

G(x, s)dx ≥ 0 .

This implies c ≥ 0 which contradicts our hypothesis c < 0. This contradiction shows
that (un)n is bounded in H1

0 (Ω), and hence F satisfies the Palais-Smale condition
at level c < 0.

The assumption (1.6) is equivalent with: there exist δn ↘ 0 and εn ∈ L1(Ω)
with |εn|1 → 0 such that∫

Ω

G(x, s)
s2

dx ≥
∫

Ω

m(x)dx−
∫

Ω

εn(x)dx , for all 0 < |s| ≤ δn . (3.1)

However, |εn|1 → 0 implies that for all ε > 0 there exists nε such that for all n ≥ nε

we have |εn|1 < ε. Set ε =
∫
Ω
m(x)ϕ2

1dx/‖ϕ1‖2
L∞ and fix n large enough so that

L :=
∫

Ω

m(x)ϕ2
1(x)dx− |εn|1‖ϕ1‖2

L∞ > 0 .

Take v ∈ V such that ‖v‖ ≤ δn/‖ϕ1‖L∞ . We have F (v) = −
∫
Ω
G(x, v(x))dx. The

inequality (3.1) is equivalent to∫
Ω

G(x, s)dx ≥
∫

Ω

m(x)s2dx−
∫

Ω

εn(x)s2dx
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and therefore,

F (v) = −
∫

Ω

G(x, v(x))dx ≤ −
∫

Ω

m(x)v2(x)dx+
∫

Ω

εn(x)v2(x)dx . (3.2)

By our choice of v ∈ V = Sp(ϕ1) we have

|v(x)| = |α| |ϕ1(x)| ≤ |α|‖ϕ1‖L∞ ≤ |α| δn
‖v‖

.

However, from (3.2),

F (v) ≤ −
∫

Ω

mv2dx+
∫

Ω

εnv
2dx ≤ −

∫
Ω

m|α|2ϕ2
1dx+ |α|2

∫
Ω

εn||ϕ1‖2
L∞dx

= |α|2
(
−
∫

Ω

mϕ2
1dx+ |εn|1‖ϕ1‖2

L∞

)
= −L|α|2 = −L‖v‖2 .

Therefore we obtain the existence of some v0 ∈ V such that F (v0) < 0. This implies
l = infH1

0 (Ω) F < 0. But the functional F satisfies the Palais-Smale condition (P-
S)c, for all c < 0. This implies that there exists u0 ∈ H1

0 (Ω) such that F (u0) = l.
In conclusion, u0 is a critical point of F and consequently it is a solution to (1.3).
Our assumption g(x, 0) = 0 implies F (0) = 0 and we know that F (u0) = l < 0,
that is, u0 6≡ 0. Therefore u0 ∈ H1

0 (Ω) is a nontrivial solution of (1.3) and the proof
of Theorem 1.1 is complete.

4. Proof of Theorem 1.2

Let X be a real Banach space and F : X → R be a C1-functional. Denote

Kc := {u ∈ X; F ′(u) = 0 and F (u) = c},
F c := {u ∈ X; F (u) ≤ c} .

The proof of Theorem 1.2 uses the following deformation lemma (see Ramos and
Rebelo [13]).

Lemma 4.1. Suppose that F has no critical values in the interval (a, b) and that
F−1({a}) contains at most a finite number of critical points of F . Assume that the
Palais-Smale condition (P − S)c holds for every c ∈ [a, b). Then there exists an
F -decreasing homotopy of homeomorphism h : [0, 1]× F b \Kb → X such that

h(0, u) = u , for all u ∈ F b \Kb,

h(1, F b \Kb) ⊂ F a,

h(t, u) = u , for all u ∈ F a .

We are now in position to give the proof of Theorem 1.2. Fix n large enough so
that

F (v) ≤ −L‖v‖2 , for all v ∈ V with ‖v‖ ≤ δn
‖ϕ1‖L∞

.

Denote d := sup∂B F , where B = {v ∈ V ; ‖v‖ ≤ R} and R = δn/‖ϕ1‖L∞ . We
suppose that 0 and u0 are the only critical points of F and we show that this yields
a contradiction. For any w ∈W we have

F (w) =
1
2

(∫
Ω

|∇w|2dx− λ1

∫
Ω

V (x)w2dx

)
−
∫

Ω

G(x,w(x))dx .
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Integrating in (1.9), we find

−
∫

Ω

G(x,w(x))dx ≥ λ1 − λW

2

∫
Ω

V (x)w2dx . (4.1)

Combining the definition of λW with relation (4.1) we obtain

F (w) ≥ 1
2

∫
Ω

|∇w|2dx− λ1

2

∫
Ω

V (x)w2dx+
λ1 − λW

2

∫
Ω

V (x)w2dx

=
1
2

(∫
Ω

|∇w|2dx− λW

∫
Ω

V (x)w2dx

)
≥ 0 .

(4.2)

Using 0 ∈ W , F (0) = 0 and relation (4.2) we find infW F = 0. If v ∈ ∂B then
F (v) ≤ −LR < 0 and, consequently,

d = sup
∂B

F < inf
W
F = 0 .

Obviously,
l = inf

H1
0 (Ω)

F ≤ inf
∂B

F < d = sup
∂B

F .

Denote
α := inf

γ∈Γ
sup
u∈B

F (γ(u)) ,

where Γ := {γ ∈ C(B,H1
0 (Ω)); γ(v) = v for all v ∈ ∂B}. It is known (see the

Appendix) that γ(B) ∩W 6= ∅, for all γ ∈ Γ. Since infW F = 0, we have F (w) ≥ 0
for all w ∈ W . Let u ∈ B such that γ(u) ∈ W . It follows that F (γ(u)) ≥ 0
and hence α ≥ 0. The Palais-Smale condition holds true at level c < 0 and the
functional F has no critical value in the interval (l, 0), So, by Lemma 4.1, we obtain
a F decreasing homotopy h : [0, 1]× F 0 \K0 → H1

0 (Ω) such that

h(0, u) = u , for all u ∈ F 0 \K0 = F 0 \ {0} ;

h(1, F 0) \ {0} ⊂ F l = {u0} ;

h(t, u) = u , for all u ∈ F l .

Consider the application γ0 : B → H1
0 (Ω) defined by

γ0 =

{
u0 , if ‖v‖ < R/2

h
(

2(R−‖v‖)
R , Rv

2‖v‖

)
, if ‖v‖ ≥ R/2 .

Since γ0(v) = h(1, v) = u0 if ‖v‖ = R/2, we deduce that γ0 is continuous.
If v ∈ ∂B then v = Rϕ1 and F (Rϕ1) ≤ 0. Then v ∈ F 0 \ {0} and hence

γ0(v) = v. Therefore we obtain that γ0 ∈ Γ. The condition that h is F decreasing
is equivalent with

s > t implies F (h(s, u)) < F (h(t, u)) .

Let us consider v ∈ B. We distinguish the following two situations.
Case 1: ‖v‖ < R

2 . In this case, γ0(v) = u0 and F (u0) = l < d.

Case 2: ‖v‖ ≥ R
2 . If ‖v‖ = R/2 then γ0(v) = h(1, v) and if ‖v‖ = R then

γ0(v) = h(0, v). But 0 ≤ t ≤ 1 and h is F decreasing. It follows that

F (h(0, v)) ≥ F (h(t, v)) ≥ F (h(1, v)) ,

that is, F (γ0(v)) ≤ F (h(0, v)) = F (v) ≤ d.
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¿From these two cases we obtain F (γ0(v)) ≤ d, for all v ∈ B and from the
definition of α we have 0 ≤ α ≤ d < 0. This is a contradiction. We conclude that
F has a another critical point u1 ∈ H1

0 (Ω) and, consequently, Problem (1.3) has a
second nontrivial weak solution.

5. Proof of Theorems 1.3 and 1.4

We will use the following classical critical point theorems.

Theorem 5.1 (Mountain Pass, Ambrosetti and Rabinowitz [1]). Let E be a real
Banach space. Suppose that I ∈ C1(E,R) satisfies condition (C)c, for all c ∈ R
and, for some ρ > 0 and u1 ∈ E with ‖u1‖ > ρ,

max{I(0), I(u1)} ≤ α̂ < β̂ ≤ inf
‖u‖=ρ

I(u) .

Then I has a critical value ĉ ≥ β̂, characterized by

ĉ = inf
γ∈Γ

max
0≤τ≤1

I(γ(τ)) ,

where Γ := {γ ∈ C([0, 1], E); γ(0) = 0, γ(1) = u1}.

Theorem 5.2 (Saddle Point, Rabinowitz [12]). Let E be a real Banach space.
Suppose that I ∈ C1(E,R) satisfies condition (C)c, for all c ∈ R and, for some
R > 0 and some E = V ⊕W with dimV <∞,

max
v∈V,‖v‖=R

I(v) ≤ α̂ < β̂ ≤ inf
w∈W

I(w) .

Then I has a critical value ĉ ≥ β̂, characterized by

ĉ = inf
h∈Γ

max
v∈V,‖v‖≤R

I(h(v)) ,

where Γ = {h ∈ C(V
⋂
B̄R, E); h(v) = v, for all v ∈ ∂BR}.

Lemma 5.3. Assume that G satisfies conditions (1.10) and (1.11) [or (1.12)], with
µ > 2N/(q−2) if N ≥ 3 or µ > q−2 if 1 ≤ N ≤ 2. Then the functional F satisfies
condition (C)c for all c ∈ R.

Proof. Let

N(u) =
λ1

2

∫
Ω

V (x)u2dx+
∫

Ω

G(x, u)dx and J(u) =
1
2
‖u‖2 .

Obviously, J is homogeneous of degree 2 and J ′ is an isomorphism of E = H1
0 (Ω)

onto J ′(E) ⊂ H−1(Ω). It is known that N ′ : E → E∗ is a compact operator.
Proposition 2.3 ensures that conditions (C)c and (Ĉ)c are equivalent. So, it suffices
to show that (Ĉ)c holds for all c ∈ R. Hypothesis (2.3) is trivially satisfied, whereas
(2.4) holds true from (1.10). Condition (1.10) implies that

inf
|s|>0

sup
|t|>|s|

G(x, t)
|t|q

≤ b .

Therefore, there exists s0 6= 0 such that

sup
|t|>|s0|

G(x, t)
|t|q

≤ b and G(x, t) ≤ b|t|q, for all t with |t| > |s0| .

The boundedness is provided by the continuity of the application [−s0, s0] 3 t 7−→
G(x, t). It follows that

∫
Ω
G(x, u)dx ≤ b|u|qq + d. By the definition of N(u) and
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since q > 2, we deduce that (2.4) holds true, provided |u|q ≤ 1 then we obtain
(2.4). Indeed, we have |u|2 ≤ k|u|q because Ω is bounded. Therefore, |u|22 ≤
k|u|2q ≤ k|u|qq and finally (2.4) is fulfilled. Hypothesis (2.1) is a direct consequence
of the Sobolev inequality. It remains to show that hypothesis (2.2) holds true, that
is, the functional N is not 2-homogeneous at infinity. Indeed, using assumption
(1.11) (a similar argument works if (1.12) is fulfilled) together with the subcritical
condition on g yields

sup
|s|>0

inf
|t|>|s|

g(x, t)t− 2G(x, t)
|t|µ

≥ a > 0 .

It follows that there exists s0 6= 0 such that

inf
|t|>|s0|

g(x, t)t− 2G(x, t)
|t|µ

≥ a .

Hence
g(x, t)t− 2G(x, t) ≥ a|t|µ , for all |t| > |s0| .

The application t 7→ g(x, t)t − 2G(x, t) is continuous in [−s0, s0], therefore it is
bounded. We obtain g(x, t) − 2G(x, t) ≥ a1|t|µ − c1, for all s ∈ R and a.e. x ∈ Ω.
We deduce that

|〈N ′(u), u〉 − 2N(u)| =
∣∣∣∣∫

Ω

(g(x, u)u− 2G(x, u))dx
∣∣∣∣

≥ a1‖u‖µ
µ − c2 , for all u ∈ H1

0 (Ω) .

Consequently, the functional N is not 2-homogeneous at infinity.
Finally, when N ≥ 3, we observe that condition µ > N(q − 2)/2 is equivalent

with µ > 2∗(q − 2)/2∗ − 2. From 1/q = (1 − t)/µ + t/2∗ we obtain (1 − t)/µ =
(2∗ − qt)/(2∗q). Hence (2∗ − qt)/q < (1 − t)(2∗ − 2)/(q − 2) and, consequently,
(q−2∗)(2−tq) < 0. But q < 2∗ and this implies 2 > tq. Similarly, when 1 ≤ N ≤ 2,
we choose some 2∗∗ > 2 sufficiently large so that µ > 2∗∗(q − 2)/(2∗∗ − 2) and
t ∈ (0, 1) be as above. The proof of Lemma is complete in view of Theorem 2.2. �

Our next step is to show that condition (1.13) implies the geometry of the Moun-
tain Pass theorem for the functional F . The below assumptions have been intro-
duced in Cuesta and Silva [4].

Lemma 5.4. Assume that G satisfies the hypotheses

lim sup
|s|→∞

G(x, s)
|s|q

≤ b <∞ uniformly a.e. x ∈ Ω , (5.1)

lim sup
s→0

2G(x, s)
s2

≤ α < λ1 < β ≤ lim inf
|s|→∞

2G(x, s)
|s|2

uniformly a.e. x ∈ Ω . (5.2)

Then there exists ρ, γ > 0 such that F (u) ≥ γ if |u| = ρ. Moreover, there exists
ϕ1 ∈ H1

0 (Ω) such that F (tϕ1) → −∞ as t→∞.

Proof. In view of our hypotheses and the subcritical growth condition, we obtain

lim inf
|s|→∞

2G(x, s)
s2

≥ β is equivalent to sup
s 6=0

inf
|t|>|s|

2G(x, t)
t2

≥ β .

There exists s0 6= 0 such that inf |t|>|s0|
2G(x,t)

t2 ≥ β and therefore 2G(x,t)
t2 ≥ β,

for all |t| > |s0| or G(x, t) ≥ 1
2βt

2, provided |t| > |s0|. We choose t0 such that
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|t0| ≤ |s0| and G(x, t0) < 1
2β|t0|

2. Fix ε > 0. There exists B(ε, t0) such that
G(x, t0) ≥ 1

2 (β − ε)|t0|2 − B(ε, t0). Denote B(ε) = sup|t0|≤|s0|B(ε, t0). We obtain
for any given ε > 0 there exists B = B(ε) such that

G(x, s) ≥ 1
2

(β − ε)|s|2 −B , for all s ∈ R , a.e. x ∈ Ω . (5.3)

Fix arbitrarily ε > 0. In the same way, using the second inequality of (5.2) and
(5.1) it follows that there exists A = A(ε) > 0 such that

2G(x, t) ≤ (α+ ε)t2 + 2(b+A(ε))|t|q , for all t ∈ R , a.e. x ∈ Ω . (5.4)

We now choose ε > 0 so that α+ε < λ1 and we use (5.4) together with the Poincaré
inequality to obtain the first assertion of the lemma.

Set H(x, s) = λ1V (x)s2/2 +G(x, s). Then H satisfies

lim sup
|s|→∞

H(x, s)
|s|q

≤ b <∞ , uniformly a.e. x ∈ Ω , (5.5)

lim sup
s→0

2H(x, s)
s2

≤ α < λ1 < β ≤ lim inf
|s|→∞

2H(x, s)
s2

, uniformly a.e. x ∈ Ω . (5.6)

In the same way, for any given ε > 0 there exists A = A(ε) > 0 and B = B(ε) such
that

1
2
(β − ε)s2 −B ≤ H(x, s) ≤ 1

2
(α+ ε)s2 +A|s|q , (5.7)

for all s ∈ R, a.e. x ∈ Ω. Then we have

F (u) =
1
2
‖u‖2 −

∫
Ω

H(x, u)dx

≥ 1
2
‖u‖2 − 1

2
(α+ ε)|u|22 −A|u|qq

≥ 1
2

(
1− ε+ α

λ1

)
‖u‖2 −Ak‖u‖q .

We can assume without loss of generality that q > 2. Thus, the above estimate
yields F (u) ≥ γ for some γ > 0, as long as ρ > 0 is small, thus proving the first
assertion of the lemma.

On the other hand, choosing now ε > 0 so that β − ε > λ1 and using (5.7), we
obtain

F (u) ≤ 1
2
‖u‖2 − β − ε

2
|u|22 +B|Ω| .

We consider ϕ1 be the λ1-eigenfunction with ‖ϕ1‖ = 1. It follows that

F (tϕ1) ≤
1
2

(
1− β − ε

λ1

)
t2 +B|Ω| → −∞ as t→∞.

This proves the second assertion of our lemma. �

Lemma 5.5. Assume that G(x, s) satisfies (1.12) (for some µ > 0) and

lim
|s|→∞

G(x, s)
s2

= 0 , uniformly a.e. x ∈ Ω . (5.8)

Then there exists a subspace W of H1
0 (Ω) such that H1

0 (Ω) = V ⊕W and
(i) F (v) → −∞, as ‖v‖ → ∞, v ∈ V
(ii) F (w) →∞, as ‖w‖ → ∞, w ∈W .
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Proof. (i) The condition (1.12) is equivalent to: There exists s0 6= 0 such that

g(x, s)s− 2G(x, s) ≤ −a|s|µ , for all |s| ≥ |s0| = R1 , a.e. x ∈ Ω .

Integrating the identity

d

ds

G(x, s)
|s|2

=
g(x, s)s2 − 2|s|G(x, s)

s4
=
g(x, s)|s| − 2G(x, s)

|s|3

over an interval [t, T ] ⊂ [R,∞) and using the above inequality we find

G(x, T )
T 2

− G(x, t)
t2

≤ −a
∫ T

t

sµ−3ds =
a

2− µ

(
1

T 2−µ
− 1
t2−µ

)
.

Since we can assume that µ < 2 and using the above relation, we obtain G(x, t) ≥
âtµ for all t ≥ R1, where â = a

2−µ > 0. Similarly, we show that

G(x, t) ≥ â|t|µ , for |t| ≥ R1 .

Consequently, lim|t|→∞G(x, t) = ∞. Now, letting v = tϕ1 ∈ V and using the
variational characterization of λ1, we have

F (v) ≥ −
∫

Ω

G(x, v)dx→ −∞ , as ‖v‖ = |t|‖ϕ1‖ → ∞ .

This result is a consequence of the Lebesgue’s dominated convergence theorem.
(ii) Let V = Sp(ϕ1) and W ⊂ H1

0 (Ω) be a closed complementary subspace to V .
Since λ1 is an eigenvalue of Problem (1.1), it follows that there exists d > 0 such
that

inf
0 6=w∈W

∫
Ω
|∇w|2dx∫

Ω
V (x)w2dx

≥ λ1 + d .

Therefore,
‖w‖2 ≥ (λ1 + d)|w|22 , for all w ∈W .

Let 0 < ε < d. From (G4) we deduce that there exists δ = δ(ε) > 0 such that for
all s satisfying |s| > δ we have 2G(x, s)/s2 ≤ ε, a.e. x ∈ Ω. In conclusion

G(x, s)− 1
2
εs2 ≤M , for all s ∈ R ,

where

M := sup
|s|≤δ

(
G(x, s)− 1

2
ε s2
)
<∞ .

Therefore,

F (w) =
1
2
‖w‖2 − λ1

2

∫
Ω

V (x)w2 −
∫

Ω

G(x,w)dx

≥ 1
2
‖w‖2 − λ1

2
|w|22 −

1
2
ε|w|22 −M

≥ 1
2

(
1− λ1 + ε

λ1 + d

)
‖w‖2 −M = N‖w‖2 −M , for all w ∈W .

It follows that F (w) →∞ as ‖w‖ → ∞, for all w ∈ W , which completes the proof
of the lemma. �
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Proof of Theorem 1.3. In view of Lemmas 5.3 and 5.4, we may apply the Mountain
Pass theorem with u1 = t1ϕ1, t1 > 0 being such that F (t1ϕ1) ≤ 0 (this is possible
from Lemma 5.4). Since F (u) ≥ γ if ‖u‖ = ρ, we have

max{F (0), F (u1)} = 0 = α̂ < inf
‖u‖=ρ

F (u) = β̂ .

It follows that the energy functional F has a critical value ĉ ≥ β̂ > 0 and, hence,
(1.3) has a nontrivial solution u ∈ H1

0 (Ω). �

Proof of Theorem 1.4. In view of Lemmas 5.3 and 5.5, we may apply the Saddle
Point theorem with β̂ := infw∈W F (w) and R > 0 being such that sup‖v‖=R F (v) :=
α̂ < β̂, for all v ∈ V (this is possible because F (v) → −∞ as ‖v‖ → ∞). It follows
that F has a critical value ĉ ≥ β̂, which is a weak solution to (1.3). �

6. Appendix

Throughout this section we assume that Ω ⊂ RN is a bounded domain with
smooth boundary. We start with the following auxiliary result.

Lemma 6.1. Let g : Ω×R → R be a Carathéodory function and assume that there
exist some constants a, b ≥ 0 such that

|g(x, t)| ≤ a+ b|t|r/s , for all t ∈ R , a.e.x ∈ Ω .

Then the application ϕ(x) 7→ g(x, ϕ(x)) is in C(Lr(Ω), Ls(Ω)).

Proof. For any u ∈ Lr(Ω) we have∫
Ω

|g(x, u(x))|sdx ≤
∫

Ω

(a+ b|u|r/s)sdx

≤ 2s

∫
Ω

(as + bs|u|r)dx

≤ c

∫
Ω

(1 + |u|r)dx <∞ .

This shows that if ϕ ∈ Lr(Ω) then g(x, ϕ) ∈ Ls(Ω). Let un, u ∈ Lr be such that
|un−u|r → 0. By Theorem IV.9 in Brezis [3], there exist a subsequence (unk

)k and
h ∈ Lr such that unk

→ u a.e. in Ω and |unk
| ≤ h a.e. in Ω. By our hypotheses it

follows that g(unk
) → g(u) a.e. in Ω. Next, we observe that

|g(unk
)| ≤ a+ b|unk

|r/s ≤ a+ b|h|r/s ∈ Ls(Ω) .

So, by Lebesgue’s dominated convergence theorem,

|g(unk
)− g(u)|ss =

∫
Ω

|g(unk
)− g(u)|sdx k→ 0 .

This completes the proof of the lemma. �

The mapping ϕ 7→ g(x, ϕ(x)) is the Nemitski operator of the function g.

Proposition 6.2. Let g : Ω × R → R be a Carathéodory function such that
|g(x, s)| ≤ a+ b|s|r−1 for all (x, s) ∈ Ω× R, with 2 ≤ r < 2N/(N − 2) if N > 2 or
2 ≤ r <∞ if 1 ≤ N ≤ 2. Denote G(x, t) =

∫ t

0
g(x, s)ds. Let I : H1

0 (Ω) → R be the
functional defined by

I(u) =
1
2

∫
Ω

|∇u|2dx− λ1

2

∫
Ω

V (x)u2dx−
∫

Ω

G(x, u(x))dx ,
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where V ∈ Ls(Ω) (s > N/2 if N ≥ 2, s = 1 if N = 1).
Assume that (un)n ⊂ H1

0 (Ω) has a bounded subsequence and I ′(un) → 0 as
n→∞. Then (un)n has a convergent subsequence.

Proof. We have

〈I ′(u), v〉 =
∫

Ω

∇u∇vdx− λ1

∫
Ω

V (x)uvdx−
∫

Ω

g(x, u(x))v(x)dx .

Denote by

〈a(u), v〉 =
∫

Ω

∇u∇vdx ;

J(u) =
λ1

2

∫
Ω

V (x)u2dx+
∫

Ω

G(x, u(x))dx .

It follows that

〈J ′(u), v〉 = λ1

∫
Ω

V (x)uvdx+
∫

Ω

g(x, u(x))v(x)dx

and I ′(u) = a(u) − J ′(u). We prove that a is an isomorphism from H1
0 (Ω) onto

a(H1
0 (Ω)) and J ′ is a compact operator. This assumption yields

un = a−1〈(I ′(un〉) + J ′(un)) → lim
n→∞

a−1〈(J ′(un)〉) .

But J ′ is a compact operator and (un)n is a bounded sequence. This implies that
(J ′(un))n has a convergent subsequence and, consequently, (un)n has a convergent
subsequence. Assume, up to a subsequence, that (un)n ⊂ H1

0 (Ω) is bounded.
From the compact embedding H1

0 (Ω) ↪→ Lr(Ω), we can assume, passing again at a
subsequence, that un → u in Lr(Ω). We have

‖J ′(un)− J ′(u)‖

≤ sup
‖v‖≤1

∣∣∣∣∫
Ω

(g(x, un(x))− g(x, u(x))) v(x)dx
∣∣∣∣+ sup

‖v‖≤1

λ1

∣∣∣∣∫
Ω

V (x)(un − u)vdx
∣∣∣∣

≤ sup
‖v‖≤1

∫
Ω

|g(x, un(x))− g(x, u(x))||v(x)|dx+ λ1 sup
‖v‖≤1

∫
Ω

|V (x)(un − u)v|dx

≤ sup
‖v‖≤1

(∫
Ω

|g(x, un)− g(x, u)|
r

r−1 dx

) r−1
r

|v|r + λ1 sup
‖v‖≤1

∫
Ω

|V (x)(un − u)v|dx

≤ c sup
‖v‖≤1

(∫
Ω

|g(x, un)− g(x, u)|
r

r−1 dx

) r−1
r

‖v‖+ λ1|V |Ls · |un − u|α · |v|β ,

where α, β < 2N/(N − 2) (if N ≥ 2). Such a choice of α and β is possible due to
our choice of s. By Lemma 6.1 we obtain g ∈ C(Lr, Lr/(r−1)). Next, since un → u
in Lr and un → u in L2, the above relation implies that J ′(un) → J ′(u) as n→∞,
that is, J ′ is a compact operator. This completes our proof. �

Set
Γ := {γ ∈ C(B,H1

0 (Ω)); γ(v) = v , for all v ∈ ∂B}
and B = {v ∈ Sp (ϕ1); ‖v‖ ≤ R}. The following result has been used in the proof
of Lemma 4.1.

Proposition 6.3. We have γ(B)
⋂
W 6= ∅, for all γ ∈ Γ.
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Proof. Let P : H1
0 (Ω) → Sp (ϕ1) be the projection of H1

0 in Sp (ϕ1). Then P
is a linear and continuous operator. If v ∈ ∂B then (P ◦ γ)(v) = P (γ(v)) =
P (v) = v and, consequently, P ◦ γ = Id on ∂B. We have P ◦ γ , Id ∈ C(B,H1

0 )
and 0 6∈ Id(∂B) = ∂B. Using a property of the Brouwer topological degree we
obtain deg (P ◦ γ, IntB, 0) = deg (Id, IntB, 0). But 0 ∈ IntB and it follows that
deg (Id, IntB, 0) = 1 6= 0. So, by the existence property of the Brouwer degree,
there exists v ∈ IntB such that (P ◦ γ)(v) = 0, that is, P (γ(v)) = 0. Therefore
γ(v) ∈W and this shows that γ(B) ∩W 6= ∅. �
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