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MULTISCALE ELLIPTIC-PARABOLIC SYSTEMS
FOR FLOW AND TRANSPORT

MA LGORZATA PESZYŃSKA, RALPH E. SHOWALTER

Abstract. An upscaled elliptic-parabolic system of partial differential equa-
tions describing the multiscale flow of a single-phase incompressible fluid and

transport of a dissolved chemical by advection and diffusion through a hetero-
geneous porous medium is developed without the usual assumptions of scale

separation. After a review of homogenization results for the traditional low

contrast and the ε2-scaled high contrast cases, the new discrete upscaled model
based on local affine approximations is constructed. The resulting model is

mass conserving and contains the effects of local advective transport as well as

diffusion, it includes non-Fickian models of dispersion and works over a broad
range of contrast cases.

1. Introduction

We construct a new family of differential models of flow and transport in het-
erogeneous porous media, a system consisting of an elliptic equation for stationary
flow coupled to a parabolic equation for the transient advection-diffusion. The new
features of these models are (i) they work over a range of coefficient and geometry
scales, (ii) their discrete form is amenable to numerical simulation, (iii) the mass
conservation property is preserved in the process of upscaling, and (iv) they retain
the variational structure and well-posedness of the initial-boundary-value problem.
Our work was originally motivated by a particular experiment [57] which provides a
unique testbed for multiscale modeling in the presence of not well separated scales.
However, the results immediately apply to a general class of physical phenomena
of flow and transport in variously heterogeneous geological formations.

The separation of scales is not assumed in this paper. By this we understand any
of the following. First, the ratio ε of the diameter of a typical cell or representative
elementary volume to the diameter of the physical domain is very small and in
traditional homogenization or volume averaging techniques is driven to 0 to obtain
the upscaled model. By contrast, here we consider a fixed ε = ε0 > 0. Second, the
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separation of scales of flow or diffusion requires the ratio of fast to slow coefficients
to be either bounded, the low contrast case, or O(ε−2), the high contrast case.
The latter leads to the double porosity models. However, here we permit a wide
range of such ratios from low through intermediate to high constrast of coefficients.
Thirdly, with strongly separated scales the dominating effect is diffusion, whereas
here we capture a range of advection–diffusion–dispersion phenomena. In addition
to being computationally tractable, these new model systems give qualitative in-
formation about macroscopically observable quantities and their time scales and
rates, and they allow us to observe the transition between various regimes of flow
and transport.

Traditional methods of homogenization [13, 48, 36, 3] strive to determine co-
efficients of an effective partial differential equation (PDE). When the fine-scale
solutions vary substantially both in space and time, the solutions of these effec-
tive equations fail to convey essential information. The double-porosity models
[11, 54, 6, 7, 8, 10, 23, 35, 52] retain nonlocal effects in time from cell problems on
the original scale. In hydrology applications related models, also called multi-rate
models or power-law models, are widely used; see [31, 32, 29, 33]. The goal is to
capture both short-term and long-term tailing due to diffusive storage and adsorp-
tion. The need for new models has been pointed out for example in [47, 19], in [[9],
p.217] and in [16] where the regimes were studied carefully. The recently proposed
models in [39] and [57, 27] work well for some regimes of flow and transport but
not across all.

We describe the model problem below, a heterogeneous system with combined
fast and slow flow regimes. In Section 2 we review known homogenization results
for the elliptic and parabolic subproblems of that coupled system. We shall exploit
this theory but will not contribute to it. In Section 3 we propose the differen-
tial system of central interest in this paper, one PDE coupled across interfaces to
a collection of cell problems. Local affine approximations extend the traditional
constant approximations of constraints on cell interfaces and introduce additional
nonlocal terms which are carefully constructed so that the mass is preserved. The
variational setting leads to well-posedness of the system. In Section 4 we compute
the nonlocal terms as convolutions and derive the continuous limit of the generic
effective differential model. The model has a form strikingly similar to those dis-
cussed in [28, 21, 25, 56] and displays the various flow regimes [16, 39]. Finally, in
Section 5, we return to the original flow and transport system and construct the
effective model. This includes the velocity and dispersion terms which are lost by
traditional piecewise constant interface approximations.

Throughout the paper we use the following notation. Let D ⊂ R2 be an open
bounded set with boundary ∂D. (We restrict ourselves to R2 for simplicity only; this
is consistent with [57]). In area integrals we use the symbol dA and use dS in surface
integrals. The characteristic function of a set D is χD, and 〈f〉D ≡ 1

|D|
(∫

D
f(x) dA

)
is the average of f over D. At times we use the notion of a translate D(x) with
centroid at the point x. In such cases the spatial variable is denoted by y ∈ D(x).

The Model Problem

Consider flow and transport in a heterogeneous porous medium, an open bounded
domain Ω ⊂ R2. We denote by n the unit normal vector out of Ω on the bound-
ary ∂Ω. The flow of water is described by conservation of mass and Darcy’s law,
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respectively,

∇ · v = 0, v = −K∇p, x ∈ Ω , (1.1)

an elliptic equation for the pressure p(x), where v = (v1, v2) = [v1, v2]T is the
volumetric flux (velocity), and K : R2 7→ R2×2 is the symmetric uniformly posi-
tive definite conductivity representing permeability divided by fluid viscosity. The
flowing water contains a dissolved conservative dye of concentration c(x, t). The as-
sociated model of transient advection–diffusion–dispersion is the parabolic equation
[12, 26]

φ
∂c

∂t
+∇ · (vc−D(v)∇c) = 0, x ∈ Ω , (1.2)

The coefficient φ is the porosity of the medium, and the diffusion-dispersion tensor
is given by

D = D(v) ≡ dmolI + |v|(dlE(v) + dt(I−E(v))). (1.3)

Here dmol, dl, dt are coefficients of molecular diffusivity, longitudinal and transversal
dispersivity, respectively, and the dispersion tensor E(v) = 1

|v|2 vivj is a rank two
tensor. The coupled problem (1.1)–(1.2) with appropriate boundary and initial
conditions is well understood under standard assumptions of mild variation on
coefficients. The difficulties arise when the coefficients φ,K and, consequently, v
and D(v), have a highly heterogeneous character and differ by several orders of
magnitude.

As in [57], we assume the coefficients are locally piecewise constant on an asso-
ciated collection of local interfaces separating two disjoint regimes of flow; the sub-
scripts f, s are associated with the fast, and slow regions, Ωf ,Ωs, respectively. These
are disjoint open sets covering Ω, Ω = Ωf ∪Ωs, with an interface Γfs ≡ ∂Ωf ∩∂Ωs.
The region Ωf is connected, but Ωs =

⋃Nincl
i=1 Ωis where each inclusion Ωis is a

connected and simply connected region with Ωis ∩ Ωjs = ∅, i 6= j. We also denote
the local interfaces by Γi ≡ ∂Ωis ∩∂Ωf , so Γfs =

⋃
i Γi. In what follows ni denotes

the unit normal to Γi pointing out of Ωis. In the context of fractured (fissured)
media [23, 9, 35, 42] Ωf is called a fracture system and Ωs the matrix composed of
blocks Ωis, a totally fissured medium [22].

We further assume that Ω can be covered by a union of rectangular subdomains
Ωi, i = 1, . . . Nincl with each Ωi containing exactly one inclusion Ωis. We denote by
Ωif = Ωi∩Ωf the fast part surrounding Ωis so that Ωi = Ωis∪Ωif∪Γi. Furthermore,
we assume that each Ωi is congruent to a generic cell Ω0 of size ε0 = diam(Ω0)
and that each Ωis is congruent to a generic Ω0s. It follows that the interfaces
Γi are congruent to Γ0 and Ωif is congruent to some Ω0f . Such assumptions of
periodicity of Ω make the model amenable to homogenization but are not required
for our development.

Denote by xC
i the centroid of Ωis and by χ̂i(x) the characteristic function of the

cell Ωi. Also, we denote by θf = |Ω0f |
|Ω0| the volume fraction occupied by the “fast”

region. Analogously θs = |Ω0s|
|Ω0| is defined with θs = 1− θf .

We consider scalar coefficients of the form

a(x) = a(af , as;x) ≡ afχΩf
(x) + asχΩs

(x) =
{

af , x ∈ Ωf

as, x ∈ Ωs
, x ∈ Ω (1.4)
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where af , as > 0 are given constants, as well as isotropic tensor valued coefficients

A(x) ≡ A(Af , As;x)I = AfχΩf
(x)I + AsχΩs(x)I, x ∈ Ω. (1.5)

More general forms of (1.4), (1.5) taking different values in each inclusion Ωis are,
respectively,

a(x) ≡ a(af , (ai)
Nincl
i=1 ;x) = afχΩf

(x) +
∑

i

aiχΩis
(x), x ∈ Ω , (1.6)

A(x) ≡ A(Af , (Ai)
Nincl
i=1 ;x)I = AfχΩf

(x)I +
∑

i

AiχΩis
(x)I, x ∈ Ω . (1.7)

In particular, as in the experimental setup in [57], we assume that the coefficients
φ,K satisfy (1.4), and (1.5), respectively. On the other hand, we allow the diffusion–
dispersion coefficient D(x) to depend, in general, on i as in (1.7), because it depends
on the local velocity vi which in turn depends on Ki and on the local flow in Ωis.
The transmission form of the coupled system (1.1)–(1.2) displays the heterogene-
ity of the coefficients as well as the conservation of momentum and mass across
interfaces,

∇ · vf = 0, vf = −Kf∇pf , x ∈ Ωf , (1.8a)
∇ · vi = 0, vi = −Ks∇pi, x ∈ Ωi, i = 1, . . . Nincl (1.8b)

pi = pf , vi · n = vf · n, x ∈ Γi, (1.8c)

φf
∂cf

∂t
−∇ · (Df∇cf − vfcf ) = 0, x ∈ Ωf , (1.9a)

φi
∂ci

∂t
−∇ · (Di∇ci − vici) = 0, x ∈ Ωi, i = 1, . . . Nincl (1.9b)

ci = cf , (Df∇cf − vfcf ) · n = (Di∇ci − vici) · n, x ∈ Γi . (1.9c)

The system (1.8), (1.9) is the exact discrete model for the problem from [57]. Theo-
retically, it can be solved numerically, if enough computational resources are avail-
able. Also theoretically, the computed values of p and c could be verified pointwise
thanks to currently available experimental and visualization techniques such as the
imaging equipment used in [57].

The discussion of [57] centers around identification and fitting of coefficients
v, D(v) to known upscaled versions of (1.2). Depending on the ratio Kf

Ks
, three

distinct regimes of flow and transport are discussed. These are, respectively, Kf

Ks
=

6, 300, 1800, and are called respectively, the low contrast, intermediate, and high
contrast cases. It is concluded that this approach gives satisfactory results in the
low and high contrast regimes where, respectively, (1.2) and its double-porosity
modification are used, but that neither of these is satisfactory in the intermediate
case. In the last case it is impossible to fit the observed breakthrough curves with
available models. The differential model developed below works across all regimes
of flow and transport from low to high constrast and includes the intermediate
regime.

2. Homogenization of problems with discontinuous coefficients

We review traditional homogenization of elliptic and parabolic partial differential
equations. Various approaches to upscaling of periodically varying discontinuous
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coefficients exist, and the two main classes can be distinguished by the use or not
of ε2-scaling. Here we review these results and motivate the need to go beyond
them. A novel and pivotal observation is that the “obstacle” problems [36] provide
a bridge between classical models without scaling [13, 48, 36] and double-porosity
models with ε2-scaling [23, 10].

The following applies to both the elliptic problem for the flow part (1.8) of
the coupled system and the parabolic problem for the transport part (1.9); the
discussion follows [[48], II.5], [[36], Ch.3]. Consider the parabolic problem,

φ
∂u

∂t
−∇ · (B∇u) = f, x ∈ Ω, (2.1a)

u = 0, x ∈ ∂Ω, (2.1b)
u(x, 0) = u0(x), x ∈ Ω , (2.1c)

a special case of (1.2) in which dispersion and advection are ignored and with a
source/sink term f : Ω 7→ R. Assume that the coefficient φ(x) ≡ φ(φf , φs;x) satis-
fies (1.4) and that B(x) = B(Bf , Bs;x) satisfies (1.5). (The elliptic case is obtained
by setting φ = 0.) The transmission form of (2.1) highlights the heterogeneity,

φf
∂uf

∂t
−∇ · (Bf∇uf ) = ff , x ∈ Ωf (2.2a)

φs
∂ui

∂t
−∇ · (Bs∇ui) = fi, x ∈ Ωis, i = 1, . . . Nincl (2.2b)

ui = uf , y ∈ Γi (2.2c)
(Bf∇uf ) · n = (Bs∇ui) · n, y ∈ Γi (2.2d)

uf = 0, x ∈ ∂Ω, (2.2e)
uf (x, 0) = uf0(x), x ∈ Ωf (2.2f)
ui(x, 0) = ui0(x), x ∈ Ωis . (2.2g)

Two issues of scale appear in the behavior of u(x, t). The first multiscale feature is
associated with the local spatial variations of u(x, t) due to variations of B. The
second multiscale character is associated with the time scale of getting to stationary
equilibrium determined by the proportions of φ,B in Ωf and Ωs [16, 39]. Three
situations of upscaling are described in the following.

2.1. Classical upscaling. When the geometry and coefficients are assumed pe-
riodic, and the ratio of coefficients is independent of ε, problem (2.1) is upscaled
by homogenization [13, 48, 3, 34] to obtain an effective equation [[48], II.5.(5.13)].
This equation is satisfied by the limit ũ of the local averages of solutions to (2.1) as
the number of inclusions Nincl → ∞, or, equivalently, as the size of the inclusions
ε → 0, and it has the same form,

φ̃
∂ũ

∂t
−∇ · (B̃∇ũ) = f̃ , x ∈ Ω, (2.3)

but with the local averages f̃(x) = 〈f〉Ω0 and constant coefficients. The first is the
local average of φ defined by

φ̃ ≡ 〈φ〉Ω0 =
1
|Ω0|

(φf |Ω0f |+ φs|Ω0s|) = φfθf + φsθs . (2.4)
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The effective constant matrix B̃ = B̃(Bf , Bs) is defined as [[48], II.2.9]

(B̃)jk =
1
|Ω0|

∫
Ω0

Bjm(y)(δmk + ∂mω̃k(y))dA, (2.5a)

where ω̃j , j = 1, 2 is a solution of the local periodic cell problem [[36], Ch.1(1.35),
1.45a)] {

−∇ ·B∇ω̃j(y) = ∇ · (Bej), y ∈ Ω0

ω̃j is Ω0 − periodic (2.5b)

It is understood that the condition “ω̃j is Ω0-periodic” in (2.5b) constrains not
just the values of the function ω̃j on ∂Ω0, but also its normal flux B∇ω̃j · n. The
effective equation (2.3) describes very well this “low contrast” case, and the fine-
scale variations of coefficients have been averaged out of the problem.

2.2. Obstacle problem. Consider the special case with φs = 0, Bs = 0, and fi =
0. This arises when the coefficient B in (2.1) is replaced by B0(x) ≡ B(Bf , 0;x).
It is also known as perforated domain case, see [3] or references therein, or soft-
inclusion in material science, see [18], [[36], Section 3.1]. Denote by ũ0(x, t) the
corresponding solution of the upscaled model,

φ∗
∂ũ0

∂t
−∇ · (B∗∇ũ0) = f∗, (2.6)

where f∗ = 〈f〉Ω0 = θf 〈f〉Ω0f
. Note that there is no storage in Ω0s and the local

cells are impermeable. The upscaled constant coefficient B∗ is given as before by

(B∗)jk =
1
|Ω0|

∫
Ω0f

Bjm(y)(δmk + ∂mω̃0
k(y))dA. (2.7)

where ω̃0(x) is defined as the solution over Ωf of the cell problem
−∇ · ∇ω̃0

j (y) = 0, y ∈ Ω0f

∇ω̃0
j (y) · n = −ej · n, y ∈ Γfs

ω̃0
j is Ω0 − periodic.

(2.8)

We note that in some references [36] the function ω̃0 is extended to all of Ω0 and
that (2.8) agrees with (2.5b).

Let us briefly compare the solutions ũ and ũ0 when fi = 0. The former describes
the evolution in time of local averages over Ω0, the latter is concerned with the
averages over Ω0f . The former, at least formally, captures the transient storage
in both regions Ω0f and Ω0s, while the latter is only considered with evolution of
storage in Ω0f . Finally, ũ0 is the formal limit of ũ as Bs → 0.

2.2.1. Double porosity models. Here we follow the presentations [[10], (3.4)], [34].
and [[3], Section 4]. In the last reference, this is called the highly heterogeneous
case. Assume fi = 0 and that the coefficient Bs is scaled by ε2, i.e., Bs is replaced
by ε2Bs throughout (2.2). This has the effect of balancing the decreasing size
of the inclusions with the permeability to retain the coupling of the two regimes.
(By contrast, in the obstacle case, the inclusions are impermeable.) The upscaled
solution u∗ satisfies the equation

φ∗
∂u∗

∂t
+

1
|Ω0|

∫
Ω0s

φs
∂u∗s0

∂t
dA−∇ · (B∗∇u∗) = f∗, x ∈ Ω , (2.9a)
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in which the second term contains the solution u∗s0 of a problem on Ω0s(x) at every
x ∈ Ω,

φs
∂u∗s0

∂t
−∇ · (Bs∇u∗s0) = 0, y ∈ Ω0s(x), (2.9b)

u∗s0|Γ0 = u∗(x, t). (2.9c)

Here we make a distinction between global variable x ∈ Ω and a local variable
y ∈ Ω0s(x), where the local inclusion Ω0s(x) is centered at x. This is the double-
porosity model for single-phase slightly compressible flow first developed in [23] and
derived formally in [10] and discussed in this form under the name “distributed
micro-structure model” in [52, 53]. The asymptotic expansions and the special
weak convergence proof which preceded the two-scale convergence ideas appeared
in [23, 10, 7].

We emphasize that the constant tensor B∗ which made the inclusions imperme-
able in the limit for the obstacle problem is precisely that obtained by the use of
ε2− scaling [23, 10]. This scaling is important for the parabolic problem. Note that
for the corresponding elliptic system discussed in [[34], pp18-22,Section 6.3.2,145],
a closer look at the problem reveals that u∗s0|Ω0s

≡ const and therefore the second
term of (2.9a) vanishes and the system is uncoupled. See Corollary 3.10 for further
details and consequences.

The ε2-scaling was first proposed in [54]; it can be also justified heuristically as
in [23]. On the contrary, in the model of molecular diffusion as in [24], no scaling is
applied. A general family of scalings using εγ with γ 6= 2, was considered in [4]. See
also [46], [40]. In multiphase flow models in [14, 15] the scaling by γ < 2 was used
while γ = 2 was used in [5]. Other models known as dual (double) porosity models
similar to (2.9) had been proposed in applications [11, 55] prior to the introduction
of formal homogenization methods and prior to [23]. These models have a structure
similar to (2.9) but feature a general exchange/memory term q∗(t) corresponding
to a variety of problems on Ωs, which in turn are coupled by interface conditions.
They all have the form

φ∗
∂u∗

∂t
+ q∗ −∇ · (B∗∇u∗) = 0, x ∈ Ω . (2.10a)

In some cases, these memory terms can be written as nonlocal Volterra terms in
convolution form,

q∗ = τ ∗ L(u∗) , (2.10b)

where L(u∗) is some differential operator and τ is some convolution kernel. In the
double-porosity model (2.9), the convolution kernel τ behaves, for small times, like
τ(t) ≈ 1√

t
[35, 42] and acts on L(u∗) ≈ ∂u∗

∂t .
In applications to flow and transport, it is the term q∗ that gives rise to the

tailing in diffusion/dispersion [31]. The dynamic and possibly delayed response of
the cell Ω0s and its effect on the global solution are quantified by representing it
as a nonlocal-in time term (2.10b). Depending on the singularity of τ at 0 and on
its long-term behavior one has more or less significant memory effects: for more
singular kernels the memory is short-term, for less singular kernels the memory is
long-term. In some cases considered in applications (2.10b) is shown to be multi-
rate or its Prony series can be truncated [45] to capture effects most significant
for the given case study [31, 57]. In general, a stochastic representation of (2.10b)
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has to be used to account for uncertainty. In [24] the term q∗(t) ≈ φs
∂u∗

∂t when
Ds represents molecular diffusion only; this amounts to identifying the convolution
kernel τ with Dirac distribution δ0. Finally, it was shown recently that the different
terms q∗ relate to a particular choice of γ in ε-scaling, see for example how the model
in [11] was derived in [51].

In summary, the choice of which scaling and family of effective models to use
should depend on both the ratio Bf

Bs
and the size ε0. In particular, since the limiting

model (2.9) is derived assuming ε → 0, its use may be of limited value when ε0 is
not small or Bf

Bs
is not large. Finally, the method of upscaling chosen for the elliptic

flow equation (1.1) directly influences and sometimes inappropriately eliminates the
advection terms in the upscaled transport equation (1.2). These modeling issues
motivated by experimental results in [57] are combined in the following in order to
describe a broad range of not well separated scales.

3. Discrete double porosity models with local approximations and
projections

Here we construct a discrete version of (2.10). Our development does not require
taking the limit as ε → 0. The upscaled system contains as a special case discrete
counterparts of the double-porosity parabolic model (2.9).

We begin with the exact discrete model (2.2) and construct an upscaled model
which uses a local approximation on the interfaces Γs; this refines the approxima-
tions in [7, 8]. In order to conserve mass and, equivalently, to prevent creation of
sources and sinks in the upscaled model, we derive a compatibility condition be-
tween the two approximations used in interface conditions (2.2c) and (2.2d). The
variational framework is used to obtain a consistent discrete form of q∗ in (2.10b)
and to establish well-posedness.

At the end in Section 3.4 we consider a stationary elliptic limit to the parabolic
problem (2.10) and its discrete double-porosity counterpart. The result will be used
in Section 5 for the flow part of the coupled flow-transport model (1.1)–(1.2).

3.1. Variational form of exact discrete model. The well-posedness of (2.1)
or equivalently (2.2) is standard; for double porosity models it was considered in
a slightly different setup in [7, 52] and many other works. We begin by recalling
the variational formulation which shows the dynamics are governed by an analytic
semigroup. We use standard notation for Lebesgue spaces, L2(D), and Sobolev
spaces, Hs(D),Hr(∂D), s, r ∈ R, and a standard symbol 〈x′, x〉 ≡ 〈x′, x〉X to
denote duality pairing between elements of a space X and its dual X ′ [1].

We begin with the source-free case, f = 0. The weak formulation of the initial-
boundary-value problem (2.1) is

u(t) ∈ V :
d

dt
(φu(t), w)H + (B∇u(t),∇w)H = 0, ∀w ∈ V, (3.1a)

u(·, 0) = u0(·) ∈ H (3.1b)

where we have denoted by (·, ·)H the scalar product in H = L2(Ω) and set V =
H1

0 (Ω). The operator on H associated with the bilinear elliptic form (B∇u,∇w)H

on V is known to be (the negative of) the generator of an analytic semigroup on
H, and this leads to the following standard result.
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Proposition 3.1. Let u0 ∈ H. Then the initial-boundary-value problem (3.1) has
a unique solution u(·) ∈ C([0,∞),H) ∩ C∞((0,∞), V ).

The corresponding transmission form (2.2) suggests an equivalent formulation
which connects more naturally with the upscaled equation (2.10). Note that the
space L2(Ω) can be identified with the product L2(Ωf ) ×

∏Nincl
i=1 L2(Ωis), and the

Sobolev space H1
0 (Ω) is similarly identified with

{(wf , (wi)
Nincl
i=1 ) ∈ H1(Ωf )×

Nincl∏
i=1

H1(Ωis) :

(2.2c) are satisfied by wf , wi; (2.2e) is satisfied by wf}. (3.2)

To get the weak form directly, we multiply (2.2a) and (2.2b) by the appropriate
components of test functions, integrate over Ωf and

⋃
i Ωis and add the equations.

The weak form follows: find U = (uf , (ui)
Nincl
i=1 ) ∈ V such that

(φf
∂uf

∂t
, vf )L2(Ωf ) +

∑
i

((φs
∂ui

∂t
, vi)L2(Ωis)

+ (Bf∇uf ,∇vf )L2(Ωf ) +
∑

i

(Bs∇ui,∇vi)L2(Ωis)

=
∑

i

∫
Γi

(Bf∇ufvf −Bs∇uivi) · nds, ∀V = (vf , (vi)
Nincl
i=1 ) ∈ V (3.3)

Using (3.2) we see that (2.2d) holds exactly when∑
i

∫
Γi

(Bf∇ufvf −Bs∇uivi) · n = 0, ∀V = (vf , (vi)
Nincl
i=1 ) ∈ V, (3.4)

that is, the right side of (3.3) vanishes. The system takes the form

U(t) ∈ V : (φ
∂U
∂t

,V)H + B(U,V) = 0, ∀V ∈ V, (3.5)

where B(·, ·) is the continuous and coercive bilinear form

B(U,V) ≡ (Bf∇uf ,∇vf )L2(Ωf ) +
∑

i

(Bs∇ui,∇vi)L2(Ωis) , U, V ∈ V.

This is the essential ingredient for the proof of Proposition 3.1.

Remark 3.2. One can add advection terms in the preceding. For a b ∈ (L∞(Ω))d,
the conclusion of Proposition 3.1 holds [50] if the bilinear form is supplemented with
first-order terms

(B∇u(t) + bu(t),∇w)H . (3.6)

A condition analogous to (3.4) is crucial in the derivation and analysis of the
upscaled problems: it ensures that no internal sinks or sources are created in the
process of upscaling.
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3.2. Discrete upscaled model. Now we propose and analyze an upscaled version
of (2.2) leading to a discrete analogue of (2.10). The model includes as special cases
the situations in [7, 52], some elements of [8, 19], the applications models [31, 32, 27],
and a discrete version of (2.9). The gist of the construction is to identify properly
the two-way coupling between the global equation (2.10a) and the local equation
(2.10b), and to define q∗ accordingly.

Comparing (2.2), (2.6), and (2.9), we expect an upscaled form

φ∗
∂u∗

∂t
+ q∗(x, t)−∇ · (B∗∇u∗) = 0, x ∈ Ω, (3.7a)

φs
∂u∗si

∂t
−∇ · (Bs∇u∗si) = 0, y ∈ Ωis (3.7b)

u∗si|Γi
= (Πu∗)i (3.7c)

u∗ = 0, x ∈ ∂Ω, (3.7d)
u∗(x, 0) = u0(x), x ∈ Ω (3.7e)

u∗si(y, 0) = u0
i (y), y ∈ Ωis (3.7f)

where Π and q∗(x, t) are to be defined below. We intend for (3.7c) to approximate
(2.2c) while (2.2d) is realized by the flux term q∗ in (3.7a). Clearly one could come
up with many heuristic reasonable independent choices for Π and q∗. We argue
that in order to conserve mass and preserve the variational structure exhibited for
the exact problem (2.2), these choices cannot be made independently. We show
below that q∗ must contain the dual operator to Π.

We seek the weak formulation of (3.7) which will lead to the appropriate com-
patibility condition. The solution to (3.7) is an (Nincl + 1)-vector

U∗ ≡ (u∗, (u∗si)i) ∈ H ≡ L2(Ω)×
Nincl∏
i=1

L2(Ωis).

Note that H is much more than and cannot be identified with H = L2(Ω). The
weak solution U∗ should also belong to X ×Y with

X = H1
0 (Ω), Y =

Nincl∏
i=1

H1(Ωis).

The operator Π which appears in (3.7c) takes values in Γi, so for w ∈ X its i-th
component (Πw)i ∈ Zi ≡ H1/2(Γi), the restrictions (traces) to Γi of functions from
Y. Thus we define Π : X → Z, where

Z ≡
Nincl∏
i=1

Zi =
Nincl∏
i=1

H1/2(Γi).

Recall also the characterization of the dual spaces,

X ′ = H−1(Ω), Z′ =
Nincl∏
i=1

H−1/2(Γi).

We embed the interface conditions (3.7c) in the definition of the energy space
V,

V ≡ {(w, (wi)
Nincl
i=1 ) ∈ X ×Y : wi|Γi

= (Πw)i,∀i},
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where the constraint is understood in the sense of traces. For a sufficiently reg-
ular solution U∗ = (u∗, (u∗si)

Nincl
i=1 ) ∈ V, the weak form of (3.7) is obtained by

multiplying (3.7a), (3.7b) by the appropriate components of a test function W =
(w, (wi)

Nincl
i=1 ) ∈ V and integrating over Ω and Ωis, respectively,∫

Ω

φ∗
∂u∗

∂t
w(x)dA +

∫
Ω

q∗(x, t)w(x)dA +
∫

Ω

B∗∇u∗∇w(x)dA = 0 , (3.8)∫
Ωis

φs
∂u∗si

∂t
(y, t)wi(y)dA +

∫
Ωis

Bs∇u∗si(y, t)∇wi(y)dA

=
∫

Γi

qi(s, t)wi(s)dS , (3.9)

where we have denoted the flux qi ∈ Z ′
i by qi(s, t) ≡ (Bs∇u∗si · n)(s), s ∈ Γi. Sum

(3.9) over i, add the result to (3.8), and use the relation wi = (Πw)i which was
embedded in the definition of space V. The resulting system is

d

dt
(φU∗,W)H + B(U∗,W) =[∑

i

∫
Γi

qi(s, t)(Πw)i(s)dS −
∫

Ω

q∗(x, t)w(x)dA

]
, ∀W ∈ V, (3.10)

where B is the positive definite bilinear form

B(U∗,W) ≡ (B∗∇u∗,∇w)Ω +
∑

i

(Bs∇u∗si,∇wi)Ωis . (3.11)

If we have ∫
Ω

q∗(x, t)w(x)dA =
∑

i

∫
Γi

qi(s, t)(Πw)(s)dS, W ∈ V, (3.12)

then the weak formulation of (3.7) is (3.5) with (3.11). The condition (3.12) can
be interpreted as a statement ensuring conservation of mass. It requires that the
term q∗ be compatible with the collection of fluxes q = (qi)

Nincl
i=1 out of Ωs so that

the right side of (3.10) vanishes and there are no spurious sources or sinks in the
model.

In the general case, since (ui)
Nincl
i=1 ∈ Y, the fluxes (qi)

Nincl
i=1 across ∂Ωis ≡ Γi are

in Z′. On the other hand, (wi|Γi)
Nincl
i=1 ∈ Z, so

∑Nincl
i=1

∫
Γi

qiwi is understood as the
duality pairing between Z and Z′, 〈q,w〉Z. Similarly, the left side of (3.12) for
w ∈ X and q∗ ∈ X ′ is 〈q∗, w〉X , so we obtain condition (3.12) in the form

〈q∗, w〉X = 〈q, ((Πw)i)
Nincl
i=1 〉Z = 〈q,Πw〉Z. (3.13)

This shows that

q∗ = Π′q, (3.14)

where Π′ : Z′ → X ′ is the operator dual to Π : X → Z,

〈Π′q, w〉X ≡ 〈q,Πw〉Z, q ∈ Z′, w ∈ X. (3.15)

With this characterization, the model (3.7) is rewritten precisely as

φ∗
∂u∗

∂t
+ Π′

(
(Bs∇u∗si · ni)

Nincl
i=1

)
−∇ · (B∗∇u∗) = 0, x ∈ Ω, (3.16a)

φs
∂u∗si

∂t
−∇ · (Bs∇u∗si) = 0, y ∈ Ωis (3.16b)
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u∗si|Γi
= (Πu∗)i , (3.16c)

u∗(x, t) = 0, x ∈ ∂Ω, (3.16d)
u∗(x, 0) = u0(x), x ∈ Ω, (3.16e)

u∗si(y, 0) = u0
i (y), y ∈ Ωis. (3.16f)

We summarize the preceding in the following.

Proposition 3.3. The weak formulation of the upscaled discrete system (3.7) is
(3.16), and it is a well-posed initial-boundary-value problem. The evolution of the
solutions to the model (3.16) is governed by an analytic semigroup on H.

3.3. The Operators Π. It remains to define Π in the upscaled model (3.16). Its
role is to provide an appropriate approximation to the boundary values in (3.16c) for
which the resulting discrete upscaled model is accurate and numerically tractable.

We consider only at most linear polynomial approximations; for m = 0, 1, we
use the space Pm of polynomials of degree at most m. Denote by Zm

i = Pm(Γi)
these polynomials regarded as functions on Γi, and corresponding subspaces of Z
for the operator domain,

Zm ≡
Nincl∏
i=1

Zm
i , Πm : X → Zm. (3.17)

Piecewise constant and affine approximations were used in [7, 52] and in [8, 19, 24],
respectively. The discussion of corresponding maps Πm : X → Zm for m = 0 and
m = 1 are carried out in Section 3.3.1 and 3.3.2, respectively. The calculations of
Π′

m lead to moments of qi ∈ Z ′
i. The zero’th and first order moments are

M0
i (qi) ≡

1
|Ωi|

〈qi, 1〉Zi
, M1

i (qi) ≡ 1
|Ωi|

〈qi, (s− xC
i )〉Zi

, qi ∈ Z ′
i. (3.18)

For smoother qi they are given by

M0
i (qi) =

1
|Ωi|

∫
Γi

qi(s)dS, M1
i (qi) =

1
|Ωi|

∫
Γi

qi(s)(s− xC
i )dS, qi ∈ L2(Γi).

Recall that we have identified a constant or linear polynomial as a function on Γi,
hence, an element of Zi, so these definitions make sense.

We will also use the following consequence of the Green’s formula applicable to
the first moments.

Lemma 3.4. For any smooth region D, smooth v = (v1, v2) and the centroid
xC

D ∈ D of D, we have, for k = 1, 2∫
D

(∇ · v)(xk − (xC
D)k)dA =

∫
∂D

v · n(xk − (xC
D)k)dS −

∫
D

vkdA.

3.3.1. Piecewise constant approximations Π0. Here we discuss the local constant
approximations. Define Π0 : X → Z0 as the local averages over Ωi,

Π0w ≡ ((Π0w)i)
Nincl
i=1 , (3.19)

(Π0w)i(s) ≡ 〈w〉i =
1
|Ωi|

∫
Ωi

w(x)dA , s ∈ Γi. (3.20)

The dual operator Π′
0 : (Z0)′ → X ′ is computed as follows, assuming q is

sufficiently smooth, as it will be in the system. We have
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〈q,Π0w〉Z =
∑

i

∫
Γi

(Π0w)i(s)qi(s)dS =
∑

i

∫
Γi

1
|Ωi|

(∫
Ω

χ̂i(x)w(x)dA

)
qi(s)dS

=
∫

Ω

w(x)

(∑
i

χ̂i(x)
1
|Ωi|

∫
Γi

qi(s)dS

)
dA =

∫
Ω

w(x)

(∑
i

χ̂i(x)M0
i (qi)

)
dA

so we obtain the following characterization of (Π′
0q); its second part follows by

divergence theorem.

Lemma 3.5. For q with integrable components we identify pointwise, in the sense
of distributions

(Π′
0q)(x) =

∑
i

χ̂i(x)M0
i (qi). (3.21)

Additionally, let qi = qi · n for some smooth qi. In this case

(Π′
0(qi · n))(x) =

∑
i

χ̂i(x)
1
|Ωi|

∫
Ωis

∇ · qi(x)dA. (3.22)

Now we want to point out the formal connection between the discrete and con-
tinuous models obtained from the following simple considerations expressing the
convergence of piecewise constant approximations. Let Ω be fixed; as Nincl → ∞,
we have that diam(Ωi) → 0.

For u ∈ L2(Ω), define TNincl(u)(x) ≡
∑Nincl

i=1 χ̂i(x) 1
|Ωi|

∫
Ωi

u(y)dA. Then

(TNincl(u)(x))2 =
Nincl∑
i=1

χ̂i(x)
1

|Ωi|2

(∫
Ωi

u(y)dA

)2

≤
Nincl∑
i=1

χ̂i(x)
1
|Ωi|

∫
Ωi

(u(y))2dA,

so ‖TNincl(u)‖L2(Ω) ≤ ‖u‖L2(Ω). For a smooth u ∈ C0(Ω), we have

|TNincl(u)(x)− u(x)| ≤ max
1≤i≤Nincl,y,x∈Ωi

|u(x)− u(y)|

which converges to 0. Thus limNincl→∞ TNincl(u) = u in L2(Ω), and by density of
C0(Ω) in L2(Ω) we have

lim
Nincl→∞

Nincl∑
i=1

χ̂i(·)(Π0u)i = u(·) in L2(Ω) (3.23)

for each u ∈ L2(Ω). Analogous properties hold for derivatives of a function in
H1(Ω).

Remark 3.6. We recognize now that the double-porosity model (2.9) is the limit,
in the sense of (3.23), of the model (3.16) with the choice of Π = Π0.

3.3.2. Local affine projections Π1. Now we consider local affine approximations
associated with the operator Π1 : H1

0 (Ω) → Z1. These are needed to capture
the effects of advection and secondary diffusion in upscaled coupled models; see
Section 5.

There are many ways to define local affine approximations. One way is to use
local Taylor approximations [24], but this requires extra smoothness. Another way
proposed in [8] which is mass conservative is to use local least-squares projections,
see Remark 3.9. Here we use affine approximations based on the moments defined by
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(3.18). We refer to these as local H1(Ωi)-projections. Define, for i = 1, 2 . . . Nincl,
and s ∈ Γi

(Π1w)i(s) ≡ (Π0w)i + (Π0∇w)i · (s− xC
i ) (3.24)

=
1
|Ωi|

(∫
Ωi

w(y) dA +
2∑

k=1

[∫
Ωi

∂kw(y) dA

]
(sk − (xC

i )k)

)
, s ∈ Γi.

To compute the dual Π′
1 to Π1 formally, let q have integrable components qi,∀i =

1, . . . Nincl, and let w ∈ X. Then

〈Π′
1q, w〉X = 〈q,Π1w〉Z =

∫
Ω

∑
i

χ̂i(x)
(

1
|Ωi|

∫
Γi

qi(s)dS

)
w(x)dA

+
∫

Ω

∑
i

χ̂i(x)
(

1
|Ωi|

∫
Γi

qi(s)(s− xC)dS

)
· ∇w(x)dA. (3.25)

We have thus shown the first part of the following Lemma.

Lemma 3.7. Let q have integrable components qi,∀i = 1, . . . Nincl. Then, in the
sense of distributions in H−1(Ω), the operator Π′

1(q)(x) is characterized “point-
wise” by

Π′
1(q)(x) =

∑
i

M0
i (qi)χ̂i(x)−∇ ·

∑
i

M1
i (qi)χ̂i(x). (3.26)

Note the second term in this equation is a collection of scaled line sources; indeed
a member of X ′.
Furthermore, let qi = qi · n for some qi smooth on Ωis. Then

Π′
1((qi · n)i)(x) =

∑
i

χ̂i(x)
1
|Ωi|

∫
Ωis

∇ · qi(x)dA

−∇ ·
∑

i

χ̂i(x)
1
|Ωi|

∫
Ωi,s

(∇ · qi)(y − xC)dA −∇ ·
∑

i

χ̂i(x)
1
|Ωi|

∫
Ωis

qidA .

(3.27)

Proof. The proof of the second part follows easily if we apply Lemma 3.4 and
calculate further from (3.26)

M1
i (qi · n) =

1
|Ωi|

∫
Ωis

(
(∇ · qi)(y − xC) + qi

)
dA.

Next, incorporate (3.22) to get

Π′
1((qi · n)i)(x) =

∑
i

M0
i (qi · n)χ̂i(x)

−∇ ·
∑

i

χ̂i(x)
1
|Ωi|

∫
Ωis

(∇ · qi)(y − xC)dA −∇ ·
∑

i

χ̂i(x)
1
|Ωi|

∫
Ωis

qidA

from which (3.27) follows. Note again that Π′
1 is a collection of line sources and

thus requires test functions to be locally from H1. �

Corollary 3.8. The global equation of discrete upscaled parabolic model for (3.7)
constructed via compatibility condition (3.14) and given by (3.16a), with the choice
Π = Π1, takes the form
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φ∗
∂u∗

∂t
+
∑

i

χ̂i(x)
1
|Ωi|

∫
Ωis

∇ · (Bs∇u∗si)dA

−∇ ·
∑

i

χ̂i(x)
1
|Ωi|

∫
Ωi,s

(∇ · (Bs∇u∗si))(y − xC)dA

−∇ ·
∑

i

χ̂i(x)
1
|Ωi|

∫
Ωis

(Bs∇u∗si)dA−∇ · (B∗∇u∗) = 0, x ∈ Ω, (3.28)

where u∗si is the solution to (3.16b)–(3.16c).

In Section 4 we provide calculations which partially decouple the global and local
equations, and we show the continuous limit to (3.28).

We close this section with a note on local least squares projections.

Remark 3.9. In some geometries the functions (1, (x − xC
i )1, (x − xC

i )2) may
be L2(Ωis)-orthogonal. Then, modulo proper normalization, Π1 is close to local
L2(Ωis)-projections Π̃1 onto affines. The latter has a local orthonormal basis,
preserves mass, and was used in a computational model in [8].

For completeness we provide the explicit definition of Π̃1 and calculate Π̃′
1. Let

(φ0
i , φ

1
i , φ

2
i ) be a local orthonormal basis functions spanning Y 1

i . We define Π̃1 com-
ponentwise as the L2(Ωi)-projection onto affines (Π̃1w)i(x) ≡

∑
k wk

i φk
i (x) where

the coefficients wk
i are computed in a standard way via wk

i =
∫
Ωi

w(x)φk
i (x)dA. A

calculation similar to the one for Π′
1 reveals that

(Π̃′
1q)(x) ≡

∑
i

χ̂i(x)
∑

k

qk
i φk

i (x).

where qk
i ≡

∫
Γi

φk
i (s)qi(s)dS. It is apparent that Π̃′

1q is a globally discontinuous
distribution of local polynomials. This is compatible with the fact that Π̃1 can be
actually defined for (extended to) all L2(Ω) functions not just those from X and
therefore its dual Π̃′ can be restricted to L2 functions.

The use of Π̃1, Π̃′
1 is straightforward. However, we were not able to find an in-

terpretation of Fourier coefficients qk
i that would be useful in our subsequent model

development. On the other hand, our H1(Ωi)-projections while formally different
from local least-squares projections may not be very different quantitatively.

3.4. Discrete upscaled elliptic problem. We close this Section with remarks
on the elliptic counterpart of (3.16) without local sources. Consider the elliptic
counterpart of (2.2) with fi = 0 and its discrete upscaled version. The well posed-
ness of the variational formulation follows from the arguments above, Section 3.2;
see standard variational setting, e.g., [49]. Similar arguments as those for parabolic
problems lead to a compatibility condition (3.14). The discrete upscaled version
for the elliptic case is obtained analogously as

Π′
(
(Bs∇u∗si · ni)

Nincl
i=1

)
− ∇ · (B∗∇u∗) = f∗, x ∈ Ω, (3.29a)

−∇ · (Bs∇u∗si) = 0, y ∈ Ωis, i = 1, . . . Nincl (3.29b)
u∗si|Γi

= (Πu∗)i. (3.29c)
u∗(x) = 0, x ∈ ∂Ω . (3.29d)
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We examine now the term q∗ ≡ Π′
(
(Bs∇u∗si · ni)

Nincl
i=1

)
using Lemma 3.5 and

Lemma 3.7. The values in the boundary condition (3.29c) are either a constant
(Π0u

∗)i or an affine function (Π1u
∗)i. In either case the solution to (3.29b) with

(3.29c) is actually equal to the boundary data, constant or affine, respectively.
Therefore, the flux of that solution qi ≡ Bs∇u∗si is either zero or constant, respec-
tively. In the latter case, that constant equals Bs(Π0∇u∗)i. As a consequence,
the zero’th moment of (qi)

Nincl
i=1 with qi ≡ qi · n which is (part of) the expression

for Π′
(
(qi)

Nincl
i=1

)
vanishes (see (3.22) and (3.27)) for both piecewise constant and

piecewise affine cases. For the affine case we additionally find that the second term
in (3.27) vanishes as well. For the third term in (3.27), since qi is locally constant,
we get

−∇ ·
∑

i

χ̂i(x)
1
|Ωi|

∫
Ωis

qidA = −∇ ·
∑

i

χ̂i(x)
|Ωis|
|Ωi|

Bs∇u∗i

= −∇ ·
∑

i

χ̂i(x)θsBs∇(Π0∇u∗)i . (3.30)

The consequences of these observations are summarized below.

Corollary 3.10. If a constant approximation associated with Π0 is used in the
boundary condition (3.29c) for solutions to (3.29b), then (i) the flux qi = Bs∇u∗i
equals qi ≡ 0, (ii) the source term q∗ ≡ 0, and (iii) the model (3.29a) is just the
obstacle problem (2.6) with φ∗ = 0. However, if the affine approximation Π1 is
used in (3.29c), then (iv) the flux qi = Bs∇(Π0u

∗)i is constant, (v) the source
term q∗ is given by (3.30), and (vi) the model (3.29a) reads

−∇ ·
∑

i

χ̂i(x)θsBs∇(Π0∇u∗)i −∇ · (B∗∇u∗) = f∗, x ∈ Ω. (3.31)

In both cases the solution u∗ is fully or partially decoupled from the local solution
u∗si in the sense that the global problem can be solved independently of the local
problem (3.29b)–(3.29c), which, in turn, can be solved given the boundary data.

We note that a continuous version of (3.29) with Π0 was considered in [[34],
pp.145] where it was not noticed that qi are null and q∗ = 0. The affine case was
considered in [24] but only the zero’th moment terms were computed and it was
noted that qi are constant but q∗ was not used.

These facts are fundamental for the modeling pursued in this paper since the
fluxes qi are the prototypes of advective velocities used in the model of coupled
flow-advection-diffusion. If qi are zero, then no advection effects can be accounted
for. If (2.6) with φ∗ = 0 is used instead of (3.31), then the effects of flow in
inclusions is underpredicted.

Remark 3.11. The global equation (3.31) should be compared to (2.3) with φ̃ = 0
as, in the continuous limit, it reads

−∇ · ((θsBs + B∗)∇u∗) = f, x ∈ Ω.

The effective coefficient θsBs +B∗ is close to but not the same as B̃, however. The
consequences for the flow problem will be discussed in Section 5.
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4. Discrete upscaled model with memory terms

In this section we show how to interpret the memory term q∗ = Π′q arising in
(3.16) and how to partially decouple the system (3.16).

The plan is to represent the solution u∗si to the cell problem (3.16b) as a linear
functional acting on the boundary data given by (Πu∗)i in (3.16c). With u∗si

calculated, one computes its fluxes qi; finally the values of Π′q to be inserted back
to (3.16a) follow. These steps

u∗ 7→ Πu∗ 7→ u∗si 7→ qi 7→ Π′q ≡ q∗

are a composition of linear functionals. Some are simple projections and extensions
of polynomials local to Ωis to functions on Ω; these were defined in Section 3. The
other functionals are Dirichlet-to-Neumann maps; these can be written using fun-
damental solutions or equivalently, as the time convolutions with auxiliary kernels
depending only on the geometry of Ωis and coefficients of the problem (3.16b).

Here we focus on these Dirichlet-to-Neumann calculations represented schemat-
ically by Πu∗ 7→ u∗si 7→ qi. The calculations depend on the choice of operator
Π: we first calculate qi when Π0 is used; next, we use Π1. The former model is
related to the standard double-porosity model from [10, 7]; the latter is related to
the secondary diffusion model considered in [19, 20]. The calculations are done on
a generic cell Ω0s, but it is easy to extend it to any Ωis. We focus on a generic
self-adjoint parabolic model; calculations and definitions for the advection-diffusion
model will be presented in Section 5.

Recall the notation and properties of the convolution product κ ∗ λ of any two
functions κ, λ ∈ L1(0, T ) defined as (κ ∗ λ)(t) ≡ (κ(·) ∗ λ(·))(t) ≡

∫ t

0
κ(τ)λ(t −

τ)dτ, t ≥ 0. The basic properties of this product include symmetry κ ∗ λ =
λ ∗ κ and the following differentiation d

dt (κ ∗ λ) = dκ
dt ∗ λ + κ(0)λ(t). = κ ∗ dλ

dt +
κ(t)λ(0). Appropriate extensions are easily defined for vector valued functions κ, λ ∈
L1(0, T ;X) where X is some normed vector space, and similar properties hold, with
d
dt replaced by ∂

∂t .

4.1. Memory terms from piecewise constant boundary conditions. Here
we provide the Dirichlet-to-Neumann calculations corresponding to Π0u

∗ 7→ u∗s0 7→
q0, where u∗s0 solves (3.16b) with (3.16c) and (3.16f) on a generic cell Ω0s. Similar
calculations were done in [7, 35, 42].

Consider a representative solution r0 = r0(y, t) which solves φs
∂r0

∂t −∇ · (Bs∇r0) = 0, y ∈ Ω0s

r0(y, 0) = 0, y ∈ Ω0s

r0(y, t) = 1, y ∈ Γ0

(4.1)

It is also convenient to consider r(y, t) = 1− r0(y, t) which solves φs
∂r
∂t −∇ · (Bs∇r) = 0, y ∈ Ω0s

r(y, 0) = 1, y ∈ Ω0s

r(y, t) = 0, y ∈ Γ0.
(4.2)

Next we define

T 00(t) ≡ 1
|Ω0|

∫
Ω0s

φs
∂r0(y, t)

∂t
dA (4.3)
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This is the first of the kernels to be used in the sequel. Note that

T 00(t) = − 1
|Ω0|

∫
Ω0s

φs
∂r(y, t)

∂t
dA. (4.4)

Proposition 4.1. Let Π = Π0 in (3.16) and let there be an initial equilibrium,
that is, let

u0
i = (Π0u

0)i = u0 ≡ const, ∀i (4.5)

in (3.16e) and (3.16f). Let also the assumption on periodic geometry hold in the
sense that all inclusions have congruent geometry and equal coefficients:

Ω0s
∼= Ωis, and φis = φs,Bis = Bs ∀i = 1, . . . , Nincl (4.6)

Then the equation (3.16a) can be written in the convolution form as follows

φ∗
∂u∗

∂t
+
∑

i

χ̂i(x)T 00(t) ∗ d(Π0u
∗)i

dt
−∇ · (B∗∇u∗) = 0, x ∈ Ω. (4.7)

Proof. This is obtained by linearity from the following calculations.
Let u0

0 ≡ const be given and A0 : [0,∞) → R be a given differentiable function,
continuous at 0. Define

u∗s0(y, t) ≡ dA0(t)
dt

∗ r0(y, t) + A0(0)r0(y, t) + u0
0(1− r0(y, t)). (4.8)

We note in passing that u∗s0(y, t) = A0(·) ∗ ∂r0(y,·)
∂t + u0

0r(y, t), which follows by
differentiating convolutions from A0∗ ∂r0

∂t = A0∗ ∂r0

∂t +A0(t)r0(y, 0) = d
dt (A

0∗r0) =
d
dt (r

0 ∗A0) = dA0

dt ∗ r0 + A0(0)r0(t).
We easily verify that u∗s0 satisfies

φs
∂u∗s0

∂t
−∇ · (Bs∇u∗s0) = 0, y ∈ Ω0s (4.9a)

u∗s0(y, 0) ≡ const = u0
0, y ∈ Ω0s (4.9b)

u∗s0(y, t) = A0(t), y ∈ Γ0 (4.9c)

Indeed, we calculate the first term in (4.9a)

φs
∂u∗s0(y, t)

∂t
= φs

(
dA0

0

dt
∗ ∂r0(y, t)

∂t
+

dA0
0

dt
(t)r0(y, 0) + (A0

0(0)− u0
0)

∂r0(y, t)
∂t

)
=

dA0
0

dt
∗ φs

∂r0(y, t)
∂t

+ (A0
0(0)− u0

0)φs
∂r0(y, t)

∂t
,

as well as the second term

−∇ ·Bs∇u∗s0(y, t) =
dA0

dt
∗
(
−∇ ·Bs∇r0(y, t)

)
− (A0

0(0)− u0
0)
(
∇ ·Bs∇r0(y, t)

)
.

Combine these and use (4.1) to see that (4.9a) is satisfied. The initial condition
(4.9b) is trivially satisfied when t = 0 is used in (4.8). Finally, the boundary
condition (4.9c) follows from (4.1), by

u∗s0(y, t)|Γ0 =
(

dA0
0(t)
dt

∗ r0(y, t) + A0
0(0)r0(y, t) + u0

0(1− r0(y, t))
)
|Γ0

=
dA0

0(t)
dt

∗ 1 + A0
0(0) = A0

0(t)−A0
0(0) + A0

0(0) = A0
0(t).
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Next, compute the total flux out of Ω0s by the divergence theorem,∫
Γ0

Bs∇u∗s0 · n =
∫

Ω0s

φs
∂u∗s0

∂t
dA

=
dA0

0

dt
∗
(∫

Ω0s

φs
∂r0(y, t)

∂t
dA

)
+
(
A0

0(0)− u0
0

) ∫
Ω0s

φs
∂r0(y, t)

∂t
dA

=
dA0

0

dt
∗
(
−
∫

Ω0s

φs
∂r(y, t)

∂t
dA

)
+
(
A0

0(0)− u0
0

)(
−
∫

Ω0s

φs
∂r(y, t)

∂t
dA

)
.

Now use (4.3) to conclude that |Ω0|M0(Bs∇u∗s0 · n) =
∫
Γ0

Bs∇u∗s0 · n and

M0(Bs∇u∗s0 · n) =
dA0(·)

dt
∗ T 00(·) +

(
A0

0(0)− u0
0

)
T 00(t). (4.10)

We have thus computed the flux compatible with the solution to (4.9).
Now, for each i, we apply analogous calculations to the solutions to (3.7b) with

boundary condition (3.7c) and initial condition (3.7f) over Ωis. The boundary
condition analogous to the one in (4.9c) is A0

i (t) = (Π0u
∗)i, and the initial condition

analogous to (4.9b) is given by u0
i (t). We get M0

i (q) with qi = Bs∇u∗si · n as in
(4.10),

M0
i (Bs∇u∗si(s, t) · n) = T 00(t) ∗ d(Π0u

∗)i

dt
+ (A0

i (0)− u0
i )T 00(t).

Finally, by (4.5) we have initial equilibrium so that the last term above vanishes.
Substituting in (3.7a) yields

q∗(x, t) = Π′q =
∑

i

χ̂i(x)M0
i (Bs∇u∗si(s, t) · n) =

∑
i

χ̂i(x)T 00(t) ∗ d(Π0u
∗)i

dt
.

�

Remark 4.2. The character of T 00(t) is easily understood from the characteriza-
tion (4.4): T 00 is monotone decreasing, unbounded at 0, and positive in the sense
pursued in [37]. Its singularity at 0 is weak in the sense that the (improper) integral∫ t

0
T 00(s)ds is finite. One can see that for small times t, the kernel T 00(t) behaves

like t−α with α = 1/2 [17]; details are provided in [42].

Remark 4.3. The assumptions (4.5) and (4.6) can be easily relaxed; the resulting
global equation has additional terms corresponding to additional tailing effects. In
addition, for each i = 1, . . . Nincl, a different kernel T 00

i is constructed.

The system (4.7) is a single integro-differential equation which is formally equiv-
alent to the coupled system (3.16). Theoretically, the kernel T 00 can be pre-
computed analytically for simple geometries [17, 42] or numerically for more general
cases [42]. This direction was also pursued in [2].

From an analytical and modeling point of view the single equation (4.7) is very
attractive. However, in a computational realization, the coupled form (3.16) may be
preferred due to the following issues. The (mild) difficulties in direct discretization
of (4.7) arise due to singularity of T 00(t) at 0. Somewhat more limiting are the
long-term memory effects which require storing all history of u∗ if (4.7) is used.
The latter can be alleviated if the history is truncated, as discussed theoretically
in [38, 44] and as is frequently done in applications [31, 32, 30].
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4.2. Memory terms from piecewise affine boundary conditions. Consider
now the model (3.16) in which we use Π1,Π′

1. We provide the calculations of
the Dirichlet-Neumann map Π1u

∗ 7→ u∗s0 7→ q0, and derive the effective model
equivalent to (3.16) in a convolution form; this “secondary diffusion” version was
considered in [20].

As in Section 4.1, we consider solutions to the cell problem

φs
∂u∗s0

∂t
−∇ · (Bs∇u∗s0) = 0, (4.11a)

u∗s0(y, 0) = u0
0, y ∈ Ω0s, (4.11b)

u∗s0(y, t) = A0
0(t) +

2∑
k=1

Ak
0(t)(y − xc

0)k, y ∈ Γ0 , (4.11c)

subject to an affine (4.11c) rather than a constant boundary condition as in (4.9c).
The coefficients A1

0(t), A2
0(t) distinguish the model (4.11) from (4.9). For these

we define additional auxiliary functions, for k = 1, 2 φs
∂rk

∂t −∇ · (Bs∇rk) = 0, y ∈ Ω0s,
rk(y, 0) = 0, y ∈ Ω0s,
rk(y, t) = (y − xc

0)k, y ∈ Γ0.

(4.12)

Lemma 4.4. Let A1
0(0) = A2

0(0) = 0 hold and let A0
0 = u0

0. Define

u∗s0(y, t) =
dA0(·)

dt
∗ r0(y, ·) + A0

0(0)r0(y, t) + u0
0(1− r0(y, t))

+
2∑

k=1

Ak(·) ∗ ∂rk

∂t
(y, ·) . y ∈ Ω0. (4.13)

Then u∗s0 solves (4.11).

Proof. The proof follows from calculations similar to those in Proposition (4.1).
We verify the additional terms coming from the last part of (4.13). In fact, by
A1

0(0) = A2
0(0) = 0 and rk(y, 0) ≡ 0 we have d

dt (A
k ∗ rk) = dAk

dt ∗ rk = Ak ∗ ∂rk

∂t for
k = 1, 2. We compute, for y ∈ Ω0s, using A0(0) = u0

0

∂u∗s0

∂t
(y, t) =

2∑
k=0

dAk

dt
(·) ∗ ∂rk

∂t
(y, ·),

Bs∇u∗s0(y, t) =
2∑

k=0

Ak(·) ∗Bs∇
∂rk(y, ·)

∂t
=

2∑
k=0

dAk

dt
(·) ∗Bs∇rk(y, ·)

= A0 ∗ ∂

∂t
Bs∇r0 − u0

0Bs∇r0 +
2∑

k=1

Ak(·) ∗Bs∇
∂rk(y, ·)

∂t
,

and immediately verify that u∗ defined by (4.13) satisfies the PDE, the boundary
and initial conditions of (4.11). �

Now we follow similar steps as in Section 4.1 to represent q∗ = Π′
1q. We use

kernels arising from various averages of rk. First, we use the averages of rate of
change in time

T k0(t) ≡ 1
|Ω0|

∫
Ω0s

φs
∂rk

∂t
(y, t) dA, k = 0, 1, 2 (4.14)
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where T 00 defined previously in (4.3) is included for completeness. Next, the kernels
T k1, T k2 arising from the first moments of rk, k = 0, 1, 2 are defined by

T kj(t) ≡ 1
|Ω0|

∫
Ω0s

φs
∂rk

∂t
(y, t)(y − (xC

0 ))j dA, j = 1, 2; k = 0, 1, 2. (4.15)

Finally, for each rk, k = 0, 1, 2 we set

Sk(t) ≡ (Sk1, Sk2) ≡
[

Sk1

Sk2

]
≡ 1
|Ω0|

∫
Ω0s

Bs∇rk(y, t) dA. (4.16)

In summary, we have defined the total of fifteen geometry-based and time-dependent
kernels: nine zero’th and first order moments T k0, T k1, T k2 of rk, k = 0, 1, 2 and six
averages Sk1, Sk2 for k = 0, 1, 2 of their gradients ∇rk. These are used to express
q∗ in the upscaled model (3.7). If (4.6) does not hold, then these kernels can be
defined separately for each i. We note that many of these kernels may vanish due
to symmetry; see Remark 4.7.

We can now represent the solution u∗si, for each i, to (3.7b) with (3.7c) and
(3.7f), as it was done in Lemma 4.4 for the solution u∗s0 to (4.11). We use boundary
conditions expressed by Ak

i , k = 0, 1, 2. Clearly Ak
i , k = 0, 1, 2 and thus u∗si vary

with i.
Next we compute q∗ = Π′

1q where q = (qi)Nincl
i=1 , qi = qi · ni = Bs∇u∗si · ni. By

Lemma 3.7, the following terms arise as in (3.27):

Π′
1q =

∑
i

χ̂i(x)Ii −∇ ·
∑

i

χ̂i(x)IIi −∇ ·
∑

i

χ̂i(x)IIIi .

Here I is a scalar and II, III ∈ R2 are vectors; we write II = (II1, II2) and
III = (III1, III2). These terms are as follows

Ii ≡ 1
|Ω0|

∫
Ωis

(∇ ·Bs∇u∗si)dA,

IIi ≡ 1
|Ω0|

∫
Ωis

(∇ ·Bs∇u∗si)(y − xC
i )dA,

IIIi ≡ 1
|Ω0s|

∫
Ωis

(Bs∇u∗si)dA.

The zero’th moments of rate of change of mass content are

Ii =
1
|Ω0|

∫
Ω0s

φs
∂u∗si

∂t
(y, t) dA =

2∑
k=0

T k0
i ∗ dAk

i

dt
(·).

Next we calculate the first moment of mass content in Ωis

IIi =
1
|Ω0|

∫
Ωis

φs
∂u∗si

∂t
(y, t)(y − xC

i ) dA

=
2∑

k=0

(
T k1

i (·) ∗ dAk
i

dt
(·), T k2

i (·) ∗ dAk
i

dt
(·)
)

.

In the last step we handle IIIi:

IIIi =
1
|Ω0|

∫
Ωis

(Bs∇u∗si(y, t)) dA =
2∑

k=0

Sk
i (·) ∗ dAk

i

dt
(·).
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Now we substitute explicitly Ak
i , k = 0, 1, 2 in (4.11c) via Π1u

∗ as in (3.7c)

A0
i (t) = (Π1u

∗)i =
1
|Ωi|

∫
Ωis

u∗(y, t) dA , (4.17)

Ak
i (t) = (Π1∂ku∗)i =

1
|Ωi|

∫
Ωis

∂ku∗(y, t) dA , k = 1, 2 (4.18)

and complete the calculation

Π′
1q =

∑
i

χ̂i(x)
2∑

k=0

T k0
i ∗ dAk

i

dt
(·)

−∇ ·
∑

i

χ̂i(x)
2∑

k=0

(T k1
i (·), T k2

i (·)) ∗ dAk
i

dt
(·)

−∇ ·

(∑
i

χ̂i(x)
2∑

k=0

Sk
i (·) ∗ dAk

i

dt
(·))

)
. (4.19)

The final step of representing Π′
1q follows after we take advantage of (4.17),(4.18),

and insert (4.19) to (3.7). This completes the proof of the next Proposition.

Proposition 4.5. Let the assumptions of Lemma 4.4 hold. Let also (4.6) hold so
we can supress the index i on each of the kernels. Then the global PDE (3.16) using
(4.19) takes the convolution form

φ∗
∂u∗(x, t)

∂t
+

Nincl∑
i=1

χ̂i(x)T 00(·)∗d(Π0u
∗(, ·))i

dt
+

Nincl∑
i=1

χ̂i(x)
2∑

k=1

T k0(·)∗d(Π0∂ku∗(·))i

dt

−∇ ·

(
Nincl∑
i=1

χ̂i(x)[T 01
i (·), T 02

i (·)]T ∗ d(Π0u
∗(·))i

dt

+
Nincl∑
i=1

χ̂i(x)
2∑

k=1

[T k1
i (·), T k2

i (·)]T ∗ d(Π0∂ku∗(·))i

dt

+
Nincl∑
i=1

χ̂i(x)[S01
i (·), S02

i (·)]T ∗ d(Π0u
∗(·))i

dt

+
Nincl∑
i=1

χ̂i(x)
2∑

k=0

[Sk1
i (·), Sk2

i (·)]T ∗ d(Π0∂ku∗(·))i

dt

)
−∇ · (B∗∇u∗(x, t)) = 0,x ∈ Ω, t > 0. (4.20)

Remark 4.6. Let Nincl be large. Then, by (3.23) we can “formally” let
χ̂i(x)(Π0∂ku∗)i → ∂ku∗(x, t), k = 0, 1, 2. Also, the weak derivative can be in-
terpreted as ∇(

∑
i χ̂i(x)(Π0u

∗)i) → ∇u∗(x, t). With these informal limits, the
structure of the limiting model is

φ∗
∂u∗

∂t
+ T 00 ∗ ∂u∗

∂t

+ (T 10, T 20) ∗ ∇∂u∗

∂t
−∇ ·

(
(T 01, T 02) ∗ ∂u∗

∂t

)
−∇ ·

(
(S01, S02) ∗ ∂u∗

∂t

)
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−∇ ·
([

T 11 T 12

T 21 T 22

]
∗ ∇∂u∗

∂t

)
−∇ ·

([
S11 S12

S21 S22

]
∗ ∇∂u∗

∂t

)
−∇ · (B∗∇u∗) = 0 (4.21)

or, after we collect like-terms

φ∗
∂u∗

∂t
+ T 00 ∗ ∂u∗

∂t
+ M ∗ ∇∂u∗

∂t
−∇ ·

(
M∗∇∂u∗

∂t

)
−∇ · (B∗∇u∗) = 0 (4.22)

where M : (0,∞) → R2,M : (0,∞) → R2×2 are time dependent vector and matrix
valued memory kernels.

Remark 4.7. Let Ωis be circular or square inclusions. Then by symmetry, the

kernels T 10, T 20, T 01, T 02, T 12, T 21, S0 vanish. In addition,
[
T 11 T 12

T 21 T 22

]
and

[S1,S2] are diagonal. Then the model (4.22) becomes the secondary diffusion model
from [19]

φ∗
∂u∗

∂t
+ T 00 ∗ ∂u∗

∂t
−∇ ·

(
M∗∇∂u∗

∂t

)
−∇ · (B∗∇u∗) = 0, (4.23)

and M is diagonal.

In many physical situations the symmetries mentioned in Remark 4.7 hold and
thereby the terms associated with M in the effective model (4.23) are most sig-
nificant at most time scales. Numerical evidence assessing practical importance of
secondary diffusion terms versus all other terms will be presented elsewhere. We
stress that such a model arises via upscaling of a self-adjoint parabolic problem. On
the other hand, in non-self adjoint problems, the terms associated with off-diagonal
kernels will not vanish. For example, problems with first order terms such as those
in advection-diffusion-dispersion problems to be discussed in Section 5, will not
simplify to (4.23).

5. Upscaling the coupled flow-advection-diffusion model

Now we return to the flow-advection-diffusion system (1.1)–(1.2), or (1.8)–(1.9).
The results in Sections 2, 3, 4, do not apply directly to (1.9) due to a) non-symmetry
due to advection, and due to b) the coupled nature of the system: the scales of
diffusion, advection, and dispersion in (1.9) are coupled to the scales of flow in
(1.8).

We first recall the results without any scaling as well as in the “obstacle” limit for
(1.8)–(1.9). Next we discuss the consequences of ε2-scaling to (1.8)–(1.9), that is,
classical double porosity approaches which correspond to using Π0, but in which the
advection and dispersion effects are lost. Then we propose the affine approximations
associated with operator Π1 instead. The final step is to represent the various
memory terms arising via a Dirichlet-to-Neumann map in convolution form as in
Section 4.

5.1. Effective coupled model by classical upscaling and obstacle limit.
The solution of the exact system (1.8) is denoted by p(x), v(x), c(x, t). Using
classical upscaling techniques these can be approximated by their local averages:
the respective upscaled functions p̃, ṽ, and c̃ satisfy the approximating upscaled
model

∇ · ṽ = 0, x ∈ Ω, (5.1a)



24 M. PESZYŃSKA, R. E. SHOWALTER EJDE-2007/147

ṽ = −K̃∇p̃, (5.1b)

in which the effective conductivity K̃ = K̃(Kf ,Ks) is given analogously to B̃ as in
(2.5). The effective ṽ is divergence-free by (5.1a) and we can use it directly in the
upscaled transport model

φ̃
∂c̃

∂t
+∇ · (ṽc̃− D̃∇c̃) = 0, x ∈ Ω, (5.1c)

where the effective constant coefficients φ̃ = φ̃(φf , φs) and D̃ = D̃(Df ,Ds) are
computed with (2.4) and (2.5a), respectively. The corresponding theoretical results
can be found in [[34], pp 8-12, 243-246], [[3], Section 2,Thm 2.2]. Discussion of first
order terms is in [[13], pp 181-185] and [[36], p 31].

As mentioned before in Section 2.2.1, this model is good only for the low contrast
case and does not capture the tailing effects associated with storage in Ωs. Therefore
we need to use the double porosity concept which is equivalent to the obstacle
problem with a memory term.

The obstacle case for the coupled system in which the blocks or inclusions are
impermeable is obtained from the preceding case by setting formally Ks = 0, φs =
0,Ds = 0, so we obtain the effective coefficients K̃0, φ̃0, D̃0, and take note that Ωf

needs to be connected. Note that the upscaled unknowns ṽ0(x), p̃0(x), c̃0(x, t) are
defined on all of Ω. They are obtained as the solution of the system

∇ · ṽ0 = 0, x ∈ Ω, (5.2a)

ṽ0 = −K̃0∇p̃0, x ∈ Ω, (5.2b)

φ̃0 ∂c̃0

∂t
+∇ · (ṽ0c̃0 − D̃0∇c̃0) = 0, x ∈ Ω, (5.2c)

with appropriate boundary and initial conditions. Discussions of this case can be
found in [[34], pp 13-16], and [[3], Thm 2.7]. Of course we hardly have Ks = 0, this
model is only auxiliary, and we are now ready to account for additional storage in
Ωs.

5.2. Effective coupled model by discrete double porosity approach. Now
we follow ideas from Section 2.2.1 and derive a general discrete upscaled model for
(1.8)–(1.9).

First we revisit the discrete double-porosity model for the flow, following Sec-
tion 3.4 and Corollary 3.10. We get the system for the flow

∇ · v∗ ≡ −Π′
(
(v∗si · ni)

Nincl
i=1

)
+∇ · v∗ = 0, (5.3a)

v∗ = −K∗∇p∗, x ∈ Ω, (5.3b)
∇ · v∗si = 0, i = 1, . . . ∈ Nincl (5.3c)

v∗si = −Ks∇p∗si, y ∈ Ωis (5.3d)
p∗si|Γi = (Π(p∗))i , (5.3e)

where this global equation is solved for p∗,v∗, and from which v∗ can be computed.
Here K∗ is computed as in the corresponding obstacle problem for which the blocks
are impermeable.

Consider first any choice of Π of Π0,Π1. Consequences of Corollary 3.10 are
that, regardless of the choice of Π, the global problem is decoupled from the local
problem on Ωis, since v∗si can be written using Ks(Π0∇p∗)i; see details below.
Note that v∗ is not necessarily divergence-free but v∗ is.
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Next we set up the upscaled version of the transport part of the system. This
follows by ∇ · v∗ = 0 and by what was said in Section 5.1. The coefficients φ∗,D∗

are defined as in the obstacle problem. The model is as follows

φ∗
∂c∗

∂t
+ q∗(x, t)−∇ · (D∗∇c∗ − v∗c) = 0, x ∈ Ω, (5.3f)

φs
∂c∗si

∂t
−∇ · (Di∇c∗si − v∗sic

∗
si) = 0, y ∈ Ωis, (5.3g)

c∗si|Γi
= (Πc∗)i. (5.3h)

It remains to make a selection of Π simultaneously in the flow and in the trans-
port parts.

5.2.1. Case of constant approximations. Notice that with the choice Π = Π0 in the
flow equations (5.3), the advection terms on Ωis drop out by virtue of v∗si(x) = 0
as in Corollary 3.10. Then v∗ = v∗ and is divergence-free. Next, by v∗si(x) = 0
and (1.3), neither advection nor dispersion effects can be captured.

We have the self-adjoint discrete upscaled transport system .

φ∗
∂c∗

∂t
+ q∗(x, t)−∇ · (D∗∇c∗ − v∗c∗) = 0, x ∈ Ω, (5.4a)

φi
∂c∗si

∂t
−∇ · (Di∇c∗si) = 0, x ∈ Ωis (5.4b)

c∗si|Γi
= (Π0c

∗)i (5.4c)

where the memory term is given by

q∗(x, t) = Π′
0((Di∇c∗si(s, t) · n)Nincl

i=1 ). (5.4d)

In this model one captures tailing effects due to diffusion at disparate time scales
but not to advection or dispersion. Advection terms are lost in the cell problem;
they only appear in the global problem.

Such a model was considered in [2] and in the context of thermal flow in [41, 43],
also in [57, 27]. It is interesting to note that the term q∗ could play the role of a
regularizing term for large Péclet numbers in the global equation even though it is
hard to see how this could be consistent with the absence of advection in (5.4b).

5.2.2. Case of affine approximations. Now we use Π1 in both the flow part and in
transport part; this will keep the advective velocities v∗si from vanishing,

The effect of Π1 on the elliptic part (5.3) was explained in Corollary 3.10. We
can rewrite the system (5.3) using a coefficient K∗ = K∗ + θsKs

∇ · v∗ = 0, x ∈ Ω (5.5a)

v∗ = −K∗∇p∗, (5.5b)
∇ · v∗si = 0, y ∈ Ωis, i = 1, . . . ∈ Nincl (5.5c)

v∗si = −Ks∇p∗si, y ∈ Ωis (5.5d)
p∗si|∂Ω0s = (Π1(p∗))i (5.5e)

Note that v∗ is divergence-free. Also, we find that v∗si = −Ks∇p∗si, is constant on
each Ωis. In fact it is given by

v∗si = −Ks(Π0∇p∗)i = Ks(K∗)−1(Π0v∗)i (5.6)

In summary, we solve (5.5a), (5.5b) and then calculate the local velocity by (5.6).
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We can now compute Di from (1.3) using the (constant in y) value of v∗si. In
particular, Di may be non-isotropic and non-diagonal. Also, it is expected that in
general, v∗si will vary with i. However, in the case considered in [57], the values v∗

are essentially constant with x and, hence, v∗si,Di do not vary with i.
The upscaled transport system with Π1 follows as in Corollary 3.8

φ∗
∂c∗

∂t
+ q∗(x, t)−∇ · (D∗∇c∗ − v∗c∗) = 0, x ∈ Ω, (5.7a)

φi
∂c∗si

∂t
−∇ · (Di∇c∗si − v∗sic

∗
si) = 0, x ∈ Ωi, (5.7b)

c∗si|Γi = Π1(c∗(x, t)), (5.7c)

with the memory term

q∗(x, t) = Π′
1((Di∇c∗si(s, t)− v∗si(x)c∗si(s, t)) · n)Nincl

i=1 , x ∈ Ω . (5.7d)

It was observed in Corollary 3.10 and [8] that across each block boundary
∫
Γi

v∗si ·
n = 0. Hence, parts of the advective flux

∫
Γi

(Π0c
∗
s)iv∗si · n vanish. However, not

all advective contributions to q∗ are zero, unless, as in [24], the flow equations are
upscaled with different operators than transport.

5.3. Convolution form of (5.4) and (5.7). Now we rewrite (5.4) and (5.7) using
the representations derived in Section 4. This allows to partially decouple the
system that is, to see the global transport equations (5.4a), (5.7a) written in terms
of their global unknowns c∗ only.

We assume for simplicity that there is an initial equilibrium in the system so
that a counterpart of (4.5) holds. We also assume that the kernels defined in (4.3),
(4.14), (4.15), (4.16) do not vary with i.

First we rewrite (5.4a). It is not difficult to see, following the proof of Propo-
sition 4.1 and noting that v∗si = 0, that in order to rewrite (5.4) in a partially
decoupled form, we merely need the definitions leading to the standard double
porosity model (3.16a) to which an advective term ∇· (v∗c∗) is added. Predictably,
it has the form

φ∗
∂c∗

∂t
+
∑

i

χ̂i(x)T 00(t) ∗ d(Π0c
∗)i

dt
− ∇ · (D∗∇c∗ − v∗c∗) = 0, x ∈ Ω. (5.8)

Next we handle (5.7) which is of major interest in this paper, as it preserves
the advection and dispersion effects. We assume again initial equilibrium so that a
counterpart of (4.5) holds.

Immediately we see that the generic solutions rk, k = 0, 1, 2 to problems (4.1),
(4.12) do not account for advection and cannot be used directly. Also, in general
v∗si will change with i. Hence we modify (4.1) appropriately as follows, for every
i = 1, . . . Nincl φs

∂r0
i

∂t −∇ · (Di∇r0
i − v∗sir

0
i ) = 0, y ∈ Ωis ,

r0
i (y, 0) = 0, y ∈ Ωis ,

r0
i (y, t) = 1, y ∈ Γi .

(5.9)

We also modify (4.12) analogously, for i = 1, . . . Nincl, k = 1, 2 φs
∂rk

i

∂t −∇ · (Di∇rk
i − v∗sir

0
i ) = 0, y ∈ Ωis ,

rk
i (y, 0) = 0, y ∈ Ωis ,

rk
i (y, t) = (y − xc

0)k, y ∈ Γi .

(5.10)
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Now we propose to use the definitions (4.3), (4.14), (4.15) where r0, r1, r2 are defined
by (5.9), (5.10), and allow for their variability with i. Also, we modify (4.16) to
include the total advective-diffusive flux Di∇rk

i − v∗sir
k
i . This is done as follows:

Sk
i (t) ≡ 1

|Ωi|

∫
Ωis

(
Di∇rk

i (y, t)− v∗sir
k
i (y, t)

)
dA. (5.11)

Finally we follow calculations similar to those in Section 4.2 to obtain the final
result, the global upscaled discrete double-porosity model. Its structure differs from
the one derived in Proposition 4.5 and (4.20) by the presence of the advection term
∇ · (v∗c∗) and by the dependence of kernels on i.

Proposition 5.1. The global transport equation of the discrete upscaled double-
porosity model using affine approximations is given by

φ∗
∂c∗(x, t)

∂t
+

Nincl∑
i=1

χ̂i(x)T 00
i (·) ∗ d(Π0c

∗(, ·))i

dt

+
Nincl∑
i=1

χ̂i(x)
2∑

k=1

T k0
i (·) ∗ d(Π0∂kc∗(·))i

dt

−∇ ·

(
Nincl∑
i=1

χ̂i(x)[T 01
i (·), T 02

i (·)]T ∗ d(Π0c
∗(·))i

dt

+
Nincl∑
i=1

χ̂i(x)
2∑

k=1

[T k1
i (·), T k2

i (·)]T ∗ d(Π0∂kc∗(·))i

dt

+
Nincl∑
i=1

χ̂i(x)[S01
i (·), S02

i (·)]T ∗ d(Π0c
∗(·))i

dt

+
Nincl∑
i=1

χ̂i(x)
2∑

k=0

[Sk1
i (·), Sk2

i (·)]T ∗ d(Π0∂kc∗(·))i

dt

)
−∇ · (D∗∇c∗(x, t)− v∗c∗) = 0,x ∈ Ω, t > 0. (5.12)

This is a central result of this work.
We conclude with an analogue of Remark 4.6.

Remark 5.2. Let Nincl be large and let us supress the dependence of the kernels
on i. The formal limit of (5.12) in the sense pursued in Remark 4.6 is

φ∗
∂c∗

∂t
+ T 00 ∗ ∂c∗

∂t
+M ∗∇∂c∗

∂t
−∇ ·

(
M∗∇∂c∗

∂t

)
−∇ · (D∗∇c∗ − v∗c∗) = 0

(5.13)

where M,M have the meaning defined in Remark 4.6.

The natural question that arises is one of quantitative significance of the terms
associated with T 00,M,M. Recall Remark 4.7 for the symmetric case. Numerical
results and further discussion of these issues will be presented elsewhere.

Further work includes construction of an ε−model to display the upscaled model
as a limit by homogenization rather than as a limit of the discrete upscaled model
presented here.
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