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INSTANTANEOUS BLOW-UP OF SEMILINEAR
NON-AUTONOMOUS EQUATIONS WITH
FRACTIONAL DIFFUSION

JOSE VILLA-MORALES

ABSTRACT. We consider the Cauchy initial value problem

0
au(t,x) = k(t)Aau(t,z) + h(t) f(u(t, x)),
u(0,2) = uo (),
where A is the fractional Laplacian for 0 < a < 2. We prove that if the
initial condition ug is non-negative, bounded and measurable then the problem

has a global integral solution when the source term f is non-negative, locally
Lipschitz and satisfies the generalized Osgood’s condition

/H:uw ft) = /Ooo h(s)ds.

Also, we prove that if the initial data is unbounded then the generalized Os-
good’s condition does not guarantee the existence of a global solution. It is
important to point out that the proof of the existence hinges on the role of the
function h. Analogously, the function k plays a central role in the proof of the
instantaneous blow-up.

1. INTRODUCTION

We consider integral solutions of the semilinear non-autonomous parabolic equa-
tion
%u(t,x) = k(t)Aqu(t,z) + h(t) f(u(t,z)), t>0, € R (L1)
u(0,2) = up(z), z€RY

where the diffusion A, = —(—A)®/2 is the fractional Laplacian (or a-Laplacian),
0 < a < 2, ug is the initial data and f is the source term. The diffusion and the
source terms are multiplicatively perturbated by continuous functions &, h.

Basic references for the study of the fractional Laplacian are the books [7] and
[12]. However, it is worth noticing that the systematic study of partial differential
equations considering fractional diffusion is relatively new. This area of mathemat-
ics has been actively studied in the last decade by Caffarelli, Vazquez and many
others (see for instance, [3 4] and the references therein).
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We denote by p the real-valued function determined by
/ p(t, 2)e*¢dz = e 1" forall t >0, € € R (1.2)
Rd

The space of all real-valued essentially bounded functions defined on R?% will be
denoted by L°°(R%). Let us consider the family {T},¢ > 0} of bounded linear
operators defined on L (R?) as

Tg(o) = [ ot —vlgtw)ds, o e R.

It is well known that {7},¢ > 0} is a strongly continuous semigroup with infinitesi-
mal generator A, (see [1]).
As in [6, 9], we introduce the following concept.

Definition 1.1. Let ug > 0 be a measurable function. We say that (|1.1]) has a local
integral solution on [0, T) if there is a measurable function u : [0, T) x R% — [0, o0]
that is finite almost everywhere and

t
u(t) = Tk, (t)uo +/ h(s)Ti s,y f(u(s))ds, tel0,T), (1.3)
0
holds almost everywhere (a.e.) in [0,7) x R?, where
t
K(s,t) = / kE(r)dr and Koy(t) = K(0,t).

We will say that (1.1)) has a global integral solution if ([L.1)) has a local integral
solution for all 7" > 0.

A solution of the differential equation (|1.1)) is called a classical solution. It is clear
that the non-existence of a local integral solution for (|1.1) implies the non-existence
of a classical solution (see [9]).

In this article we consider the following hypotheses:

(H1) wo >0 and 0 < |lugllq < oo, with 1 < ¢ < oo

(H2) f:]0,00) — [0,00) is non-decreasing, locally Lipschitz, f(0) = 0, and f > 0

on (0, 00);
(H3) h,k: (0,00) — (0,00) are continuous functions:
(a) limg_o fj h(s)ds = 0,
(b) limy—o [, k(s)ds = 0.
In what follows we will use the notation
t T
ds
1) = [ s, Fa)= [ 15
: = ) T
where xg > 0.

It is not difficult to prove that under the hypotheses (H2) and (H3), the initial

value problem

W _ g, o,

dt
y(o) =z > Oa

has a unique solution if and only if im(H) C im(F,,). Moreover, the solution is
given by y(t) = F, '(H(t)), t > 0. Such criterion, of existence and uniqueness for

Zo

(1.4)
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(1.4), is called the generalized Osgood’s test (for a proof see for example [4, Lemma
2.2]).

Assume the hypotheses (H2), (H3) and (H3)(a). Theorem [2.2] will establish that
(1.1) has a global integral solution if 0 < ug € L*°(R?) and im(H) C im(Fj,,|..)-
Thus the generalized Osgood’s test is still valid in some sense.

The following question arouse naturally in [0] for the case h=k =1 and a = 2:

Does im(H) C im(Fj,,,) (with 1 < ¢ < oo) guarantees the
existence of a global integral solution for (L.1))?

To answer the above question we define the closed ball with center at x and radius
R by Br(z) ={y € R?: |z —y[ < R}.

(1.5)

Definition 1.2. Let ug > 0 be a measurable function. We say that a measurable
function v > 0 is a local p-integrable solution to if there are z € RY, p > 1,
R > 0and T > 0, such that u(t,-) € LP(Bg(z)), for all t < T, with «(0) = ug and
the equality is satisfied a.e. on [0,T) x Br(x).

Of course, the non-existence of p-integrable local solutions implies the non-
existence of local integral solutions. Therefore we say that an equation blows-up
instantaneously if it does not have a p-integrable local solution.

In [6], an initial condition ug satisfying (H1) with 1 < ¢ < oo, and a source term
[ satisfying (H2) and im(H) C im(Fj,,,) are assumed. Under these conditions
it is readily proved that any local integral solution for does not belong to
L'(Bgr(0)) for all t < 7 and R > 1.

The concept of local p-integrable solution is weaker than that of local integral
solution introduced in [6]. In this new context we will have the following conse-
quences:

(i) The answer given in [6] for the question uses strongly the fact that
R > 1 (this assumption is essential in the study of the set {|z| < (R—1)/2vt — s}
introduced in the proof of [6] Theorem 4.1]). We overcome this difficulty through
Lemma 2.4} see the inequality below.

(ii) Some new phenomenon are found.

(a) The existence of a global integral solution depends only of the combined source
term h and f. More precisely, the existence of a global integral solution depends of
(H1) (¢ = o0), (H2), (H3), (H3)(a) and im(H) C im(F,,). This, at an intuitively
level, implies that the diffusion term can be perturbed by a very large term k and
we still have the existence of a global integral solution.

(b) Symmetrically, given (H1) (1 < ¢ < oo) and (H3), to construct a convenient
source term f satisfying f\rfonq % = oo one requires Hypotheses (H3)(b). In this
case h is arbitrary, which means that [ h(s)ds could be finite or infinite. In any
case the generalized Osgood’s condition is satisfied.

It is worth mention that Osgood-type conditions appears naturally in some ap-
plied problems (see the references in [6]). On the other hand, from [I5] we have
that if we require additionally that the source term f is convex then we have that
the local integral solution of blows-up in finite time when ﬁrio‘lm % < 00

and [;* h(s)ds = co. The case f‘r;()” % < Jo7 h(s)ds < oo is still open, but we
believe that we also have blow-up in finite time. Concerning the global existence of
(1.1), we need additional conditions to guarantee a solution in a strong sense. For

example, when h =k =1 and « € (1, 2), the authors of [5] proved that (L.1)) has a
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mild solution (or even such solution is classical). Moreover, (|1.1)) has a mild global
solution if we assume (see [10])

sup { /t (/t k(r)dr>_1/ads te [07T]} < oo, forallT>0.
0o \Js

The importance of the study of equations like with fractional diffusion is
well known in applied mathematics. For example, they arise in fields like molecular
biology, hydrodynamics and statistical physics [I1]. Also, notice that generators of
the form k(t)A, arise in models of anomalous growth of certain fractal interfaces
[8]. The study of partial differential equations with fractional diffusion is becoming
more popular. In fact the number of works both theoretical and practical are
increasing: see for example [3| [5], [14] and the references therein.

This article is organized as follows. In Section 2 we prove the existence of global
mild solutions of and we present some basic properties of p(t,z). Section 3
provides a negative answer to the question , that is, we give an initial condition
o € LYRY), 1 < q < 00, 0 < 6 < d/q and a source term f that satisfy the
generalized Osgood’s condition for which there is instantaneous blow-up.

2. GLOBAL EXISTENCE AND PRELIMINARY RESULTS

The existence of local integral solutions for (1.3]) follows form the Banach con-
traction principle, as we shall see. First, we state some well known properties of

D.
Lemma 2.1. Lett > 0 and z,y € R? then:
(a) p(t,z) >0 and [p.p(t,z)dz =1 (density property).
() p(t,x) = t=¥p(1,t=1/*x) (scaling property).
(¢) If |z| > |y| then p(t,x) < p(t,y) (radially decreasing).
(d) The function (t,x) — p(t,x) is in C=((0,00) x RY) (reqularity).
(e) There exists co = co(d, o) > 0, such that

. t 1
p(t,x) > co mlH{W, tdﬁ}

Proof. For the proofs of (a)—(c) see [I3] Section 2]. The proof of property (d) can
be found in [5], and that of property (e) can be found in [2]. O

In what follows, ¢ will denote a positive constant whose specific value is unim-
portant and can change from place to place. On the other hand, if the constant c.
has a subindex then we refer to a specific constant.

Let us recall that, by L™ (Rd), we denote the space of all measurable functions
¢ : RY — R such that

lolloo = inf{M > 0: |p(z)] < M holds for almost all z} < co.
Let 7 > 0 be a real number that we will fix later. Define
E, ={u:[0,7] — L=(R%) and |||ul|| < oo},
where
ull] = sup{[lu(t)[lsc : 0 <t <7}
Then E; is a Banach space and the sets (r > 0)

P,={ueE,:u>0, ae }, Br,={uckE;:||ul| <r},
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are closed subsets of F..

Theorem 2.2. Let us assume (H1), with ¢ = oo, (H2), (H3), (H3)(a). Then (1.1)
has a global integral solution if im(H) C im(Fjy,|..)-

Proof. Define the operator ¥ : B, , N P, — E; by

() (£) = Ty oytio + / h($) Tic o0 f () )ds.

Since v > 0 and uy > 0, it is clear that ¥(u) > 0, so ¥(u) € P,. Using
Jga p(t,x)dz = 1, for almost all z € R? and u € B, we have

() (t,2) < luollos / p(Ko(t),y — 2)dy

Rd
[ hGs) [ pE (s 05— ) f(uls) )y ds
/0 /ﬂf‘i (2.1)
<ol + [ he) [ (500).5 = 2) ) ds

< uolloo + £(r) /OT h(s)ds .
Then )
I )ll| < [luolloo + £(r) / h(s)ds.

Let us take 7 = 1 + |lug||oo- By Hypothesis (H3)(a) we can choose 7 > 0 small
enough such that

flr) /OT h(s)ds < 1.

Then ¥(u) € B;, N Py, therefore ¥(B,, N P;) C B, , N P,.
Now let us see that U is a contraction. Take u, % € B, , N Py,

() (1, 2) — (@)t )
~| / (s) / p(E (5,8),y — 2)[f (u(s, ) — F(i(s, y))|dy ds]

o { [ 066) [ o060, = )11 (ulos0)) ~ F(ats, )y s}

teOT]

Since R is locally compact, then f is Lipschitz on each compact subset of R. In
particular, for [0, 7] there exists a constant ¢ > 0 such that

If(s) = f®)| <c|ls—t], foralls,tel0,r].
From the above inequality we easily deduce
|f(uls,y)) = f(als,y))| < clu(s,z) — (s, z)| < cllu(s) = @(s)] -

Consequently,

190 = w@ll < sup { / S)ellu(s) = 7(s)llds

te[0,7]

s<c/0 h(s)ds)|Ju — ]l
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Using again Hypothesis (H3)(a), we can choose 7 > 0 small enough such that ¥ is
a contraction. Therefore ¥ has a unique fixed point (on B, , N P;): the local mild
solution to the equation .

Let [0, Tmax) be the maximal interval for which the local integral solution u of
(1.3) exists. Clearly, Tmax > 7. Let us suppose that Tmax < 00. Since f is non
decreasing, we deduce

W@SHMMM@+AWWMMW®MW

¢
= ||uolloo +/ h(8)f(lu()|loo)ds, 0 <t < Tax, T € R%.
0

Then ,
[u(®)]loo < luolloo +/0 h(s)f([lu(s)lls)ds.

Now let us consider the integral equation

t
o) = luoll + [ Bs)F(u(5)is,
0
whose solution y is given by

y(t) = Fl (H(1), 0<t <o,

llwolloe

where we have used that im(H) C im(Fj,, . ). By the Comparison Theorem (see
[]) we have

lu()lloo < Flopy  (H®), 0 <t < Tinax.

lluollos
The continuity of p (property (d) in Lemma and the Bounded Convergence

Theorem (notice that p(s) < 2%*p(Timax), Tmax/2 < 8 < Tmax, this is consequence
of (b) and (c) in Lemma allow us to take the limit ¢ T Tipayx in (1.3)),

U(Tmax, ) := lm u(t, x)

Tmax

~ Ticytle) 4 [ B i s, s
< Flg (H (Timax))-
From this, the measurability of u(Tmax, ) follows easily. Also that
0 < Jluolloo < lu(Tmax)lloo < Fion )y (H (Timax))-

= " lluollee

Accordingly we can consider the equation ([1.3|) with initial condition u(Tmax, )(€
L*°(R%)). By the first part of the proof, the solution u can be extended beyond
Tmax, contradicting the definition of Tyax. O

The following estimates will be essentials in the proof of Theorem
Lemma 2.3. Let R > 0. There exists a 6 = §(a, R) > 0 such that

/ p(t,y —x)dy > c1, forall0 <t <4, |z|] <R, (2.2)
ly|<R

where ¢1 = ¢1(d, ) is a positive constant.
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Proof. The change of variable theorem and the scaling property of p imply

/ p(t,y —x)dy = / p(t,y)dy
ly|<R ly+z|<R
=t‘d/“/ p(L, ¢ *y)dy
ly+z|<R
=/ p(1,y)dy
[t/ ey+z|<R

= / p(1,y)dy.
ly+t—1/oz|<t-1/«R

We are going to set § = R® and

- 0, x =0,
xTr =

If 0 <t <6 and |z| < R, then
Bijs(#) C B1(0) N Byrjep(—t~ 1/ 2).

Therefore
/ p(t,y —x)dy > / p(1,y)dy
ly|[<R B1/2(%)
> inf p(1,z / dy
z€B1(0) ( ) By /2(&)
= Vol(Bj /(0 inf 1, 2),
ol(B1/2(0)) inf 'p(1,2)
where Vol(B; /2(0)) is the volume of the ball B /5(0). O
Let 1 < ¢ < co. We will consider the real-valued function
1
(bg(.’];) = WlBl(O)\{O} (:L‘), x € R<. (23)
Observe that J
pg € LYRY), if0<0< v (2.4)

Lemma 2.4. Let 0 <t <1 and |z| < t'/%/2, then

Tigo(x) = eat ™"/, (2.5)
where ¢o = co(d, @) is a positive constant.
Proof. By property (e) in Lemma we obtain

/ p(t,y — ) dy > Co/ min{t|ly — xl_d_a’t_d/a}dy,
wi<t 1yl T gt e—yi<a/e [y’

Since |z — y| < tY/¢ is equivalent to
t S 1
|y _ mld—&-a — td/a’

we have

Tipe(x) > Cot_d/a/ .

i<t le—yl<er/a [Y1°
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Moreover
d d
/ o= g
yI<1 le—yl<t/o [Y] yl<er/a—ja| [yl
£ — |z
= c/ rd=1=0qp > cd/o=0/x
0
In the last inequality we have used ([2.4) and |z| < t'//2. O

3. INSTANTANEOUS BLOW-UP
Let us consider the function ¢y defined in (2.3)), with d > ¢ > 0. We choose
r1 = [lgallg +1 > [ldollg,

and define recursively the sequence (r;) as
Kq ' (rife2)=/?) -1 1 \-2
rei=2{r+ ([ W) Ko(s)ds) (Ko(=)) )
0 i

for i =2,3,.... Inasmuch as r; 11 > 2r;, then (r;) is strictly increasing and r; T co.
We define

for i =1,2,.... Notice that

f(rz) = (/OK(Jl((M/CQ)a/G) h(s)Ko(s)"l/“ds)_1(Ko(l))_1

T
Ko H((riga/e2)™/%) -1 1 -1
< h(s)Ko(s)¥“d K — f(r;
<(/ ()Fo(s)7ds) " (Ko=) = Flria),
then we can define f : [0, 00) — [0, 00) as
g, 0<z <,
f@) = q f(r), ri <@ < iriga, (3.1)

linear interpolation, %ri_H <z < rig.
In this way f is non-decreasing. Also, from the definition of f follows that it is
locally Lipschitz. Moreover,
%T i+1 1
/ ——ds
1Y7i f(rz)

/°° ds
Iolly £(5)
(Ko(l)) e 00,

i

o,

3

o

=1

because of Hypothesis (H3)(b). In this way, the function f satisfies Hypothesis (H2).

Also, the generalized Osgood’s condition is satisfied for all continuous functions
o0 s

h: (0,00) — (0,00) because fl\qﬁel\q % =00 (1 <g< o).

Our main result reads as follows.

Theorem 3.1. Let us suppose q € [1,00), fis as in (3.1) and Hypotheses (H3),
(H3)(b). If 0 < 6 < d/q, and ug = ¢y, then equation (1.1) possesses no local
p-integrable solution for all p > 1.



EJDE-2017/116 INSTANTANEOUS BLOW-UP 9

Proof. We proceed by contradiction. Suppose that there are p > 1, R > 0 and
7 > 0, such that has an p-integrable solution u(t,-) on Br(0), for all ¢ < 7,
with ug = ¢g. Let us take a ¢ < min{r, K; (1), Ko~'(6), Ko~ ' ((2R)*)}, where &
is given in Lemma [2.3]

We observe that implies

u(s,x) > Trys)Po(z), foralls >0, z e R

From (|1.3)), Jensen’s inequality, and the above estimation we obtain

/ u(t, z)Pdx
lz|<R

> /|ng(/0 h(s) /de(K(s,t),y _"T)J?(TKO(S)%(:U))dyds)pdx

2 em 0D [hG6) [ OG0,y =) o))y ds e

Denoting the set {y : Tk, (s)%0(y) > i} by A, and using that f is non-decreasing
we obtain

/ u(t, x)Pdx
z|<R
t ~
ol [ hs) [ p (st = 0) (T 0(w)dy dsdo?
lz|<R Jo A;
t
> c(/ h(s)/ / p(K(s,t),y — m)dacf(ri)dy ds)P.
0 A; J|z|<R
Since r; T oo, there exists ig € N such that

t; = K0_1<(

If 0 < s < t;, the inequality (3.2)) yields

%)*a/f’) <t, foralli> i (3.2)

i < caKo(s) 0.
Moreover, if |y| < Ko(s)'/%/2, then implies
i < Tk (s)P0(Y)-
Hence,
A =y : Tiey(9y0(y) > 13} D {y : |yl < 27" Ko(s)'/*}. (3.3)
On the other hand, for s < t, we have K(s,t) < Ko(t) < 6 and 27" Ko(s)"/* <
271 Ko(t)/® < R which indicate that we are able to use (2:2). Then

/ p(K(s,t),y —x)dz > ¢1, for all |y| <27 Ky(s)Y/“. (3.4)
lz|<R

Using (3.3)) and (3.4) we obtain

1/p - ti
(/ u(t,x)pd:c) > cf(ri)/ h(s)/ dy ds
|z|<R 0 {ly|<2=1Ko(s)1/ >}

:cf(ri)/oih(s)Ko(s)d/o‘ds
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_ c(/olm k(s)ds)_l.

Letting ¢ — oo, r; T oo, therefore (H3)(b) implies flx|<Ru(t,m)pdx =00, t < T.
The contradiction obtained proves the result. - ([
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