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A DOUBLE EIGENVALUE PROBLEM FOR SCHRÖDINGER
EQUATIONS INVOLVING SUBLINEAR NONLINEARITIES AT

INFINITY

ALEXANDRU KRISTÁLY

Abstract. We present some multiplicity results concerning parameterized

Schrödinger type equations which involve nonlinearities with sublinear growth

at infinity. Some stability properties of solutions with respect to the parame-
ters are also established in an appropriate Sobolev space.

1. Introduction

Let f : RN × R → R be a continuous function, V : RN → R be a positive
potential, and consider the problem

−∆u + V (x)u = f(x, u), x ∈ RN , u ∈ H1(RN ). (1.1)

The study of this problem is motivated by mathematical physics; it is well-known
that certain kinds of solitary waves in nonlinear Klein-Gordon or Schrödinger equa-
tions are solutions of (1.1), see Rabinowitz [16], Strauss [21]. Due to its importance,
many papers are concerned with the existence and multiplicity of solutions of (1.1);
without seek of completeness, we refer the reader to the works of Bartsch-Wang
[4, 5], Strauss [21], Willem [23]; for a non-smooth approach, where f is allowed to
be discontinuous, see Gazzola-Rădulescu [9]. The aforementioned papers have two
common features: the nonlinearity s 7→ f(x, s) is subcritical and superlinear at
infinity. To be more precise, most of the authors use the well-known Ambrosetti-
Rabinowitz type condition:

(AR) There is a η > 1 such that

0 < (η + 1)F (x, s) ≤ f(x, s)s for each x ∈ RN , s ∈ R \ {0},
where F (x, s) =

∫ s

0
f(x, t)dt.

As we know, this condition implies the superlinearity of the function s 7→ f(x, s)
at infinity, i.e., there exist some numbers C > 0, s0 > 0 such that

|f(x, s)| ≥ C|s|η for each x ∈ RN , |s| ≥ s0.

The main objective of this paper is to consider (1.1) when s 7→ f(x, s) has a
sublinear growth at infinity. More precisely, we assume that
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(F1) There exist W ∈ L1(RN ) ∩ L∞(RN ), W 6≡ 0, and q ∈ (0, 1) such that

|f(x, s)| ≤ W (x)|s|q for each (x, s) ∈ RN × R.

In such a case the energy functional associated with (1.1) is coercive and bounded
from below; thus the existence of at least one solution is always expected. However,
one may happen that (1.1) has only the trivial solution, even if the nonlinearity
fulfills (F1). Indeed, if we consider for instance V = 1, f(x, s) = λW (x) sin2 s
with W 6≡ 0 as above, and 0 < λ < (2‖W‖L∞)−1, then (1.1) has only the trivial
solution. Thus, this fact motivates the study of an eigenvalue problem rather than
problem (1.1). On account of this statement, we shall investigate the following
general double eigenvalue problem

−∆u + V (x)u = λ(f(x, u) + µg(x, u)), x ∈ RN , u ∈ H1(RN ), (1.2)

where the functions f, g : RN ×R → R are continuous functions verifying the above
sublinearity hypothesis, while λ, µ ∈ R are some parameters. Briefly speaking -
under further assumptions on V , f and g, which will be specified later - our main
results can be formulated as follows:

If we fix µ ∈ R (resp. λ ∈ R) of certain range, we guarantee
the existence of a non-degenerate interval Λµ ⊂ R (resp. Πλ ⊂ R)
such that (1.2) has at least two nontrivial, weak solutions whenever
λ ∈ Λµ (resp. µ ∈ Πλ).

Before stating our results precisely, we mention that the potential V : RN → R
also has an important role concerning the existence and behaviour of solutions of
(1.2). When V (x) is a positive constant, or V is radially symmetric, it is natural to
look for radially symmetric solutions of (1.2), see e.g., [11, 21, 23]. Motivated by
the work of Rabinowitz [16] (where V ∈ C(RN , R), infRN V > 0, and V (x) → +∞
as |x| → +∞), Bartsch-Wang [5] considered a new class of potentials, namely:

(BW) V ∈ C(RN , R) satisfies infRN V > 0, and for any M > 0,

µ({x ∈ RN : V (x) ≤ M}) < +∞,

where µ denotes the Lebesgue measure in RN .

Under (BW), Bartsch-Wang [5] proved the existence of infinitely many solutions of
(1.2) (for any fixed λ > 0) when f is subcritical, odd and verifies (AR). Furtado-
Maia-Silva [8] studied (1.2) in the case when F (defined in (AR)) has some sort of
resonance with a local nonquadraticity condition at infinity, while the potential V
verifies (BW). Gazzola-Rădulescu [9] studied (1.2) when V verifies (BW), f is not
necessarily continuous and satisfies an appropriate non-smooth (AR) condition.

For the rest of this paper, we will assume that the potential V satisfies:

(V1) V ∈ L∞loc(RN ), essinfRN V > 0; and

(V2) One of the following conditions is satisfied:
(V2A) N ≥ 2 and V : RN → R is radially symmetric;
(V2B) For any M > 0 and any r > 0 there holds:

µ({x ∈ B(y, r) : V (x) ≤ M}) → 0 as |y| → +∞,

where B(y, r) denotes the open ball in RN with center y and radius
r > 0.
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Note that hypotheses (V1)–(V2B) are weaker conditions than (BW), see Bartsch-
Pankov-Wang [3]. Requiring (V1)–(V2B), Bartsch-Liu-Weth [2] proved recently
the existence of three solutions of (1.2) for any fixed λ > 0, with f subcritical and
verifying (AR).

Problems involving only sublinear terms (in certain papers this type of problem
is referred to one involving pure concave nonlinearities) have been also studied by
several authors, see for instance Yu [24], Chabrowski-doÓ [7]. Recently, Ricceri
[18], [19] established a new variational principle, ensuring the existence of at least
three distinct critical points of a coercive functional acting on a reflexive Banach
space. By means of Ricceri’s principle, several nonlinear elliptic eigenvalue problems
have been treated (involving only concave nonlinearities), see for instance Ricceri
[19], [20], Motreanu-Marano [12] (on bounded domains); Kristály [10] (on strip-like
domains). By using a version of the Mountain Pass theorem, Marano-Motreanu
[13] established a counterpart of the main result of [18]. Other multiplicity results
for elliptic eigenvalue problems involving pure concave nonlinearities on bounded
domains can be found in Perera [15] (three or four nontrivial solutions), as well
as in Ambrosetti-Badiale [1] and Wang [22] where infinitely many solutions are
obtained, assuming the oddness of the involved nonlinearities.

In the next section we will give the precise form of our main results; Section 3
contains some auxiliary result while in Sections 4 and 5 we prove our results.

2. Main results and remarks

In view of (V1), we introduce the Hilbert space

E =
{
u ∈ H1(RN ) :

∫
RN

V (x)u2 < +∞
}

which will be endowed with the inner product

(u, v)E =
∫

RN

(∇u∇v + V (x)uv) u, v ∈ E,

and with the induced norm ‖ · ‖E . Note that solutions of (1.2) are being sought in
E which can be continuously embedded into Lp(RN ) whenever 2 ≤ p < 2∗. Here,
2∗ denotes the critical Sobolev exponent, i.e., 2∗ = 2N/(N − 2) for N ≥ 3 and
2∗ = +∞ for N = 1, 2.

Let f, g : RN ×R → R be two continuous functions and let F (x, s) =
∫ s

0
f(x, t)dt

and G(x, s) =
∫ s

0
g(x, t)dt, respectively. We assume:

(FG1) There exist W ∈ L1(RN ) ∩ L∞(RN ), W 6≡ 0, and q ∈ (0, 1) such that

max{|f(x, s)|, |g(x, s)|} ≤ W (x)|s|q for each (x, s) ∈ RN × R.

(FG2) lims→0
f(x,s)

s = lims→0
g(x,s)

s = 0 uniformly for each x ∈ RN .
(FG3) f(·, s) and g(·, s) are radially symmetric functions for each s ∈ R.

(F4) There exist R0 > 0 and s0 ∈ R such that min|x|≤R0 F (x, s0) > 0.

We introduce the functions F ,G : E → R, defined by

F(u) =
∫

RN

F (x, u(x))dx, G(u) =
∫

RN

G(x, u(x))dx.

A standard argument, which is based on the facts that W ∈ L1(RN ) ∩ L∞(RN ),
f, g satisfy (FG1), and the embedding E ↪→ Lp(RN ) is continuous (2 ≤ p < 2∗),
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show that the functionals F ,G : E → R are well defined, are of class C1, and

F ′(u)(v) =
∫

RN

f(x, u(x))v(x)dx, G′(u)(v) =
∫

RN

g(x, u(x))v(x)dx (2.1)

for each u, v ∈ E (see, for instance [23, Lemma 3.10]). Finally, let Hλ,µ : E → R
be the energy functional associated to (1.2), defined by

Hλ,µ(u) =
1
2
‖u‖2E − λF(u)− λµG(u).

Our results can be stated as follows.

Theorem 2.1. Let f, g : RN×R → R be two continuous functions and V : RN → R
be a potential which satisfy (FG1)–(FG2), (F4), and (V1)–(V2), respectively. As-
sume moreover that (FG3) is verified whenever (V2A) holds. Then, there exists
µ0 > 0 such that to every µ ∈ [−µ0, µ0] it corresponds a nonempty open inter-
val Λµ ⊂ (0,∞) and a number σµ > 0 for which (1.2) has at least two distinct,
nontrivial weak solutions vλµ and wλµ with the property that

max{‖vλµ‖E , ‖wλµ‖E} ≤ σµ

whenever λ ∈ Λµ. Moreover, vλµ and wλµ are radially symmetric whenever (V2A)
holds.

From the point of view of the eigenvalues, the counterpart of Theorem 2.1 is the
following:

Theorem 2.2. Under the assumptions of Theorem 2.1, there exists λ0 > 0 such
that to every λ ∈ (λ0,∞) it corresponds a nonempty open interval Πλ ⊂ R and a
number σλ > 0 for which (1.2) has at least two distinct, nontrivial weak solutions
vλµ and wλµ with Hλ,µ(vλµ) < 0 < Hλ,µ(wλµ) and max{‖vλµ‖E , ‖wλµ‖E} ≤ σλ

whenever µ ∈ Πλ. Moreover, vλµ and wλµ are radially symmetric whenever (V2A)
holds.

Although the two theorems above are completely independent, as a simple by-
product of Theorem 2.2 we obtain the following result whose conclusion partially
goes back to Theorem 2.1.

Theorem 2.3. Under the assumptions of Theorem 2.1, there exists µ > 0 such
that for every µ ∈ [−µ, µ] the set

{λ > 0 : (1.2) has at least two distinct, nontrivial weak solutions}

contains an interval.

Our approach is variational. In the proof of Theorem 2.1 we use a recent abstract
critical point result of Ricceri [18] while the proof of Theorem 2.2 is based on the
well-known Mountain Pass theorem. We mention that Theorems 2.1-2.3 extend
[18, Theorem 1.1] and [13, Theorem 1] to the whole RN , respectively. Now, we will
conclude this section with some remarks.

Remark 2.4. (a) If we omit (F4) in the above results, then we may assume f =
g = 0, thus (1.2) has only the trivial solution.
(b) The above theorems do not work in general for every µ ∈ R. Indeed, if one
consider a function f which verifies the hypotheses of our results, and we set g = −f ,
then for µ = 1, the problem (1.2) has only the trivial solution.
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(c) The above theorems do not work in general for every λ ∈ R (see also the
Introduction). To see this, consider the nonlinearities f(x, s) = W (x)h(s) and
g(x, s) = W (x)k(s) which fulfill the hypotheses of the above theorems where W :
RN → R is from (FG1), while h and k are Lipschitz continuous functions with
Lipschitz constants Lh > 0 and Lk > 0, respectively. For instance, one can consider
W (x) = (1+|x|α)−β with α, β > 0 such that αβ > N ≥ 3, and h(s) = sin2 s, k(s) =
arctan2 s. Fix µ ∈ R arbitrarily. Then, if 0 < λ < (‖W‖L∞)−1(Lh + |µ|Lk)−1, the
problem (1.2) has only the zero solution. Indeed, let us observe the critical points
of Hλ,µ are precisely the fixed points of the operator Aλ,µ = λ(F ′ + µG′). Since
Aλ,µ is a contraction for λ′s specified above, then Aλ,µ has a unique fixed point.
Since Aλ,µ(0) = 0 (due to (FG1)), then 0 will be the unique solution of (1.2).

For the rest of this article, we suppose that assumptions of Theorem 2.1 are
fulfilled.

3. Auxiliary results

Lemma 3.1. Let p ∈ (2, 2∗). For each ε > 0 there is c(ε) > 0 such that
(i) max{|f(x, s)|, |g(x, s)|} ≤ ε|s|+ c(ε)|s|p−1 for every (x, s) ∈ RN × R;
(ii) max{|F (x, s)|, |G(x, s)|} ≤ εs2 + c(ε)|s|p for every (x, s) ∈ RN × R.

Proof. Taking into account (FG1), (FG2) and the facts that W ∈ L∞(RN ), and
q + 1 < 2 < p, the claims easily follow. �

Due to this result, one can show in a standard way (see for instance [23, Lemma
3.10]) that the energy functional Hλ,µ : E → R is well-defined and of class C1.
Moreover,

H′
λ,µ(u)(v) = (u, v)E − λ

∫
RN

f(x, u)v − λµ

∫
RN

g(x, u)v, ∀u, v ∈ E,

thus the critical points of Hλ,µ are exactly the weak solutions of (1.2).
The embedding H1(RN ) ↪→ Lp(RN ) is not compact for any p ∈ [2, 2∗]. However,

when (V1)-(V2B) hold, the embedding E ↪→ Lp(RN ) is compact when 2 ≤ p <
2∗, cf. Bartsch-Pankov-Wang [3]. On the other hand, when (V1)-(V2A) hold, in
general, the space E cannot be compactly embedded into Lp(RN ). In this case,
introducing the subspace of radially symmetric functions of E, i.e.

Er = {u ∈ E : u(gx) = u(x) for each g ∈ O(N), a.e. x ∈ RN},
the embedding Er ↪→ Lp(RN ) is compact whenever N ≥ 2 and 2 < p < 2∗, cf.
Strauss [21]. Taking into account (FG3), the functional Hλ,µ is O(N)-invariant,
thus the critical points of the functional Hλ,µ restricted to the space Er, i.e.
Hr

λ,µ = Hλ,µ|Er
, are critical points of Hλ,µ, cf. Palais [14]. In order to consider

simultaneously the two cases, we introduce some new notations. Let

X =

{
Er, if (V2A) holds,
E, if (V2B) holds,

and Eλ,µ =

{
Hr

λ,µ, if (V2A) holds,
Hλ,µ, if (V2B) holds.

On account of these notation, it is sufficient to find critical points of Eλ,µ on X.
We further denote by (·, ·)X , ‖ · ‖X , FX , and GX , the restriction of (·, ·)E , ‖ · ‖E ,
F , and G to the space X, respectively.

In the sequel, we denote by Sp > 0 the best Sobolev embedding constant of
X ↪→ Lp(RN ), p ∈ [2, 2∗). The usual norm on Lp(RN ) is ‖ · ‖p, p ∈ [1,∞].
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Lemma 3.2. There exists u0 ∈ X such that FX(u0) > 0.

Proof. Let R0 > 0 and s0 ∈ R from (F4) and fix ε ∈ (0, R0/2). Fix also a radially
symmetric function uε ∈ C∞(RN ) such that uε(x) = 0 for |x| ≥ R0, uε(x) = s0

for |x| ≤ R0 − ε, and ‖uε‖∞ ≤ |s0|. Due to (V1), uε belongs to X in both cases,
i.e. either (V2A) or (V2B) hold. Denoting by A0 = min|x|≤R0 F (x, s0) > 0 and by
Vol(Br) the volume of the ball B(0, r), we have

FX(uε) =
∫
|x|≤R0−ε

F (x, uε(x)) +
∫
|x|≥R0

F (x, uε(x)) +
∫

R0−ε<|x|<R0

F (x, uε(x))

≥ A0 Vol(BR0/2)−
∫

R0−ε<|x|<R0

|F (x, uε(x))|

≥ A0 Vol(BR0/2)− max
|x|∈[R0/2,R0] ,|s|≤|s0|

|F (x, s)|(Vol(BR0)−Vol(BR0−ε)).

If ε → 0+, the last term of the above expression becomes as small as we want.
Thus, setting ε = ε0 small enough, u0 = uε0 ∈ X verifies the requirement. �

Lemma 3.3. Let λ, µ ∈ R be arbitrary fixed. Then every bounded sequence {un} ⊂
X such that ‖E ′λ,µ(un)‖X∗ → 0, contains a strongly convergent subsequence.

Proof. Taking a subsequence if necessary, we may assume that {un} converges to
u, weakly in X, and strongly in Lp(RN ) for some p ∈ (2, 2∗) arbitrarily fixed.
Therefore,

‖u− un‖2X = (u, u− un)X + E ′λ,µ(un)(un − u)

− λ

∫
RN

f(x, un)(u− un)− λµ

∫
RN

g(x, un)(u− un)

≤ (u, u− un)X + ‖E ′λ,µ(un)‖X∗‖un − u‖X

+ |λ|(1 + |µ|)‖W‖p/(p−q−1)‖un‖q
p‖u− un‖p.

Thus, ‖u− un‖X → 0 as n →∞. �

Lemma 3.4. For every λ, µ ∈ R, Eλ,µ is coercive and bounded from below on X.
In particular, Eλ,µ satisfies the Palais-Smale condition.

Proof. By (FG1) we have for every u ∈ X that

Eλ,µ(u) ≥ 1
2
‖u‖2X − |λ|(1 + |µ|)‖W‖2/(1−q)S

q+1
2 ‖u‖q+1

X . (3.1)

Since q < 1, the first assertion holds. Now, consider a sequence {un} ⊂ X such that
{Eλ,µ(un)} is bounded and ‖E ′λ,µ(un)‖X∗ → 0 as n →∞. In particular, {un} ⊂ X
is bounded. On account of Lemma 3.3, Eλ,µ satisfies the Palais-Smale condition. �

4. Proof of Theorem 2.1

Lemma 4.1. For every µ ∈ R,

lim
ρ→0+

sup{FX(u) + µGX(u) : ‖u‖X <
√

2ρ}
ρ

= 0.

Proof. Fix arbitrarily ε > 0 and p ∈ (2, 2∗). Due to Lemma 3.1, for every u ∈ X,
one has

FX(u) + µGX(u) ≤ (1 + |µ|)(εS2
2‖u‖2X + c(ε)Sp

p‖u‖
p
X).
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Therefore, for every ρ > 0,

0 ≤ sup{FX(u) + µGX(u) : ‖u‖X <
√

2ρ}
ρ

≤ (1 + |µ|)(2εS2
2 + c(ε)2

p
2 Sp

pρ
p
2−1).

When ρ → 0+, the right hand side of the above inequality tends to 0, due to the
arbitrariness of ε > 0, which concludes the proof. �

Lemma 4.2. For every λ, µ ∈ R, the functional Eλ,µ is sequentially weakly lower
semicontinuous.

Proof. Since the function u 7→ ‖u‖2X is sequentially weakly lower semicontinuous, it
is enough to prove that FX +µGX is sequentially weakly continuous for every µ ∈ R.
Let us assume the contrary, i.e., let {un} be a sequence in X which converges weakly
to u ∈ X and the sequence {(FX +µGX)(un)} does not converge to (FX +µGX)(u)
as n →∞. Therefore, there exist ε0 > 0 and a subsequence of {un}, denoted again
by {un}, such that

0 < ε0 ≤ |(FX + µGX)(un)− (FX + µGX)(u)|
for every n ∈ N, and un → u strongly in Lp(RN ) for some p ∈ (2, 2∗). (Note that
the embedding X ↪→ Lp(RN ) is compact.) By the mean value theorem, (2.1) and
(FG1), for some θn ∈ (0, 1), the above inequality gives

0 < ε0 ≤ |(F ′
X + +µG′X)(u + θn(un − u))(un − u)|

≤ (1 + |µ|)
∫

RN

W (x)|u + θn(un − u)|q|un − u|

≤ (1 + |µ|)‖W‖p/(p−q−1)(‖u‖p + ‖un − u‖p)q‖un − u‖p.

The last term tends to 0, which is a contradiction. �

The main ingredient in the proof of Theorem 2.1 is a Ricceri-type critical point
theorem, see Ricceri [18, 19]. Here, we recall a refinement of this result, established
by Bonanno [6].

Theorem 4.3. Let Y be a separable and reflexive real Banach space, and let Φ, J :
Y → R be two continuously Gâteaux differentiable functionals. Assume that there
exists x0 ∈ Y such that Φ(x0) = J(x0) = 0 and Φ(x) ≥ 0 for every x ∈ Y and that
there exists x1 ∈ Y , ρ > 0 such that

(i) ρ < Φ(x1) and supΦ(x)<ρ J(x) < ρ J(x1)
Φ(x1)

. Further, put

a =
ζρ

ρ J(x1)
Φ(x1)

− supΦ(x)<ρ J(x)
,

with ζ > 1, assume that the functional Φ− λJ is sequentially weakly lower
semicontinuous, satisfies the Palais-Smale condition; and

(ii) lim‖x‖→+∞(Φ(x)− λJ(x)) = +∞, for every λ ∈ [0, a].
Then there is an open interval Λ ⊂ [0, a] and a number σ > 0 such that for each
λ ∈ Λ, the equation Φ′(x)−λJ ′(x) = 0 admits at least three distinct solutions in Y
having norm less than σ.

Proof of Theorem 2.1. Let u0 ∈ X the element from Lemma 3.2, and fix

µ0 =
FX(u0)

|GX(u0)|+ 1
.



8 A. KRISTÁLY EJDE-2007/42

Now, we apply Theorem 4.3 by choosing Y = X, Φ = 1
2‖ · ‖

2
X , and J = Jµ =

FX + µGX for µ ∈ [−µ0, µ0]. Note that Eλ,µ = Φ− λJµ.
A simple calculation shows that for every µ ∈ [−µ0, µ0] we have

Jµ(u0) = FX(u0) + µGX(u0) ≥ µ0 > 0. (4.1)

On account of the above inequality and Lemma 4.1, for every µ ∈ [−µ0, µ0] one can
choose ρµ > 0 so small that

ρµ < min{1,
‖u0‖2X

2
}; (4.2)

sup{Jµ(u) : ‖u‖X <
√

2ρµ}
ρµ

<
Jµ(u0)
‖u0‖2X

. (4.3)

Now, choosing x1 = u0, x0 = 0, ζ = 1 + ρµ and

a = aµ =
1 + ρµ

2Jµ(u0)‖u0‖−2
X − sup{Jµ(u) : ‖u‖X <

√
2ρµ}ρ−1

µ

,

all the assumptions of Theorem 4.3 are verified, cf. Lemmas 4.2 and 3.4, respec-
tively.

Then there is an open interval Λµ ⊂ [0, aµ] and a number σµ > 0 such that for
any λ ∈ Λµ, the functional Eλ,µ = Φ − λJµ admits at least three distinct critical
points ui

λ,µ ∈ X (i ∈ {1, 2, 3}), having norm less than σµ, concluding the proof of
Theorem 2.1. �

Remark 4.4. On account of (4.2), (4.3) and (4.1), for every µ ∈ [−µ0, µ0] one has

aµ <
2‖u0‖2X
Jµ(u0)

≤ 2‖u0‖2X
µ0

=
2‖u0‖2X
FX(u0)

(1 + |GX(u0)|).

Since the right hand side does not depend on µ ∈ R, we have a uniform estimation
of Λµ, i.e., for every µ ∈ [−µ0, µ0],

Λµ ⊂ [0,
2‖u0‖2X
FX(u0)

(1 + |GX(u0)|)].

5. Proof of Theorems 2.2 and 2.3

Let us define

cG =
∫

RN

|G(x, u0(x))|dx and λ0 =
‖u0‖2X

2FX(u0)
,

where u0 ∈ X is from Lemma 3.2. For every λ > λ0 set finally

µ∗λ =
1

1 + cG

(
1− λ0

λ

)
FX(u0). (5.1)

Lemma 5.1. Let λ > λ0 and |µ| < µ∗λ. Then infu∈X Eλ,µ(u) < 0.

Proof. It is sufficient to show that Eλ,µ(u0) < 0 whenever λ > λ0 and |µ| < µ∗λ.
Due to the choice of λ0 and µ∗λ, one has

Eλ,µ(u0) =
1
2
‖u0‖2X − λFX(u0)− λµGX(u0)

≤ (λ0 − λ)FX(u0) + λ|µ|cG
= −λ(1 + cG)µ∗λ + λ|µ|cG < 0.

�
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Lemma 5.2. For every λ > λ0 and µ ∈ R which complies with |µ| < µ∗λ, the
functional Eλ,µ has the Mountain Pass geometry.

Proof. Fix p ∈ (2, 2∗) arbitrary. By Lemma 3.1 one has for every ε > 0 that there
exists c(ε) > 0 such that

max{|FX(u)|, |GX(u)|} ≤ εS2
2‖u‖2X + c(ε)Sp

p‖u‖
p
X for every u ∈ X.

Thus, for every u ∈ X one has

Eλ,µ(u) ≥ 1
2
‖u‖2X − λ|FX(u)| − λ|µ||GX(u)|

≥
(1

2
− λ(1 + |µ|)εS2

2

)
‖u‖2X − λ(1 + |µ|)c(ε)Sp

p‖u‖
p
X .

Let ε = (4λ(1 + |µ|)S2
2)−1. Then

Eλ,µ(u) ≥
(1

4
− λ(1 + |µ|)c(λ, µ)Sp

pρp−2
)
ρ2 ≡ η(λ, µ) > 0

if ‖u‖X = ρ < min{(4λ(1 + |µ|)c(λ, µ)Sp
p)

1
2−p , ‖u0‖X}. Moreover, by construction,

ρ < ‖u0‖X and by the proof of Lemma 5.1 we have Eλ,µ(u0) < 0. Thus, Eλ,µ has
indeed the Mountain Pass geometry. �

Proof of Theorem 2.2. Fix λ > λ0 and µ ∈ (−µ∗λ, µ∗λ) ≡ Πλ. Lemma 3.4 en-
sures in particular that there exists an element vλµ ∈ X such that Eλ,µ(vλµ) =
infu∈X) Eλ,µ(u). By using Lemma 5.1, Eλ,µ(vλµ) < 0.

On the other hand, by Lemma 5.2, we find wλµ ∈ X such that E ′λ,µ(wλµ) = 0
and Eλ,µ(wλµ) ≥ η(λ, µ) > 0 (see for instance [17, Theorem 2.2]). The mountain
pass level Eλ,µ(wλµ) is characterized as

Eλ,µ(wλµ) = inf
g∈Γ

max
t∈[0,1]

Eλ,µ(g(t)), (5.2)

where Γ = {g ∈ C([0, 1];X) : g(0) = 0, g(1) = u0}. Let g0 : [0, 1] → X, defined by
g0(t) = tu0. Since g0 ∈ Γ, by using (5.2), one has for every µ ∈ Πλ

Eλ,µ(wλµ) ≤ max
t∈[0,1]

Eλ,µ(tu0)

≤ 1
2
‖u0‖2X + λ max

t∈[0,1]
(|FX(tu0)|+ µ∗λ|GX(tu0)|) ≡ Cλ.

By using (3.1), for every µ ∈ Πλ we have

‖wλµ‖2X ≤ 2λ(1 + µ∗λ)‖W‖2/(1−q)S
q+1
2 ‖wλµ‖q+1

X + 2Cλ.

Since q + 1 < 2 we have at once that there exits a number σ1
λ > 0 such that

‖wλµ‖X ≤ σ1
λ for every µ ∈ Πλ. Moreover, since Eλ,µ(vλµ) < 0 for every µ ∈ Πλ,

a similar argument as above (put formally Cλ = 0) shows the existence of σ2
λ > 0

such that ‖vλµ‖X ≤ σ2
λ for every µ ∈ Πλ. Thus, letting σλ = max{σ1

λ, σ2
λ}, the

proof is completed. �

Remark 5.3. On account of (5.1), for every λ > λ0 one has

µ∗λ <
FX(u0)
1 + cG

.
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Since the right hand side does not depend on λ ∈ R, we have a uniform estimation
of Πλ, i.e., for every λ > λ0,

Πλ ⊂
[
− FX(u0)

1 + cG
,
FX(u0)
1 + cG

]
.

Proof of Theorem 2.3. Let us fix λ > λ0, γ ∈ (0, λ− λ0) and define

µ = µ∗
λ+γ

λ− λ0 − γ

λ− λ0 + γ
,

where µ∗(·) is defined in (5.1).
Now, fix µ ∈ R such that |µ| ≤ µ. It is easy to verify that the inequality µ < µ∗λ

holds for every λ ∈ (λ − γ, λ + γ); thus, for every λ ∈ (λ − γ, λ + γ) one has µ ∈
(−µ∗λ, µ∗λ) = Πλ. By applying Theorem 2.2 for each λ ∈ (λ− γ, λ+ γ), we conclude
that (1.2) has at least two distinct, nontrivial, weak solutions. Consequently, the
interval (λ − γ, λ + γ) is included in the set defined in the statement of Theorem
2.3, which completes the proof. �
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