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EXTINCTION FOR FAST DIFFUSION EQUATIONS WITH
NONLINEAR SOURCES

YUXIANG LI, JICHUN WU

Abstract. We establish conditions for the extinction of solutions, in finite
time, of the fast diffusion problem ut = ∆um + λup, 0 < m < 1, in a bounded
domain of RN with N > 2. More precisely, we show that if p > m, the
solution with small initial data vanishes in finite time, and if p < m, the
maximal solution is positive for all t > 0. If p = m, then first eigenvalue of
the Dirichlet problem plays a role.

1. Introduction

In this paper we are concerned with the porous medium equation

ut = ∆um + λup, x ∈ Ω, t > 0,
u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,
(1.1)

with 0 < m < 1 and p, λ > 0, where Ω ⊂ RN , N > 2, is an open bounded domain
with smooth boundary ∂Ω. We are interested in the extinction of the nonnegative
solution of (1.1).

The phenomena of extinction have been studied extensively for (1.1) with λ ≤ 0.
When λ < 0, for the case of slow diffusion, see [6, 12, 13, 14, 17, 18, 23]. For m = 1
we refer the reader to [16]. And for the case of fast diffusion, see [5, 9, 20, 21, 22].
When λ = 0 and 0 < m < 1, we refer the reader to [3, 4, 8, 19, 10, 11].

For (1.1) with p > 1, it is well known that the solution blows up in finite time for
sufficiently large initial data; see [15, 25]. In this paper we show that the solution
of (1.1) vanishes in finite time for sufficiently small initial data. If 0 < m < 1 and
p > m, there is a maximal positive solution of (1.1). If p < m and p = m, the first
eigenvalue λ1 of the problem below plays a crucial role:

−∆ψ(x) = λψ(x), x ∈ Ω; ψ
∣∣
∂Ω

= 0. (1.2)
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The existence and uniqueness for (1.1) have been studied in [1, 2]. To state the
definition of the weak solution, we define class of nonnegative testing functions

F = {ξ : ξt,∆ξ, |∇ξ| ∈ L2(ΩT ), ξ ≥ 0 and ξ|(∂Ω)T
= 0}.

Definition 1.1. A function u(x, t) ∈ L∞(ΩT ) is called a subsolution (supersolu-
tion) of (1.1) in ΩT if the following conditions hold:

(i) u(x, 0) ≤ (≥) u0(x) in Ω,
(ii) u(x, t) ≤ (≥) 0 on (∂Ω)T ,
(iii) For every t ∈ (0, T ) and every ξ ∈ F ,∫
Ω

u(x, t)ξ(x, t)dx ≤ (≥)
∫

Ω

u0(x)ξ(x, 0)dx+
∫ t

0

∫
Ω

{uξt + um∆ξ + upξ}dx ds.

A function u(x, t) is called a (local) solution of (1.1) if it is both a subsolution and
a supersolution for some T > 0.

According to [1, Thm. 2.1] and [2, Thm. 2.1, 2.2, 2.3], if p > m or p = m and
λ ≤ λ1, the nonnegative solution of (1.1) is unique. Moreover, if u0 ≥ v0 ≥ 0, then
u ≥ v. If p < m or p = m and λ > λ1, then the maximal solution U(x, t) of (1.1)
with u0 ≡ 0 has U(x, t) 6= 0, and U(x, t) satisfies a subsolution comparison theory.
Put

v(x, t) = g(t)ψ1/m(x), (1.3)
where ψ(x) is the first eigenfunction of (1.2) with maxψ(x) = 1. If g(t) satisfies
the ordinary differential equation

g′(t) = (λ− λ1)gm(t), g(0) = 0,

g(t) > 0, for t > 0,

it can be verified easily that v(x, t) is a subsolution of (1.1) for p = m and λ > λ1.
If p < m, let g(t) in (1.3) be the solution of

g′(t) = −λ1g
m(t) + λgp(t), g(0) = 0,

g(t) > 0, for t > 0.

Then v(x, t) is also a subsolution of (1.1). The fact that U(x, t) > 0 in Ω for all
t > 0 follows from the subsolution comparison theory. From the above, we have
the following statement.

Theorem 1.2. Assume that p < m or p = m and λ > λ1. Then for any nonneg-
ative initial data u0 ∈ L∞(Ω), the maximal solution U(x, t) of (1.1) can’t vanishes
in finite time.

For the case p = m and λ = λ1, kψ(x), k > 0, is a steady state solution of
(1.1). Then for any nontrivial nonnegative initial data, the solution u(x, t) of (1.1)
satisfies that u(x, t) > 0 in Ω for t > 0 or u(x, t) is identically zero.

In the next section we consider the case p > m or p = m and λ ≤ λ1.

2. Extinction in finite time

The regularities of the solution of (1.1) can be found in [24]. Multiplying the
first equation of (1.1) by us−1, s > 1, and integrating over Ω, we obtain

1
s

d

dt

∫
Ω

usdx+
4m(s− 1)

(m+ s− 1)2

∫
Ω

|∇u
m+s−1

2 |2dx = λ

∫
Ω

up+s−1dx. (2.1)
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Theorem 2.1. Assume that 0 < m < 1 and p > m. Then the unique solution of
(1.1) vanishes in finite time for small initial data.

Proof. We consider first the case p ≤ 1. For N−2
N+2 ≤ m < 1, let s = 1 +m in (2.1).

By the Hölder inequality and the embedding theorem, we have

‖u(·, t)‖m
1+m,Ω ≤ |Ω|

m
1+m−

N−2
2N ‖um(·, t)‖ 2N

N−2 ,Ω

≤ γ | Ω |
m

1+m−
N−2
2N ‖∇um(·, t)‖2,Ω.

where γ is the embedding constant. This remarks in (2.1) yields the differential
inequality

d

dt
‖u(·, t)‖1+m,Ω + γ−2|Ω|

N−2
N − 2m

1+m ‖u(·, t)‖m
1+m,Ω ≤ λ|Ω|1−

p+m
1+m ‖u(·, t)‖p

1+m,Ω.

Choose
‖u0‖p−m

1+m,Ω < λ−1γ−2|Ω|
p−m
1+m− 2

N .

Then
d

dt
‖u(·, t)‖1+m,Ω + c1‖u(·, t)‖m

1+m,Ω ≤ 0, (2.2)

where
c1 = γ−2|Ω|

N−2
N − 2m

1+m − λ|Ω|1−
p+m
1+m ‖u0‖p−m

1+m,Ω.

Integrating (2.2) gives

‖u(·, t)‖1−m
1+m,Ω ≤ ‖u0‖1−m

1+m,Ω − (1−m)c1t,

as long as the right side is nonnegative. From this,

‖u(·, t)‖1+m,Ω ≤ ‖u0‖1+m,Ω

{
1− (1−m)c1t

‖u0‖1−m
1+m,Ω

} 1
1−m

+
.

Next we take m in such that 0 < m < (N − 2)/N . In (2.1), let

s =
N

2
(1−m) > 1.

By the embedding theorem and the specific choice of s, we obtain

‖u(·, t)‖
m+s−1

2
s,Ω = ‖u

m+s−1
2 (·, t)‖ 2N

N−2 ,Ω ≤ γ‖∇u
m+s−1

2 (·, t)‖2,Ω.

We conclude that
d

dt
‖u(·, t)‖s,Ω + γ−2 4m(s− 1)

(m+ s− 1)2
‖u(·, t)‖m

s,Ω ≤ λ|Ω|1−
p+s−1

s ‖u(·, t)‖p
s,Ω.

Choose

‖u0‖p−m
s,Ω < λ−1γ−2 4m(s− 1)

(m+ s− 1)2
|Ω|

p+s−1
s −1 .

Then
d

dt
‖u(·, t)‖s,Ω + c2‖u(·, t)‖m

s,Ω ≤ 0,

where

c2 = γ−2 4m(s− 1)
(m+ s− 1)2

− λ|Ω|1−
p+s−1

s ‖u0‖p−m
s,Ω .

By integration, we have

‖u(·, t)‖s,Ω ≤ ‖u0‖s,Ω

{
1− (1−m)c2t

‖u0‖1−m
s,Ω

} 1
1−m

+
.
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For the case p > 1, for sufficiently small k > 0, it can be easily verified that
kψ1/m(x) is a supersolution of (1.1), where ψ(x) is the first eigenfunction of (1.2)
with maxψ(x) = 1. Then

u(x, t) ≤ kψ1/m(x), t > 0,

by the comparison principle if u0(x) ≤ kψ1/m(x) in Ω. From this (2.1) can be
rewritten as

1
s

d

dt

∫
Ω

usdx+
4m(s− 1)

(m+ s− 1)2

∫
Ω

|∇u
m+s−1

2 |2dx ≤ λkp−1

∫
Ω

usdx,

to which the above argument can be applied. The proof is completed. �

Remark 2.2. The method of the above proof is a modification of the argument in
[3, Prop. 10] and [7, Prop. VII. 2.1].

Theorem 2.3. Assume that 0 < m = p < 1 and λ < λ1. Then for any nonnegative
initial data, the solution of (1.1) vanishes in finite time.

Proof. First we apply the argument in the above theorem to get some results. We
consider two cases: N−2

N+2 ≤ m < 1 and m < N−2
N+2 . In the first case, let s = 1 +m in

(2.1). Noticing that

λ1 = inf
v∈H1

0 (Ω),v 6=0

∫
Ω
|∇v|2dx∫

Ω
|v|2dx

,

we obtain

1
1 +m

d

dt
‖u(·, t)‖1+m

1+m,Ω +
(
1− λ

λ1

)
‖∇um(·, t)‖22,Ω ≤ 0.

Since λ < λ1, as in the above proof of Theorem 2.1, there exists T ∗(u0) <∞ such
that u(x, t) ≡ 0 for all t ≥ T ∗(u0). In the second case, let s = N

2 (1 −m) > 1 in
(2.1). Then we have

1
s

d

dt
‖u(·, t)‖s

s,Ω +
( 4m(s− 1)
(m+ s− 1)2

− λ

λ1

)
‖∇u

m+s−1
2 (·, t)‖22,Ω ≤ 0.

Set

λ∗ =
(m+ s− 1)2

4m(s− 1)
λ > λ.

Then if λ1 > λ∗, u(x, t) with any initial data vanishes in finite time.
To fill the gap where m < N−2

N+2 and λ < λ1 < λ∗, we apply a supersolution
argument. In fact this supersolution argument can apply to all the case of 0 < m <
1 and λ < λ1. Denote by ψ(x) the first eigenfunction of (1.2) with maxx∈Ω ψ(x) = 1.
Let g(t) be the solution of the differential equation

g′(t) = −(λ1 − λ)gm(t),

g(0) = θ,

where θ is chosen that u0(x) ≤ θ(ψ)1/m(x) in Ω. Thus v(x, t) = g(t)(ψ)1/m(x) is
a supersolution of (1.1). Since 0 < m < 1, g(t) vanishes in finite time. Then the
theorem follows from the comparison principle. �
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We note that the unique solution of the problem

ut = ∆um, x ∈ Ω, t > 0,
u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,
(2.3)

0 < m < 1, is a subsolution of (1.1). Since the solution of the problem (2.3) is
positive everywhere in Ω unless it is identically zero, by comparison we conclude
that, denoting by T ∗ <∞ the extinction time of the solution of (1.1), we have

u(x, T ∗) ≡ 0, and u(x, t) > 0 in Ω, 0 < t < T ∗.

In the following we consider the solution of (1.1) with negative initial energy. Define

E(u(t)) =
1
2

∫
Ω

|∇um|2dx− λm

p+m

∫
Ω

up+mdx

H(u(t)) =
1

1 +m

∫
Ω

u1+mdx.

Differentiating E(u(t)) and H(u(t)), we obtain

d

dt
E(u(t)) = −

∫
Ω

ut(um)tdx = − 4m
(1 +m)2

∫
Ω

[
(u

1+m
2 )t

]2
dx,

and
d

dt
H(u(t)) =

∫
Ω

umutdx

= −
∫

Ω

|∇um|2dx+ λ

∫
Ω

up+mdx

= −2E(u(t)) + λ
(
1− 2m

p+m

) ∫
Ω

up+mdx.

From this, E(u(t)) ≤ 0 provided that E(u0) ≤ 0. Hence, if p > m, we have

d

dt
H(u(t)) ≥ λ

(
1− 2m

p+m

) ∫
Ω

up+mdx. (2.4)

By the Hölder inequality, for p ≥ 1,

d

dt
H(u(t)) ≥ c3H

p+m
1+m (u(t)),

where

c3 = λ
(
1− 2m

p+m

)
(1 +m)

p+m
1+m |Ω|1−

p+m
1+m .

By integration, if p > 1, there exists T ∗ <∞ such that

lim
t→T∗

H(u(t)) = ∞,

provided that H(u0) > 0. When p = 1, we have

lim
t→∞

H(u(t)) = ∞,

if H(u0) > 0. For m < p < 1, integrating (2.4) over (0, t) gives

H(u(t)) ≥ H(u0) + λ
(
1− 2m

p+m

) ∫ t

0

∫
Ω

up+mdxds.
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Suppose on the contrary that ‖u(·, t)‖∞,Ω ≤M <∞ for all t > 0. Then,

M1−p

1 +m

∫
Ω

up+mdx ≥ H(u0) + λ
(
1− 2m

p+m

) ∫ t

0

∫
Ω

up+mdx ds .

The Gronwall inequality implies that

lim
t→∞

∫
Ω

up+mdx = ∞,

which is a contradiction. Therefore, we have the following statement.

Theorem 2.4. Assume that 0 < m < 1 and p > m. If um
0 ∈ H1

0 (Ω) satisfies

E(u0) ≤ 0, H(u0) > 0,

then there exists T ∗ ≤ ∞ such that

lim
t→T∗

‖u(·, t)‖∞,Ω = ∞.
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