TEXASs& STATE
UNIVERSITY

SAN MARCOS

Department of Computer Science
San Marcos, TX 78666

Report Number TXSTATE-CS-TR-1995-1
Facet-Based Tetrahedralization Software

Carol Hazlewood

1995-04-12

Facet-Bascd Tetrahedralization Software

Carol Hazlewood
ch04@swt.edu
Department of Computer Science,
Southwest Texas State University
San Marcos, TX 78666, USA

12 April 1995

Abstract

Soflware for computing Delaunay tetrahedralizations 1s described. The softwarce is designed to be used
as parl of a larger system and has a simple user interface. Numerically stable Householder transformations
are used to implemecnt orientation and insphere tests in floating-point arithmetic. A backward etror
analysis is done for the orientation test.

keywords: geometry software, Delaunay tetrahedralization, Householder transformations, Roating point
arithmetic

1 Introduction

A Delaunay letrahedralization is a decompositicu of the convex hull of a Aniie scl of points in three-
dimensional Fuclidean space into tetrahedra. It has an abundance of applications, including surface in-
terpolation and finitc-element mesh generation. We describe an implementation of a facet-based algorithm
for computing Delaunay teirahedralizations.,

The software uses a simple algorithm that never deletes teteahedra once they are discovered. Using
a madification of Dwyer’s[1] algorithm, the software starts with a triangular lace of the convex hull and
constructs a sequence of tetrahedra by repeatedly finding an apex for an exisilng Delaunay facet. The apex
calculation uses Lhe onentation and msphere predicates.

The software is desighed to be used as part of a larger system and has a well-defined user interface, where
all communication is through the parameter list and no input or output is produced by the software. The
tetrahedralization is represented by two arrays containing vertex and adjacency information. Nunerically
stable Householder transformations are used in the floating-pomnt implementations of Lhe orientation and
insphere tests and the giftwrapping primitive. The software was recently used by Frank Ray, a regearch
scientist at McDonald Observatory, Universily of Texas al Austin, in the interpolation of thermal volumetric
data in steel telescope primary mirror structures[2]. C and Fortran code are available from the author.

A Delaunay tetrahedralization can be computed directly in an incremental fashion (Watson [3], Field{4],
Cavendish et al,[5] and Rajan[6]). These wmethods begin with an initial tetrahedralization of a few points
and update the existing teirahedralization as points are added. Dwyer[l] presents a linear expected time
analysis of a {acet-based technique for points uniformly distributed in a unit d-bail.

Cline and Renka[7] and Fortune(8] describe implementations of increwnental two-dimensional Defannay
triangulation algorithins. Fortune[8] uses a sweep-line technique for computing Delaunay triangulations.
Renka’s incremental code[I0] and Fortune’s sweepline code ate available from netlib, GROMPACK by
Barry Joe[l] contains code for computing tetrahedralizations,

Many people have studied the problems of iruplementing geometric computations, Fortune and Van
Wyk[12] develop efficient, exact arithmetic for geometric caleulations. Edelsbrunner and Miicke[13) and
Yap{L4] perturb objects to avoid degeneracies.

Ottmann, Thiernt, and Ullrich[15), and Dobkin and Silver[16] use more than one kind of arithmetic to
achieve numerical stability for geometric computations. Hoffman, Hoperoft, and Karasick{l7] maintain exact
incidence information and approximate numerical information abont objecis to achieve robust computations.
Li and Milenkovic use rounded arithmetic to approximate curve arrangements[18] and convex hulls.[19]
Guibas, Salesin, and Stolfi{20} use interval acithmetic and backward error analysis to produce the exact
answer to a perturbed problem as well as a bound on the size of the perturbation. Fortune[21] analyzes
floating point error for basic geometric calenlations that are used i comnputing triangulations. Field[4]
details a case study on the problems encountered in implementing Walson’s algorithm for triangulations [3].
Hoffmann[22] compares several approaches and calls for more research on the topic of geometric computation,

In Section 2 the basic algorithm is presented; in Section 3 the implementation of floating point functions
using Householder transformations is describad; in Section 4 experimental results are reported.

2 Facet-Based Tetrahedralization

The three vertices of a triangle uniquely determine a plane. The plane partitions E¥ into two open half
spaces and the plane itsell. The union of the plane and an open half space is a closed half space. The
triangle has two sides, one corresponding to each of the half spaces.

If a triangle is a facel of a tetrahedron, the tehrahedron is in exactly one of the closed half spaces defined
by the facet, or on one side of the facet. The tetrahedron vertex that is not in Lhe facet is called the apex
of the facet.

pre: P is sel of n points in &7
post: T is a Delaunay tetrahedralization of P

tess(£, T
T~ [/ known tetrahedra
g — initial_facet, // in boundary
Qe~g [/ vool of {acets
while (@ # @) do
o= front(@): /7 get an open facet
a + getapex(f); // find its apex
t — conv(f U {a}); // new tetrahedron
T TuU{t);
for g a facet of 1 do
if (5 ¢ Q)
then) — QU (g}, // B is open
else @ — Q — {g}; [} g now closed

Figure 1: Facet-Based Delaunay Telrahedralization

Lemma 1 provides a basis for the algorithm shown in Figure |

Lemma 1 [n a letruhedralization of P, every facet of a tetrahedron s either a fucel of exactly two tefrahedra,
or in the boundary of the convez hull of P and a focet of exactly one teirehedron.

As iliustrated in Figure 2, the algorithm first finds a facot g of a tetrahedron s in 1' that hes i the
boundary of the convex hull of P. All the points of P are on one side of g. Theu the apex ¢ of g in s is fonnd

among the points of P. Let [be a lacet of s that contains ¢, let b be the apex of f in s, and let A4, be the
set of points of P that arc on the oppasite side of f from 6. If A is empty, [is in the boundary and all of its
tetrahedra have been found. Otherwise, there is another tetrahedron ¢ that contains f. and its apex @ must
be found. The facets of ¢ that contain a will be explored, in turn, to see if they form part of the boundary
or yield yet another tetrahedron. As the process continues, the construction may wrap back on itself so that
tetrahedron ¢ has already been found and no construction is necessary. The algorithm terminates when no
unexplored facets are left.

a
\\ t
C C f c\ i
S S S ~
b b R
g 24 24 g ~ .
i b. c. d.

Figure 2: Basic Tetrahedron Construction

Since a Delaunay tetrahedralization induces a Delaunay triangulation on the facets of the convex hull. an
initial facet can be obtained by computing a convex hull facet, and, if necessary, a Delaunay triangulation of
the facel. The giftwrapping algorithm [23] provides a convenient way to compute a single convex hull facet.

Although every facet in a Delaunay tetrahedralization of P has the property stated in Lemma 1, while

the algorithin is executing, the information we have at hand is incomplete. Each facet falls into one of three
categories:

e unknown: the facet belongs to no tetrahedron (facet y in Figure 2a)

® open: the facet helongs to one known tetrahedron and no boundary inforination is known, or the facet
belongs to no known tetrahedra and is known to be in the boundary (initial facet only) (facet f in
Figure 2¢, facet g in Figure 2a)

e closed: the facet helongs to two known tetrahedra, or the facet belongs to one known tetrahedron and
is known to be in the boundary (facets f and g in Figure 2d)

Open facets are kept in a queue, which is implemented as a hash table for faster searching.
Apex construction depends on the following properties of intersecting halls.

Lemma 2 If two balls B and C intersect, their intersection is a disk D. The disk determines a plane and
open half spaces HY and H=. Let B¥ = BN H* and * = C N HE. Then ezactly one of the assertions
Bt C C* and Ct C Bt is true, and the inclusion is reversed in H=. That s, if BY C C%, then (!~ C B™,
and if C* C BY, then B~ C C~.

Lemma 3 Let f be a triangle in B2, Ht an open halfspace delermuncd by f, and let £ be the line through
the circumcenter of and normnal to f. For point a in 1Y, lel (; be the ball defined by a and the vertices of
f with center ¢, and radins r, and let (3 = C, N H*. Impose a one-dimensional coordinale system on L
with (0 in the planc of f and positive direction in HY, and let L, be the L-coordinate of c,.

If a and b are pownts in H*, then Ly < Ly if and only of CF C CF

Proof: Let (¥ (Ff) be the intersection of the boundary of €', (C3). line £, and halfspace H*. By Lemima
2 it suffices (o show that £} is closer than £F to f, or that £; is closer than €5 to f. The distance from £%
to fis r, £ £,, and the distance from ff to fisry Ly. I rg < ry, then rq + Ly < 7 + Ly, 50 £ is closer
than f:’ to f. IFry < ra, then ry — Ly < 17q — Lg, 50 € is closer than £7 to [. O

This result yields in a straightforward manner a characterization of the apex of a facet in a Delaunay
tetrahedralization.

Theorem 1 Le! f be a facet tn a Delaunay letrahedralization, and let Pt be the subsel of P on one side
of [. If Pt is emply, then f is a boundary facel. Otherwise a point of Pt 1hat generates the cenler of
minimum L-coordinate 1s the apez of facel f in a Delaunay teirahedralization.

Theorem 2 Algorithm tess shown in Figure I produces a Delaunay letrahedralization of P in O(n*) space
and O(n®) time in the worst case.

Proof: By Theorein 1 each tetrahedron producd by algorithm tess is a Delaunay tetrahedron. These
tetrahedra intersect in rnutual faces and have circumballs, the interiors of which are {ree of points of P. If
the convex hull of P is not covered by these tetraliedra, by Lemma | there will be at least one facet intertor
to the convex hull of P that belongs to exactly one Letrahedron. This is impossible, since open facets remain
in the facet pool and preveut termination of the algorithm, so the convex hull of P is covered by tetrahedra
and that P is the set of vertices of tetrahedra.

Since no facet is added to the pool more than once, and a facet is removed in each iteration, the while
loop, and therefore the algorithm, terminate.

Construction of the initial facet requires O(n) time. Finding the apex of a single tetrahedron requires

O(n) time. The number of Delaunay tetrahedra in a tetrahedralization of n points can be as great as O(n?)
[24]. O

For many point sets the Delaunay tetrahedralization has size O(n).
Corollary 1 [f the size of the tetrahedralization is O(n), algorithm tess requires O(n) space and O(n?) time.

A Delaunay tetrahedralization is unique unless five or more points of P lie on the circumball of a tetra-
hedron. The convex hull of the points on the circumball define a unique polytope, any tetrahedralization
of which is a Delaunay tetrahedralization. It is possible lor several points to generate the minimum £-
coordinate, and therefore lie on a common sphere. Any of the poinls can be used as the apex, since this
is exactly the situation where the Delaunay tetrahedralization s not unique. However, our algorithm can
cover the convex hull with multiple sets of tetrahedra. The two-dimensional example in Figure 3 illustrates
the problem. In the two-dimensional case, facets arc edges of triangles. Eventually Aabe, Aaed, Aabd, and

d
open [acets in Lhe queue Q= {z E}
¢ is found as an apex for ab Q = {ad, be E}_
b is found as an apex for ad @ = {be, @7, ab, bd}

Figure 3: Problem with Cospherical Points

Abed will be added to the tetrahedralization. The convex hull of the cospherical poiuts is covered with two
sets of triangles, and facet ab is incorrectly added to the queue for a second time.

This problem can be avoided by enforcing some consistent method for choosing an apex. One method is
illustrated in Figure 4. Let A be the set of points that generate the minimum L-coordinate with respect to
facet f, and let B = AU {vertices of f}. Let a be the point of minimum index in P amony the points of B.
We arbitrarily choose the apex so that point a is a vertex of every tetrahedron with vertices in B. If @ is

e
d
a
C
b
A= {a,b,c,d} A= {b‘c,(l,(’}

B ={ab,c,de,g} B={abcdeyg)
a @ fsochoose a a € f so choose r

Figure 4: Solution to Cospherical Points

in A, choose a as the apex of f; if a is a vertex of f, choose the point of minimum index that giftwraps the
edge of f that does not contain a.

Further investigation is needed to see il other selection criteria may be more desirable.

3 Using Householder Transformations

Geometric problems are often poorly conditioned in the sense that a small change in problem parameters
may result in a large difference in the answer [25]. As an example, consider the computation which, given a
line and a point, returns the value {ree if the point is on the line and false otherwise. A slight perturbation
of the coordinates of the point or the coefficients of the equation of the line may change the result from false
to true.

Floating point computations in our algorithm are confined to a variant of the orientation test, in which
we test if two points lie on opposite sides of a plane (opp test); a variant of the inspliere test. namely the £-
coordinate calculation for deterinining an apex of a facet; and the giftwrapping primitive. Here we present an
implementation of the opp test and apex computation using numerically stable Householder transformations
(Stewart [26], Golub and Van Loan [27]), and hased on a development by Alan Cline [28]. The giftwrapping
primitive is similar to the apex computation.

Householder transforimations, also known as elementary reflectors or elementary Hermitian matrices, have
the formn @ = I — 2uu’, where [is the identity matrix and «” u = 1, and are numerically stable, orthogonal
(Q@TQ = I), symmetric, and isometric (for any vector y, ||y|| = ||Qy|]) in the Euclidean norm. Geometrically,
when () is applied to a vector v, v is reflected in the plane normal to .

3.1 Opp Test

Given points z; and za, and a facet with non-collinear vertices py. pz, and py, the opp test returns the
value true if z; and za are on the same side of the plane defined by the facet and false otherwise. [Let
P be the matrix [pr—mM P3—pi], and compute the Householder QR factorization [27], [26] to obtain
P = QQ2R, where @y, (J2 are Householder transformations and R is upper triangnlar. I » = Q1Q2eg3,
where e3 = (0,0, 1)7, then v has unit length, since @ and Q2 are isometric. In addition,

ply = RTQ'.J_CJ1 = ff/[.f’:_s =0.

since the third row of Ris 0. That is, v is a unit normal to the facet. Therefore, points z; and 22 are on the

same side of the plane defined by py, pa, and py if and only if the signs of (5, — p1) v and (22 - pl)T v are
the same.

For backward error analysis of the opp test, we want to show that the computed answer is the exact
answer to a slightly perturbed problem. The opp test requires the following computations: compute Qy;
compute Qq; v — Q) @2e3; compare (z; — p;)T v and (23 —p1)Tv. Following Fortune,[21] we use approximate
arithmetic, or floating-point arithmetic without underflow or overflow, with error bound ¢; on a single
arithmetic operation. The comparison can be done exactly, so we nced only analyze a computation of the
form (z — p)TQIQQf’-B-

We first examine separately the errots incurred by approximate arithmetic in computing dot products,
vector difference, Householder transformations, and vector multiplication by a product of Houscholder trans-
formations. Where there is a choice, we amortize the error uniformly over the appropriate values.

Consider the dot product computation }:?:l u;b;. Let s be the result computed in approximate arith-
metic. Using standard techniques it can be shown that

s=) al(L+0)b(1+0,),

=1

where |0;] < (n— 7+ 3)ep/2 for i = 1,...,n. In this context, n = 3, s0 |0;] < Beg/2 fori=1,...,3.

Let d be the difference between two vectors, a — b, computed in approximate arithmetic. From the bound
on approximate arithinetic d = a(1 + ug) — b(1 + up), where the components of error vectors u, and uy have
absolute value less than ¢q.

Suppose Q is a computed Householder transformation of order three. According to Golub and Van
Loan,[27], if m is the computed result of multiplying 3-vector v by Q. then m = Qv + e), where |le]| <
9cco||v|l, and ¢ is a constant of order unity. Applying this to the computed value t of Q;Qaz, we have t =
Qu(Q2(x+f2)+ f1), where || 2|} < 9eeol|z|[and |[1]] € Oeco]|Q2(z+ f2)|] £ ecollz+ f2]| < Yeeo|lz||(1 +9ceo),
since @y is isometric. Finally, ¢ = Qv(Q2(z + f2) + fi) = QiQu(x + h), where h = fo + QY f1, and
[iA]] < Yecollz]|(2 + 9eeo) < 2Tceo]|x||-

Let r be the computed result of (z—p)TQeg, where Q = Q1Q5. Using the above results, r = Zi’zl[(z,-(l+
u,)= pi(L+up))(1 +0)] - [(Qlea+))i(1+0)], where [u.| < €o, Jup| £ €, 16] < 5eo/2, and ||f|| < 27ceqlles|| =
27ceq.

Now (1 + u,)(1 +0) = (1 + 8), and p;(1 + up)(1 +8) = p;(1 + 8), where |8] < d¢y,.

Furthermore, (Q(es + f))(L+ 8) = (Qea)i + (Qea)i0 + (Qf); + (QN)i0 = (Qea)s + dy, where Jid]] <
€0 + 2Tceg + 27ce? < 29¢cq. Reassembling vectors from components, (Q(ea + f))1 +0) = Qea+ f) +d =
Qles + f) + Qg = Qlea +), where Y|h|| = |IJI| + ||g]] £ 27ceq + |]d]| < 56c¢q.

Finally,

3
P Y la(l+8) = pa L+ 8)] - [(QUes + h))s),
r=1|
where (8] < 4¢g and ||h]] < BBecg. That is, the conmputed value of tlie opp test is the exact value of a slightly
perturbed problem.

3.2 [-coordinates

As discussed previously, the apex of a facet 1s the point that generates a center of minimum L-coordinate
among all the points on one side of the facet, say in [T+, If we fix a facet, with three non-collinear vertices
p1, p2, and pa, then we can define a function L that associates a point p in Pt with the L-coordinate of
the center of the circumball defined by p, pi. po, and py. The function I can also be implemented with
Householder transformations. We compute », a nuit normal to the facet, ¢, the circumcenter of the facet,
and finally the L-coordinate of the center of the ball. In practice v and ¢ are computed once for each facet.
Factor P = [Pr—pP1 P3— P] so P = (Q1Q2 K, where)y, @» are Householder transformations and R is
upper triangular, and let @ = Q1 Q2. As in the opp test, the unit normal is Q@263 = Qea. Since ¢ is in the
plane of the facet, ¢ — p, can be written as Qy, where the third component of ¥ is 0. T'hen

lle = pill = HQull = [lyll,

since @ is isometric. For j = 1.2, the j-th column of P can be written as p;j41 — p1 = Pe; = QRe; = Qr;,
where r; is the j-th column of R. Therefore,

lle = pill = [l(e = p0) = (Pj+1 — POl = [1Qy — Qrsl| = [ly = 75]]. (D)

Since ¢ is the circumcenter of the facet, it is equidistant from the vertices, and, for j = 1,2, ||yl = {ly — r5}|-
Since R is upper triangular, when j = 1,

vitui = —r) i

yielding
v =ru/2,
and, when j = 2,
FAyE=(n~m2)’ + (v2 - ra)’
yielding
y2 = (r22 + (r12/r22)(ri2 = 2y1))/2.
Now we are able to compute Qy to obtain ¢, the center of the facet

The center s of the ball can be written as ¢ + Lv, where £ is the L-coordinate of s. Since s is equidistant
from py and p,

ls =pill = lls—pll
e+ Loy =pi]l = (e + Lo)~pll
I(e=p)+ Lol = |l(c—p1)—(p—pi)+ Lol

Writing QT (p —p1) as r, we have QT (p—py) = r = QTQr, and (p — p,) = Qr. Recalling that (c —p() = Qy
and v = Qegz, we get

1Qu+ LQes|| = [|Qy + LQes — Qr[],
and

[1Q(y + Les)|| = |Q(y + Les + 7).
Since @ is orthogonal,

ly + Les|| = |ly + Les + r||.
Squaring both sides we get
(y+ Lol (g + Log) = (y -+ Loy =)+ Loa =),
which reduces to
0=rTr— ‘ZrTy —2LrTey.
Henee , T
il =2y r
SR
=43

This can be sinphified using

1P = llp = 1P = (p = p) (0 = p1).

el ATy -p) =) e-p) =0 (p -),
and
y'r=y"Q N (p-py=(Qu) (p—pr) = (e —p) (v —p1)
to the final form - T
pop=p) (p-p)=2Ae—p) (P=pi)
vT(p—p)

4 Experimental Results

The insphere test was implemented with and without Basic Linear Algebra Subroutines (BLAS),[29] which
abstract vector operations. The timings in Table 4 for the insphere Lest were done on one node of an nCUBE
model 2E computer, which has a BLAS library available. The numbers represent, average cost per function

evaluation, amortizing the onc-time setup over all trials.

Householder Householder Householder

no library fortran

trials blas blas blas
10000 0.2547753E-04 0.4506951E-04 0.7514621E-04
20000 0.2330957TE-04 0.4506079E-04 0.7512725E-04
A0000 0.234218G6E-04 0.4505925F-014 0.7512100E-04
40000 0.2423604E-04 0.4506010E-04 0.7511742E-04
50000 0.2363036LE-014 0.4505702E-04 0.7511496E-04
60000 0.2439852E-04 0.4505553E-04 0.7511338E-04
70000 0.2416601E-04 0.45050539E-04 0.7511231E-04
30000 0.2408908E-04 0.4505610E-04 0.7511202E-04
90000 0.2411615L-04 0.4505465F-04 0.7511133E-04
100000 0.2421591E-04 0.4505658F-01 0.7511085E-04

BLAS Timings

Table 4 contains runtirne data on one node of the nCUBE 2E for the insphere test implemented with
Householder transformations without BLAS and with determinants. The numbers again represent average
cost per function evaluation, amortizing the one-time setup over all trials. Set-up for the Householder
vergion includes computing the transformations: for the determininants, the one-time cost is for computing
the minors. The runtimes are ahout the same over a range of trial sizes.

To empirically test accuracy, we set up an insphere problem with coordinates less than two in absoiute
value with the origin on the sphere, then let the test point approach the origin. Tests were run with 32-bit
arithmetic. The Householder version returned a result of zero for points within 10~7 of the origin,which
18 expected, since it uses differences between points: if point pl has coordinates around size one, and p2
is within 1077 of origin p3, then p2 — pl and p3 — pl will have the same value in 32-bit arithmetic. The
determinants performed better than the Householder transformations in this case, giving correct signs for
points within 1071 of the origin.

As Fortune[21] observed, poiats that are close together but far from the origin pose numerical difficulties.
We constructed a sequence of insphere problemis by starting with a set of point coordinates less than two in
absolute value and translating the same coordinate of each point by increasing powers of 10. The problems
are solved using Houscholder transformations with and without BLAS and determinants using an Alpha
running VMS with default compiler settings.

There is no difference in accuracy in these tests between the versions of the Householder implementation
in 32-bit arithmetic. The Houscholder versions fail at 10® with a zero divide, which is the point at which
the points become indistinguishable in this Aoating-point system. The determinant version fails at 107 with
an incorrect result.

The test was also run in G4-bit arithmetic with no BLAS. The Householder version has a zero divide at
10'%, while determinants fail at 105 with an incorrect answer.

Acknowledgments
The nCUBE was partially funded by NSF grants USE-9052040 and DUE-9352798.

trials

100
200
300
400
500
600
700
800
q00
1000
10000
20000
30000
40000
50000
60000
70000
80000
90000
100000

Houscholder
no blas

0.2443675E-01
0.2612430E-04
0.2310050E-04
0.2431148L-04
0.2335035k-04
0.24526921-04
0.24198561-04
0.2406637E-04
0.24139151-04
0.2430852E-04
0.2547733E-04
0.2530957E-04
00.2342186E-04
0.2423604T-04
0.236303615-04
00.2439852E-04
0.2416601F-04
0.2403908F-04
0.2411615F-04
0.2421591E-04

Determinants

0.2391137E-04
0.2939204 k-04
0.2755631E-04
0.2691151E-04
0.26843001.-04
0.2694426E-04
0.2724844L-04
0.26397011-04
0.2696446E-04
0.2656 197E-04
0.27051261-04
0.26869621-04
(.2706156E-04
0.2579072E-04
0.26433911E-041
0.2699300F-04
0.2661089T-01
0.2642198E-04
0.26361951-04
0.26391831-04

Insphere Tunings on nCUBE

References

1]

(2]

3]

(4]

9]
[10)

(1
(12]

i3]

(4]

(15]

Rex A. Dwyer, “Higher Dimensional Voronoi Diagrams in Linear Expected Time”, Proreedings of the
Fifth Annual Symposium on Compulational Geomelry, ACM Press (1939) 326-333.

F.B. Ray, HET primary mirror thermal compensation I: mathematical foundation, TR-941206, HE'T
Technical Library, McDonald Observatory, The University of Texas at Austin, Austin, TX 78712.

D.F. Watson, “Computing the n-dimeusional Delaunay tessellation with application to Voronoi poly-
topes”, The Computer Journal 24:2 (1981) 167-172.

David A. Field, “Implementing Watson's Algorithm in Three Dimenstons”, Procecdings of the Second
Annual Symposium on Computational Gromeltry, ACM Press (1986) 246 259

James (. Cavendish, David A. Field and Willlam H. Frey, "An Approach to Automatic Three-
Dimensional Finite Elemnent Mesh Generation”, International Journal for Numerical Methods 1 Fugi-
neering 21 (1985) 329-347.

V.T. Rajan, "Optimality of the Delaunay triangulation in R, Proceedings of the Seventh Annual
Symposium on Computational Geomelry (1991) 357 363

A.K. Cline and R.L. Renka, “A storage-eflicient method for construction of a Thiessen triangulation”,
The Rocky Mountain Journal of Mathematics 14:1 (1984)119-139

Steven Fortune, “Voronoi Diagrams and Delaunay Triangulations”, Computing in Euclidean Geomelry,
Ding-Zhu Du and Frank Hwang, eds., World Scientific Press (1992) 193 233

S. Fortune, “Sweepline Algorithrms for Voronoi diagrams™, Algorithmica 2 (1987) 153--1741

Robert J. Renka, “ALGORITHM 624 Triangulation and Interpolation at Arbitrarily Distributed Points
in the Plane”, ACM Transactions on Mathemalical Software 10:4 (1984) 440 -442.

B. Joe, *GEOMPACK - a software package for the generation of meshes using geometric algorithms”,
Adv. Eng. Software 13(1991) 325-331.

Steven Fortune and Christopher J. Van Wyk, “Efficient Exact Arithmetic for Computational Geometry”
Procecdings of the Ninth Annual Sympostum on Computational Geometry, ACM Press (1993) 163- 172.

1. Edelsbrunner and E. Mucke, “Simulation of Sitaplicity: A lechnique to Cope with D nerate (a5
in Geometrie Algorithms”, Proceedings of the Pourth Annual Symposiwm on Compulational & ymotry,
ACL Press (1985) 118 133,

Chee-Keng Yap, “A Geometric Consisteney ‘Theorem for a Symbolic Perturbation Scheme”, Prucecdings
of the Fourth Annual Symposinm on Compulalional Geomctry, ACM Press (1988) 134 142

Thomas Ottmann, Gerald Thiemit, and Christian Ullrich, “Numerical Stability of Geometric Algo-
rithms”, Proecedings of the Third Annual Sympostum on Computational Geometry, ACNM Press (1O87)
119-125.

D. Dobkin aud D). Silver, “Recipes for Geometry and Numerical Aualysts, Part 11 An Empirical Study™,
Proceedings of the Fourth Annual Sympasium on Computational Geomelry, ACM Press (1988) 93-105.

Christoph Hoffmann, John Hoperoft, and Michael S, Karasick, “Towards limplementing Robust Geo-
metric Computation”™, Proccedings of the Faurth Annual Symposium on Computational Geometry, ACM
Press (1988) 106-117.

V.o Milenkovie, “Caleulating Approximate Curve Arrang aments Using Rounded Arithmetic™, Procecdings
of the F'ifth Annual Symposvwom on Computational Goomelry, ACM Pro (1989) 197 207,

[19] Zhenyu Li and Victor Mikenkovic, “Calculating Approximate Curve Arrangements Using Rounded
Arithmetic”, Proceedings of the Sizth Annual Symposium on Compulational Geomelry, ACM Press
(1990) 235-243.

[20] Leonidas Guibas, David Salesin and Jorge Stolfi, “Epsilon Geometry: Building Robust Algorithms from
Tmprecise Computations”, Proceedings of the Fifth Annual Symposium on Computational Geomeiry,
ACM Press (1989) 208-217,

(21] Steven Fortune, “Numerical Stability of Algorithms for 2D Delaunay Triangulations”, Proceedings of
the Eighth Annual Symposium on Computational Geometry, ACM Press, (1992), 83-92.

[22] Christoph Hoffmann, “The Problems of Accuracy and Robustness in Geometric Computation”, JEEE
Computer22 {March 1989) 31-41.

(23] Donald R. Chand and Sham S. Kapur, “An Algorithm for Convex Polytopes”, Journal of the Association
for Computing Machinery, 17:1 (1970) 78-86.

{24] Franco P. Preparata and Michael Ian Shamos, Compulational (Geometry: an Introduction, Springer-
Verlag, New York, (1985).

(25] Anthony Ralston and Philip Rabinowitz, A First Course in Numerical Analysis, second edition,
McGraw-Hill, New York, (1978) 22-23.

[26] G. W. Stewart, Introduction to Malriz Compulations, Academic Press, New York, (1973)

[27] Gene H. Golub and Charles F. Van Loan, Matrir Computations, The Johns Hopkins University Press,
Baltimore, MD, (1983).

(28] Alan Cline, manuscript, Summer 1987.

[29] C.L. Lawson, R.J. Hanson, D.R. Kincaid, and F.'I. Krogh, “Basic Linear Algebra Subprograms for
FORTRAN Usage”, ACM Transactions on Math. Software 5 (1979) 308--323.

