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ON SECOND ORDER PERIODIC BOUNDARY-VALUE
PROBLEMS WITH UPPER AND LOWER SOLUTIONS IN THE

REVERSED ORDER

HAIYIN GAO, SHIYOU WENG, DAQING JIANG, XUEZHANG HOU

Abstract. In this paper, we study the differential equation with the periodic
boundary value

u′′(t) = f(t, u(t), u′(t)), t ∈ [0, 2π]

u(0) = u(2π), u′(0) = u′(2π).

The existence of solutions to the periodic boundary problem above with ap-

propriate conditions is proved by using an upper and lower solution method.

1. Introduction and Main Results

In this paper, we study the second-order periodic boundary-value problem

u′′(t) = f(t, u(t), u′(t)), t ∈ [0, 2π]

u(0) = u(2π), u′(0) = u′(2π),
(1.1)

where f(t, u, v) is a Caratheodory function. A function f : [0, 2π]×R2 → R is said
to be a Carathrodary function if it possess the following three properties:

(i) For all (u, v) ∈ R2, the mapping t → f(t, u, v) is measurable on [0, 2π].
(ii) For almost all t ∈ [0, 2π], the mapping (u, v) → f(t, u, v) is continuous on

R2.
(iii) For any given N > 0, there exists gN (t), a Lebesgue integrable function

defined on [0, 2π], such that

|f(t, u, v)| ≤ gN (t) for a. e. t ∈ [0, 2π],

whenever |u|, |v| ≤ N .
To develop upper and lower solutions method, we need the concepts of upper

and lower solutions. We say that β ∈ W 2,1[0, 2π] is an upper solution to (1.1), if it
satisfies

β′′(t) ≤ f(t, β(t), β′(t)), t ∈ [0, 2π]

β(0) = β(2π), β′(0) ≤ β′(2π).
(1.2)
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Similarly, a function α ∈ W 2,1[0, 2π] is said to be a lower solution to (1.1), if it
satisfies

α′′(t) ≥ f(t, α(t), α′(t)), t ∈ [0, 2π]

α(0) = α(2π), α′(0) ≥ α′(2π).
(1.3)

We call a function u ∈ W 2,1[0, 2π] a solution to (1.1), if it is an upper and a lower
solution to (1.1).

Under the classical assumption that α(t) ≤ β(t), a number of authors have
studied the existence of the methods of lower and upper solutions or the monotone
iterative technique [1, 3, 4, 5, 8, 6, 10, 11, 16, 17]. Only a few have study the
case where α(t), β(t) satisfy the opposite ordering condition β(t) ≤ α(t); see [1,
2, 7, 9, 13, 14, 15, 18] Wang [18] has investigated a special case of (1.1) where
f(t, u, v) = −kv+F (t, u) and F (t, u) is increasing with respect to u, in the presence
of a lower solution α(t) and an upper solution β(t) with β(t) ≤ α(t). Rachunkova
[15] has recently proved that (1.1) has at least one solution u(t) under the case
β(t) ≤ α(t). However, the proof of the result in [15] is not constructive and is
not able to guarantee that u(t) satisfies β(t) ≤ u(t) ≤ α(t). Recently, Jiang, Fan
and Wan [7] have studied (1.1) by means of a monotone iterative technique in the
presence of a lower solution α(t) and an upper solution β(t) with β(t) ≤ α(t). To
develop a monotone method, the following hypotheses are needed in [7].

(A1) For any given β, α ∈ C[0, 2π] with β(t) ≤ α(t) on [0, 2π], there exist 0 <
A ≤ B such that

A(v2 − v1) ≤ f(t, u, v2)− f(t, u, v1) ≤ B(v2 − v1)

or
−B(v2 − v1) ≤ f(t, u, v2)− f(t, u, v1) ≤ −A(v2 − v1)

for a.e. t ∈ [0, 2π] whenever β(t) ≤ u ≤ α(t), v1, v2 ∈ R, and v1 ≤ v2.
(A2) Inequality

f(t, u2, v)− f(t, u1, v) ≥ −A2

4
(u2 − u1)

holds for a.e. t ∈ [0, 2π], whenever β(t) ≤ u1 ≤ u2 ≤ α(t), v ∈ R.
The purpose of this paper is to prove the existence of solutions to (1.1) under

the assumption that there exist a lower solution α(t) and an upper solution β(t)
of (1.1) with β(t) ≤ α(t) and f(t, u, v) only satisfies one side Lipschitz condition.
We use the upper and lower solutions method and prove that the solution u(t) of
(1.1) satisfies β(t) ≤ u(t) ≤ α(t). Our result extends and complements those in
[18, 15, 7].

To develop upper and lower solutions method, we need one of the following
hypotheses

(H1) For any given β, α ∈ C[0, 2π] with β(t) ≤ α(t) on [0, 2π], there exist A > 0
and B > 0 such that B2 ≥ 4A and

f(t, u2, v2)− f(t, u1, v1) ≥ −A(u2 − u1) + B(v2 − v1) (1.4)

for a.e. t ∈ [0, 2π] whenever β(t) ≤ u1 ≤ u2 ≤ α(t), v1, v2 ∈ R, and v1 ≤ v2.
(H1’) For any given β, α ∈ C[0, 2π] with β(t) ≤ α(t) on [0, 2π], there exist A > 0

and B > 0 such that B2 ≥ 4A and

f(t, u2, v2)− f(t, u1, v1) ≥ −A(u2 − u1) + B(v1 − v2) (1.5)

for a.e. t ∈ [0, 2π] whenever β(t) ≤ u1 ≤ u2 ≤ α(t), v1, v2 ∈ R, and v1 ≥ v2.
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We remark that condition (H1’) is equivalent to
(a1) For any given β, α ∈ C[0, 2π] with β(t) ≤ α(t) on [0, 2π], there exists B > 0

such that
f(t, u, v1)− f(t, u, v2) ≤ −B(v1 − v2)

for a.e. t ∈ [0, 2π] whenever β(t) ≤ u ≤ α(t), v1, v2 ∈ R, and v1 ≥ v2.
(a2) There exists A > 0 such that B2 ≥ 4A and

f(t, u2, v)− f(t, u1, v) ≥ −A(u2 − u1)

holds for a.e. t ∈ [0, 2π], whenever β(t) ≤ u1 ≤ u2 ≤ α(t), v ∈ R.
Also we remark that (H1) or (H1’) weaker than (A1)-(A2) in [7].

Let m < 0 and M < 0 be two real roots to the equation x2 + Bx + A = 0, then

m + M = −B, mM = A.

Let m0 > 0 and M0 > 0 are two roots to the equation x2 −Bx + A = 0, then

m0 + M0 = B, m0M0 = A.

Let
A(t) := α′(t) + mα(t), B(t) := β′(t) + mβ(t), (1.6)

and
A0(t) := α′(t) + m0α(t), B0(t) := β′(t) + m0β(t). (1.7)

The main results of this paper are stated as follows.

Theorem 1.1. Suppose that there exists a lower solution α(t) and an upper solution
β(t) of (1.1) such that β(t) ≤ α(t) on [0, 2π], and f(t, u, v) is a Caratheodory
function satisfying the hypothesis (H1). Then A(t) ≤ B(t) on [0, 2π] and (1.1) has
a solution u ∈ W 2,1[0, 2π] such that

β(t) ≤ u(t) ≤ α(t), A(t) ≤ u′(t) + mu(t) ≤ B(t).

Theorem 1.2. Suppose that there exists a lower solution α(t) and an upper solution
β(t) of (1.1) such that β(t) ≤ α(t) on [0, 2π], and f(t, u, v) is a Caratheodory
function satisfying the hypothesis (H1’). Then B0(t) ≤ A0(t) on [0, 2π] and (1.1)
has a solution u ∈ W 2,1[0, 2π] such that

β(t) ≤ u(t) ≤ α(t), B0(t) ≤ u′(t) + m0u(t) ≤ A0(t).

2. Proof of Theorems 1.1 and 1.2

To prove the validity of upper and lower solutions method, we use the following
maximum-minimum principle, see [7].

Lemma 2.1. Let y ∈ W 1,1[0, 2π], and satisfy

y′(t) + Ly(t) ≥ 0 for a. e. t ∈ [0, 2π],

y(0) ≥ y(2π),

where |L| > 0. Then Ly(t) ≥ 0 on [0, 2π], i.e., when L > 0 the minimum of y(t) is
nonnegative; when L < 0 the maximum of y(t) is nonpositive.

Lemma 2.2. Suppose that there exists a lower solution α(t) and an upper solution
β(t) of (1.1) such that β(t) ≤ α(t) on [0, 2π], and f(t, u, v) is a Caratheodory
function satisfying the hypothesis (H1). Then A(t) ≤ B(t) on [0, 2π].
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Proof. It follows from (1.2) and (1.3) that

A′(t) + MA(t) ≥ f(t, α(t), A(t)−mα(t)) + (m + M)A(t)−m2α(t), t ∈ [0, 2π]

A(0) ≥ A(2π),

and

B′(t) + MB(t) ≤ f(t, β(t), B(t)−mβ(t)) + (m + M)B(t)−m2β(t), t ∈ [0, 2π]

B(0) ≤ B(2π).

Let y(t) = A(t)−B(t), then y(0) ≥ y(2π). Assume that y(t) > 0 for some t ∈ [0, 2π].
Indeed, if y(t) > 0 on [0, 2π], then by (H1) we have

y′(t) + My(t) ≥ f(t, α(t), A(t)−mα(t))− f(t, β(t), B(t)−mβ(t))

+ (m + M)y(t)−m2(α(t)− β(t))

≥ −(A + Bm + m2)(α(t)− β(t)) + (B + m + M)y(t)

= 0, t ∈ [0, 2π],

then by Lemma 2.1, we have y(t) ≤ 0 on [0, 2π], which is a contradiction.
If y(0) ≤ 0 (then y(2π) ≤ y(0) ≤ 0), and hence there exists s ∈ (0, 2π) with

y(s) > 0, then there would be 0 ≤ a < s < b ≤ 2π such that y(t) > 0 in (a, b) with
y(a) = y(b) = 0. By (1.2) and (1.3), we have

y′(t) + My(t) ≥ 0, t ∈ [a, b], y(a) = y(b) = 0.

This leads to y′(t) ≥ −My(t) > 0 on [a, b], which is again a contradiction.
If y(0) > 0, then there exists a ∈ (0, 2π) such that y(t) > 0 on [0, a) with

y(a) = 0. So we have y′(t) + My(t) ≥ 0 on [0, a), hence y′(t) > 0 in [0, a), which
implies that y(0) < y(a) = 0, this is also a contradiction. The proof of Lemma 2.2
is completed. �

Similarly, we have the following result.

Lemma 2.3. Suppose that there exists a lower solution α(t) and an upper solution
β(t) of (1.1) such that β(t) ≤ α(t) on [0, 2π], and f(t, u, v) is a Caratheodory
function satisfying the hypothesis (H1’). Then B0(t) ≤ A0(t) on [0, 2π].

Proof. It follows from (1.2) and (1.3) that for t ∈ [0, 2π],

A′
0(t) + M0A0(t) ≥ f(t, α(t), A0(t)−m0α(t)) + (m0 + M0)A0(t)−m2

0α(t),

A0(0) ≥ A0(2π)

and for t ∈ [0, 2π]

B′
0(t) + MB(t) ≤ f(t, β(t), B0(t)−m0β(t)) + (m0 + M0)B0(t)−m2

0β(t),

B0(0) ≤ B0(2π).

Let y(t) = A0(t) − B0(t), then y(0) ≥ y(2π). Assume that y(t) < 0 for some
t ∈ [0, 2π]. Indeed, if y(t) < 0 on [0, 2π], then by (H1’) we have

y′(t) + M0y(t) ≥ f(t, α(t), A0(t)−m0α(t))− f(t, β(t), B0(t)−m0β(t))

+ (m0 + M0)y(t)−m2
0(α(t)− β(t))

≥ −(A−Bm0 + m2
0)(α(t)− β(t)) + (−B + m0 + M0)y(t)

= 0, t ∈ [0, 2π],
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then by Lemma 2.1, we have y(t) ≥ 0 on [0, 2π], which is a contradiction.
If y(2π) ≥ 0 (then y(0) ≥ y(2π) ≥ 0), and hence there exists s ∈ (0, 2π) with

y(s) < 0, then there would be 0 ≤ a < s < b ≤ 2π such that y(t) < 0 in (a, b) with
y(a) = y(b) = 0. By (1.2) and (1.3), we have

y′(t) + M0y(t) ≥ 0, t ∈ [a, b], y(a) = y(b) = 0.

This leads to y′(t) ≥ −M0y(t) > 0 on [a, b], which is again a contradiction.
If y(2π) < 0, then there exists a ∈ (0, 2π) such that y(t) < 0 on (a, 2π] with

y(a) = 0. So we have y′(t)+M0y(t) ≥ 0 on (a, 2π], hence y′(t) > 0 in (a, 2π], which
implies that y(2π) > y(a) = 0, this is also a contradiction. The proof of Lemma
2.3 is complete. �

In the following arguments, we only give the proof of Theorem 1.1, since the
proof of Theorem 1.2 can be treated in a similar way.

Let

p(t, x) =


A(t), x < A(t),
x, A(t) ≤ x ≤ B(t),
B(t), x > B(t).

It is interesting to give an introduction to Lemma 2.4 and a reference where it can
be found.

Lemma 2.4. If m > 0, then for any q(t) ∈ L1[0, 2π], the problem

u′(t) + mu(t) = q(t), for a.e. t ∈ [0, 2π]

u(0) = u(2π),

has a unique solution u ∈ W 1,1[0, 2π], and

u(t) = L−1q(t) =
∫ 2π

0

Gm(t, s)q(s)ds,

where

Gm(t, s) :=

{
em(2π+s−t)

e2mπ−1 , 0 ≤ s ≤ t ≤ 2π,
em(s−t)

e2mπ−1 , 0 ≤ t ≤ s ≤ 2π.

By Lemma 2.1, we have

α(t) = L−1A(t), β(t) = L−1B(t), β(t) ≤ L−1p(t, x) ≤ α(t).

Now we consider the modified problem

x′(t) + Mx(t) = f
(
t, L−1p(t, x(t)), (I −mL−1)p(t, x(t))

)
+(m + M)p(t, x(t))−m2L−1p(t, x(t)), x(0) = x(2π).

(2.1)

For each x ∈ C[0, 2π], we define the mapping Φ : C[0, 2π] → C[0, 2π],

(Φx)(t) =
∫ 2π

0

GM (t, s)(Fx)(s)ds, (2.2)

where

(Fx)(t) := f
(
t, L−1p(t, x(t)), (I −mL−1)p(t, x(t))

)
+ (m + M)p(t, x(t))−m2L−1p(t, x(t)).
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Since p(t, x(t)) and L−1p(t, x(t)) are bounded and f(t, u, v) is a Caratheodary func-
tion, there exists g(t), a Lebesgue integrable function defined on [0, 2π] such that

|(Fx)(t)| ≤ g(t) for a. e. t ∈ [0, 2π].

Thus (Φx)(t) is also bounded.
We can easily prove that Φ : C[0, 2π] → C[0, 2π] is completely continuous. Then

Leray-Schauder fixed point Theorem assures that Φ has a fixed point x ∈ C[0, 2π]
and

x(t) =
∫ 2π

0

GM (t, s)(Fx)(s)ds, (2.3)

thus the modified problem (2.1) has one solution x ∈ W 1,1[0, 2π].

Lemma 2.5. Suppose that (H1) holds. Assume that α(t) and β(t) are lower and
upper solutions to (1.1) and β(t) ≤ α(t) on [0, 2π]. Let x ∈ W 1,1[0, 2π] be a solution
to (2.1), then A(t) ≤ x(t) ≤ B(t) on [0, 2π].

Remark 2.6. Lemma 2.4 implies u(t) = L−1x(t) =
∫ 2π

0
Gm(t, s)x(s)ds is a solution

to (1.1), since u′(t) + mu(t) = x(t), u(0) = u(2π) and A(t) ≤ x(t) ≤ B(t).

Proof of Lemma 2.5. Since α(t) = L−1A(t), β(t) = L−1B(t),

B′(t) + MB(t) ≤ f(t, L−1B(t), (I −mL−1)B(t))−m2L−1B(t) + (m + M)B(t),

B(0) ≤ B(2π)

and

A′(t) + MA(t) ≥ f(t, L−1A(t), (I −mL−1)A(t))−m2L−1A(t) + (m + M)A(t),

A(0) ≥ A(2π).

We shall prove only that x(t) ≤ B(t) on [0, 2π], because A(t) ≤ x(t) can be proved
by a similar manner. Let y(t) = x(t)−B(t), then

y(0) ≥ y(2π).

Assume that y(t) > 0 for some t ∈ [0, 2π]. Indeed, if y(t) > 0 on [0, 2π], we have

x′(t) + Mx(t) = f(t, L−1B(t), (I −mL−1)B(t))−m2L−1B(t) + (m + M)B(t)

≥ B′(t) + MB(t),

i.e., y′(t) + My(t) ≥ 0 on [0, 2π]. Lemma 2.1 implies y(t) ≤ 0 on [0, 2π], which is a
contradiction. Therefore, there would be a point s ∈ [0, 2π] with y(s) ≤ 0.

If y(0) ≤ 0 (then y(2π) ≤ y(0) ≤ 0), and hence there exist 0 ≤ a < s < b ≤ 2π
such that y(t) > 0 in (a, b) with y(a) = y(b) = 0. Then p(t, x(t)) = B(t) on [a, b]
and

y′(t) + My(t)

≥ f(t, L−1p(t, x(t)), B(t)−mL−1p(t, x(t))) + (m + M)B(t)−m2L−1p(t, x(t))

− [f(t, L−1B(t), B(t)−mL−1B(t)) + (m + M)B(t)−m2L−1B(t)]

≥ (−A−Bm−m2)(L−1p(t, x(t))− L−1B(t))

= 0, t ∈ (a, b).

This leads to y′(t) ≥ −My(t) > 0 on (a, b), which is again a contradiction.
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If y(0) > 0, there exists a ∈ (0, 2π) such that y(t) > 0 on [0, a) with y(a) = 0.
So we have y′(t) + My(t) ≥ 0, hence y′(t) > 0 in [0, a), which implies that y(0) <
y(a) = 0, this is also a contradiction. The proof is complete. �

By Remark 2.6, we have obtained the results of Theorem 1.1.

3. Example

In this section, we consider the periodic boundary-value problem

u′′(t) + ku′(t) = F (t, u), t ∈ [0, 2π]

u(0) = u(2π), u′(0) = u′(2π),
(3.1)

where F (t, u) is a Caratheodory function, k > 0 or k < 0.
We say that β ∈ W 2,1[0, 2π] is an upper solution to the problem (3.1), if it

satisfies
β′′(t) + kβ′(t) ≤ F (t, β(t)), t ∈ [0, 2π]

β(0) = β(2π), β′(0) ≤ β′(2π).
(3.2)

Similarly, a function α ∈ W 2,1[0, 2π] is said to be a lower solution to (3.1), if it
satisfies

α′′(t) + kα′(t) ≥ F (t, α(t)), t ∈ [0, 2π]

α(0) = α(2π), α′(0) ≥ α′(2π).
(3.3)

To develop the upper and lower solutions method, we also need the following hy-
pothesis:

(H) For any given β, α ∈ C[0, 2π] with β(t) ≤ α(t) on [0, 2π], the inequality

F (t, u2)− F (t, u1) ≥ −
k2

4
(u2 − u1)

holds for a.e. t ∈ [0, 2π], whenever β(t) ≤ u1 ≤ u2 ≤ α(t).
Let A = k2/4, B = |k|, then (H1) holds when k < 0, and (H1’) holds when

k > 0. Hence the conclusions of Theorem 1.1 hold when k < 0, thus α′(t)+ k
2α(t) ≤

β′(t) + k
2β(t) and problem (3.1) has one solution u ∈ W 2,1[0, 2π] such that

β(t) ≤ u(t) ≤ α(t), α′(t) +
k

2
α(t) ≤ u′(t) +

k

2
u(t) ≤ β′(t) +

k

2
β(t).

The conclusions of Theorem 1.2 hold when k > 0, thus α′(t)+ k
2α(t) ≥ β′(t)+ k

2β(t)
and problem (3.1) has one solution u ∈ W 2,1[0, 2π] such that

β(t) ≤ u(t) ≤ α(t), β′(t) +
k

2
β(t) ≤ u′(t) +

k

2
u(t) ≤ α′(t) +

k

2
α(t).

In [7, 18], the authors obtained one solution u ∈ W 2,1[0, 2π] of (3.1) such that
β(t) ≤ u(t) ≤ α(t). Here we have improved the results of [7, 18].
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