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REGULARITY OF WEAK SOLUTIONS OF THE
NAVIER-STOKES EQUATIONS NEAR THE SMOOTH
BOUNDARY

ZDENEK SKALAK

ABSTRACT. Any weak solution u of the Navier-Stokes equations in a bounded
domain satisfying the Prodi-Serrin’s conditions locally near the smooth bound-
ary cannot have singular points there. This local-up-to-the-boundary bound-
edness of u in space-time implies the Holder continuity of w up-to-the-boundary
in the space variables.

1. INTRODUCTION

Let Q be a bounded domain in R with a smooth boundary 99, let T > 0 and
Qr = Q x (0,T7). We consider the Navier-Stokes initial-boundary value problem
describing the evolution of the velocity u = (u1, ug, us) and the pressure ¢ in Qr:

%—uAu+u-Vu+V¢:0 in Qr, (1.1)
V-u=0 in Qr, (1.2)

u=0 ondQx(0,T), (1.3)

u|t—0 = up, (1.4)

where v > 0 is the viscosity coefficient. The initial data ug satisfy the compatibility
conditions ug|aq = 0 and V - ug = 0 and for our purposes we can suppose without
loss of generality that ug is sufficiently smooth. The existence of a weak solution
w e L2(0,T; Wy (92)3) N L>(0,T; L2(Q)) of (L.1)-(L4) is well known (see e.g. [3]
or [14]). The associated pressure ¢ is a scalar function such that u and ¢ satisfy
the equation in Q7 in the sense of distributions.

Let ¢ > 1. L2(f) denotes the closure of {¢ € (C$(2))3V - = 0in Q} in
(L49(2))3. There exists a continuous projection P4 from (L?(£2))3 onto LZ(Q). If A
denotes the Laplacian then the famous Stokes operator is defined as A, = —PIA.
It is known that —A, generates a bounded analytic semigroup in LZ(Q) (see e.g.

[5])-
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In the paper we use both scalar and vector functions and for the sake of simplicity
we denote by S any space S® of vector functions with the exception of the notation in
Lemma We use the standard notation for the Lebesgue spaces LP(€2) and their
norms || - [|,.o. The Sobolev spaces are denoted by W*?(£). Sometimes we drop
and write only LP, || ||, and WP, Further, if A = B x (t1,t2) then LP9 or LP+9(A)
denote the space L1(t1,t2; LP(B)) with the norm ||« ||p.4,.4 or simply ||-||p.q- LPP(A)
is also denoted as LP(A) or LP. CP(Q) is the space of Hélder continuous functions
on Q with the norm || fllos @) = suPgeq [ (@) +5UP, yeq ory | f(2) = F(W)I/12 —yl”.

For (zg,t9) € Qx (0,T) and r > 0 we will denote B, = B,.(x¢) the ball centered
at xo with radius r, D, = D,.(xo) = B,(20) N Q, Qr = Qr(z0,t0) = Dr(x0) X (to —
r?, to +1r?).

A point (zg,t9) € Q x (0,7) is called a regular point of a weak solution u if
u € L*(Q,) for some r > 0. Otherwise, (zg,to) is called a singular point of u.

In his famous paper (see [9]) J.Serrin proved the following interior regularity
result. If Q. C Qr for some (xg,t9) € Qr and r > 0 and a weak solution u of
f satisfies the Prodi-Serrin’s conditions in @, that is

3 2
u e LP9(Q,), ;9 + & <1, p,q € (1,00), (1.5)

then v is necessarily a L° function on compact subsets of @, and smooth in the
space variables. This result was extended by M.Struwe in [II] for the case of
p,q € (1,00), 3/p+2/q < 1. A local version up to the boundary of the Serrin-
Struwe’s results was proved by S.Takahashi. He showed in [12] and [I3] that if
u € LP9(Q,), where (zg,tg) € 9Q x (0,T), 7 >0, p,q € (1,00) and 3/p+2/q < 1
then u € L>®(Q5) for any 7 € (0, r) provided that B, N 9N is a part of a plane.

In this paper we improve the Takahashi’s result in two directions. Firstly, we
show, that 02 can be an arbitrary smooth boundary, that is B, N 02 needn’t be a
part of a plane. Secondly, we show that u is locally a Holder continuous function
in the space variables up to the boundary in the neighborhood of the point xg.
Precisely, we prove the following theorem.

Theorem 1.1. Let u be an arbitrary weak solution of (1.1)—(1.4), (xo,to) € OQ x
(0,T), r > 0. We suppose that u € LP1(Q,.), where2/q+3/p =1 and p,q € (1,00).
Then

u € L% (tg — 72, tg + 72; CP(Dy)) (1.6)
for every B € (0,1) and 7 € (0,r).

In [7] Neustupa proved a similar result. He supposed that u € Li(ty, t2; LP(U}))

for some r > 0,0 <t < tg < T, p,g € (1,00) with 3/p + 2/q = 1, where

= {z € Q;dist(z, 3(2 < r} He proved under this assumption that if wis

a Weak solution of satlsfylng the strong energy inequality then u &

L>(t; + (,t2 — W ) and Ou/0t, Vo € L=(t; + (,ta — (; W“(U*)) for
each 6 € [0,1/2), p € (0,7") and such ¢ > 0 that t; +{ < ts — (.

The proof of the Neustupa’s result was based on the fact (see [7], Lemma 1) that
Ou/0t, V¢ and their space derivatives of an arbitrary order belong to L(t1 +,to —
¢; L™()) for each a € [1,2) and ¢ € (0, (t2 — t1)/2) if w € LI(t1,t2; LP(4)) for
some p, q € (1,00) with 3/p+2/q < 1, where € and g are such sub-domains of {2
that Qo C Q; C . Using this result together with the cut-off function technique,
it was then possible to show that the right hand side h of the localized equations
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and its space derivatives of an arbitrary order belong to the space L*(t1 + (,ts —
¢; L>(Q)) for each a € [1,2) (see [7, (6)]). This regularity of h produced better
regularity of u near the whole boundary 902 which further improved the regularity
of ¢ and consequently of h. Repeating this procedure several times one of the main
results of [7] presented in the preceding paragraph was obtained.

We assume in Theorem that u satisfies the Prodi-Serrin’s conditions only
in a space-time neighborhood of (xg,ty) € 02 x (0,T). Thus, the cut-off function
technique does not produce in this case the right hand side h which is from the
space L*(t1 + C,t2 — (; L(Q2)), « € [1,2) and the procedure from [7] mentioned
in the preceding paragraph cannot be used. Instead, we use at the beginning the
regularity results of Giga,Sohr (see [5]). They lead, however, to worse regularity
results for v in Theorem in comparison with the results from [7].

The local boundary regularity of u was also studied in [2], [8] and [6]. It was
proved in [2] that a suitable weak solution « is bounded locally near the boundary if
uw€ LP9 3/p+2/qg=1,p,q € (1,00) and the pressure ¢ is bounded at the boundary.
Moreover, better regularity of ¢ gives better local regularity of u. G.A.Seregin pre-
sented in [§] a condition for local Holder continuity for suitable weak solutions near
the plane boundary which has the form of the famous Caffarelli-Kohn-Nirenberg
condition for boundedness of suitable weak solutions in a neighborhood of an in-
terior point of Qr. Finally, in [6] K.Kang studied boundary regularity of weak
solutions in the half-space. He proved that a weak solution w which is locally in the
class LP? with 3/p+2/¢g =1 and p, ¢ € (1, 00) near the boundary is Holder contin-
uous up to the boundary. The main tool in the proof of this result is a pointwise
estimate for the fundamental solution of the Stokes system.

2. AUXILIARY LEMMAS

In this section we present a few lemmas which will be used in the proof of
Theorem We consider the Stokes problem:

% —vAu+Vo=f inQr, (2.1)
V-u=0 inQrp, (2.2)
u=0 ondQx(0,T), (2.3)
ult=o = 0. (2.4)

It was proved in [5, Theorem 2.8], that if f € LAP where 3,3 € (1,00), then
there exists a unique solution (u, @) of (2.1]) - (2.4) such that

ou
15 15,6 + IAstllas + IVellss < clfllse,  e=cB,8). (2.5)
Lemma 2.1. Let 38,5 € (1,00), v € [8,00), v € [/, 00) and
2 3 2 3
R e My | 2.6
B Ay (26)

Then for every f € LPP there exists a unique solution u of (12.1) —(2.4) such that
Vue L' and

IVullyyr < el f]

g, c=cB,B7,7). (2.7)
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Proof. Equation (2.1 can be written as

% —vAu=f -V,
where ||f — Vél|lg,s < c||fllgp. Lemma now follows immediately from the
following Lemma [2.2] O
Lemma 2.2. Let the assumptions of Lemma[2.1] be satisfied. Consider the problem
0
a—z —vAu=f inQp, (2.8)
u=0 ondQx(0,T), (2.9)
ult=g = 0. (2.10)

Then for every f € LPF there exists a unique solution u of (2.8)—(2.10) such that

ou
152055+ IVl < e, €= (8,5, (2.11)
Moreover, Vu € L and

||vu||’y,’y/ < C”f‘ 8,8y C= 0(6’5/77’7/). (212)

Proof. The existence of a unique solution u of 7(]m[) satisfying (2.11) follows
from [5, Theorem 2.1]. We will prove that u satisfies also (2.12]).

Let us suppose at first that Q is a half space, i.e. Q = R3, where R} = {z =
(r1,79,23) € R3% 23 > 0}. We extend f to the whole space R? in such a way
that f(xy,22,23) = —f(21, 22, —x3) for any = (21,72, 23) € R? and denote the
extended function by f. Then the unique solution u of - can be written
as

t
(o, t) = / Kz — &t — 1) f(£,7)dedr, (2.13)
0 JRr3
where
1 _l=? 3
K(x,t):We 4 xER,t>O

It is possible to compute that
IVE ()| s = et 72t (2.14)

for any s € [1,00), where ¢ depends only on s. Let ug € L?(R?). If we define

vz, t) = K(x —y,t)uo(y)dy,
R3

then
Vo(z,t) = / VK(x —y,t)up(y)dy.
R3
There exists s € [1,00) such that 1/y = 1/s+1/8 — 1. According to [3], estimate
(9.2), p. 85] and (2.14), we have
190, )l ze < et 2G5 gl

s =

It follows from (2.13]) that
t
IVt Olzs < [ 1| V(=€ =) el odr
0

gRre, €= c(B,7). (2.15)
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and using (2.15)), we get
t 1 3 1 1
HVU(Jﬂhﬂsgc/n@—Tyﬁ_Eﬁj?mf@Tm@Wdr (2.16)
0

Applying now the Hardy-Littlewood-Sobolev inequality to (2.16) we get

||Vu||'y,'y’,R3><(O,T) S C||f||/3,,3’,R3><(O,T)7 c= C(ﬁ7 B1777 7/>
and the inequality (2.12) for the case = R}, that is

IVully o -3 x0,7) < el fllg,60 -3 x(0,7)

follows immediately.

Let Q be a smooth bounded domain in R3. Let zq € 9 be chosen arbitrarily.
Let us choose a local system of coordinates with the origin at x¢ and with the axis
x3 perpendicular to 02 and pointing into Q. Thus, the axes x; and zo form the
tangent plane to 00 at the point zy. Let us define for ¢ > 0

Q5 = {r = (z1,12,23) € R3; (/a2 + 23 < e Ap(x1,20) < 23 < (1, 22) + €},
(2.17)
where the function ¢ describes locally the boundary 92 near the point zg. Let
¥ € C®(Q) be a cut-off function such that (z) = 1 if z € Q% ¥(z) = 0 if
r € Q\Q; and ¢Y(z) € [0,1] for every z € Q.
If we put v = yu then v solves the system

% —vAv="h in Qr, (2.18)
v=0 ondQx (0,T), (2.19)
V]i=0 = 0, (2.20)
where h = ¢ f — 20V - Vu — vAyu and it follows from that
12llg,60 < el fllgpr- (2.21)

Let
e ={z = (v1,22,23) ER*;2] + 23 <e A0 < z3 <e}
The following equations describe the transformation between ®Z ~and QF :
) = w1, TH = T9, w5 = x3 — (71, 12). (2.22)
If we define v’ on ®; by the equation
V' (2], 2, 2h) = v(y, 22, 23), (2.23)
then v’ satisfies the equation
/ 2 2
A == (55 + (55)] 25 e
e O ou By 0,
Ory Oxedrs  Oxg ‘0z 013
and the boundary and initial conditions
v'=0 ondR3 x (0,7), (2.25)
v'|1=0 = 0. (2.26)

(2.24)
n R% x (0,7)
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We denote the right hand side of (2.24)) by H. v’ is a solution of (2.8)) - (2.10) for
Q= R3+ with the right hand side H instead of f and according to the first half of

this proof (2.12)) holds, that is
IV |7 < cllH g, (2.27)

Since v € L (0,T,W>#(Q)) and ||vll o o rwesayy < clfllsp - see (2.11), it
follows from ([2.21)), the smoothness of ¢ and the substitution theorem that

[Hllg.5 < cllfllg.p- (2.28)
Further, the smoothness of the transformation (2.22)) gives the inequality
VU]l < €l V0|1, (2:29)

Summing up (2.29), (2.27) and (2.28) we have
IVolly,y < cllflls,e
and thus
9l gers < el (2:30)

The estimate can also be proved in the same way for the sets Q5 = {z €
Q; dist(z, Q) > e}, where ¢ is an arbitrary positive number. To conclude the proof,
it is now sufficient to realize, that there exist n € N, points #f, € 99, i = 1,2,3,---n
and positive numbers €,¢;, 1 = 1,2,3,--- ,n such that

Qcup, QP uek,
0
and use (2.30)). O

Another proof of Lemma[2.d} Let the assumptions of Lemma be satisfied and
(u, ) be a unique solution of (2.1)) - (2.4]) satisfying the inequality (2.5)). We use

the integral representation of u(-,t) by means of the semigroup e~4s*:
t
u(-,t) = / e~y 4 Agu)dr. (2.31)
0

If & € [0,1] then

t
o 1
[AGu(-, )l S/ o (IW]ls + 1 Apullg)dr. (2.32)
o (t—7)
Let us take a € [1/2,1] such that 1+ 1/ = a + 1/4’. The Hardy-Littlewood-
Sobolev inequality gives that
[AGullg < c(llulls.er + 1 Agullg,z)- (2.33)
It further follows from [I0] that
1AGulls > ¢ A3/ %ull,. (2.34)
Let us show now that
the space D(A") is continuously embedded into the space W27, (2.35)

if m >1and n € (0,1). It is known that D(A? ) = D(B! )N LY, where B,, = —A
is the Laplace operator with zero boundary condition in L™ (see [4], Theorem 3). It
follows from Theorem 1.15.3. in [15], p.103, that D(B],) is the complex interpola-
tion space [L™, D(By,)],, thus D(B!) = [L™, W™ Wy "™],. Since W™ W,
is continuously embedded into W2™, it follows from [1], 2.4.(3), that D(B1) is
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continuously embedded into [L™, W?2™], = W?2"™ and (2.35) is proved. The last
equality follows from [I5, Theorem 4.3.1/2, p.315].
The following inequality is a special case of (2.35)):

1AY2ull, > ¢ V. (2:36)
The inequality (2.7]) now follows from (2.33)), (2.34)), (2.36) and (2.5)) and the proof
of Lemma is completed. ]

Lemma 2.3. Let2/q+3/p=1,p,q€ (1,00),be LP9,2/0'+3/0 =3, p/(p—1) <
0<3,0>21/a=1/0—1/3 andv € L>>, Vv € L?2, v e LY, Vv e LI,
Let r,r' I € (1,00), 1/r = 1/l —1/p, 1/r' = 1/I' = 1/q, » > 0, v > 0" and
he LW, Suppose further that the function v is a weak solution of the linearized
Navier-Stokes system, that is

/ / ———Agp) vdx dt = / / —b-Vv) - pdzdt, (2.37)
V-v=0 1inQp, (2.38)

v=0 ondQx(0,T) (2.39)

for every p € C§°([0,T)xQ), V- = 0. There exists a positive constant e = (1,1, p)

such that if ||b]|p.q < € then

Vo e L™ v < |l (2.40)
1 1
Vve L™ and VUl < cllblliy, ifle (1 3) and % Ty (2.41)
’U ’
V¢, E € Ll’l and ||V¢||l,l/, C”hHl 1, (242)

where ¢ is the pressure associated to v.

Proof. This lemma was proved in [I2, Proposition 4.1, Theorem 4.1] for Q = R?.
If Q is a bounded domain with a smooth boundary, the proof proceeds in the same
way and so we present only the main steps of it.

We suppose without loss of generality that h € C§°(Qr). Let further b, €
C§°(Qr) such that by — b in LP? if kK — co. By [12], Theorem 4.1 and the citation
there, there exists a smooth solution (vg, ¢x) of the problem

88”: VAR + by, - Vo + Vor =h  in Qr, (2.43)
Vo =0 inQr, (2.44)

vy =0 ondQ x (0,T), (2.45)

Vg li—o = 0. (2.46)

If we choose lg and Ij so that 1/l = 1/0+1/pand 1/l = 1/60"+1/qthen 1 <y <1,
1<l <l and he L1, By the application of Lemma to the system 1D -
(BA0) we get

[Vuklloer < cllh = bi - Vgl < cll[Rllig,i, + [1bkllp.ql[Vorllo,er), (2.47)

where ¢ is independent of k. If ||b]|, 4 is sufficiently small, we get from (2.47)) that
[Vorlle,er < cllbllig iy l[vklla,er < cllhlliy, and consequently, from the sequence
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{vr }ren Wwe can select a subsequence which we denote again {vg}ren such that

Vup — Vi weakly in L%, (2.48)
2.4

vp — 0 weakly in L, (2.49)

Using ([2.48) and ([2.49)) it is possible to show that v satisfies the equations (2.37)) -
(2.39). It implies that v = v.

Applying again Lemma [2.1] to the system (2.43)) - (2.46) we get
IV Okl < ellh = bg - Vgl < e([|h

L+ |k

Vo HT,T’)

p,q
and thus
Vgl < cllh]i- (2.50)

It follows from and that (again after selecting a subsequence) Vuy, —
Vv weakly in L™" which gives .

v and its associated pressure ¢ satisfy the equations (2.43) - (2.46) (with by,
replaced by b) and according to [5], Theorem 2.8 and (2.40) we have

ov
HEHU/ + IVl + Vel < cllh—b- Vol < cllhl]e. (2.51)

Inequality (2.42)) is an immediate consequence of (2.51) and (2.41)) follows from
(2.51)) and the fact that ||[Vv||m < ¢|| V20| if I and m are given by (2.41). The
proof is complete. O

For the proof of the following lemma see e.g. [3, Theorem 3.2, Chap.III.3].

Lemma 2.4. Let D be a bounded Lipschitz domain in R3, T be an open subset of
0D, r € (1,00), j € NU{0}. There exists a bounded linear operator K = K;, :
Wi (D) — WITH"(D)? such that

(i) V-Kg=g for all g € W) (D) such that Jpgdz =0
(it) [V Kgll, < c|Vgllr for all g € W3 (D), ¢ = c(j, 7, D)
(iii) supp Kg C DUT if suppg C DUT.

In this lemma, W{"" (D) is the completion of C§°(D) with respect to the standard
norm of the space W7"(D). It is possible to show that K;,.(g9) = K;s(g) if g €
WJ" (D) N WE*(D), where r,s € (1,00) and j,I € N U{0} and so in the rest of the
paper the operator K, is denoted only by K.

3. PROOF OoF THEOREM [I.1]

In this section, we assume that the hypotheses of Theorem are satisfied and
¢ is the associated pressure to u. We can suppose without loss of generality that
[ullp.g.0, is sufficiently small - see & from Lemmal[2.3] Let 7 € (0,7). Let us localize
the problem - in a standard way: Let ¢ € C°°(Q7) be a cut-off function
such that ¢(I,t> =0if (x,t) S QT\QQT/3+;/3, ¢($,t) =1if (a:,t) S QT/3+2;/3 and
P(z,t) € [0,1] for every (z,t) € Qr. We put w = K(V - (¢u)), v = vyu — w. Then
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v satisfies the following system of equations:

? —vAv+u- Vo4 V(o) = —vAu — 20V - Vu + u - Vipu — ¢V
t . y (3.1)
—E—H/Aw—u Vw—gu in Qr,
V-v=0 in Qr, (3.2)
v=0 ondQx(0,T),
U|t=0 =0. (34)

We denote the right hand side of (3.1) by h and show at first that

, 2 3
he LM, for every I € (1,2), I € (3/2,3) such that 7 + 1 =3 (3.5)

We will use the global estimates for v and ¢ derived in [5, Theorem 3.1]:

2 3

||a||q,s + ||v2u||q,8 + ||v¢||q,s <00, Ss€ (172)a qe (173/2)7 g + a =4, (3'6)

2 3
IVulln, <oo, hel(l,3), pe(l,o0), ; + 7= 3, (3.7)

" 2 3

lu||pe,p < 00, h*€(3/2,00), p € (1,00), ;—l— = 2, (3.8)

2 3
lollrs < o0, 7€ (3/2,3), s€(1,2), 5 + o= 3. (3.9)

It is supposed in (3.9) that [, ¢(x,t)dz = 0 for every t € (0 T) Thus, let [, satisfy
the conditions from . We have immediately from that ¢V € LB, Tt
follows further from Lemma 2.4 that

0 0
<|§||l,l,:|I@<K<w~u>>||l,wr|f<< (V- w)|,, < c|| (V- )|

where 1/q = 1/1 +1/3. Since 2/I' + 3/q = 4, we have dw/dt € L' by (3.6).
Similarly, vAw € Ll’l/7 as follows from Lemma and 1) Finally,

| pall VOl ot v
p—12qg—1’
and since
IVwll o = [VE(VY - u)|| o < el V- ull o < cflull w,
p—1 p—1 p—1 p—1
we have
< ullp.gllell e _ar -
p—1’q—1'
Thus, u - Vw € LM as a consequence of 3(p — 1) /pl + 2(q — I')/ql' = 3/1 +2/I' —

(3/p+2/q) =2 and (B.8). The remaining terms of h belong obviously to the space
LW and lb is proved.

Lemma 3.1. Let us consider the equations (3.1)-(3.4). Let I’ € (2¢/(¢+2),2) and
1€ (3/2,3p/(p+3)), that is m < p for m such that 1/m =1/l —1/3. If h € L}
and ¢ € LW | then h € L™ and ¢ € L™ .
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Proof. Let us define r,7’ as in Lemma [2.3] Then r > 3/2 and 7’ > 2. There exist
0,0" such that p/(p—1) < 6 < 3/2,2 < 60" <" and 2/6' +3/0 = 3. It follows
from that Vo € L% and v € L*?, where 1/a = 1/0 — 1/3. Further, v is a
solution of - with u instead of b and with A being the right hand side
of Thus, the assumptions of Lemma [2.3] are obviously satisfied and we get

y [£40) [£42) that

ov
S IV @A) [V Ullm o, ’EHU’ <cl[hfl- (3.10)

Now, one can show that h € L™ using , the assumption ¥¢ € LY from
Lemma and Lemma It is possible to proceed in the same way as was done
in the paragraph preceding Lemma [3.I] and during the process we can possibly
diminish, if necessary, without loss of generality the support of the cut-off function

. O
Now, we use twice Lemma According to (3.5) and (3.9) we have that h, ¢ €

L where 1,1 satisfy the assumptions of Lemma [3.1] and 2/U + 3/l = 3. By the
first application of Lemma we get that h, ¢ € L™ where 1/m=1/1-1/3,
m € (3,p) and 2/I' + 3/m = 2. Consequently, h, ¢ € LW where 1,1 satisfy
the assumptions from Lemma and 2/l' + 3/l < 3. By the second application
of Lemma we get that h € L™ and 2/I' + 3/m < 2. Lemma
now produces that Vo € L™, where 1/r = 1/m — 1/p and 1/r' = 1/I' — 1/q.
Consequently,

1w Vollmy < [Jullp,g VOl o < || VOl < 00
p—m g—1/
and v satisfies the equation

% VAV V() =h—u-Vo in Qr (3.11)

and equations (3.2) - (3.4), where

/ 2 3
h—u-Vuve L™ for every m,l’ such that 7 +—<2,1"€(1,2),m € (3,p).
m

(3.12)
Using the integral representation of v(-,t) by means of the semigroup e~ 4=t we
have .
v(-,t) = / e~ An=T) P oy . Vv)dr. (3.13)
0

Let a < 1/2. We can choose I’ such that al’/(I’ — 1) < 1 and obtain the estimate

t
1A% (-, 8) o < / | A% e AnE=D PP — - V)|

/ = Vol _

t—T

dr 1’171
s </0 o) | = Vel <

The space D(A2) is continuously embedded into the space W2*™ - see (2.35)). It
further follows from in [I5, Theorem 4.6.1(e), p.327] that

the space W2*™ is continuously embedded into the Hélder space C?(Q), (3.15)
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if 8 =2a—3/m > 0. By the suitable choice of v and m we can have ( as close to
1 — 3/p as possible and so it follows from (2.35)), (3.15)), (3.14) and (3.12)) that

v e L(0,T,CP(Q)) for every B € (0,1 —3/p). (3.16)
Thus, v € L (Qr) and consequently,
u € LOO(QT/3+27:/3). (317)

We can now use this last information on local regularity of u, go through this section
once again and get that

h—u-Vve L™ forevery I € (1,2),m € (3,00). (3.18)
Using (2.35)), (3.15), (3.14) and (3.12) we obtain that
ve L®(0,T,C°(Q)) for every 5 € (0,1) (3.19)

and (1.6]) follows immediately. The proof of Theorem is completed.
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