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EXISTENCE OF y-BOUNDED SOLUTIONS FOR
NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS

PHAM NGOC BOI

ABSTRACT. In this article we present a necessary and sufficient condition for
the existence of ¥-bounded solution on R of the nonhomogeneous linear dif-
ferential equation ' = A(t)x + f(t). We associate that with the condition of
the concept ¥-dichotomy on R of the homogeneous linear differential equation
' = A(t)z.

1. INTRODUCTION

The existence of ¥-bounded and i-stable solutions on Ry for systems of or-
dinary differential equations has been studied by many authors; see for exam-
ple Akinyele [I], Avramescu [2], Constantin [4], Diamandescu [5l [0, [7]. Denote
by R? the d-dimensional Euclidean space. Elements in this space are denoted
by © = (z1,22,...,74)7 and their norm by ||z|| = max{|z1]|,|z2],...,|r4|}. For
real d x d matrices, we define norm [A| = sup, < [[Az||. Let Ry = [0,00),
R_ = (—0,0], J = R_,R; or R and ¢; : J — (0,00), i = 1,2,...,d be con-
tinuous functions. Set

Y = diagtpr, Y2, .. ., Yal.
Definition 1.1. A function f: .J — R? is said to be

e t-bounded on J if ¢(t) f(¢) is bounded on J.

e y-integrable on J if f(t) is measurable and 1 (t) f(¢) is Lebesgue integrable
on J.

e ¢-integrally bounded on J if f(t) is measurable and the Lebesgue integrals
ftH_l | (u) f (u)]|du are uniformly bounded for any ¢,t+ 1 € J.

In R?, consider the following equations
¥ = At)x + f(t), (1.1)
= A(t)x. (1.2)

where A(t) is continuous matrix on J, f(¢) is a continuous function on J. Let Y (¥)
be fundamental matrix of (1.2) with Y (0) = I, the identity d x d matrix. The
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d x d matrices P;, P, is said to be the pair of the supplementary projections if
PP =P,P? =P, P+ P, =1,

Definition 1.2. The equation ([1.2]) is said to have a t-exponential dichotomy
on J if there exist positive constants K, L, «, 3 and a pair of the supplementary
projections P;, P, such that

()Y () PLY Y () (s)| < Ke @) for s < t,s,t € J, (1.3)
[W()Y (1) PY ~Y ()~ (s)| < LePE=%) fort < s,s,t € J. (1.4)

The equation is said to have a t-ordinary dichotomy on J if (1.3), hold
with « = 3 = 0.

We say that has a 1¢-bounded grow if for some fixed h > 0 there exists a
constant C' > 1 such that every solution z(t) of is satisfied

lo(@)x ()] < Cllp(s)z(s)| for s <t < s+ h,s, t €. (1.5)

Remark 1.3. It is easy to see that if (1.2) has a t-exponential dichotomy on
R, and on R_ with a pair of the supplementary projections P;, P> then (|1.2]) has
a y-exponential dichotomy on R with the pair of the supplementary projections
Py, Ps.

Theorem 1.4 ([BEL[7]). (a) The equation has at least one ¥-bounded solution
on Ry for every w-integrable function f on Ry if and only if has a Y-ordinary
dichotomy on R.

(b) The equation has at least one -bounded solution on Ry for every ¢- inte-
grally bounded function f on Ry if and only if has a -exponential dichotomy
on R4.

(c) Suppose that has a ¥-bounded grow on Ry . Then, has at least one
-bounded solution on Ry for every w-bounded function f on Ry if and only if
has a Y-exponential dichotomy on R.

Theorem 1.5 ([7]). Suppose that (L.1)) has a 1p-exponential dichotomy on Ry and,
Py #0,Py # 0. If limy—oo||o(t) f(t)|| = O then every y-bounded solution x(t) of
(1.1)) is such that limi_oo || (t)z(t)]| = 0.

2. PRELIMINARIES

Lemma 2.1. (a) Let has a ¥-exponential dichotomy on Ry with a pair of
the supplementary projections Py, Py. If Q1,Q2 is a pair of the supplementary
projections such that ImP; = ImQ1, then also has a ¥-exponential dichotomy
on Ry with the pair of the supplementary projections Q1, Q2.

(b) Let have a P-exponential dichotomy on R_ with a pair of the supplemen-
tary projections Py, Py. If Q1,Q2 is a pair of supplementary projections such that
ImPy, = ImQs, then also has a -exponential dichotomy on R_ with the pair
of the supplementary projections Q1, Q.

Proof. First, we prove in the case of J = R,. Note that (1.2) has a t-exponential
dichotomy on R with the pair of the supplementary projections Py, P» if only if
following statements are satisfied:

)Y () Pié|| < K'em ) |oh(s)Y (s)€]| forall E e R and t > 5 >0, (2.1)
()Y ()Pl < L™ p(s)¥ (s)6] forall € R amd s> £ 30, (22)



EJDE-2007/52 EXISTENCE OF ¢-BOUNDED SOLUTIONS 3

In fact, if (1.3) and are true, we have for any vector y € R?
W(t)y(t)PlY_l(SW Hs)yll < Ke_a(t iyl for ¢ >
[o(O)Y () PY " (s)p~  (s)y]| < "yl for s>t >0.

Choose y Y(s)Y (s)€, we obtain (2.1 . Conversely, suppose that inequalities
are true. For any Vector y € R putting € = Y ~1(s)y~1(s)y we get

Now prove the lemma. It follows from KerP, = ImP; = Im@Q, = Ker@Qs that
PQQl = 0. Hence PlQl = P]Ql + P2Q1 = Ql- Slmllarly lel = Pl. Then

— Q1 =P —PIQ1 =P (P —Q2), (2.3)
- Q1 = —Q1P2 =PP,— Q1P = (P, — Qh)Pe. (2.4)

For each u € R%, put ¢ = (P, — Q1)u. The relation (2.3) implies that & € ImPy,
then P& = £. Result from ([2.1)), for s = 0 that

[ @)Y ()[Pr = Qu]ull < K'e™*[[4(0)[Pr — Qu]ul], ¢ > (2.5)
By (2.4) we conclude
K'e™ " (0)[Pr — Qu]ull = K'e™*"[[:(0)[Pr — Q1] Pou
S K'[90)||Py — Qule™ || Poull, t>0.
Applying , for t = 0, we get
[Poull = [~ (0)3(0) Pou]
< [ 0)[[[4(0) Pou| (2.7)
< L'e [ H0)] [0 (s)Y (s)ull,  fors > 0.
The relations f imply
[(®)Y (D[P = Qulul < K'L'|[v(0)[[¢~ (0)[|Pr = Qule™*" e~ [[(5)Y (s)ull

s>0,

(2.6)

2.8
< Kleﬁ(t_s)Hz/J(s)Y(s)u||, for t,s > 0. 28)

On the other hand, by (2.2) we get
()Y (t)Poull < L'y (sY (s))ull,  for 0 <t <s. (2.9)

It follows from Q2 = P, + P1 — @1, (2.8) and that

[ (@)Y (#)Qaull < ()Y (t) Paul| + ([ ()Y (8) [Py — Qu]ul|
(L' 4 K1)ePE ) |y (s)Y (s)ul| (2.10)
Loe® ) |gp(s)Y (s)ull, for 0<t<s

<
<
<

Similarly, for v € R?, we have

oY (£)Quull < Kz2e™ ()Y (s)ull, for 0 <s <t. (2.11)

Then from this inequality, (2.10) and the preceding note it follows that (1.2]) has
a -exponential dichotomy on R with the pair of the supplementary projections
@1, Q2. In the case of J = R_, the proof is similar. O
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Remark 2.2. (a) Suppose that has a 1p-exponential dichotomy on R, with
a pair of supplementary projections Pi, P». The set P;R? is the subspace of R?
consisting of the values z(0) of all ¢-bounded solutions z(t) on Ry of (1.2). In fact,
denote by X this subspace, if v € P{R? then v € X; by virtue of (2.1). Conversely
if u € X7, we have to show that Pou = 0. Suppose otherwise that Pou # 0,
by (2.1), (2.2) we have ||¢(¢t)Y (¢)Piul| is bounded and the limit of || ()Y (¢) Paul|
is 00, as t tend to co. Denote y the solution of (1.2, y(0) = uw. The relation
Y()yt) — Y)Y (t)Pru = ¢(t)Y (t)Pyu follows that y is nony-bounded on Ry,
which is a contradiction.

(b) Similarly if has a 1-exponential dichotomy on R_ with a pair of supple-
mentary projections P;, P, then the set P,R? is the subspace of R? consisting of
the values x(0) of all ¢-bounded solutions z(t) on R_ of (L.2).

(¢) Suppose that has a -exponential dichotomy on R, then has no
nontrivial 1-bounded solution on R. In fact if z(¢) is the ¥-bounded solution of
(1.2) on R then it is ¥-bounded on R, and on R_. Because equation has a -
exponential dichotomy on R, and on R_ with a pair of supplementary projections
Py, P, by preceding notice we have Pox(0) = 0 and Pyz(0) = 0. Hence x(0) = 0,
then x(t) is the trivial solution of (T.2).

Lemma 2.3 ([§]). Let h(t) be a non-negative, locally integrable such that

t+1
/ h(s)ds <e¢, forallteR
¢
If 0 > 0 then, for allt € R,

/ e 0 n(s)ds < [l — e, (2.12)
t

t
/ e = n(s)ds < [l — e )7L (2.13)

Proof. We prove ([2.12)), the proof of (2.13]) is similar.

t+m—+1 t+m+1
/ e 96 n(s)ds < / e 0FM) I p (5)ds
t+m t+m

t+m+1

= / e " n(s)ds < ce™™
t+m

implies that

00 o0 t+m+1 00
70(570}1( )d _ / 70(sft)h( )d < —Om _ [1 _ 70}71
& S)as & S)dsS & C & C &
/t 7;) t+m mZ:O

O

Lemma 2.4. FEquation (1.1) has at least one -bounded solution on R for every
Y-integrally bounded function f on R if and only if the following three conditions
are satisfied:

(1) Equation has at least one solution on R, ¥-bounded on Ry for every
- integrally bounded function f on Ry

(2) Equation has at least one solution on R, ¥-bounded on R_ for every
P-integrally bounded function f on R_.
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(3) Ewvery solution of (1.2)) is the sum of two solution of (1.2), one of that is
-bounded on R, another is ¥— bounded on R_.

Proof. Suppose the three conditions are satisfied we have to prove that has
at least one 1-bounded solution on R for every t-integrally bounded function f on
R. Every v-integrally bounded function f on R is ¢-integrally bounded function f
on R; and on R_. Then for each i-integrally bounded function f on R exists the
solution y; and yo of 7 which is defined on R and corresponding -bounded on
R, and on R_. Denote by x(t) the solution of such that 2(0) = y2(0) — y1(0).
By 3, we get (t) = x1(t) + x2(t), here x1,z2 are two solutions of (L.2)), that are
corresponding 1-bounded solution on Ry and R_. Set 21 = y1 + x1, 20 = y2 — x2.

Hence z; and z; are the solutions of corresponding -bounded solution
on Ry and on R_. Further, z3(0) = y2(0) — 22(0) = y1(0) + x1(0) = 21(0), then
z1 = z9. Consequently z; is a ¥-bounded solution on R of .

Conversely, now if has at least one 1-bounded solution on R for every -
integrally bounded function f on R we have to prove three condition are satisfied.
The conditions 1, 2 are satisfied since every 1-integrally bounded function f on R
, or R_ is the restriction of a - integrally bounded function f on R. We prove
that the condition 3 is satisfied. Set

0 for [t| > 1
h(t)=4q1 fort =0
linear for ¢t € [-1,0],¢t € [0,1]

Fix a solution z(t) of ( . Then h(t)z(t) is a 1p-integrally bounded function on
R. Set y(t fo s)ds , we have

y'(t) = A(t)z(t) /0 h(s)ds + h(t)x(t) = A(t)y(t) + h(t)x(t).
By hypothesis, the equation

y'(t) = A@)y(t) + h(t)z(t)

has a solution g(t), which is ¢-bounded on R. Set z1(t) = y(t) — y(t) + 3z(t)
and @o(t) = §(t) + y(t) + Lx(t). Tt follows from [ h(t)dt = [} h(t)dt = L that
x1(t) = y(¢t) for t > 1; x9(t) = y(¢) for t < —1. Then z1, 25 are the corresponding
¥-bounded solutions on Ry, R_ of (L.2)). Consequently the solution z(t) of
is the sum of two solutions z;(¢) and z2(t) of (L.2), those solutions satisfy the
condition 3. The lemma is proved. (I

3. MAIN RESULTS

Theorem 3.1. Equation (1.1)) has at least one p-bounded solution on R_ for every
W-integrally bounded function f on R_ if and only if (1.2) has a -exponential
dichotomy on R_.

Proof. This Theorem can be shown as in [3, Theorem 3.3]. We give the main steps
of the proof as follows. In the proof of “if part”: Suppose that j;tq ll(s)f(s)]|ds < e
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for t < 0. By using Lemma [2.3] we get

II/_ DY ()Y ™ (s)ds| </ [W@OY (P ()Y (9)l|w(s) f(s)llds

— 00

s /t e () f(s)llds < e(1—e™*) 7!

— 00

’ 0
[ vevwmy o < [ e el
< /too e PE=Dy(s) f(s)||ds < (1 — e P) L.

It follows that the function

t
:/ WY ()P~ ds—/ POY (1) PyY 1 (5)f(5)ds
is bounded on R_. Hence the function

z(t) =~ (1)Z(t)

¢ 0
:[ w(t)Y(t)PlYfl(s)f(s)dsf/t Y)Y () PY ~1(s) f(s)ds

is 1»-bounded on R_. On the other hand

0
/ Y(t)PY ()f(s)ds—/t Y (t)PY "1(s)f(s)ds)

HY(OPY T () + Y () PY () f (1)
= A(t)z(t) + f (1),

it implies that x(t) is a solution of (1.1)).
In the proof of “only if part”: The set

Cp={z:R.—R:z
is ¢-bounded and continuous on R_}. It is a Banach space with the norm |[[z||5 =
supicol|(t)x(t)]|. The first step: we show that has a unique %-bounded
solution z(t) with z(0) € X; = PR for each f € C~‘¢ and H:c||5/ < r||f\|5w, here r
is a positive constant independent of f.
The next steps of the proof are similar to the proof of [3, Theorem 3.3], with the

corresponding replacement (for example replace t > tog > 0 by 0 > tg > ¢, P; by
—P5, P, by —P;, 0o by —o0, —00 by oo, ... ). a

Theorem 3.2. The equation (1.1) has a unique -bounded solution on R for ev-
ery W-integrally bounded function f on R if and only if (1.2) has a v¥-exponential
dichotomy on R.

Proof. First, we prove the “if” part. By Lemma and in the same way as in the
proof of Theorem [3.] the function

/ V(6P Y ds—/ Y($) Py ~Y(s)f(s)ds
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is ¥-bounded and continuous on R. Moreover,

/ Y(O)PY ds—/ V(&) PyY 1 (s)f(s)ds)
Y (O PY T ) (1) - Y () PY
= A(t)z(t) + f(t),

it follows that x(t) is a solution of (L.1)).

The uniqueness of the solution z(t) result from having no nontrivial -
bounded solution on R (Remark . Suppose that y is a y-bounded solution of
then = — y is a 1-bounded solution of on R. We conclude x = y since
x — y is the trivial solution of .

We prove the “only if ”part. Suppose that has unique ¥-bounded solution
on R for every t-integrally bounded function f on R, we have to prove that .
has a ¢-exponential dichotomy on R. By Lemmal[2.4] Theorem- T.4and Theorem [3.1]
we get (1.2 . ) has a ¥-exponential dichotomy on R with a pair of the supplementary
projections Py, P, and has a i-exponential dichotomy on R_. with a pair of the
supplementary projections @1, Q5. Remark follows that PyR? is the subspace of
R? consisting of the values z(0) of all 1-bounded solutions z(t) on R of and
Q2R? is the subspace of R? consisting of the values x(0) of all 1)-bounded solutions
z(t) on R_ of . We are going to prove that

R? = PR? @ QoR?. (3.1)
For each u € R%, denote by x = z(t) the solution of (T.2)), z(0) = u. By Lemma
1.2)

we get © = x1 +x2, where z1, x5 are the solutions of ([1.2]) corresponding i-bounded
on Ry R_. It follows from Remark that z1(0) € PiR? and z2(0) € QoRY. Tt
follows from u = x1(0) + z2(0), that

R? = P, R? 4+ Q,R?. (3.2)

By hypothesis with f = 0 has unique t-bounded solution on R i.e. have
no nontrivial ¢-bounded solution on R. For any v € PiR% N Q,R?, denote by x(t)
the solution of such that z(0) = v. Then z(¢) is the 1-bounded solution of
, it implies that x(t) is the trivial solution. Hence v = 0. Consequently

PRTNQyRY = 0. (3.3)
The relations (3.2) and (3.3) imply (3.1). Now, we prove the existence of a pair

supplementary projections, for which (1.1)) has a -exponential dichotomy on R.
Choose the projection P of R? such that ImP = P,R? |, ker P = @Q;R?. By
Lemma 2.1, has a ¥-exponential dichotomy on R, and have a ¥-exponential
dichotomy on R_ with the pair of the supplementary projections P,I; — P. From
Remark it follows that has a y-exponential dichotomy on R with the pair
of the supplementary projections P, I; — P. The proof is complete. O

Theorem 3.3. Suppose that (1.2)) has a ¥-exponential dichotomy on R. If
t+1

Jm [ s ()ds =0 (34

then the y-bounded solution of (1.1) is such that
im ([ @)z ()] = 0. (3.5)
— o0
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Proof. By Theorem the unique solution of (L. is

x(t):/_ Y(t)PlY_l(s)f(s)ds—/too Y (1) PY 1 (s) f(s)ds.

[ @)z <[ Iw(t)Y(t)PlY1(8)f(8)||d8+/t00 lw (@)Y (£)PY ' (5) f(s) | ds
< K[ e““S)IIQZJ(S)f(S)IIdSJrL/too ey (s) f(s)ds

<k [ eI s + / B up(s) £(s) s}

(3.6)
where K1 = max{K,L}. Denote by v = min{a, }. Under the hypothesis (3.4),
for a given € > 0, there exists 7" > 0 such that

g

t+1
[ 1@ @lds < 51— ) for > 7.
t 2K,
Then from Lemma and inequality (3.6) it follow that
€ _ o o
[o®)z@)]] < Kiz=(1—e)[(1—e )4+ (1 —e?)1
2K5

< Kli(l —e M2l —e ") t=¢ forall [t| >T,

2K;
this implies . The proof is complete. ([
Corollary 3.4. Suppose that has a Y-exponential dichotomy on R. If
Jim (9 () £(2)] =0 (3.7)
then the y-bounded solution of s such that
Jlim (1) = 0. (35)
Proof. Tt is easy to see that implies ([
Now, we consider the perturbed equation
o' (t) = [A(t) + B(t)]x(t) (3.9)

where B(t) is a d x d continuous matrix function on R. We have the following
result.

Theorem 3.5. Suppose that (L.2) has a v-exponential dichotomy on R. If § =

SUD;cRr f:H [ (s)B(s)w~1(s)|ds is sufficiently small, then (3.9) has a 1-exponential
dichotomy on R.

Proof. By Theorem [3.2]it suffices to show that the equation
@'(t) = [A(®) + B®)](t) + f(2) (3.10)

has a unique ¥-bounded solution on R for every t-integrally bounded f function
on R. Denote by G, the set

Gy = {z:R — R?: z is ¢-bounded and continuous on R}.
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It is well-known that G, is a real Banach space with the norm
l#llc, = sup [[p@)z(@)]-
teR

Consider the mapping 1" : Gy, — G which is defined by
t
720 = [ YOPY ($)BE):() + F)ds

- / Y () By~ (s)[B(s)z(s) + f(s)]ds.
t
It is easy verified that Tz € G;. More ever if 21, 22 € Gy then

HTZI — TZQ”Gw

</ (@Y OPY " (s)d ™ ()|l (s)B(s)v ™ (s)ll[v(s)21(s) — t(s)z2(s) 1 ds

— 00

+ /too [BO)Y () PoY ()™ ()l () B(s)e ™ (5)l v (s)21(5) — 1(s)22(s) | ds

By Lemma [2.3] we have
t

[T21 — Tzlla, < K21 — 22||Gw/ e U y(s) B(s)y ™ (s)]ds

+ Ll - 2, / A=) (s B(s)yp~ (s)ds
t
<OE(1—e ) 1 L1 — e ) o - zla,

Hence, by the contraction principle, if §[K (1 —e~®)~! + L(1 — e=#)~!] < 1, then
the mapping T" has a unique fixed point. Denoting this fixed point by z, we have

2(t) = / Y (6)PY 1 (s)[B(s)2(s) + £(5))ds

-/ Y ()P () [B(s)2(s) + £(3)]ds.

It follows that z(¢) is a solution on R of (3.10).
Now, we prove the uniqueness of this solution. Suppose that x(t) is a arbitrary
1-bounded solution on R of (3.10]). Consider the function

t

y(t) = x(t) - / Y (£)PY () [B(s)a(s) + £(s)]ds

- TV ()P ()[B(s)a(s) + f(s)]ds.

It is easy to see that y(t) is a ¥-bounded solution on R of (1.2]). Then from Theorem
follows that y(t) is the trivial solution. Then

£(t) = / Y (1) Py (5) [B(s)(s) + F(s)]ds

- [ YORY @B + f5)ds

t
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Hence z(t) is the fixed point of mapping T. From the uniqueness of this point, it
follows that © = z. The proof is complete. ([

Corollary 3.6. Suppose that (1.2) has a -exponential dichotomy on R. If 6 =

sup,ep | () B(#)y =1 (t)| is sufficiently small, then (3.9) has a t-exponential di-
chotomy on R.
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