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SUPERVISING PROFESSOR: YONGMEI LU 

Air pollution causes severe health effects and economic loss. Many major air-

pollution-related studies focus on place-based measures and simulation. Typical place-

based air pollution studies cannot portray individuals’ air pollution exposure scenarios. In 

recent years, individual-based air pollution exposure measures have been developed 

rapidly. 

Based on an extensive literature review of place-based geography and people-

based geography, air pollution exposure assessment methods (including place-based and 

individual-based ones), and health effects of air pollution exposure, this dissertation 

research aims to investigate an innovative modeling approach for assessing individual 



 

xvii 

near real-time air pollution exposure. The first part of the model development is to design 

a series of near real-time space-time air pollution scenario cubes. Originating from time 

geography, space-time cubes provide an approach to integrate spatial and temporal air 

pollution information into a 3D space. The base of space-time cubes represents the 

variation of air pollution in a 2D geographical space while the height represents time. The 

second part of the model development is to geovisualize volunteers’ individual real-time 

space-time trajectories using 3D space-time path maps. The last part of the model 

development is to integrate space-time cubes and space-time trajectories to develop the 

pseudo individual near real-time air pollution monitoring (PIRAM in short) models and 

the derivative models – the integrated pseudo individual near real-time air quality index 

(PIRAQI in short) models and the integrated pseudo individual near real-time air 

pollution dose simulation (PIRADS in short) models. Volunteers’ individual diurnal 

ambient ozone (O3) pollution exposures in Houston, Austin, and San Antonio are 

modeled in this dissertation research. 

The contributions of this dissertation research are four-fold. First, it can help in 

understanding air pollution and individual exposure from a people-based geography 

perspective. Second, it enriches the individual-based air pollution exposure measure 

study by emphasizing individual travel behaviors in the individual air pollution exposure 

context. Third, its results can reveal the characteristics of the individual real-time air 

pollution exposure, which will contribute to local air pollution policy making. Fourth, the 

PIRAM platform only needs one handheld device terminal, such as a GPS smartphone, 

which ensure a good end user experience and potential commercial value. 
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  CHAPTER I 1.

INTRODUCTION 

Background 

Air pollution issues have emerged along with global industrialization since the 

early twentieth century. The Meuse Valley, Belgium fog disaster of 1930 (Nemery, Hoet 

and Nemmar 2001), the Donora, PA fluoride smog of 1948 (Helfand, Lazarus and 

Theerman 2001), the great London smog of 1952 (Bell, Davis and Fletcher 2004a), and 

the Bhopal, India gas tragedy of 1984 (Cullinan, Acquilla and Dhara 1996) manifest that 

high air pollution exposure can cause increases in not only the morbidity rate but also 

mortality rate. Furthermore, recent evidence reveals that the accumulation of low air 

pollution exposure can also produce severe health effects, such as death, disability, and 

illness (Somers and Cooper 2009, Sram et al. 2005). According to an environmental risk 

report of the World Health Organization (WHO), the annual air-pollution-caused-deaths 

worldwide in 2002 were about 2.36 million, which were well above the deaths caused by 

other environmental risk factors, such as water, sanitation, and hygiene in the same year 

(WHO 2007). Another WHO report shows that the worldwide disability-adjusted life 

years (DALYs) for air pollution in 2004 was about 64.14 million (WHO 2009). Air 

pollution, especially outdoor air pollution and tobacco smoke, is believed to cause more 

than 20% of lower respiratory infections, 66% of lung cancer, and 2% of 



2 

 

cardiopulmonary diseases (Cohen et al. 2004). Besides health effects, air pollution can 

cause huge economic loss. In 2002, the gross annual damages (GAD) of air pollution in 

the U.S. is estimated to be between $71 billion and $277 billion (Muller and Mendelsohn 

2007).  

Geographically, more than half of the counties in the U.S. are located in poor air 

quality areas (see Figure 1.1). The state of the air 2010 report by the American Lung 

Association (ALA) (2010) indicates that about 43% of the nation’s total population is 

exposed to high particulate matter (PM) levels and 76% of the nation’s total population is 

exposed to high ozone (O3) levels during 2006-2008. 

 

 

Figure 1.1. County Level Air Quality in the Lower Forty-Eight States of the U.S. 

Source: CreativeMethods , 2010. 
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Note: Grade A means best air quality; Grade B means good air quality; grade C means 

moderate air quality; grade D means bad air quality; grade F means worst air 

quality. 

 

Due to air pollution health effects and air pollution related economic loss, air 

pollution issues have received extensive research interests in recent decades. A number of 

air pollution exposure related studies emerged. Two major groups of such studies are air 

pollution exposure assessment studies and air pollution health effect studies – the former 

group investigates the exposure dose of air pollutant, and the latter group researches 

adverse health effects of air pollution exposure. This dissertation research focuses on air 

pollution exposure assessment. 

For human air pollution exposure assessment, recent studies take advantage of 

atmospheric science, geographic science, computer science, and bioscience. In the early 

periods of research, major air pollution exposure assessment studies took static places as 

research objects. Proximity models and air dispersion models are typical examples. Based 

on the evidence that residential proximity to major roads may increase residents’ 

respiratory morbidity, which includes diseases such as asthma and allergy, many 

proximity models simulate air pollution exposure conditions for those who live near air 

pollutant emission sources (Barzyk et al. 2009). Air dispersion models are based on air 

dispersion theories; they are widely used in regional air pollution assessment (e.g., county 

level). In 2000, the U.S. Environmental Protection Agency (EPA) proposed an air 

dispersion model named the American Meteorological Society/U.S. Environmental 

Protection Agency regulatory model (AERMOD). AERMOD has been accepted as a 
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standard model for steady state air pollution dispersion assessment in many countries 

(Rosenbaum et al. 2008). These air pollution exposure assessments are called place-based 

approaches. Place-based assessment methods usually have concise structures and take 

advantage of mathematical methods. These methods/models merit a predominant position 

in current air pollution assessment. 

Nevertheless, place-based assessment methods cannot address individual air 

pollution exposure dose accurately. In order to solve this problem, individual-based air 

pollution exposure assessment studies have begun to emerge; these studies take 

individuals as research objects. Individual-based methods can portray air pollution 

exposure conditions at the individual level and are especially useful for individual air 

pollutant health effect evaluation. Along with the rapid developments of information 

technologies (e.g., location acquisition technology (Lu and Liu 2012) and mobile wireless 

communication technology) and biotechnology, direct individual-based air pollution 

measures (i.e., real-time individual air pollutant monitoring) and indirect individual-based 

air pollution measures (such as air pollutant biomarker methods) show their advantages 

for data acquisition and high data accuracy (Kwan 2009). 

To date, along with the shift of academic focus from place-based to individual-

based air pollution exposure measures, several prototypes and pilot studies of individual-

based air pollution exposure measures have been conducted (AbuJayyab et al. 2006, AIR 

2010, Chiang et al. 2008, Raftery 2009). Few of them investigate individual air pollution 

exposure context from a geographical space-time point of view. This dissertation research 

investigates individual space-time activities as well as air pollution exposure scenarios to 

portray individual near real-time air pollutant exposure, intake accumulation, and 
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potential adverse health risk. The results of this dissertation research shed light on 

people-based geography and air pollution exposure assessment studies. 

Research Questions and Working Hypotheses 

This dissertation research will develop a pseudo individual near real-time 

measurement for assessing air pollution (i.e., O3) exposure in selected Texas cities (i.e., 

Houston, Austin, and San Antonio) and evaluate the effectiveness of it. This dissertation 

research addresses the following research questions: 

Question 1: Does the pseudo individual near real-time air pollution monitoring 

model effectively assess individuals' personal exposure to air pollution? 

Question 2: Is the pseudo individual near real-time air pollution monitoring 

model equally effective in different cities and regions? 

To investigate the research questions, two corresponding working hypotheses will 

be tested: 

Hypothesis 1: The pseudo individual near real-time air pollution monitoring 

model can accurately assess individuals’ actual exposure to air pollution. The 

monitoring model is not a pure individual-based near real-time air pollution monitoring 

model because it has both an individual-based component and a place-based component. 

The monitoring model will integrate the near real-time space-time air pollution scenarios 

with the global positioning system (GPS) recorded individual travel trajectories to 

estimate individuals’ personal exposure to O3. The ground truth data for individual air 

pollution exposure corresponding to the selected space-time trajectories will be obtained 

by using portable air pollution monitor/sampler to evaluate the hypothesis.  
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Hypothesis 2: The pseudo individual near real-time air pollution monitoring 

model is equally effective in different cities and regions. Because the pseudo individual 

near real-time air pollution monitoring model is developed by integrating near real-time 

space-time air pollution scenario cubes and individual space-time trajectories, the 

model’s accuracy is related to space-time air pollution scenario cubes. The accuracy and 

effectiveness of space-time air pollution scenario cubes across different cities and regions 

will directly impact the effectiveness of the proposed model.  

Significance 

In recent years, major air pollution studies have changed from episode forms to 

place-based time-series forms. Typical place-based time-series air pollution researches 

(such as hospital admission studies) may simplify research processes, but they cannot 

portray individuals’ air pollution exposure scenarios (Brunekreef and Holgate 2002). 

Integrating individuals into a time-series air pollution research frame is the best solution 

for investigating individuals’ air pollution exposure (Kwan 2009). For this purpose, 

individual-based air pollution exposure measures have developed rapidly in recent years. 

Recent individual-based air pollution exposure assessment studies investigate 

individual real-time air pollution exposure, life course air pollution exposure, air 

pollutant biomarkers, and air pollutant inhalation dose. Few of them integrate individual 

spatiotemporal air pollution exposure context with individual space-time trajectory. 

Individual travel behaviors, especially travel patterns and daily activities, are significantly 

related to both air pollution exposure and pollutant intake. Fail to consider individual 



7 

 

travel behaviors can lead to errors in air pollution exposure assessment and adverse 

health effect analysis. 

Instead of considering air pollution generation theories and air pollution 

dispersion theories, this dissertation research takes advantage of time geography, 

geographic information science, and health geography. Generally speaking, this 

dissertation research is a geography-oriented and individual-centered air pollution 

exposure study. Consequently, this dissertation research will have four contributions. 

First, it can help in understanding air pollution and individual exposure from a people-

based geography perspective. Second, this dissertation research will enrich the 

individual-based air pollution exposure measure theory by emphasizing individual travel 

behaviors in the individual air pollution exposure context. Third, this dissertation 

research’s results can reveal the characteristics of the individual real-time air pollution 

exposure, which will contribute to local air pollution policy making. Fourth, the pseudo 

individual real-time air pollution monitoring platform only needs one handheld device 

terminal (HHDT), such as a GPS smartphone, which ensure a good end user experience 

and the commercial value. 
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  CHAPTER II 2.

LITERATURE REVIEW 

Geography: Place-Based or People-Based? 

Human-Environment Identity of Geography 

Contests of the identities of geography are never stopped (Turner 2002). Widely 

accepted dualism – spatial-chorological identity and human-environment identity – gives 

current geography research different emphases: 1) physical space and place versus 2) 

human-environmental interaction. Along with the flourishing and waning of 

environmental determinism, the emerging of Berkeley and Chicago schools, and the 

outbreak of the quantitative revolution in 1950s, human-environment identity of 

geography seems to be more and more valued in the last hundred years (Butzer 2002). 

Turner (2002) noted several highlights in recent human-environment geography 

development: the relationship between physical world and human beings is still the 

subject for human-environment geography; both empirical and quantitative approaches 

(such as GIS) are important human-environment research methods; a compromise 

between two views of research – agent-based and structure-based – is increasingly 

accepted; the boundaries between theoretical and applied human-environment geography 

research is vanishing, but new boundaries (such as descriptive and quantitative research 
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barrier) are being generated; human-environment studies are still highly influenced by 

spatial-chorological geography. 

In Pattison’s (1990) four traditions of geography, i.e., spatial tradition, regional 

tradition, human-environment tradition, and earth science tradition, he points out that 

human-environment tradition includes not only the impact of environment on human 

beings but also the impact of human beings on the environment. Based on Pattison and 

Turner’s statements, it is clear that human-environment study needs to involve a people-

place process interaction. Furthermore, common human-environment geography study 

topics, such as disease and the environment, environmental justice and risk, and political 

ecologies, without exception, refer to people-place interaction. Facing the problem of 

which one (i.e., environment or human beings) should be the research priority of 

geography discipline, two branches of geography study – place-based geography and 

people-based geography – arise in recent years.  

Environmental dynamic processes are commonly represented following two 

frameworks – place-based representation and individual-based representation. Eulerian 

reference framework is place-based representation; an object’s movement is observed 

through a fixed observation framework or reference system. Differently, individual-based 

representation shows individual object’s motions in a dynamic reference framework – 

Lagrangian framework, in which the object being observed is followed by the observer 

(Doyle and Ensign 2009, Setton et al. 2011). When these two frameworks are applied to 

human-environment geography, two different groups of geography research methods 

exist – place-based geography and people-based (or individual-based) geography (Kwan 

2009, Miller 2007). Place-based geography reflects human-environment interaction at 
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certain locations without considering human beings’ activities thoroughly. By contrast, 

focusing on human beings’ activities at a given time and place, people-based geography 

consider individual’s daily activities and their interaction with environment in detail 

(Kwan 2009). People-based geography approaches connect human beings and 

environment through individual space-time investigation and are people-centered 

dynamic analyzing methods. 

Place-Based Geography 

When investigating human-environment activities, spatial-chorological 

approaches are commonly used. This preference leads the place-based research 

perspective to be dominated in human-environment geography study. Based on the 

straightforward mathematical representation of Eulerian reference framework, place-

based geography is a natural choice for investigating simple objects or homogeneous 

objects (Benenson and Torrens 2004), such as urban land-use change. Within the place-

based geography framework, all components – environmental objects and human beings 

– are related to geographic places. For example, a traditional place-based geography may 

use such a process to study human air pollution exposure: one or more hypothetical 

homogeneous region(s) (such as census block) are defined by place-based geographers; 

one observed value is used to represent the air pollution concentration for each region; 

people who live in one region are believed to have same air pollution exposure level 

(Matthews 2008).  

However, disadvantages of place-based geography should not be ignored. The 

modifiable areal unit problem (MAUP) is a major additional challenge for place-based 
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geography. Due to MAUP, the observation outcomes for a specified study area may vary 

if different scales or zoning methods are applied (Haynes et al. 2007). Despite the 

development of new approaches to handle MAUP (such as scale-space clustering method 

(Mu and Wang 2008) and creating homogeneous zones approach (Riva et al. 2009)), 

MAUP cannot be eliminated because theoretically a region can always be subdivided into 

sub-regions. The second challenge is an ecological fallacy (NationalResearchCouncil 

2002). Because human beings are not objects for place-based geography, researchers tend 

to use the average characteristic of a group to represent individual’s characteristic, which 

is not true. For example, the neighborhood residential exposure or ambient outdoor air 

pollution exposure may not be the only exposure source for all individuals who live in a 

residential block. 

People-Based Geography 

Traditional place-based geography takes macrocosmic geographic entities, 

phenomena, processes, and spatial environments as objects; it is short of robust analytical 

approaches for investigating individual behaviors and activities in the human-

environment interaction. Generally speaking, people-based geography is a microcosmic 

approach. Instead of focusing on place or environmental process itself, people-based 

geography places emphasis on individual behavior, aims at the subtle and complex 

relationship among human beings, physical places, and regional geographic environment, 

and investigates the human-society interaction and the human-environment interaction.  

The development of people-based geography is closely related to modern 

technologies, which make significant impact on human being’s perspective of the world. 
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Transportation development is the first influence factor. Along with the quick 

development of transportation technologies, the space-time distance seems to be 

shortened, which is called time-space convergence (Janelle 1969). For example, it takes 

Columbus more than two months to sail across the Atlantic Ocean in the fifteenth 

century; a transatlantic flight only costs several hours at present. People’s increasing 

mobility and accessibility weaken constrains of traditional “places” and make place-

based geography unsuitable for investigating the rapidly changing human-environment 

interaction. Information and communications technologies (ICTs) aid the evolution of 

people-based geography too (Kwan and Weber 2003). ICTs, especially the Internet, 

shorten the physical distance between individuals, simplify the human-environment 

interaction, and help to construct the “global village” (Massey 1997). For example, by the 

aid of virtual reality (VR) technology, people can easily experience a sky dive without 

leaving their physical locations. The neo-human-environment interaction raises a claim 

for people-based geography. 

One outstanding advantage of people-based geography is that it can apply object-

oriented representation to study environmental phenomena. Among the eight common 

environment phenomena, mobile individuals, sedentary individuals, regions of 

individuals, sedentary regions in mass, and mobile regions in mass are spatial objects; 

while masses of individuals, continuous solid mass, and continuous fluid mass are spatial 

fields (Bian 2007). Usually, people-based geography investigates mobile individuals 

(e.g., people in movement); place-based geography investigates continuous solid mass or 

continuous fluid mass (e.g., air pollution dispersion). Object-oriented representation gives 

people-based geography several merits. First, objects (i.e., individuals) in people-based 
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geography are independent. Because individuals are independent from any environmental 

processes, individual observer’s travel behavior will not impact observation accuracy. So 

the outcomes of people-based geography studies have higher accuracy than those of 

place-based geography studies. Second, object-oriented representation increases people-

based geography’s universality. Based on speculative or abstract reasoning, the outcomes 

of people-based geography studies can be easily applied to related areas. For example, a 

people-to-store accessibility study may shed light on emergency evacuation routing 

selection, and vice versa. Last, object-oriented representation gives people-based 

geography a high flexibility. The human-environment interaction is very complex 

because both human and environmental phenomena are constantly changing. In a people-

based representation, individual objects can be replaced without harming the integrity of 

the human-environment interaction. For example, a people-based air pollution exposure 

assessment model may investigate air pollution exposure conditions for different 

individuals. Given these merits, although place-based geography is still dominated 

currently, people-based geography is attracting more and more attention. 

People-based geography involves many theories and questions, such as 

acquisition methods for people-based information, people-based space-time modeling, 

and social network modeling. Along the developments of information technology, time 

geography, which focuses on individual space-time moving behavior observation and 

analysis, becomes an important branch of people-based geography (Kwan 2002). 
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Time Geography 

Time geography is not a new discipline. In late 1960s, Swedish geographer 

Torsten Hägerstrand brought up time geography to facilitate the human migration 

behavior study. The well-known paper “What about People in Regional Science? 

(Hägerstrand 1970)” was published in 1970 and believed to be an early classical time 

geography work. In his paper, Hägerstrand put forward several critical viewpoints. First, 

he indicated that individuals, instead of human groups, should be objects of the human 

moving pattern study. Second, he thought highly of time factors in interpreting human 

activities and used space-time path to analyze human spatial travel behaviors. Last, he 

applied three constraints to confine individual spatial patterns and recommended 

investigating the disaggregated moving behaviors (Hägerstrand 1970). Hägerstrand’s 

space-time theory not only leads to the birth of time geography, but also introduces 

geography a humanistic thought (GranÖ 2008). 

According to Hägerstrand, time geography study is full of constrains of space and 

time, i.e., individual moving behavior is always limited by a series of constrains. The first 

group of constrains is authority constrains, which are limits that do not allow the 

individual to enter forbidden territories. For example, travelers can drive their own cars, 

but they are not allowed to take the bus if they do not have tickets. Capability constrains, 

the second group of constrains, indicate that human physical nature affects individual’s 

moving pattern. For example, people cannot fly without necessary equipment. Coupling 

constrains belong to the last group; they indicate all individuals need to be in the same 

place before they can have interaction. For example, students attend class in a fixed 

classroom (Weber and Kwan 2003). 
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Space-time path and space-time prism are core models of time geography. The 

space-time path model is a three dimensional model, which uses a two dimensional plane 

to record individual fixed locations and a perpendicular dimension to represent time. 

Space-time path is generated by connecting individual fixed activity locations. The slope 

of space-time path segment is related to average travel speed between locations; the 

steeper the slope is, the lower the travel speed will be; when the slope is 90 degrees, the 

individual stays (Miller 2007). So space-time path can visually show individual’s moving 

patterns: fixed activity locations, length of stay in fixed locations, travel velocity, travel 

time, and travel distance. Space-time path can also portray the interaction between 

individuals. The interaction is expressed by the space-time path segment overlapping, 

which is limited by coupling constrains. For example, two individuals leave each home, 

meet in a café for an hour, and then go to work respectively (see Figure 2.1). 

As an extension of space-time path, space-time prism concerns individual’s 

spatial accessibility within a time range. Space-time prism investigates individual’s travel 

possibility instead of fixed-location connection, which is an emphasis of space-time path. 

Consequently, outcomes of space-time prism are closer to reality than those of space-time 

path. The projections of fixed locations are called as anchors; the projection of a space-

time prism is called as potential path area, which limits the movement range between two 

fixed locations (anchors) (see Figure 2.2).  
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Figure 2.1. The Space-Time Path. 

Note: Adapted from Miller 2007. 
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Figure 2.2. The Space-Time Prism. 

Note: Adapted from Miller 2007. 

 

Classical time geography suffers from three disadvantages. The first disadvantage 

is that classical time geography assumes that individual has a constant travel speed. The 

constant speed assumption can simplify the time geography theory, but it omits the reality 

of travel speed variations. The second disadvantage is that classical time geography 

applies descriptive method instead of analytical method to explain human moving 

patterns. The last disadvantage is that classical time geography concentrates on traditional 

physical interaction (e.g., face to face communication) and seldom considers virtual 

interaction (Miller 1991). 

Time geographers take the lead in seeking solutions for these disadvantages in 

recent years. In 1996, Okabe and Kitamura applied a network transformation approach to 
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investigate the association between consumers and stores (Okabe and Kitamura 1996). In 

1999, Miller used potential network area (PNA) to explain individual’s travel coverage 

within a time range (Miller 1999). In 2001, Wu and Miller explored PNA’s application in 

a dynamic transportation network (Wu and Miller 2001). In 2003, Kwan and Weber 

noted that recent developments in ICTs have significant influence on individual 

accessibility and must be taken into consideration (Kwan and Weber 2003). In the same 

year, Kwan et al. investigated established accessibility studies from three aspects – 

representation, methodology, and application (Kwan et al. 2003). In 2006, Yu extended 

the classical space-time path model by using both physical space-time path and virtual 

space-time path (Yu 2006). In 2009, Miller and Bridwell put forward a field-based theory 

to facilitate the analytical function for time geography (Miller and Bridwell 2009). 

Air Pollution Exposure Assessment 

Air Pollution 

Air pollution generally refers to the contamination of the atmosphere that may 

lead to adverse health effects to human beings, animals, plants, and environments (EPA 

2009a). Air pollution has complex components, which can be chemical gas, suspended 

liquid, or suspended solid. Generally speaking, emission source and generation 

mechanism are two major criteria for air pollution classification. According to the source 

of emission, air pollutants are divided as natural pollutants and man-made pollutants. 

Common natural air pollutants include sulfur dioxide (SO2), nitrogen oxide (NOx), O3, 

PM, and volatile organic compounds (VOCs); they are mainly released from volcanic 

eruption, biological decay, ocean emission, and biological emission (ACE 2010). 
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Generally speaking, the proportion of natural air pollutants is higher than that of man-

made air pollutants. Along with the rapid industrialization and urbanization worldwide 

(especially in developing countries such as China and India) in recent decades, man-made 

air pollutants become increasingly common and important. Most man-made air pollutants 

are released from stationary sources (such as power plants) and mobile sources (such as 

diesel engine automobiles) (EPA 2010c). According to the generation mechanism, air 

pollutants are divided as primary and secondary. Primary air pollutants are released 

directly through emission process. For example, SO2 is a common air pollutant that is 

emitted from coal combustion. Secondary air pollutants are formed through primary air 

pollutant reaction. Ground-level O3 is a typical secondary air pollutant that is formed by 

NOx-catalyzed VOCs and carbon monoxide (CO) oxidation (Cape 2008). 

Air pollution concentration is different for the indoor / outdoor environment. In 

smoker’s homes, tobacco smoke is the primary source for indoor PM (Wallace 1996). In 

non-smoking homes, air pollutant types and air pollution concentrations may vary. To 

investigate indoor air pollution conditions, Wallace (2006) investigated suburban indoor-

air-pollution-related activities such as gas stove cooking and candles burning through a 

thirty-seven months sample collection. Wallace found that 1) the complex gas stove 

cooking is the primary ultrafine particulate matter (UFP) emission source and gas 

powered dryer is the secondary source, and 2) the UFP concentration varies with 

environment, i.e., indoor level with emission source (i.e. gas cooking) greater than 

outdoor level greater than indoor level without emission source. Biomass fuels, such as 

wood, straw, charcoal, and animal dry dung are common rural household energy sources 

for some places, while coal and charcoal are main energy sources for urban residents in 
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developing counties. The total population who uses (e.g., cooks or heats) biomass fuels 

and coal is about 3 billion (Ezzati 2005), so the indoor air pollution from biomass fuel 

combustion has generated widespread concern in recent years. Gimbutaite and Venckus 

(2008) investigated indoor air pollutants for different kinds of wood structures. They 

found that firewood combusting generates most CO and sawdust firewood combusting 

generates most NOx. Besides, Kang et al. (2009) reported the high in-tent total suspended 

particulate matter (TSP) level due to burning yak dung for the purpose of cooking and 

heating in the Tibetan Plateau. They also found high in-tent concentration of cadmium 

(Cd), arsenic (As) and lead (Pb), which are well known toxic elements.  

Household products and materials are the main sources for indoor VOCs, which 

include “alkylbenzenes, alkanes, terpenes, aliphatic aldehydes, and some chlorinated 

aliphatic hydrocarbons” (Kostiainen 1995). Massolo et al. (2010) applied a three-year 

noncontiguous VOCs monitoring study for investigating indoor and outdoor winter air 

quality in La Plata, Argentine. They found that the VOCs concentration is relevant to 

both outdoor emission sources and human activities, e.g., indoor daily activities are the 

primary source for “C9–C11 alkanes, toluene and xylenes”, vehicle emission for benzene, 

and industrial factories for “hexane, heptane and benzene”.  

Traffic emissions and industrial emissions are major sources for outdoor air 

pollution (Zou et al. 2009b). Topographic factors and meteorological changes, such as 

elevation, terrain, wind speed, wind direction, pressure, relative humidity, sunshine 

duration, cloud cover rate, and temperature, may affect the generation and concentration 

of these air pollutants (Arain et al. 2009, Li et al. 2010, Mikhailuta et al. 2009). 
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To regulate air pollution emission, numerous air pollutant emission standards and 

clean air acts have been developed worldwide since 1950s (Kramer, Cullen and Faustman 

2006). The U.S. Clean Air Act is enacted in 1963; the current amendments are the Clean 

Air Act Amendments of 1990 (1990 CAAA), which designate 188 air pollutants (EPA 

2008b). Based on 1990 CAAA, the EPA formulates the National Ambient Air Quality 

Standards (NAAQS) to guide air pollution hazards (EPA 2010b). NAAQS is finalized in 

2010 and contains primary standards and secondary standards for six major air pollutions: 

CO, Pb, nitrogen dioxide (NO2), particulate matter (PM10 – airborne particulate matter 

smaller than 10 micrometers, and PM2.5 – airborne particulate matter smaller than 2.5 

micrometers), O3, and SO2 (as reported in Table 1). Primary standards are applicable to 

guiding adverse health effects of human beings; secondary standards are applicable to 

non-health-effects issues. 
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Table 2.1. The U.S. National Ambient Air Quality Standards (NAAQS) by the EPA. 

Pollutant 
Primary standards Secondary standards 

Level Averaging time Level Averaging time 

CO 
9 ppm (10 mg/m3) 8-hour 

None 
35 ppm (40 mg/m3) 1-hour 

Pb 
0.15 µ g/m3 Rolling 3-Month Average Same as Primary 

1.5 µ g/m3 Quarterly Average Same as Primary 

NO2 
53 ppb Annual (Arithmetic Average) Same as Primary 

100 ppb 1-hour None 

PM10 150 µ g/m3 24-hour Same as Primary 

PM2.5 
15.0 µ g/m3 Annual (Arithmetic Average) Same as Primary 

35 µ g/m3 24-hour Same as Primary 

O3 

0.075 ppm (2008 std) 8-hour Same as Primary 

0.08 ppm (1997 std) 8-hour Same as Primary 

0.12 ppm 1-hour Same as Primary 

SO2 

0.03 ppm Annual (Arithmetic Average) 
0.5 ppm 3-hour 

0.14 ppm 24-hour 

75 ppb 1-hour None 

Source: EPA, 2010b. 

 

Individual Air Pollution Exposure and Intake 

Duan (1982) and Lioy (1990) introduced the model of human exposure to air 

pollution that human exposure occurs when a person contacts with air contaminants in a 
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place and at a time. So personal exposure to air pollution is an accumulated process that 

is related to not only air pollutant concentrations but also the periods of exposure time 

(Lioy 1990): 

ࡱ ൌ ׬ ࢚ࢊሻ࢚ሺ࡯
૛࢚
૚࢚

    Equation 2.1. 

where ܧ is the personal exposure, ܥሺݐሻ is the real-time pollutant concentration, and ݀ݐ is 

the time span (ݐଵ to ݐଶ) of exposure.  

Air pollution exposure is related to a series of environment-human interaction 

processes, including human contacting with the air pollutants, air pollutants intake, and 

the accumulation of air pollutants over time (Monn 2001) (see Figure 2.3). 

 

 

Figure 2.3. Air Pollution Exposure: Concentration and Exposure Duration. 

Source: Monn, 2001. 
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Individual air pollution intake is related to a series of environment-human 

interaction processes, including human contacting with the air pollutants, intaking of the 

air pollutants, and the concentration of the air pollutants over time. Among different 

intaking ways of the air pollutants, inhalation is the major way for air pollutants to enter 

human body (Weisel 2002). Because of the influences of many human factors, e.g., 

respiratory frequency, air pollution intake can be different for individuals exposed to the 

same level of air pollution. Besides, health effects of air pollution are related to both air 

pollutant exposure and individual sensitivity toward air pollutants (Silverman and Ito 

2010). Consequently, the individual is one key factor for air pollution exposure 

assessment in epidemiological studies. 

ࡵ ൌ ׬ ࢚ࢊࡾሻ࢚ሺ࡯
૛࢚
૚࢚

    Equation 2.2. 

where ܫ is the individual air pollutant intake (inhalation dose), and ܴ is the real-time 

inhalation rate (Lioy 1990).  

Individual physical condition is a critical factor for deciding air pollutants intake. 

For example, children and adult can have different air pollution intake when the air 

pollution exposure level is same. Based on age, height, gender, and physical activities, it 

is possible to decide rough breathing capacity and average respiratory rate. In Holmes’s 

(1994) report, several air intake groups were categorized. Based on Holmes’s data, a 

simplified air intake categories are built (see Table 2.2). 
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Table 2.2. Individual Average Air Intake Volume per Minute. 

Group 

Staying/Sleeping/In 
car 

Walking Running/Cycling 
Playing/Light 
physical labor 

Speed 
Air 

volume 
Speed

Air 
volume 

Speed
Air 

volume 
Speed 

Air 
volume 

Children 
< 1 

or >24 
5-10 1-5 

12.5-
17.5 

5-24 30-35 < 2 15-20 

Adult 
females 

< 1 
or >24 

5-10 1-5 
17.5-
22.5 

5-24 45-50 < 2 15-20 

Adult 
males 

< 1 
or >24 

7.5-12.5 1-7 25-35 7-24 55-60 < 2 20-30 

Note: Unit: Speed (km/h), Air volume (liter). Adapted from Holmes 1994. 

 

The Spatial Heterogeneity of Air Pollution and Exposure 

The spatial heterogeneity of air pollution is a major issue for air pollution 

exposure study because different spatial locations may have different air pollution 

concentrations (Riva et al. 2009). This becomes a major challenge for place-based 

exposure measures. As a compromise, the conventional placed-based exposure studies 

commonly rely on air pollution monitoring site based spatial interpolation approaches 

and other regional spatial statistical modeling methods instead of precise and detailed 

local measure (Abrahamowicz et al. 2003) (see Figure 2.4). 
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Figure 2.4. Hourly Average O3 Concentrations in the Austin Area, Texas on August 

1st, 2010. 

Data source: TCEQ, 2010. 

Note: The levels of concentration are: (Grade 0: 0-5ppb, Grade 1: 5-10ppb, Grade 2: 10-

15 ppb, Grade 3: 15-20 ppb, and Grade 4: 20-25 ppb). Green points are the EPA 

air monitoring sites. The spatial interpolation method used is kriging (exponential 

model with five neighbors). 
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Air pollutants can have different originations and diffusion patterns; the spatial 

heterogeneity of air pollution is related to pollutant type (O'Neill et al. 2003). Recently, 

air pollutants were investigated separately in most studies. For example, Sahsuvaroglu 

and Jerrett (2007) used SO2 to study local industrial pollution, NO2 and CO to study 

traffic pollution, PM2.5 to study long-distance transportation and power station generated 

secondary sulfates, and O3 to study the secondary photochemical pollution mixture. 

Among the major air pollutants, PM and its spatial heterogeneity were examined 

frequently. Recent studies found that fine particulate matter distribution is not as 

homogeneous as former studies indicated (Kim et al. 2005); sedimentation and 

coagulation activities made PM to distribute heterogeneously (Monn 2001). Vehicle 

emission is a main PM source; variation of traffic conditions on major roads impact the 

spatial dynamics of PM. A study in the three European countries found that the PM2.5 

densities at traffic areas are about 17% higher than those at other urban areas and the 

PM2.5 absorption rates in traffic areas are 31% to 55% higher than those in other urban 

areas (Hoek et al. 2002).  

Moore and colleagues (2009) examined the community-scale spatial and temporal 

heterogeneity of UFPs variation in two typical communities in Los Angeles, California. 

They concluded that 1) the spatial variation of UFP concentration is related to heavy-duty 

diesel vehicle densities; 2) the temporal change of UFP concentration during different 

times of the day and different seasons is related to vehicle volume changes; and 3) the 

spatial and temporal heterogeneity of UFP concentration may lead to inaccuracy in place-

based UFP exposure measurements.  
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Besides PM and UFPs, spatial heterogeneities of other air pollutants have been 

investigated by recent studies.SO2, CO, NO, NO2, and O3 were found to tend to 

concentrate in relatively small regions; their spatial distributions were related to local 

industries, major roads, and household fuel combustion (Bell et al. 2004b, Yang, Wang 

and Zhang 2008, Zhou et al. 2006). The spatial concentration of airborne metals, i.e. 

ferrum (Fe), zinc (Zn), cuprum (Cu), vanadium (V), and chromium (Cr) were found to be 

strongly related to the locations of industrial zones and traffic emission (Nerriere et al. 

2007). The spatial heterogeneity of atmospheric PAH was influenced by biofuel 

combustion and traffic emissions (Tian et al. 2009).  

To date, the major methods to investigate the spatial heterogeneity of air 

pollutants include proximity models, the land use regression (LUR) models, air 

dispersion models, hybrid models, questionnaires, and surveys (Barzyk et al. 2009, Ryan 

et al. 2007b, Wilhelm, Qian and Ritz 2009, Zou et al. 2009a). For example, Dockery et al. 

(1996) examined the average acidic air pollution exposure level for 24 communities in 

the US and Canada, and assumed that the community average exposure level as the 

personal exposure for children who lived in the community. To examine the effect of 

long-term traffic black smoke (BS) and NO2 exposure toward mortality, Hoek et al. 

(2001) assumed that the residents in a small region had a homogenous PM exposure. 

However, few of these studies take individual’s physical condition and spatiotemporal 

activity into consideration. Without considering individual factors, these studies fail to 

provide accurate individual-level air pollution exposure estimation and do not apply to 

individual air pollution exposure assessment for epidemiologic studies. 
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Air Pollution Exposure and Microenvironment 

Pure place-based air pollution exposure measures fail to describe the accurate and 

real-time dose that a person is exposed to over a period. To mitigate this problem, the 

concept of microenvironment was developed (Georgopoulos and Lioy 1994). According 

to microenvironment and geographically spatial interaction, a person’s daily activities are 

related to a series of microenvironments, such as home, workplace, traveling route, and 

recreation place. The air pollution level can be assumed to be homogeneous in each 

microenvironment. Despite the fact that human beings’ spatiotemporal activities and the 

microenvironments where these activities occur are very complicated, microenvironment 

approach believes that daily activities follow certain routine that consists of a series of 

repeating routes and locations, such as commuting to work, staying at workplace, 

commuting back home, and staying home (Srivastava 2005). Weisel (2002) described an 

individual’s total air pollution exposure at different microenvironments as: 

ࡱ ൌ ∑ ࢏࢚∆࢏ࢉ
࢔
ୀ૚࢏     Equation 2.3. 

where ܧ is the individual air pollution exposure, ݅ represent a certain microenvironment, 

ܿ௜ is the air pollution concentration in the ݅th microenvironment, and ∆ݐ௜ is the time spent 

in the ݅th microenvironment. 

The commonly studied microenvironments include indoor environment and 

outdoor environment. The modeling of air pollution at indoor microenvironments is 

important since most people spend a significant portion of their time indoor. The indoor 

air pollution environment is closely related to both indoor-generated air pollutants and 

outdoor-penetrated air pollutants (Massey et al. 2009, Spengler et al. 1981, Wallace 
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1996). Individuals’ habits and customs may affect indoor-generated air pollution. For 

example, tobacco smoke (Wallace 1996), indoor wood burning and gas cooking (See and 

Balasubramanian 2006, Wallace 2006), biomass fuels, coal, and charcoal (Ezzati 2005, 

Gimbutaite and Venckus 2008, Kang et al. 2009) may increase indoor air pollution 

significantly. Household products and materials are the main source for indoor VOCs, 

which include alkylbenzenes, alkanes, terpenes, aliphatic aldehydes, and some 

chlorinated aliphatic hydrocarbons (Kostiainen 1995, Massolo et al. 2010). Besides, there 

are some indoor microorganisms and unexplained indoor air pollutants, such as house 

dust mite (HDM), pet, mold, cockroach, mouse, fungi, and bacteria, which may emit or 

generate microbial volatile organic compounds (MVOCs) (Gaffin and Phipatanakul 2009, 

Korpi, Jarnberg and Pasanen 2009). 

Based on the indoor-outdoor air pollution exchange theory, indoor air pollution 

can be modeled. The indoor PM2.5 concentration is related to the outdoor-penetrated air 

pollution, cigarette smoking, cooking, and other unknown indoor source emissions 

(Wallace 1996). 
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where ܥ௉ெ_௜௡ is the indoor PM2.5 concentration (mg/m3), ܥ௉ெ_௢௨௧ is the outdoor PM2.5 

concentration (mg/m3), ߣ is the air change per hour (ACH) (݄ିݎଵ), ܵ݉ is the number of 

cigarettes smoked indoors, ܸ is the volume of the indoor space (such as home and office) 

(m3), ݋ܥ is the cooking time in minutes, ܿ is the constant, which represents other indoor 

emissions, such as the unknown source air pollution (mg/m3). 
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Formula 3 can be simplified through following steps. First, according to 

Yamamoto et al.’s (2010) ACH study in three US cities, the medians of the ACHs in 

Texas cities are 0.38݄ିݎଵ, 0.37݄ିݎଵ, 0.48݄ିݎଵ, and 0.63݄ିݎଵ in the spring season 

(March through May), the summer season (June through August), the fall season 

(September through November), and the winter season (December through February), 

respectively. Second, the standard floor-to-ceiling height is assumed to be 8.5ft (Thatcher 

et al. 2001). Last, because other indoor sources emit a small proportion of indoor air 

pollution, and their emissions are hard to be quantified, the indoor emissions from the 

unknown sources will be omitted in this dissertation research. 

In Texas: 

࢖࢙_࢔࢏_ࡹࡼ࡯ ൌ ૙. ૝ૢ ∙ ࢚࢛࢕ࡹࡼ࡯
൅ ૞ૡ. ૚ૠ ∙

࢓ࡿ

࢘࡭
൅ ૚૟. ૟૛ ∙

࢕࡯

࢘࡭
  Equation 2.5. 

࢛࢙_࢔࢏_ࡹࡼ࡯ ൌ ૙. ૝ૡ ∙ ࢚࢛࢕ࡹࡼ࡯
൅ ૞ૡ. ૚ૠ ∙ ࢓ࡿ

࢘࡭
൅ ૚૟. ૟૛ ∙ ࢕࡯

࢘࡭
  Equation 2.6. 

ࢇࢌ_࢔࢏_ࡹࡼ࡯ ൌ ૙. ૞૞ ∙ ࢚࢛࢕ࡹࡼ࡯
൅ ૞ૡ. ૚ૠ ∙

࢓ࡿ

࢘࡭
൅ ૚૟. ૟૛ ∙

࢕࡯

࢘࡭
  Equation 2.7. 

࢏࢝_࢔࢏_ࡹࡼ࡯ ൌ ૙. ૟૚ ∙ ࢚࢛࢕ࡹࡼ࡯
൅ ૞ૡ. ૚ૠ ∙

࢓ࡿ

࢘࡭
൅ ૚૟. ૟૛ ∙

࢕࡯

࢘࡭
  Equation 2.8. 

where ܥ௉ெ_௜௡_௦௣, ܥ௉ெ_௜௡_௦௨, ܥ௉ெ_௜௡_௙௔, and ܥ௉ெ_௜௡_௪௜ are the indoor PM2.5 concentrations 

in spring, summer, fall, and winter in Texas cities (mg/m3), ݎܣ is the area of the indoor 

space (ft2). 

The accumulation process of indoor O3 is similar to that of indoor PM2.5. But the 

proportion of the indoor-generated O3 is very low. If the indoor-generated O3 and the 

ventilation-filter-removed O3 are not considered, the indoor O3 concentrations are related 

to outdoor O3 concentrations and the ACH (Du and Liu 2009). For example, the mean 
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indoor/outdoor ratio of O3 concentrations is roughly around 0.2 in 145 Mexican homes 

(Romieu et al. 1998). 

࢔࢏_૜ࡻ࡯ ൌ
ࣅ

ା૚ࣅ
∙  .Equation 2.9    ࢚࢛࢕_૜ࡻ࡯

In Texas: 

࢖࢙_࢔࢏_૜ࡻ࡯ ൌ ૙. ૛ૡ ∙  .Equation 2.10   ࢚࢛࢕_૜ࡻ࡯

࢛࢙_࢔࢏_૜ࡻ࡯ ൌ ૙. ૛ૠ ∙  .Equation 2.11   ࢚࢛࢕_૜ࡻ࡯

ࢇࢌ_࢔࢏_૜ࡻ࡯ ൌ ૙. ૜૛ ∙  .Equation 2.12   ࢚࢛࢕_૜ࡻ࡯

࢏࢝_࢔࢏_૜ࡻ࡯ ൌ ૙. ૜ૢ ∙  .Equation 2.13   ࢚࢛࢕_૜ࡻ࡯

where ܥைଷ_௜௡ is the indoor O3 concentration (ppm), 	ܥைଷ_௜௡_௦௣, ܥைଷ_௜௡_௦௨, ܥைଷ_௜௡_௙௔, and 

 ைଷ_௜௡_௪௜ are the indoor O3 concentrations in spring, summer, fall, and winter in Texasܥ

cities (ppm). 

Outdoor microenvironment air pollution is believed to be associated with traffic 

emissions and industrial emissions (Zou et al. 2009b). Roadway air pollutants mainly 

include PM, black carbon (BC), CO, NOx, benzene, and polycyclic aromatic 

hydrocarbons (PAHs), while industrial emitted air pollutants may vary according to 

different industrial activities (Cook et al. 2008). A number of recent place-based studies 

have been carried out to investigate air pollution in these outdoor microenvironments 

(Cook et al. 2008, Liu et al. 2007). Traveling microenvironment is a special outdoor 

microenvironment. Vehicle’s inside and outside air exchange makes drivers and 

passengers to be exposed to the same level of pollution as roadway ambient (Fruin et al. 

2008). 
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Through examining and connecting multiple microenvironments, researchers 

attempted to assess individual’s exposure to air pollutants. Liu and colleagues conducted 

a pilot study in the early 1990s to measure children’s O3 exposure by examining both 

indoor and outdoor data (Liu et al. 1993). In the last twenty years, a number of studies 

were conducted to investigate air pollution exposure based on microenvironment, which 

include rural versus urban environments, indoor versus outdoor residential environments, 

and indoor versus outdoor workplace environments (Edwards and Jantunen 2009, 

Edwards et al. 2001, Edwards et al. 2005, Ilgen et al. 2001).  

Microenvironment has an application potential in individual air pollution 

exposure assessment if it is integrated with time geography. By investigating individual 

time-microenvironment-activity (TMA), individual air pollution exposure context can be 

assumed as a series of independent microenvironment exposures (Ballesta et al. 2008). 

For example, in Delgado-Saborit et al.’s (2009) individual VOC exposure study, different 

microenvironment pollutant concentrations were measured separately; individuals’ 

spatial locations over time were collected through individual activity diaries. 

Air pollution exposure measures based on microenvironment method cannot 

substitute for individual-based measures. Individual’s daily activities are different, so is 

individual’s air pollution exposure. Individuals who live in the same residential 

community may have different air pollution exposure levels. It is very hard to delineate 

people’s exposure levels by just using air pollution concentrations in several fixed 

microenvironments such as residential community, workplace, and outdoor (Kwan 2009). 

Integrating microenvironment and individual-based measures is a good solution for 

accurate individual exposure assessment. 
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Air Pollution Exposure Assessment Methods: Place-Based vs. Individual-Based 

When investigating air pollution exposure, two groups of methods (i.e., place-

based measures and individual-based measures) are applied (Fang and Lu 2012). Place-

based measures take places as objects, while individual-based measures take people as 

objects. Place-based measures are based on Eulerian reference framework and are 

applicable to areal air pollution exposure studies. Individual-based measures are based on 

Lagrangian reference framework and are superior to place-based measures in conducting 

individual level air pollution exposure (Doyle and Ensign 2009). 

Place-Based Air Pollution Exposure Measures 

Using the straightforward mathematical representation of Eulerian reference 

framework, place-based method is a natural choice for investigating simple objects or 

homogeneous objects, such as urban land-use change (Benenson and Torrens 2004, Juda-

Rezler 2010). Following the place-based approach, the conventional air pollution 

exposure measures commonly define one or more hypothetical homogeneous region(s), 

and use one fixed value to represent the air pollution concentration for each region. A 

number of place-based exposure assessment methods have been developed, including 

proximity modeling, air dispersion modeling, etc. (Zou et al. 2009a). Census units 

ranging from census block to city level or other predefined boundaries are commonly 

used as homogeneous regions (Matthews 2008) for better data access and easier 

integration. The summary of the major characteristics of place-based methods as well as 

the related major literature are reported in the end of next section (Individual-Based Air 

Pollution Exposure Measures) (see Table 2.3). 
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However, disadvantages of place-based measures should not be ignored. First, the 

hypothesis on homogeneous air pollution concentration region is problematic. Due to the 

spatial heterogeneity of air pollutant concentration, it is risky to assume homogeneous air 

pollutant levels across a region. Second, the spatial and temporal resolutions for place-

based measures are coarse. Place-based measures usually utilize neighborhoods, census 

blocks, or census tracks as measuring units, and utilize daily, monthly, and even quarterly 

intervals as time spans (Samet et al. 2000). Third, due to MAUP, the air pollution 

exposure measuring for a specified place may vary when different scales or zoning 

methods are applied (Haynes et al. 2007). Last, it can be very inaccurate to assume that 

different individuals in a hypothetical homogeneous region have the same air pollution 

exposure level. This may cause the ecological fallacy. For example, the neighborhood 

residential exposure or ambient outdoor air pollution exposure may not be the only 

exposure source for all individuals in an identical block. 

Place-based air pollution measurement methods involved in this dissertation 

research include the LUR modeling and the spatial interpolation methods. 

LUR Modeling 

The land use regression (LUR in short) modeling is a discrete environmental 

exposure simulation approach (Ryan and LeMasters 2007). It combines air pollution 

monitoring data and land use data with geographic information system (GIS) techniques 

(Hoek et al. 2008). According to the LUR model, there is a linear relationship between 

the dependent variable, air pollution level, and the independent variables, such as land 

use, traffic, meteorological factors, demographic factors, and geographic factors (Ryan et 



36 

 

al. 2007b). Through a multiple linear regression, the parameters can be calibrated. The 

model, after validation, can then be used to predict the air pollution. 

࢟ ൌ ૚ࢼ ∙ ૚࢞ ൅ ૛ࢼ ∙ ૛࢞ ൅ ⋯൅ ࢔ࢼ ∙ ࢔࢞ ൅  .ା૚  Equation 2.14࢔ࢼ

where ݕ is the outdoor air pollution concentration, ߚଵ ଵݔ ,௡ାଵ are the parametersߚ⋯  ௡ݔ⋯

are the variables. 

Since 1990s, researchers have developed a number of LUR models to simulate air 

pollution in intra-urban environment (Briggs et al. 1997). Ryan et al. (2007b) applied a 

multiple linear LUR traffic exposure model to assess the relationship between air 

pollution along the road and wheezing in infants in Cincinnati. Arain et al. (2007) added 

the impact of wind flow to the LUR model to predict the concentration of nitrogen 

dioxide (NO2) in a heavily polluted region in Canada. Clougherty et al. (2008) simulated 

the comprehensive effects of fine articulate matter (PM2.5), NO2, and elemental carbon 

(EC) in urban neighborhoods of Boston using a multi-variable LUR model. Rosenlund et 

al. (2007) noted that the LUR model may successfully simulate the traffic-air pollution 

(NO2) without air pollution emission data. However, as Hoek et al. (2008) pointed out 

after reviewing 25 recent LUR modeling studies, that the great challenge for LUR 

modeling is its transferability – most studies developed / tested for area-specific LUR 

models. 

The LUR model used in this study shows two unique aspects. First, it models 

ground-level O3. Most recent LUR studies examined other air pollutants such as 

articulate matter (PM) and NO2 (Hoek et al. 2008). Because ground-level O3 is known to 

be related to NO2, sunshine length and intensity, temperature, and air humidity 

(Pudasainee et al. 2006), it is possible to use the LUR model to simulate urban O3 level. 



37 

 

Second, this study used near real-time (with a three-hour lag) hourly data to build a series 

of hourly LUR models. Traditional LUR studies usually utilize the average air pollution 

concentration over a period of time for the LUR model (Ross et al. 2007). These studies 

neglected to the variation of air pollution over their study time. Recently researchers have 

noticed this shortcoming and begun to use the LUR modeling to simulate the temporal 

change of air pollution. For example, in Mölter et al.’s (2010) LUR modeling study, the 

annual mean air pollutants (PM10 and NO2) concentration was simulated for the 13 

consecutive years. However, finer time scales (e.g. weekly, daily, or hourly) modeling is 

still missing, which is important for understanding the short-term health effect of air 

pollution. 

Spatial Interpolation 

Spatial interpolation is a group of methods for predicting values of un-sampled 

locations from scattered set of observations (Lam 1983). There are many spatial 

interpolation methods including the local neighborhood approaches (e.g., inverse distance 

weighting (IDW)), the geostatistical approaches (e.g., kriging), and the variational 

approaches (e.g., thin plate spline (TPS)) (Coulibaly and Becker 2007). Considering 

away any possible causal relationship or spatial association between the measured 

attribute and other characteristics of a location and / or its surroundings, spatial 

interpolation methods have been widely used in air pollution simulation. Fuentes (2002) 

utilized spatial interpolation based on spatial spectra to predict the nonstationary O3 

concentrations. Wong et al. (2004) compared four spatial interpolation methods (i.e., 

spatial averaging, nearest neighbor, IDW, and kriging) to predict PM10 and O3 

concentrations in the U.S. using the EPA sites data. They found that the densities of EPA 
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sites were related the performance of these spatial interpolation methods. Janssen et al. 

(2008) applied a detrended kriging model, named RIO, to assess air pollution conditions. 

In their study, land use data was integrated with spatial interpolation to model the 

concentrations of O3, NO2, and PM10 in Belgium. 

Individual-Based Air Pollution Exposure Measures 

Individual-based air pollution exposure methods measure air pollution exposure at 

individual level (Fang and Lu 2012). The advantages are in several aspects. First, 

individual-based measures involve both air pollution exposure and individual factor and 

facilitate the study of individual air pollution health effects. Individual-based measures 

are more robust in individual air pollution exposure assessment for epidemiologic studies 

than place-based measures. Second, individual-based measures acquire accurate and 

continuous spatiotemporal data for individuals. The spatial resolution can be accurate to 

sub-meter and temporal resolution to second (Nethery et al. 2008). To measure a person’s 

everyday air pollution exposure, locations and time spent in each location are two critical 

factors (Kwan and Weber 2008). Third, individual-based measures can mitigate MAUP 

(Kwan 2009). Tobler’s theory of frame independent spatial analysis (Tobler 1989) states 

that 1) geographical data may be independent to any spatial scales and zoning methods, 

and 2) appropriate spatial analysis approaches can eliminate the MAUP. Under the frame 

of individual-based exposure study, measurement objects are individuals, and the 

conventional areal measurement objects – neighborhoods, communities, census blocks, 

and even cities lose their area characteristics. Last, recent development in communication 

and information technology lends strong support to individual-based measures. While 

place-based measures suffer from limited data sources (such as air pollution monitoring 
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sites and field recording) (Tomlin et al. 2009), individual-based measures take advantage 

of such technologies as global positioning system (GPS) and biological indicators, which 

make real-time monitoring and recording practical (Nieuwenhuijsen, Paustenbach and 

Duarte-Davidson 2006). 

Nevertheless, individual-based measures have several limitations. The first 

challenge comes from individual’s representativeness. Lagrangian reference framework 

suffers from a shortcoming that the representativeness of the selected individual objects is 

questionable. The individual-based measures inherit this adverse characteristic. It is a 

major issue for individual-based air pollution exposure measures to ensure that the 

selected individuals are representative regarding their air pollution exposure. For this 

purpose, a large population sample is often required for individual-based measures. But 

this may cause other problems. A large sample tends to result in excessively complicated 

computational processes. Moreover, statistical analysis results for large population are 

not always reliable (Doyle and Ensign 2009). The second challenge to individual-based 

methods is to acquire large data set delineating population’s exposure to air pollution. 

The cost for such monitoring units is high; so is that for recruiting large samples. The 

problem of sample size may restrict the application of individual-based air pollution 

exposure measures (Honicky et al. 2008). The last challenge is related to the current 

technologies for location and air quality measuring and recording. Ideal individual-based 

measuring equipment needs to be small enough for long-term carry-on use, to have long 

battery life for continuous recording, and to provide steady performance under bad 

environmental conditions. Unfortunately, to date neither real-time location acquisition 
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tools (i.e., GPS) nor real-time environmental monitoring tools (i.e., portable air quality 

meter), can fully meet these conditions. 

 

Table 2.3. Characteristics of Place-Based vs. Individual-Based Air Pollution 

Exposure Measures. 

 

Place-based measures Individual-based measures 

Characteristics 
Related 

literature 
Characteristics 

Related 
literature 

Reference 
framework 

utilized 

 Eulerian reference 
framework 

 Simple 
mathematical 
structure 

(Juda-Rezler 
2010) 

 Lagrangian 
reference 
framework 

 Complex 
mathematical 
structure 

(Doyle 
and 
Ensign 
2009) 

Observatio
n and 

recording 
method 

 Observe and record 
movements of an 
object through 
fixed observation 
points 

(Greaves, 
Issarayangyun 
and Liu 2008) 

 Observer 
follows an 
object to 
observe and 
record  

(Chiang et 
al. 2008) 

When 
measuring 

many 
objects 

 Lose detailed 
characteristics for 
individuals 

 Take all objects as 
a group and 
measure the 
group’s attributes 

 No demographic 
heterogeneity or air 
pollution 
concentration 
heterogeneity in the 
group 

(Hoek et al. 
2008) 

 Reserve all 
individuals’ 
distinctive 
characteristics 

 Individual 
behaviors may 
not be 
representative 
to others 

 Use statistical 
approaches to 
simulate the 
group’s 
attributes 

(Gerharz, 
Kruger 
and 
Klemm 
2009) 
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Table 2.3-Continued 

 

Place-based measures Individual-based measures 

Characteristics 
Related 

literature 
Characteristics 

Related 
literature

Measuring 
unit 

 Predefined census 
units, which 
usually ranged 
from census block 
to city level 

 Hypothetical 
homogeneous 
exposure regions 

(Matthews 
2008) 

 Individuals 

 People related 
moving objects, 
such as cars 

(Raftery 
2009) 

The 
amount of 
measuring 

object 

 Usually limited 
number 

(Benenson 
and Torrens 
2004) 

 Sample size 
needs to be very 
large to facilitate 
regional air 
pollution 
mapping 

 One object is 
enough for 
individual level 
measuring 

(Honicky 
et al. 
2008) 

(Kim, 
Paulos 
and Gross 
2010) 

Scale 

 Aggregate level 

 Fine spatial and 
temporal resolution 
for a point, but 
limited for a region 

(Samet et al. 
2000) 

 Individual level 

 Fine spatial and 
temporal 
resolution 

(Jensen 
2006) 

MAUP 

 MAUP exists 

 May be mitigated 
through new 
approaches such as 
scale-space 
clustering method 
and creating 
homogeneous 
zones 

 

(Mu and 
Wang 2008) 

(Riva et al. 
2009) 

 Can mitigate 
MAUP 

(Kwan 
2009) 
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Table 2.3-Continued 

 

Place-based measures Individual-based measures 

Characteristics 
Related 

literature 
Characteristics 

Related 
literature 

Measuring 
accuracy 

 High accuracy for a 
limited number of 
sample sites 

 Low accuracy for 
individuals 

(Hoek et al. 
2002) 

 Usually high 
spatiotemporal 
accuracy for 
individuals 

 Low accuracy 
for place 

(Dutta et 
al. 2009) 

Measuring 
methods 

 Monitoring data 
from governmental 
and private air 
pollution 
monitoring sites 

 On site air pollution 
measuring 

 Air pollution 
exposure modeling 

 Historical air 
pollution libraries 
and data 
warehouses 

 Questionnaires and 
surveys 

(Zou et al. 
2009a) 

 

 Carry-on real-
time monitor 

 Life course 
measures 

 Longitudinal 
studies 

 Agent-based 
modeling 

 Biological 
monitoring 
methods 

 Inhalation 
exposure 
modeling 

 Survey and 
diaries 

(Adams, 
Riggs and 
Volckens 
2009) 

(Cloughert
y et al. 
2007) 

(Naess et 
al. 2007) 

(Kalapani
das and 
Avouris 
2002) 

(Delfino et 
al. 2008) 

(EPA 
2008c) 

Current 
developing 

status 

 Conventional 

 Many new air 
pollution exposure 
assessment methods 
and data sources 

(Barzyk et al. 
2009) 

 Exploratory 

 Rapid 
development 
with great 
potential 

(Dutta et 
al. 2009) 
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Current Progresses in Individual-Based Air Pollution Exposure Measures 

Individual-based air pollution exposure can be measured directly or indirectly. 

Two groups of methods are normally used for direct measure: individual real-time 

monitoring method and space-time activity measuring method (such as life course 

measures and longitudinal studies) (Miller 1999). Indirect measure methods, which 

include biomarker, inhalation exposure modeling, and agent-based modeling, are 

important surrogates for direct individual-based air pollution exposure measures. This 

section discusses each of these methods in details; see Table 2.4 at the end of this section. 

Individual Real-Time Air Pollution Exposure Monitoring 

Individual real-time air pollution exposure monitoring continuously collects in 

situ air pollution exposure data for individuals across space and through time (Morabia et 

al. 2009). In early 1980s, Wallace and Ott pointed out that with high portability and all 

day recording capability, individual air pollution exposure monitors “could transform the 

way in which human exposure to air pollution” be measured (Wallace and Ott 1982, 

p.601). Individual real-time monitoring, supported by location acquisition technology and 

portable air pollution sampler, enables continuous reporting of the dynamics of personal 

space-time tracks and air pollution exposure levels (Croner, Sperling and Broome 1996). 

Real-time location acquisition instruments emerged along with the development 

of information and communication technologies (Warren 2006). Common real-time 

location acquisition instruments (location-aware systems) such as civilian handheld GPS 

and global system for mobile communications (GSM) have great potential for 

spatiotemporal data collection (Bell et al. 2004b, Lu and Liu 2012, Xin, Li and Di 2005). 
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Many researchers have applied GPS or GSM to collect location data for their epidemic 

studies (Bell et al. 2004b, Duncan, Badland and Mummery 2009, Greaves et al. 2008, 

Matejicek, Engst and Janour 2006, Trandabat et al. 2007, Trandabat et al. 2005, Xin et al. 

2005, Zhan et al. 2006).  

Individual real-time environmental monitoring instruments, such as portable air 

pollution sampler, are being developed. For example, a team in Carnegie Mellon 

University has developed a prototype of low-cost VOCs sensor embedded T-shirt named 

WearAir; it can indicate VOCs levels with light-emitting diodes (LEDs) (Kim et al. 

2010). However, because WearAir does not have real-time locations recording module, 

the exposure measures cannot be connected to spatiotemporal context directly.  

A true individual-based real-time air pollution exposure monitor needs to be able 

to sense and record both spatiotemporal information as well as air pollution exposure at 

individual level simultaneously and continuously. For example, Adams and colleagues 

(2009) developed a PM exposure monitoring package. The package includes a portable 

GPS receiver to track individual time and location tracking, a miniature aerosol 

nephelometer to monitor PM exposure level, and a thermocouple sensor to record 

temperature. Depending on how tightly coupled the measurement of location is with that 

of air pollution exposure, a real-time air pollution exposure monitoring tool can be a 

“genuine” system or a “pseudo” one (see Table 2.4).  

Integrated Genuine Individual Real-Time Air Pollution Monitoring     A basic 

integrated genuine individual real-time monitoring tool has two components, i.e., an 

individual real-time location acquisition unit and an individual real-time environmental 

monitoring unit (Sensaris 2010). Because all components of it are individual-based, an 



45 

 

integrated genuine individual real-time monitoring tool has a very high measuring 

accuracy.  

Recent projects such as Area's Immediate Reading (AIR) and the Common Sense 

project are examples of genuine real-time exposure monitoring studies (Dutta et al. 

2009). Launched in 2006, AIR project uses real-time portable GPS-air monitoring 

devices to delineate individual air pollution exposure. Individual air pollutants, such as 

NOx, CO, and O3, are measured and transmitted to the network database center. AIR 

device can display real-time ambient air pollution information as well as regional air 

pollution concentration (AIR 2010). The Common Sense project, co-developed by Intel 

Research and the University of California, Berkeley, is an ongoing people-base exposure 

study that aims at measuring personal on site air pollution exposure through mobile 

network (Raftery 2009). The integrated CO, NO, O3, and other air pollutants sensors are 

built in the handheld device; the mobile phone chip can record individual spatial location; 

the mobile phone network functions as a user-based air pollution information sharing and 

mapping service network (Honicky et al. 2008). In addition to the Common Sense 

project, N-SMARTS is another ongoing project at the University of California, Berkeley 

that provides a real-time individual moving exposure measuring platform for CO, NO2, 

and SO2 (Chiang et al. 2008).  

To date, complete genuine individual real-time monitoring studies are few. Two 

major challenges hinder the application of the integrated genuine individual real-time 

monitoring tool. The technological challenges for developing such an integrated genuine 

individual real-time monitoring tool are how to keep its size small for ease of carry by an 

individual without significantly impact his/her daily function, battery life long to support 
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continuous recording, and cost low to ensure affordability for various users. The smallest 

integrated real-time monitoring tool has the size of handheld portable PDA (Raftery 

2009). Besides technological challenges, the bad end-user experience is a key adverse 

factor. Although Public are aware of air pollution health effects, few of them will like to 

carry air quality meters in everyday life. 

Integrated Pseudo Individual Real-Time Air Pollution Monitoring    An integrated 

pseudo individual real-time air pollution monitoring tool has one or more non-individual-

based components; the two functional aspects, monitoring of location and that of air 

pollution, are loosely coupled in the system. Most pseudo individual real-time air 

pollution monitoring studies use GPS or GSM to collect real-time individual spatial 

trajectory information and use separately derived air pollution measurements to delineate 

individual air pollution exposure levels (Jensen 2006).  

The measuring accuracy of integrated pseudo individual real-time air pollution 

monitoring tools is not as good as that of integrated genuine individual real-time air 

pollution monitoring tools. Nevertheless, integrated pseudo individual real-time air 

pollution monitoring tools are more suitable for individual air pollution exposure 

assessment. Integrated pseudo individual real-time air pollution monitoring tools have 

very flexible structures; location acquisition and air pollution monitoring are operated 

separately; numerous mobile phone users make location acquisition through GPS or 

GSM easy; thousands public air monitoring sites in the U.S. make on site air pollution 

measurement very convenient. Even more important, integrated pseudo individual real-

time air pollution monitoring tools can provide great end-user experience. Individuals do 

not need to carry portable air quality meters; a daily-used smartphone is the only personal 
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equipment needed. The whole monitoring process is automatic; individual daily activities 

are not affected.  

An early pseudo system was proposed ten years ago using atmospheric and 

meteorological sensors as air quality monitor and GSM-based message passing protocol 

as the communication component (Garcia-Alegre et al. 2001). Initiated in early 2000s, 

National Environmental Research Institute in Denmark developed a traffic air pollution 

exposure modeling system named AirGIS (Hertel et al. 2006, Jensen 2006). AirGIS 

system included two levels. The first level was to simulate urban air pollution 

environment using Danish Operational Street Pollution Model (OSPM), road network, 

and traffic information. The second level was personal location module – individual-

carried cell phones with built-in GPS receivers, which send location information to 

AirGIS tracking center at twenty seconds intervals. The third example is PolluMap, a 

GSM supported automatic urban air pollution surveillance system launched in Dubai, 

United Arab Emirates (AbuJayyab et al. 2006). In this system, multiple location and air 

pollution concentration data were collected by moving or fixed monitors; the data were 

sent through wireless communication to a web server to delineate a citywide air pollution 

map. Projects such as AirGIS and PolluMap integrate convenient non-individual-based 

air pollution surveillance and real-time individual location acquisition monitoring. There 

is a rapid increase of studies on similar integrated pseudo individual real-time monitoring 

in the recent years (Gerharz et al. 2009). 

A few pseudo real-time monitoring studies used real-time monitoring units as 

place-based survey tools instead of individual-based spatiotemporal data collectors. The 

location acquisition units were used to collect location information for certain fixed 
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locations or locations on a route, rather than for individual’s moving trajectory. In a study 

that investigated PM, UFP, and noise exposure of car drivers and bike riders in the twelve 

selected short routes in the Netherlands, GPS was used to collect a series of coordinate 

data along routes (Boogaard et al. 2009). Similarly, PM2.5 meter and GPS units were used 

in another study (Morabia et al. 2009) to assess the air pollution exposure level for the 

drivers, subway riders, and pedestrians on selected routes in New York City. 

 

Table 2.4. Individual Real-Time Monitoring Studies. 

Groups Advantages Drawbacks 
Related 

literature 

Location 
monitoring 

GPS 

 Collect site or 
route 
coordinates 

 Rapid 

 Low cost 

 Every sensor 
collects only 
limited data 

(Zhan et al. 
2006) 

(Duncan et 
al. 2009) 

GSM SMS 
and GSM 

GPRS 

 Acquire real-
time location 
data 

 Quick 
response, low 
cost, and large 
coverage 
network 

 Data delay 

 Low temporal 
resolution 

 Low spatial 
resolution 

(Bell et al. 
2004b) 

(Xin et al. 
2005) 

Environmental 
monitoring 

Stand-alone 
environment
al monitoring

 High air 
pollution 
concentration 
measurement 
accuracy 

 Good for 
individual use 

 Hard to 
delineate 
regional air 
pollution 
condition 

(Kim et al. 
2010) 
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Table 2.4-Continued 

Groups Advantages Drawbacks 
Related 

literature 

Integrated 
real-time 

monitoring 

Integrated 
pseudo real-

time 
monitoring 

 Use both 
individual-
based 
measures and 
place-based 
measures 

 Low cost 

 Save time 

 All components 
are not 
individual-
based 

 Individual 
exposure is 
based on 
simulation 
instead of real-
time monitoring 

 Limited 
temporal 
resolution 

 Limited spatial 
resolution 

(Garcia-
Alegre et al. 
2001) 

(AbuJayyab 
et al. 2006) 

(Hertel et al. 
2006) 

(Boogaard 
et al. 2009) 

(Morabia et 
al. 2009) 

Integrated 
genuine real-

time 
monitoring 

 All 
components 
are individual-
based 

 High spatial 
resolution 

 High temporal 
resolution 

 Expensive 
instrument 

 Need large 
sample size for 
delineating 
regional air 
pollution  

 Handheld 
equipment 
needed 

 Immature 
technology 

(Chiang et 
al. 2008) 

(Honicky et 
al. 2008) 

(Adams et 
al. 2009) 

(Dutta et al. 
2009) 

(Raftery 
2009) 

(AIR 2010) 
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Other Individual-Based Air Pollution Exposure Measures 

Besides individual real time monitoring, there are several common individual-

based air pollution exposure measures such as life course measure and longitudinal 

studies, biomarkers technology, inhalation exposure modeling, and agent-based modeling 

(Avruskin et al. 2004, Butz and Torrey 2006, Martin et al. 2008, Ryan et al. 2007a, 

Sokolova and Fernandez-Caballero 2009). 

Pope and Dockery (2006) indicated that effective dose depends on not only 

exposure concentration but also exposure length. In other words, the adverse effect from 

extended long-term air pollution exposure is more serious than that from accumulated 

short-term air pollution exposure. To address the comprehensive effect from long-term 

air pollution exposure, the space-time activity measuring methods such as life course 

measures and longitudinal studies are frequently used. Life course measures and 

longitudinal studies commonly collect long-term individual air pollution exposure data 

through questionnaires, diaries, surveys, and neighborhood observation (Gerharz et al. 

2009, Miller 1999, Schaefer-McDaniel et al. 2009). 

Biomarkers measure is a typical indirect individual-based air pollution exposure 

measure. Individual air pollution exposure is not measured by air pollution monitoring 

instrument but estimated through biomarkers. Generally speaking, biomarkers are a series 

of markers relevant to host’s intake of air pollutants. They help understanding the 

relationship between air pollution exposure and its potential impact on the host person as 

they reveal the dose of air pollutants that entered human body (Delfino et al. 2009, 

Lewtas 2007, Swenberg et al. 2008). The widely accepted trichotomy for biomarkers are 
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biomarkers of exposure, susceptibility, and effect; these three types of biomarkers are not 

mutually independent (Metcalf and Orloff 2004, WHO 1993).  

A critical objective for individual-based air pollution exposure measures is to 

decide the total air pollution intake. If ambient air pollution concentration and inhalation 

rate are decided, individual air pollution exposure dosage can be quantified. Inhalation 

exposure modeling is an effective way to model individual air pollution inhalation in 

different scenarios. In other words, measuring individual inhalation dosage and seeking 

the relationship between inhalation dose and adverse health effects are primary research 

tasks for inhalation exposure modeling (Ott 1982). Early in the 1980s, inhalation 

exposure modeling was developed to simulate individual air pollutant inhalation rate. To 

examine the air pollution exposure-inhalation relationship, individuals were exposed to 2-

butoxyethanol (20 ppm) for two hours (Johanson et al. 1986). Similar studies were 

carried out to analyze individual inhalation of UFP and SO2 (Shah et al. 2008, Sheppard 

et al. 1981). In these studies, personal biophysical parameters are pre-measured; 

biomarkers for air pollutants, such as air pollutants amount of residue and metabolites in 

blood or urine, disease attack, and blood pressure change, were measured to examine the 

exposure-inhalation mechanism. 

In early 1970s, based on “interactive dynamics of discriminatory individual 

choices”, Schelling (1971, p.143)  introduced agent-based modeling (ABM). With the 

three advantages – emergency decision, automatic operation, and high felxibility, ABM 

has been widely applied in simulating social behavior of individual or groups under 

certain rules (Bonabeau 2002). When a direct exposure measure is not available, ABM 

can be used to estimate individual-based air pollution exposure. ABM is suitable for 
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individual-based air pollution exposure for two reasons. First, taking individuals as 

agents, ABM has a great potential to simulate individual spatiotemporal travelling 

patterns and individual air pollution exposure scenario (Sun 2007). Second, ABM has 

very powerful flow simulation function, which enables air pollution diffusion analysis 

(Bonabeau 2002). 

Recent Information Technological Advances to Promote Individual-Based Air Pollution 

Exposure Measures Studies 

Mobile Positioning Technology 

Mobile positioning technology emerges along with the development of 

information and communication technologies in recent years (Warren 2006). Mobile 

positioning technology does not collect air pollution information by itself. But it can be 

used to quickly collect a person’s location information through a time period, which is 

the component of many personal exposure assessment methods.  

Common mobile positioning technologies include Global Satellite Navigation 

System (GNSS), radio frequency identification (RFID), cellular network positioning, and 

other networks (such as Wireless Fidelity (Wi-Fi) network and Internet Protocol (IP) 

address) positioning technologies. To date, the most successful GNSS is GPS, which is 

fully operated and has a full global coverage. Other GNSSs in preparation include the 

Russian GLONASS, the Chinese Beidou (also called as Compass) navigation system, and 

the European Union’s Galileo positioning system (IGS 2009). As technology progresses, 

the horizontal error of a GPS receiver/data-logger is reduced to less than 5 meters under 

cloudless condition (Keita, Carfagna and Mu’Ammar 2010); the size of a GPS 
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receiver/data-logger is small enough to be integrated into a watch or a mobile phone. The 

accuracy of cellular network positioning is decided by the location of near base station 

and therefore is not high. Assisted GPS (A-GPS) positioning is a hybrid approach that 

combines standalone GPS positioning and cellular network positioning (LaMance, 

DeSalas and Jarvinen 2002). Recently, many researchers applied mobile positioning 

technologies to collect persons’ location data for their environmental assessment studies 

(Duncan et al. 2009, Greaves et al. 2008, Maisonneuve et al. 2009, Zhan et al. 2006). 

Mobile Wireless Communication Technology 

Mobile wireless communication technology (or called as cellular network 

technology) has evolved four generations. The first generation (1G) only provides mobile 

voice communication service. The second generation (2G) begins to support data 

communication with a low speed of 10KBps. The third generation (3G) is currently the 

most widely used high speed mobile wireless data communication technology. With 3G 

network, mobile cellular subscribers can easily access to internet. The fourth generation 

(4G) is a new technology that provides a higher data communication speed than 3G. 

Although 4G is better, there's still a long way to go before 4G replaces 3G because of 

issues such as network upgrading (Arshad, Farooq and Shah 2010). 

Mobile wireless communication technology, especially 3G and 4G technology, 

allows mobile cellular subscribers to acquire and disseminate information at all times and 

places. Air pollution exposure assessment can take advantage of this feature. For 

example, a smart mobile phone becomes a mobile air pollution monitoring platform when 

it is integrated with a portable air pollution sampler (Raftery 2009). According to the 
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International Telecommunication Union (ITU), the mobile cellular subscribers worldwide 

reached 5.3 billion in 2010. Among these subscribers, about 940 million had 3G service 

(ITU 2010). The huge amount of mobile cellular subscribers set me thinking on what the 

future of personal exposure assessment studies will be since there are so many potential 

participants/contributors. 

Web 2.0 and VGI 

First introduced by Darcy DiNucci (1999) and clearly defined by Tim O’Reilly 

(2005), the term “Web 2.0” indicates the new World Wide Web that is featured as read-

write function and bottom-up structure. Web 2.0 has the advantage of user-generated 

content (UGC). Any individual or group can publish information to the internet 

conveniently. In other words, there are “six billion sensors” on the earth (Goodchild 

2007b).  

The spatial information (including air pollution exposure data) created by the 

untrained voluntary persons (e.g., common net users) is called volunteered geographic 

information (VGI) (Goodchild 2007a). VGI has the virtue of fast reponse, low cost, and 

large volume. So the VGI system is applicable to collect a person’s environmental 

exposure. For example, CoCoRaHS (the Community Collaborative Rain, Hail and Snow 

Network) relies on about twenty thousand volunteers nationwide with different social 

backgrounds to measure and report the precipitation amount in their backyards. Using 

these data, CoCoRaHS publishes U.S./state/county daily precipitation maps (CoCoRaHS 

2010).  
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The mobile VGI system – a mobile wireless communication technology supported 

VGI system – can achieve real-time data collection and publishing through smart mobile 

phones (Song and Sun 2010). For example, when a person finds poor air quality near a 

street block, he can use his iPhone to report the information onto Twitter using the 

Schmaps & Schnaps app. Then those who follow him receive a map that shows the event 

location and other information. If the reporter carries a portable air pollution sampler, his 

personal real-time exposure to air pollution can be measured and published 

synchronously. 

Health Effects of Air Pollution Exposure 

Air pollutants have many effects on human health (Curtis et al. 2006, Mauderly 

and Samet 2009). These health effects can be either long-term or short-term. Major long-

term health effects include diseases of the respiratory system (e.g., chronic asthma and 

lung cancer), other internal diseases (e.g., cardiovascular and cerebrovascular diseases), 

and shortened life expectancy (Neupane et al. 2010, Puett et al. 2009). Major short-term 

health effects include allergy, upper respiratory infections, acute asthma, and even death 

(Belleudi et al. 2010, Kan et al. 2010). Individual sensitivity toward air pollutants is 

different. Generally speaking, children and older persons are more sensitive to air 

pfollutants (He et al. 2010, Silverman and Ito 2010). Air pollutants can have different 

human health effects (Kampa and Castanas 2008, Pope, Ezzati and Dockery 2009). It is 

necessary to investigate different air pollutants separately. 
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Health Effects of Ground-Level O3 Exposure 

Ground-level O3 may cause airway inflammation, airway hyperresponsiveness 

(AH), respiratory infection, pulmonary injury, and heart disease (Weinhold 2010). A 

Thailand study found that short term ground-level O3 exposure is associated with 

cardiovascular diseases (RR=1.239, 95% CI=0.901, 1.705) and respiratory diseases 

(RR=1.157, 95% CI=0.791, 1.692) (Ruangdej and Chaosuansreecharoen 2008). A recent 

study reported that of climate change induced O3 increase may cause daily mortality 

increases in 50 U.S. cities (Bell et al. 2007). In their study, sixty years climate change 

(1990 through 2050) was simulated; the estimated summertime O3 concentrations 

increased significantly (high O3 summer days increased 68%); O3-related mortality would 

increase 0.11% to 0.27% daily. Lin et al. (2008) applied a birth cohort study to assess the 

association between chronic O3 exposure and the risk of asthma among children in New 

York and reported a positive correlation (OR: 1.16-1.68). Moore et al. (2008) 

investigated the asthma hospital discharge during high O3 seasons in southern California. 

They found that O3 level is associated with children asthma hospital admission. Rage et 

al. (2009) examined the asthma severity among 328 samples from the French 

Epidemiological study on the Genetics and Environment of Asthma (EGEA). They 

reported that summertime O3 (over 110mg/m3) is positively associated with the severity 

of adult asthma (OR=2.22, 95% CI=1.61, 3.07). Lin and Lu (2009) reported that the 

global association between O3 exposure and children respiratory diseases is not 

significant in Houston, Texas in 2001 summer, but they noted that there is a significant 

association in three sub-areas. 
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Because the generation of ground-level O3 is related to temperature, humidity, 

and solar radiation, O3 concentrations vary with time and season. Generally speaking, O3 

concentrations are higher in urban area during summer daytime (Khoder 2009). In the 

APHEA-2 (Air Pollution and Health: a European Approach) project, Samoli et al. (2009) 

reported the positive relationship between ground-level O3 and respiratory mortality and 

cardiovascular mortality in summer. They found that for every 10 mg/m3 O3 increase, the 

lag 0 respiratory mortality and the lag 0-20 respiratory mortality increase 0.36% 

(95%CI=0.002–0.009) and 3.35% (95%CI=0.002–0.048) respectively. But they failed to 

build the O3 health effect relationship for other seasons. Another French study 

investigated summer O3 concentrations in nine cities and found a significant association 

between O3 and mortality (Filleul et al. 2006). For every 10 mg/m3 O3 increase, the 

mortality increased 1.01% (95%CI=0.006, 0.014). 

Health Effects of PM Exposure 

PM is a common name of a series of air pollutants in air; it includes BS, haze, 

TSP, PM10, PM2.5, and UFP (Bell, Samet and Dominici 2004c). Recent epidemiologic 

studies have supported that PM is associated with increases in acute and chronic 

respiratory illness, cardiovascular illness, and death. Early studies such as the Harvard 

Six-City study found that the indoor air particulate levels in is associated with pulmonary 

function decrease (Spengler et al. 1981). In the U.S., Dominici et al. (2006) investigated 

the national hospital admission data for 1999 through 2002 and found that the short-term 

PM2.5 exposure is significantly related to cardiovascular and respiratory diseases hospital 

admission. de Bilderling et al. (2005) investigated a 2289 cases United Kingdom 

questionnaire survey cohort study and indicated that maternal smoking is positively 
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associated with children (7-8 years old) wheezing (OR=1.90, 95% CI: 1.06, 3.39) and 

children-adolescent (7-8 years old and 15-18 years old) wheezing (OR= 2.18, 95% CI: 

1.15, 4.14). Furthermore, they found that exposures to gas heating and gas cooking may 

increase the risk of children and adolescent wheezing, although the adverse effect of gas 

burning is inferior to that of smoking. Lin and colleagues reviewed 43 tobacco smoke-

tuberculosis (TB) or indoor air pollution-TB papers and found that indoor tobacco 

smoking may increase the risk of TB infection (Lin, Ezzati and Murray 2007). In 1970s 

and 1980s, researchers reported the association between indoor burning-related air 

pollution and the prevalence of children respiratory disease (Honicky, Akpom and 

Osborne 1983, Melia et al. 1977). See and Balasubramanian (2006) explored the 

relationship between Chinese cooking style (gas stove coking with stir-frying method in a 

wok) and suspending concentrations of PM2.5 and metals. They found the average PM2.5 

and metals concentrations during cooking hours increase significantly, which are 11.7 

and 10.4 times higher than those during non-cooking hours, respectively. Their findings 

support that the long-term cooking exposure may increase health risk. 

Health effects of roadway/traffic PM exposure attract extensive research interests. 

An 8-year cohort study found that children who live near to major roads have an inferior 

lung development than those who live away from major roads (Gauderman et al. 2007). 

The California Teachers Study investigated the monthly PM exposure for about 45000 

females between 2002 and 2007. The PM2.5 exposure was found to be associated with 

increased cardiopulmonary, pulmonary, ischemic heart disease, and all non-traumatic 

causes mortality (Ostro et al. 2010). Edwards et al. (2006) initiated a lung cancer case-

control study and measured the life course exposure for heavy industry ambient air 
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pollution in Teesside, England. They took residents who lived within a range of 5km of 

heavy industry for more than twenty five years as life course exposure objects. They 

found that the association between industrial air pollution and women lung cancer is 

significant (age and confounding factors adjusted OR= 1.83, 95% CI: 0.82, 4.08). 

Health Effects of Other Air Pollutants  

NO2 is found to be associated with lower respiratory tract infections and lung 

damage. A recent indoor NO2 exposure health effect study for non-atopic children 

reported high indoor NO2 concentration (29.8 ppb on average) is associated with children 

asthma attack (RR=1.75, 95%CI=1.10-2.78) and peak flows rate (RR=1.46, 

95%CI=1.07-1.97) (Kattan et al. 2007).  

Health effects of NO2 are related to both exposure concentration and exposure 

duration. Latza, Gerdes and Baur (2009) reviewed 214 NO2 health effects studies that are 

published during 2002-2006. They found that 1) very-short-term high NO2 exposure (1 

hour mean<200µg/m3) may not have adverse health effects, 2) short-term low NO2 

exposure (24 hour mean<50µg/m3) may increase respiratory morbidity and mortality, and 

3) long-term low NO2 exposure (annual mean<40µg/m3) may also increase respiratory 

diseases and mortality. 

Samoli et al. (2007) investigated CO mortality in 19 European cities. They found 

that for every 1mg/m3 (two day mean value) CO increase, the cardiovascular mortality 

and the total mortality increase 1.25% (95%CI=0.003–0.022) and 1.2% (95%CI=0.006–

0.018) respectively. An Italy study reported that CO can impair the function of lung of 
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adults who have asthma history (Canova et al. 2010). They found that for every 1mg/m3 

CO increase, peak expiratory flow (PEF) of samples decreases 2.6% to 2.8%. 

There are several studies relevant to other and unexplained indoor source air 

pollution. Gaffin and Phipatanakul (2009) indicated that HDM, pet, mold, cockroach, and 

mouse may cause asthma attack. Indoor microorganisms such as fungi and bacteria emit 

microbial VOCs, which can irritate eye and upper respiratory tract (Korpi et al. 2009). 

Multiple air pollutants may have comprehensive health effects. For example, 

Andersen et al. (2008) found that the multiple ambient air pollutants such as PM10, NO2, 

NOx, and CO can simultaneously trigger to infants’ wheezing symptoms.  

Air Quality Index 

Air quality index (AQI) or called as Air pollution index (API) is a positive 

number that is used to indicate the degree of air pollution and potential air pollution 

health effects. AQI standard varies by nation. In the U.S., based on five major air 

pollutants, i.e., ground-level O3, PM2.5, PM10, CO, NO2, and NOx, the EPA calculates 

AQI to report to public air quality (EPA 2010c). EPA classified AQI into six color-coded 

levels, as reported in Table 2.3 (EPA 2009b). Local and national AQI (such as PM2.5, O3, 

and PM2.5-O3 combined) reports and forecasts are updated hourly (AIRNow 2010b, EPA 

2010a) (see Equation 2.15). 

ࡵ ൌ
࢒ࡵିࢎࡵ
࢒࡮ିࢎ࡮

ሺ࡯ െ ሻ࢒࡮ ൅  .Equation 2.15   ࢒ࡵ

where ܫ is the AQI value, ܥ is the air pollutant concentration, ܤ௛ is the high breakpoint 

 ௟ is theܫ ,௛ܤ ௛ is the high AQI limit corresponding toܫ ,(ܥ≥) ௟ is the low breakpointܤ ,(ܥ≤)
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low AQI limit corresponding to ܤ௟. Breakpoints for the AQI (ܤ௛ and ܤ௟) are available in 

the breakpoint table (EPA 2009b). 

 

Table 2.5. The U.S. AQI Standard. 

AQI Health concern Color Explanation 

0-50  Good  Green Clean air, no health risk  

51-100  Moderate  Yellow Light air pollution, little health risk 

101-
150  

Unhealthy for sensitive 
groups  

Orange Only sensitive groups are affected 

151-
200  

Unhealthy  Red Unhealthy air for everyone 

201-
300  

Very Unhealthy  Purple Serious health effects for everyone 

301-
500  

Hazardous  Maroon
Severe adverse health effects, even 
death 

Source: EPA, 2009. 

 

AQI maps, i.e., maps covered with AQI color information layers, are usually used 

for AQI reporting and forecasting. For example, a public web site – 

WWW.AIRNOW.GOV provides near real-time hourly AQI maps for the U.S. and AQI 

readings for major U.S. cities (see Figure 2.5).  
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Figure 2.5. National PM2.5-O3 Combined AQI Forecast on September 19th, 2010. 

Source: AIRNow, 2010. 

 

AQI maps provide a good visualization of national / state air quality. However, 

when they are applied to personal exposure visualization, they have two drawbacks. First, 

public AQI maps only show AQIs on city level. Their low spatial resolutions are not 

suitable for visualizing personal exposure to air pollution. Second, AQI maps are 2D 

maps, which mean that only AQIs at one specific time point or average AQIs over a 

period of time are shown in one map. Temporal information is missing. 
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  CHAPTER III 3.

STUDY AREA 

Houston, Austin, and San Antonio are the three selected Texas cities for this 

dissertation research (see Figure 3.1). Houston is situated in the southeast Texas; Austin 

and San Antonio are situated in the central/south-central Texas. According to the U.S. 

census (2010), Houston, Austin, and San Antonio are among largest cities in the U.S. in 

2009 as reported in Table 3.1. 

The air pollution conditions in these three cities are different (see Figures 3.2, 3.3, 

and 3.4) (EPA 2010a). Houston is a notorious heavily polluted city because of its 

numerous oil and petrochemical industries and large population. According to the ALA 

(2010), Houston ranks the seventh among the most O3-polluted U.S. cities, and the 

sixteenth among the most PM2.5-polluted U.S. cities. Austin is the capital of the state of 

Texas; it has a lightly polluted air quality because of its limited traditional industry. San 

Antonio does not have serious air quality problem, but the daily average AQI in San 

Antonio is higher than that in Austin. Consequently, Austin, San Antonio, and Houston 

can represent the large subtropical cities with different air pollution levels – the lightly 

polluted, the moderately polluted, and the heavily polluted (EPA 2010a). 
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Figure 3.1. The Geographic Locations of Houston, Austin, and San Antonio in 

Texas. 

Source: U.S. Census, 2010 
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Table 3.1. Basic Area, Population, and Air Pollution Conditions of Houston, Austin, 

and San Antonio. 

 Houston Austin San Antonio 

Area (mi2) 656.3 296.2 412.1

Population (million) 2.26 0.79 1.37

State rank by population 1 4 2

National rank by population 4 15 7

County Harris Travis Bexar 

Air pollution condition Heavily polluted Lightly polluted Moderately polluted 

Outstanding air pollutants PM2.5/O3 PM2.5 PM2.5 
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Figure 3.2. Daily AQI of Harris County (Houston), Texas in 2008. 

Source: EPA, 2010a. 
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Figure 3.3. Daily AQI of Travis County (Austin), Texas in 2008. 

Source: EPA, 2010a. 
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Figure 3.4. Daily AQI of Bexar County (San Antonio), Texas in 2008. 

Source: EPA, 2010a. 
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  CHAPTER IV 4.

RESEARCH FRAMEWORK AND RESEARCH DESIGN 

Research Framework 

This dissertation research focuses on investigating the individual air pollutant 

(i.e., O3) exposure by considering the individual travel behavior. So the research 

framework has three concerns – the space-time air pollution scenarios, the individual 

travel behavior, the individual-based air pollution exposure and intake (see Figure 4.1). 

 

Individual travel 
trajectories

Space-time air 
pollution 
scenarios

Individual-based 
air pollution 

exposure models

Individual 
physical 

conditions

Individual daily 
activities

Individual-based 
air pollution 

intake models

 

Figure 4.1. The Research Framework of the Dissertation. 
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Research Design 

Based on the research framework, the research design includes three major 

blocks: development of near real-time space-time air pollution scenario cubes, individual 

real-time space-time behavior 3D mapping, and integrating space-time cubes and space-

time behaviors to develop the pseudo individual near real-time air pollution monitoring 

model, see Figure 4.2 for the detailed process of developing the pseudo individual near 

real-time air pollution monitoring and dose simulation model.  

The content and process of the research design are:  

1) Data involving human participant’s individual physical condition and main 

indoor environment air conditions will be collected from volunteer interview and travel 

diary.  

2) Hourly outdoor air pollution raw data will be downloaded from the EPA air 

pollution monitoring web site.  

3) Regional indoor-outdoor microenvironment map will be generated from land 

use / land cover data. 

4) Regional near real-time space-time air pollution scenario cubes will be 

constructed based on main indoor environment air conditions, hourly outdoor air 

pollution raw data, and indoor-outdoor microenvironment map.  

5) Individual real-time space-time behavior data, including travel trajectories, 

stops, speeds, and accelerations, will be obtained by a handheld GPS navigator.  
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6) The Pseudo Individual near Real-time Air pollution Monitoring (PIRAM in 

short) model will be developed by integrating space-time air pollution cubes and 

individual travel trajectories. 

7) The ground truth data for individual air pollution exposure corresponding to the 

selected space-time trajectories will be obtained by using portable air pollution 

monitor/sampler to validate the PIRAM model.  

8) The integrated Pseudo Individual near Real-time Air Quality Index (PIRAQI 

in short) model is generated from the PIRAM model by converting estimated individual 

air pollution exposure levels to the AQI values using the AQI calculator.  

9) Participant’s real-time air intake volume per minute is decided by individual 

physical condition and daily physical activities, which will be estimated by analyzing 

travel diary and GPS collected data (i.e., stops, speeds, and accelerations).  

10) The integrated Pseudo Individual near Real-time Air pollution Dose 

Simulation (PIRADS in short) model is generated by integrating the PIRAM model and 

participant’s real-time air intake volume per minute. 
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Figure 4.2. The Process Flowchart of the Pseudo Individual Near Real-Time Air Pollution Modeling. 

Graphic symbols: initial data -          ; intermediate data -          ; result models -           ; health effect profile -           . 
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Near Real-Time Space-Time Air Pollution Scenario Cube Design 

In the early 1970s, Hägerstrand proposed a space-time cube to integrate space and 

time together for the purpose of analyzing life histories of people and how they interact 

(Hägerstrand 1970). In his space-time cube, the base is the traditional 2D geographical 

space, while the height is used to represent time. This way, people’s life trajectory can be 

visualized across space and through time in this space-time cube. However, due to 

computational limitation, Hägerstrand’s space-time cube was restricted to conceptual 

level until the recent years start seeing its adoption by GIS researchers for visualization 

(Kraak 2003) as well as analysis purposes (Demšar and Virrantaus 2010, Gatalsky, 

Andrienko and Andrienko 2004).  

I propose to extend Hägerstrand’s space-time cube from the traditional geospace-

time cube to a specific air pollution cube in space-time dimensions. A space-time air 

pollution scenario cube integrates the air pollution scenarios into a three-dimensional 

space-time cube. The base of this cube describes the spatial variation of air pollution 

across a traditional 2D space; the height dimension represents time so that, as time 

progresses, the change of air pollution for each location within the base 2D space is 

continuously represented in the cube at the corresponding time. On the operational level, 

depending on the time resolution of air pollution scenarios, an air pollution cube consists 

of a series of component time layers and reveals the dynamic change of air pollution 

concentration (see Figure 4.3). 
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Figure 4.3. Space-Time Air Pollution Scenario Cube. 

Note: In the three-dimensional graph, the x-axis and the y-axis represent the air pollution 

scenario (spatial dimension) at a certain time stamp; the t-axis represents temporal 

dimension. The air pollution scenarios change over time and collectively form the 

cube. A series of stacked layers of air pollution scenarios through time constitute a 

space-time air pollution scenario cube. For example, if the air pollution scenarios 

are recorded every one hour, there are twenty four scenarios (air pollution 

component layers) during a day. 

 

A near real-time space-time urban ambient air pollution scenario cube is 

constructed when continuous real-time air pollution data are not practically available. It is 

made up of a series of component layers (i.e., air pollution scenarios) with equal intervals 

of time (Fang and Lu 2011). Each component layer is a near real-time air pollution map, 
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which is generated using indoor-outdoor microenvironment and field air pollution data, 

normally subjecting to a certain time delay.  

After identifying the preferred methods for air pollution prediction for a time 

point, the appropriate methods can be used to generate the air pollution component layers 

for a set of discrete time points throughout the study period. However, the space-time air 

pollution cube is not finished until the air pollution concentration at any time points can 

be predicted. This can be achieved using the air pollution concentrations of the two 

adjacent component layers and the time lag in-between. A comprehensive model to 

estimate pollution level for this in-between time point should consider not only the air 

pollution level at the same location from the two adjacent component layers, but also the 

air pollution level at the surrounding locations from the early time component layer. 

Furthermore, any known event that happened between that early component layer and the 

current time point should be considered. Equation 4.1 represents a general model of such 

(Fang and Lu 2011). 

࢚࡯ ൌ ࢐,࢏ࢉ∑
࢚ ൌ ࢐,࢏ࢉ൫ࢌ

,૚ି࢚ ࢐,࢏ࢉ
ା૚൯࢚ ൅ ࢒,࢑ࢉ൫ࢍ∑

૚൯ି࢚ ൅  .ሻ൯  Equation 4.1࢚,૚ି࢚ሺࢋ൫ࢎ∑

where ܥ௧ is a component layer at time ݐ; ܿ௜,௝
௧  is air pollution level at location ሺ݅, ݆ሻ at time 

௞,௟ܿ ;ݐ
௧ିଵ is air pollution level at location ሺ݇, ݈ሻ, which is within the neighborhood of 

location ሺ݅, ݆ሻ; ݁ሺ௧ିଵ,௧ሻ is an event ݁ that occurred between time ݐ െ 1 and ݐ. 

As a starting point for future more advanced exploration, this study takes a simple 

linear interpolation approach along time line to estimate the O3 level for a location at a 

certain time. Equation 4.2 illustrates a linear interpolation for this step. The inter-layer 

pollution for any location can easily be calculated using raster calculation functions. 
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Other temporal interpolation functions, when proved sound, can be implemented 

following same procedure.  

ቐ
࢓~࢔࡯ ൌ ࢔࡯ ൅

૜૙ି࢓

૟૙
൫࢔࡯ା૚ െ ൯࢔࡯ 		૜૙ ൑ ࢓ ൏ ૟૙

࢓~࢔࡯ ൌ ૚ି࢔࡯ ൅
ା૜૙࢓

૟૙
൫࢔࡯ െ ૚൯ି࢔࡯ ૙ ൑ ࢓ ൏ ૜૙

  Equation 4.2. 

where ܥ௡~௠ is the air pollution concentration at hour ݊ minute ݉, ܥ௡ is the average air 

pollution concentration between hour ݊ and ݊ ൅ 1. 

Compared to the traditional space-time cube, an air pollution cube is distinctive in 

three-folds. First of all, the cube describes the patterns of air pollution across space and 

through time compared to the traditional space-time cube where the cube itself is an 

empty container to simply provide reference for space and time. Put another way, the air 

pollution cube itself provides attribute information (air pollution level) for any reference 

point in the space-time cube. Secondly, for the air pollution cube to caring attribute 

information, as described above, the cube needs to be “constructed” technically using 

spatial and mathematical methods rather than just being conceptualized as the traditional 

space-time cube. Thirdly, the air pollution cube has the potential to support individual-

based exposure studies. Connecting to Peuquet’s conceptual work on time geography 

(Peuquet 1994), the traditional space-time cube describes where (space) and when (time) 

only and leave the description of what (object) to the actors that move around in the 

container. The air pollution cube, on the other hand, describes where, when, and what (air 

pollution level) simultaneously. This allows for the power of an individual-based 

description of what (in this case, individual level air pollution exposure) when actors are 

introduced into the cube. More specifically, the air pollution cube can serve as a 

background container where, when discrete locations or continuously trajectories be 
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“planted” inside, predictions of air pollution exposure can be derived and actions be 

recommended to control for pollution exposure. 

Individual Real-Time Space-Time Behavior Monitoring Design 

The individual real-time monitoring provides two groups of data: the individual 

real-time space-time behavior data and the genuine individual real-time air pollution 

exposure data. The individual real-time space-time behavior data are indispensable 

components of the individual near real-time air pollution exposure models. The 

individual real-time space-time behavior data include the travel trajectories, the moving 

speeds, and the frequent stops. The individual travel trajectories are used to decide 

individual’s space-time path in the near real-time space-time air pollution scenario cube 

(see Figure 4.4); the individual moving speeds and the individual frequent stops are 

integrated with the individual physical conditions and the indoor-outdoor 

microenvironments to calculate individual real-time air intake volume per minute (see 

Table 2.2, Equations 2.9 through 2.13).  
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Figure 4.4. An Individual Travels through A 3D Space. 

Note: The dashed curve is the virtual space-time travel path of the individual. 

 

A few volunteers in the three selected cities were asked to carry handheld GPS 

units and portable air pollution samplers (see next section) for a few of days. The Garmin 

eTrex Vista H handheld GPS navigator was used to record the individual real-time space-

time behavior data. It collected data at 10 second intervals (see Figure 4.5). The 

volunteers were asked to write a travel diary to validate GPS recorded travel information.  
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Figure 4.5. Garmin eTrex Vista H Handheld GPS Navigator. 

 

Indoor-Outdoor Microenvironment 

Indoor-outdoor microenvironment was used in this dissertation for two specific 

purposes. First, indoor-outdoor microenvironment was integrated with main indoor 

environment air conditions and hourly outdoor air pollution raw data to construct regional 

near real-time space-time air pollution scenario cubes. Second, indoor-outdoor 

microenvironment was integrated with the individual moving speeds, the individual 

frequent stops, and the individual physical conditions to calculate individual real-time air 

intake volume per minute. 
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Individual Real-Time Air Pollution Exposure Monitoring Design 

The genuine individual real-time air pollution exposure data is the true real-time 

ambient air pollution concentration (i.e., the ground truth data). The BW GasAlert 

Extreme single gas detector (O3) with 10 ppb increments was used as the air pollution 

sampler (see Figure 4.6). It collected data at 10 second intervals. 

 

 

Figure 4.6. BW GasAlert Extreme Single Gas Detector (O3). 

 

PIRAM, PIRAQI, and PIRADS 

Based on the near real-time space-time air pollution scenario cube (see the details 

in Chapter 5) and the individual real-time space-time behavior monitoring data (see the 
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details in Chapter 6), the integrated Pseudo Individual near Real-time Air pollution 

Monitoring (PIRAM in short) model will be generated (see Figure 4.7). An individual’s 

air pollution exposure at any time point within the cube can be estimated by intersecting 

the individual’s space-time path with the horizontal component layers (i.e., scenarios) and 

of the cube and applying Equation 5.2. 

 

 

Figure 4.7. Integrating (a) the Near Real-Time Space-Time Air Pollution Scenario 

Cube and (b) the Individual Real-Time Space-Time Behavior to Construct (c) the 

Pseudo Individual Near Real-Time Air Pollution Monitoring Model. 

 

When the individual air pollution exposures by the PIRAM model are converted 

to the AQI values using the AQI calculator (AIRNow 2010a), the integrated Pseudo 

Individual near Real-time Air Quality Index (PIRAQI in short) model is generated from 

the PIRAM model. The PIRAQI model applies AQI values instead of air pollution 

concentrations to depict the individual air pollution exposure. So it has good visual 

effects and can effectively profile individual air pollution health concerns. 
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When the PIRAM model is integrated with the individual real-time air intake 

volume per minute, the integrated Pseudo Individual near Real-time Air pollution Dose 

Simulation (PIRADS in short) model is generated. The PIRADS model can portray 

individual real-time air pollution exposure doses such as daily exposure dose, hourly 

exposure dose, on-site exposure dose, and peak concentration exposure dose. Recent 

studies have reported that the intake of O3 is associated with the health risks (Marshall et 

al. 2006). Because the PIRADS model can provide the detailed inhaled air pollutant dose, 

it is suitable to profile individual real-time air pollution health risk. 

Principles 

Several important principles are relevant to this dissertation research. 

Individual-based near real-time air pollution measure is the first emphasis of this 

dissertation research. Different from the conventional place-based air pollution measures, 

this research takes individuals as measuring objects. At the same time some data are 

obtained through place-based methods, but are coupled with individual components. For 

example, the air pollution scenarios are acquired through place-based approaches. 

Human travel behavior is the second emphasis. This dissertation research does 

not take all human travel behaviors into consideration. Two criteria for human travel 

behavior selection are 1) these travel behaviors need to be relevant to air pollution 

exposure and 2) only representative behaviors that are closely related to air intaking are 

selected. Individual travel-related physical activities, travel trajectories, stops, moving 

speed, and accelerations are selected human travel behaviors. 
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In this research, it is critical to quantify the individual near real-time air pollution 

exposure. All data (such as individual locations and air pollution concentrations) need to 

be quantified to support the monitoring models.  

Repeatability is a criterion for testing effectiveness of the monitoring models. No 

interventions are applied in this research. The individuals and the air pollutant 

components are analyzed independently. Portable air pollution sampler recorded data, 

i.e., the ground truth data, are used to test the repeatability of the monitoring models. 
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  CHAPTER V 5.

DEVELOPMENT OF SPACE-TIME AIR POLLUTION SCENARIO CUBES 

Data Source 

EPA Air Monitoring Site Reports 

EPA provides thousands of air monitoring sites nationwide for the purpose of 

outdoor air pollution conditions on site measuring. In Texas, there are about 237 EPA air 

monitoring sites managed by the Texas Commission on Environmental Quality (TCEQ) 

that provide hourly air and weather parameters such as O3, CO, PM2.5, PM10, NO2, SO2, 

wind speed, wind direction, and outdoor temperature (TCEQ 2010). Although there is a 

three-hour lag for data transmission and display, the TCEQ web site can provide the 

approximately real-time ambient air pollutant concentration data. The information of the 

dissertation-research-involved EPA air monitoring sites is reported as Table 5.1 and 

Figure 5.1. 
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Table 5.1. The EPA Air Monitoring Sites Managed by the TCEQ in the Houston 

Region, the Austin Region, the San Antonio Region in 2010. 

Region Total CO NO2 O3 PM2.5 PM10 SO2 TSP 

Houston 47 8 21 46 11 0 8 0

Austin 9 1 4 8 4 0 2 0

San Antonio 18 3 5 11 7 1 1 5

Data source: TCEQ, 2010. 

 

 

Figure 5.1. The O3 and the PM2.5 Air Monitoring Sites in the Houston Region, the 

Austin Region, the San Antonio Region in 2010. 

Data source: TCEQ, 2010. 
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In this dissertation research, the initial outdoor air pollution concentration data 

were collected through place-based measures from the EPA air monitoring sites online 

reports for several reasons. First, although the portable air pollution sampler can collect 

fine individual real-time ambient air pollution concentration, its high cost, low reliability, 

and the poor end-user experience make it a challenge for the research. Second, the EPA 

air pollution monitoring sites reports are the only public source that can provide 

appropriate near real-time air pollution data. Other data sources have longer delay and 

cannot be used in the near real-time on-site research. For example, National Emission 

Inventory (NEI) Database air pollution data has a three-year lag (EPA 2008a). Last, data 

collected by the EPA air pollution monitoring sites are in standard format and can be 

easily processed.  

Land Use / Land Cover Data 

Through processing EPA air monitoring site data, the hourly outdoor air pollution 

conditions are generated. The next step is to build the indoor-outdoor microenvironment. 

Based on the land use / land cover data, the indoor-outdoor microenvironment maps for 

each city are created. The land use / land cover data are available on web sites such as the 

Capital Area Council of Governments’ Information Clearinghouse (CAPCOG 2010), the 

City of San Antonio – Geographic Information Systems (COSA 2010), the City of 

Houston GIS Release (COHGIS 2010), and the Houston-Galveston Area Council (H-

GAC) (2010). 

According to the indoor-outdoor air pollution exchange theory, indoor air 

pollution includes indoor-generated and outdoor-penetrated air pollution. Data from the 
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individual questionnaires, such as the household smoking habits, the household cooking 

habits, and the areas of major indoor microenvironments, are used to decide indoor-

generated air pollution. For example, the household smoking habit is related to the 

indoor-generated PM2.5; the smoking-generated PM2.5 concentration can be quantified by 

the number of cigarettes that are smoked indoors and the volume of the building. Other 

indoor air pollution (such as cooking smoke) will be also considered. Outdoor-penetrated 

air pollution is related to the ACH, which are reported in the literature (Yamamoto et al. 

2010).  

Based on this information, hourly outdoor air pollution scenario layers and 

indoor-outdoor microenvironment maps, a series of hourly indoor-outdoor-integrated air 

pollution maps are generated. These maps are component layers for the near real-time 

space-time air pollution scenario cube. In the research, there will be three such cubes – 

one near real-time O3 cube for each selected city. 

Houston Air Pollution Cube 

In the Houston region, there are 46 EPA O3 monitoring sites (see Figure 5.3). In 

other words, the number of monitoring sites is enough for the LUR modeling. 

Consequently, two groups of methods were used to predict outdoor air pollution 

concentration at non-sampled locations in the Houston region – discrete modeling 

methods (e.g., the land use regression (LUR) modeling) and continuous modeling 

methods (e.g., the spatial interpolation approaches) (Ryan and LeMasters 2007). The air 

pollution concentration at a time between any two adjacent component layers can be 

estimated based on the temporal trends at a location and its surroundings.  
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Two days (December 27th & 28th, 2010) diurnal ambient ozone (O3) scenarios of 

the Houston region were modeled to build the Houston air pollution cubes. Through an 

online reporting system, EPA air monitoring sites provide near real-time (i.e., a three-

hour lag) hourly averaged air and weather data such as O3 level, wind information, 

relative humidity, and outdoor temperature (see Figure 5.2). These data were used as the 

major air pollution data source. These EPA monitoring sites were randomly divided into 

two subsets – the training data sets (thirty six sites for model building) and the test data 

sets (ten sites for model validation). Other data used for this study included land use / 

land cover data, transportation data, meteorological data, demographic data, and other 

geographic data. They were obtained from the web sites of the U.S. Census Bureau, the 

United States Naval Observatory (USNO), the Texas Natural Resources Information 

System (TNRIS), the Texas Department of Transportation (TxDOT), the TCEQ, the 

WebGIS, the Environmental Systems Research Institute (ESRI), the H-GAC, and the 

COHGIS. 
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Figure 5.2. The EPA Air Monitoring Sites Managed by the TCEQ in the Houston 

Region in 2010. 

Data source: TCEQ, 2010. 

 

LUR Modeling 

Hourly outdoor near real-time air pollution scenarios in the Houston region were 

built through the LUR modeling. In the LUR model, air pollution is a dependent variable; 

road network, road type, traffic count, elevation, population density, solar irradiance, 

temperature, precipitation, wind direction, and wind speed are variables. There is a 

multiple linear relationship between dependent variable and independent variables (Ryan 
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et al. 2007b). Through a multiple linear regression with SPSS, the parameters will be 

decided. Based on the parameters and the variables, the hourly outdoor air pollution 

exposure maps will be calculated. 

Considering the local conditions of Houston, this research selected 19 

independent variables for the LUR model. These independent variables were categorized 

into 6 classes and reported in Table 5.2 – physical geography, road, traffic, population, 

land cover, and meteorology. The distance to ocean for each EPA site was computed 

because the large body of water may affect the dispersion of air pollutants (Moore et al. 

2007). The distance to power plants and/or refineries is important as these facilities form 

the major pollution sources in Houston. Roads are considered as they serve as indications 

of traffic, which is a well-known source for O3. Annual Average Daily Traffic (AADT) 

count data in 2009 were obtained from the TxDOT and used as a direct representation of 

traffic condition. The 2009 traffic data were used as the data since 2010 were not 

available for this study. Population density is related to human activities and thus 

anthropogenic air pollution. The population density on block level was calculated using 

Census 2000 data. 
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Table 5.2. All Independent Variables Used in the LUR Modeling for Outdoor O3 

Prediction in the Houston Region. 

Variable Variable definition Unit Class 

x1 Elevation m 

Physical 
geography 

x2 Distance to Ocean  m 

x3 Distance to the nearest power plants & refineries km 

x4 Distance to nearest primary road* km 

Road x5 Distance to nearest secondary and minor road ** km 

x6 Length of secondary and minor road within 600m  km 

x7 Traffic count in nearest major road 106/day Traffic 

x8 Block population density  per km2 Population 

x9 Area of urban and built-up land within 150m km2 

Land cover 

x10 Area of agricultural land and forest land within 150m km2 

x11 Area of urban and built-up land within 300m km2 

x12 Area of agricultural land and forest land within 300m km2 

x13 Area of urban and built-up land within 600m km2 

x14 Area of agricultural land and forest land within 600m km2 

x15 Wind index  ---- 

Meteorology 

x16 Resultant wind speed m/s 

x17 Temperature F 

x18 Relative humidity % 

x19 Solar relative radiance ---- 

Note: * Primary road: Census feature class code (CFCC) first level categories A1 & A2. 

** Secondary and minor road: CFCC first level categories A3 – A7. 
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Land cover variables measure urban and built-up areas, agricultural land, and 

forest/woods. Other types of land cover were not considered as they are negligible in size 

in the study area. Based on the literature (Ryan and LeMasters 2007), we chose buffer 

sizes of 150m, 300m, and 600m. Meteorological variables included wind index, resultant 

wind speed, temperature, relative humidity, and solar relative radiance. Wind index 

indicates the difference between the resultant wind direction and the nearest air pollution 

emission source direction (McCune and Keon 2002) (Equation 5.1). Data on the hourly 

resultant wind speed, the temperature, and the relative humidity for each EPA sites were 

obtained from the EPA online reports. The solar relative radiance was derived from the 

site’s elevation, the sun altitude, and the sun azimuth. 

࢝ ൌ
૚ିܛܗ܋ሺࢻିࣂሻ

૛
    Equation 5.1. 

where ݓ is the wind index, ߠ is the direction from the nearest road or air pollution 

emission source to the EPA sites (e.g., north=0/360, east=90), ߙ is the hourly resultant 

wind direction for each EPA sites. 

A backward multi-linear regression was conducted for the training data sets to 

calibrate the parameters for each hourly LUR model and the adjusted coefficients of 

determination (R2) reported (see Table 5.3). The significant threshold for the predicting 

variables was set as 0.05. To validate the LUR models, the root mean square errors 

(RMSEs) and R2 between the measured and the predicted values at the test sites were 

examined. Furthermore, statistics tests were applied to compare the predictions of O3 

pollution level with the actual measurements obtained at the test sites. Depending on the 

normality of the samples (examined using the Kolmogorov–Smirnov test for normality), 
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either a paired-sample t-tests or a Wilcoxon signed-rank test was conducted to examine if 

the predictions are significantly different from the corresponding observations (see 

Tables 5.5 and 5.6). 

 

Table 5.3. Included Predicting Variables for the Hourly LUR Component Layer 

Models for Outdoor O3 Prediction in the Houston Region by the Multiple Linear 

Regression Analysis in SPSS. 

Model # Time (date, hr:min) Predicting variables Adjusted R2 

1 27, 1:30pm x4, x6, x9, x10, x11, x12, x13, x17, x19 0.46

2 27, 2:30pm x1, x2, x8, x9, x19 0.39

3 27, 3:30pm x4, x6, x9, x10, x11, x12, x14, x17, x19 0.52

4 27, 4:30pm x1, x4, x6, x9, x10, x17, x19 0.60

5 27, 5:30pm x1, x2, x4, x5, x6, x9, x11, x16, x19 0.76

6 27, 6:30pm x1, x2, x3, x5, x6, x11, x13, x17 0.67

7 28, 7:30am x1, x2, x3, x4, x6, x9, x14 0.69

8 28, 8:30am x4, x9, x10, x17 0.52

9 28, 9:30am x1, x2, x9, x11, x17 0.58

10 28, 10:30am x4, x7, x9, x10, x13, x14, x18 0.55

11 28, 11:30am x4, x11, x12, x18 0.45

12 28, 12:30pm x3, x4, x7, x9, x10, x11, x12, x17, x19 0.78

13 28, 1:30pm x3, x9, x11, x12, x13, x14, x17 0.71

14 28, 2:30pm x1, x2, x3, x5, x9, x13, x15, x17 0.59

15 28, 3:30pm x1, x3, x4, x8, x11, x12, x13, x14 0.46

16 28, 4:30pm x1, x3, x4, x11, x12, x13, x14 0.59
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Note: Meanings of the predicting variables are listed in Table 5.2. 

 

Spatial Interpolation 

According to the literature, for outdoor air pollution assessment, the LUR 

generated discrete maps may be better than the continuous spatial interpolation maps 

(Ryan and LeMasters 2007). To test for this, this dissertation research compared the LUR 

generated maps with the spatial interpolation maps.  

Due to the lack of agreement regarding which spatial interpolation method is the 

best for O3 prediction, this study compares three commonly applied spatial interpolation 

methods to predict the hourly outdoor O3 pollution in the Houston region. These methods 

are IDW (power: 2, neighbors: 15), radial basis functions (RBF) (neighbors: 15), and 

ordinary kriging with spherical semivariogram. RBF is a spline interpolation method used 

in ArcGIS.  

These EPA monitoring sites were randomly divided into two subsets – the 

training data sets (thirty six sites for geostatistical model building) and the test data sets 

(ten sites for geostatistical model validation). 

The performance of the three spatial interpolation methods – IDW, RBF, and 

kriging was assessed by examining the RMSEs and MEs for the training data sets (see 

Table 5.4). The lowest RMSEs for each component layer model were highlighted in bold. 

Among the three interpolation methods, IDW generated only 1 prediction with the lowest 

RMSE; RBF prediction generated 8 lowest RMSEs; kriging method generated 7 lowest 

RMSEs. It should be noted that because of the unexplained errors such as measurement 



95 

 

error and microscale variation, the nugget effect exists in kriging. This echoes the finding 

from the p-values reported in Table 5.5 – the prediction from IDW is generally not as 

good as that from the other two interpolation methods. 

 
Table 5.4. The RMSEs and MEs for the Training Data Sets for Outdoor O3 

Assessment Using the 3 Spatial Interpolation Methods – IDW, RBF, and Kriging in 

the Houston Region on December 27th & 28th, 2010. 

Model # Time 
IDW RBF Kriging 

ME RMSE ME RMSE ME RMSE 

1 27, 1:30pm -0.81 3.22 -0.21 3.03 -0.11 2.88

2 27, 2:30pm -0.78 4.43 -0.30 4.17 -0.21 4.22

3 27, 3:30pm -0.95 4.21 -0.52 4.00 -0.17 3.95

4 27, 4:30pm -1.29 4.67 -0.52 4.27 -0.26 4.33

5 27, 5:30pm -1.40 3.86 -0.54 2.95 -0.29 3.18

6 27, 6:30pm -1.03 4.79 -0.60 4.60 -0.31 4.38

7 28, 7:30am -2.01 5.85 -0.90 5.30 -0.33 5.18

8 28, 8:30am -2.04 5.68 -0.36 4.64 -0.26 4.60

9 28, 9:30am -1.01 5.18 -0.40 5.12 -0.21 5.46

10 28, 10:30am -0.97 5.18 -0.39 4.97 -0.31 5.23

11 28, 11:30am -0.98 4.51 -0.48 4.43 -0.22 4.62

12 28, 12:30pm -0.87 3.75 -0.49 3.77 -0.14 3.60

13 28, 1:30pm -0.89 5.40 -0.54 5.45 0.01 5.58

14 28, 2:30pm -0.99 4.03 -0.55 4.08 -0.15 3.93

15 28, 3:30pm -0.63 4.48 -0.19 4.14 -0.29 4.37

16 28, 4:30pm -1.49 4.84 -0.74 4.23 -0.44 4.63
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Note: The units of the RMSEs and MEs: ppb. For each model, the lowest RMSE across 

the different predicting methods is highlighted as bold. 

 

The RMSEs and R2 between measured and predicted values at the ten randomly 

selected test sites were calculated to evaluate the performance of the different 

interpolation methods. Furthermore, the paired-samples t-tests and the Wilcoxon signed-

rank tests were applied to evaluate the accuracy of the different interpolation methods 

(see Table 5.5s and 5.6). 

The Comparison between the LUR Modeling and the Spatial Interpolation Methods 

A total of sixteen LUR models were built to generate the hourly component layers 

for the space-time air pollution cube. Table 5.3 summarizes the predicting variables and 

the adjusted R2 for each component layer model. The numbers of predicting variables for 

these models vary: model #8 and model #11 each has 4 predicting variables, whereas 

model #1, model #3, model #5, and model #12 each has 9 variables. The values of 

adjusted R2 ranged from 0.39 to 0.78. Overall, the fitting results of these sixteen hourly 

LUR models were good. Table 5.5 reports the RMSEs and R2 between the measured and 

the predicted values at the test sites. The values of the RMSEs of the LUR models ranged 

from 2.26 ppb to 5.25 ppb. The accuracy of O3 predictions across the sixteen models 

were assessed using both paired-sample t-tests and Wilcoxon singed-rank tests. The 

results are reported in Table 5.6. The p-values for all the sixteen LUR models were 

greater than 0.05, indicating that the LUR predications at the test sites are statistically 

similar to the EPA measured pollution levels.  
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Table 5.5. The RMSEs and R2 Between Measured and Predicted Values at the O3 

Test Sites in the Houston Region by the LUR Models and the Spatial Interpolation 

Methods (unit: ppb). 

Model 
# 

Time  

(date, hr:min) 

LUR IDW RBF Kriging 

RMSE R2 RMSE R2 RMSE R2 RMSE R2 

1 27, 1:30pm 3.56 0.40 5.01 0.01 5.07 0.02 5.11 0.01

2 27, 2:30pm 2.41 0.50 3.15 0.19 2.88 0.19 3.15 0.18

3 27, 3:30pm 4.74 0.35 3.61 0.45 3.23 0.50 3.39 0.47

4 27, 4:30pm 4.27 0.32 3.90 0.27 3.97 0.30 3.99 0.27

5 27, 5:30pm 2.64 0.40 5.26 0.15 6.41 0.14 4.99 0.18

6 27, 6:30pm 2.34 0.67 3.54 0.55 3.18 0.59 3.20 0.52

7 28, 7:30am 2.27 0.69 4.66 0.81 4.07 0.79 4.33 0.71

8 28, 8:30am 5.25 0.66 6.67 0.34 5.01 0.47 6.08 0.06

9 28, 9:30am 2.87 0.25 5.98 0.71 5.67 0.76 8.65 0.03

10 28, 10:30am 5.05 0.65 3.97 0.78 3.76 0.74 4.72 0.37

11 28, 11:30am 3.86 0.47 3.94 0.01 3.39 0.16 3.78 0.30

12 28, 12:30pm 3.25 0.18 4.27 0.09 3.52 0.51 3.90 0.12

13 28, 1:30pm 2.26 0.33 4.16 0.16 4.03 0.16 5.68 0.00

14 28, 2:30pm 2.81 0.50 4.45 0.32 4.18 0.47 3.80 0.47

15 28, 3:30pm 3.06 0.40 5.16 0.18 6.02 0.07 6.21 0.02

16 28, 4:30pm 3.83 0.39 4.07 0.17 4.22 0.20 3.63 0.34

Note: The units of the RMSEs: ppb. For each model, the lowest RMSE across the 

different predicting methods is highlighted as bold. 
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Table 5.6. The Paired-Samples T-Tests and the Wilcoxon Signed-Rank Tests for the 

Hourly Outdoor O3 Pollution Component Layer Predictions at the Ten Randomly 

Selected Test Sites in the Houston Region. 

Model # 
Time 

(date, hr:min) 

p-value 

LUR IDW RBF Kriging 

1 27, 1:30pm 0.249* 0.956* 0.807* 0.755*

2 27, 2:30pm 0.764* 0.043* 0.121* 0.040*

3 27, 3:30pm 0.203** 0.096* 0.064* 0.209*

4 27, 4:30pm 0.059** 0.871* 0.426* 0.662*

5 27, 5:30pm 0.207* 0.507* 0.908* 0.973*

6 27, 6:30pm 0.137* 0.053* 0.108* 0.234*

7 28, 7:30am 0.116* 0.433* 0.862* 0.961*

8 28, 8:30am 0.114** 0.013** 0.068* 0.044*

9 28, 9:30am 0.713* 0.616* 0.460* 0.445**

10 28, 10:30am 0.478* 0.021* 0.031* 0.091*

11 28, 11:30am 0.646** 0.009** 0.013** 0.059**

12 28, 12:30pm 0.959** 0.003* 0.003* 0.015*

13 28, 1:30pm 0.268* 0.024* 0.034* 0.028*

14 28, 2:30pm 0.508** 0.158* 0.295* 0.399*

15 28, 3:30pm 0.508** 0.251* 0.386** 0.342*

16 28, 4:30pm 0.285** 0.831* 0.694* 0.417*

Note: The p-values less than 0.05 are highlighted as bold. 

* The paired-samples t-test for normally distributed samples. 
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** The Wilcoxon signed-rank test for non-normally distributed samples. 

The normality of the samples was examined using the Kolmogorov–Smirnov test 

for normality. 

 

The performance of the three spatial interpolation methods – IDW, RBF, and 

kriging were assessed by examining the RMSEs for the test data sets. Among the three 

interpolation methods, IDW generated 1 prediction with the lowest RMSE; RBF 

generated 4 lowest RMSEs; kriging method generated 1 lowest RMSEs. Similar patterns 

are observed when paired-sample t-tests or Wilcoxon signed-rank tests were applied to 

compare the predicted values at the test sites with the corresponding observed values. As 

can be seen from the p-values reported in Table 5.6, IDW produced more predictions that 

are significantly different from the observed values than RBF did. 

When comparing the air pollution prediction results from the LUR models and the 

spatial interpolation methods, both the RMSE values and the statistical tests reveal that 

LUR models generated better results. The predictions from the LUR models are overall 

closer to the observed values at the test sites than the predictions from the spatial 

interpolation methods. The statistical tests show that all the LUR predications are 

statistically similar to the observed. The RMSE values for the LUR models are generally 

smaller than those for the spatial interpolation methods. Among the lowest RMSEs 

(highlighted in bold), ten were from the LUR models, and six were from the spatial 

interpolation methods. Overall, the LUR models were more accurate than the spatial 

interpolation methods. 
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After model validation, the hourly outdoor O3 pollution component layers for 

Houston were generated (see Figure 5.3). The ambient O3 levels in the Houston region 

ranged from 0 to 65 ppb.  
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Figure 5.3. The Hourly LUR Component Layers (Model #1 - Model #16) for 

Outdoor O3 Prediction in the Houston Region on December 27th & 28th, 2010. 
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Indoor-Outdoor Microenvironment 

The H-GAC 2008 land cover data set used a ten-category classification: 

Developed, Higher Intensity; Developed, Lower Intensity; Developed, Open Space; 

Cultivated; Grassland/Shrub; Forest; Woody Wetland; Herbaceous Wetland; Barren; and 

Water. In this dissertation, Developed, Higher Intensity land category was assumed to be 

indoor microenvironment; other nine land categories were assumed to be outdoor 

microenvironment.  

The indoor-outdoor microenvironment was generated based on the H-GAC land 

cover data and was in raster format, which had a spatial resolution of 30m (see Figure 

5.4). 
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Figure 5.4. The Indoor-Outdoor Microenvironment in the Houston Region in 2010. 
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Constricting the Air Pollution Cube 

Because the study period (i.e., December 27th & 28th, 2010) of constructing the 

Houston air pollution cube is in the winter season, Equation 2.13 was used to describe the 

indoor-outdoor O3 relationship. 

By integrating the hourly outdoor air pollution scenario layers and the indoor-

outdoor microenvironment, the hourly near real-time space-time air pollution scenario 

layers were generated (see Figure 5.5).  
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Figure 5.5. The Hourly LUR Component Layers (Model #1 - Model #16) for O3 

Prediction in the Houston Region on December 27th & 28th, 2010. 
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By registering and stacking the hourly O3 pollution component layers, the 

backbones for the near real-time space-time O3 pollution scenario cubes were built. 

Figure 5.6 illustrates the frame of the diurnal near real-time space-time O3 pollution 

scenario cubes for the Houston region on December 27th & 28th, 2010. The between-

layer pollution predictions were then generated using Equation 4.2. 

 

 

(a) 
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(b) 

Figure 5.6. The Near Real-Time Space-Time O3 Pollution Scenario Cube 

Constructed Using LUR Modeling Method in the Houston Region on December 27th 

& 28th, 2010. 

Note: (a) December 27th, (b) December 28th. 

 

Austin Air Pollution Cube 

In the Austin region, there are only 8 EPA O3 monitoring sites (see Figure 5.7). 

The number of monitoring sites is not enough for the LUR modeling. Only the spatial 

interpolation methods were used to predict the hourly outdoor O3 pollution in the Austin 

region. EPA monitoring sites were not divided into the training subsets and the test data 
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sets because the number of involved EPA air monitoring sites was small in the Austin 

region. 

 

 

Figure 5.7. The EPA Air Monitoring Sites Managed by the TCEQ in the Austin 

Region in 2010. 

Data source: TCEQ, 2010. 
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Spatial Interpolation 

One day (November 2nd, 2010) diurnal ambient O3 scenarios of the Austin region 

were modeled to build the Austin air pollution cubes. Three spatial interpolation methods 

– IDW (power: 2, neighbors: 5), RBF (neighbors: 5), and ordinary kriging with spherical 

semivariogram – were applied to create hourly outdoor near real-time air pollution 

scenarios in the Austin region.  

The performance of the three spatial interpolation methods was assessed by 

examining the RMSEs and MEs of each model (see Table 5.7). The lowest RMSEs for 

each component layer model were highlighted in bold. Among the three interpolation 

methods, IDW and kriging method generated 3 predictions with the lowest RMSE, 

respectively; RBF prediction generated 6 lowest RMSEs. Consequently, results of RBF 

were best for the Austin region. 

At each time point, maps with lowest RMSEs were selected as the hourly 

component layers for outdoor O3 prediction in the Austin region on November 2nd, 2010 

(see Figure 5.8). The ambient O3 levels in the Austin region ranged from 0 to 48 ppb. In 

the noon time, O3 concentrations were relative high. 
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Table 5.7. The RMSEs and MEs for Outdoor O3 Assessment Using the 3 Spatial 

Interpolation Methods – IDW, RBF, and Kriging in the Austin Region on November 

2nd, 2010. 

Model # 
Time 

(hr:min) 

IDW RBF Kriging 

ME RMSE ME RMSE ME RMSE 

1 8:30am 0.18 2.75 0.59 2.73 0.23 2.32

2 9:30am 0.27 3.03 0.78 3.18 0.40 2.79

3 10:30am -0.41 2.66 0.22 2.33 0.04 2.58

4 11:30am 0.20 3.34 0.62 3.52 0.45 3.53

5 12:30pm -0.07 3.14 0.46 3.05 0.14 3.02

6 13:30pm -0.66 3.45 0.23 1.64 -0.29 2.04

7 14:30pm -0.70 3.01 0.09 2.13 -0.36 2.16

8 15:30pm -0.25 4.12 0.31 2.45 0.16 3.51

9 16:30pm -0.48 4.64 0.70 3.71 0.21 3.89

10 17:30pm 0.62 4.27 0.76 3.56 0.41 3.82

11 18:30pm 1.09 3.74 0.67 3.96 0.83 3.95

12 19:30pm 1.51 5.02 1.46 5.05 1.09 6.00

Note: The units of the RMSEs and MEs: ppb. 

For each model, the lowest RMSE across the different predicting methods is 

highlighted as bold. 
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Figure 5.8. The Hourly Component Layers (Model #1 - Model #12) for Outdoor O3 

Prediction in the Austin Region on November 2nd, 2010. 
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Indoor-Outdoor Microenvironment 

2008 land use parcel data of Bastrop, Caldwell, Hays, Travis and Williamson 

Counties were obtained from the CAPCOG web site. Parcels with land use codes A (Real 

Property: Single-Family Residential), B (Real Property: Multifamily Residential), C 

(Real Property: Vacant Lots and Tracts), F1 (Real Property: Commercial), F2 (Real 

Property: Industrial (Manufacturing)), L1 (Personal Property: Commercial), L2 (Personal 

Property: Industrial (Manufacturing)), M1 (Mobile Homes (Owner different from 

landowner)), and O (Real Property: Residential Inventory) were assumed to be indoor 

microenvironment; other land was assumed to be outdoor microenvironment.  

The indoor-outdoor microenvironment was generated based on the CAPCOG land 

use data and was in raster format, which had a spatial resolution of 30m (see Figure 5.9). 
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Figure 5.9. The Indoor-Outdoor Microenvironment in the Austin Region in 2010. 

 

Constricting the Air Pollution Cube 

Because the study period (i.e., November 2nd, 2010) of the Austin air pollution 

cube constructing is in the fall season, Equation 2.12 was used to describe the indoor-

outdoor O3 relationship. 
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By integrating the hourly outdoor air pollution scenario layers and the indoor-

outdoor microenvironment, the hourly near real-time space-time air pollution scenario 

layers were generated (see Figure 5.10). 
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Figure 5.10. The Hourly Component Layers (Model #1 - Model #12) for O3 

Prediction in the Austin Region on November 2nd, 2010. 
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By registering and stacking the hourly O3 pollution component layers, the 

backbone for a near real-time space-time O3 pollution scenario cube was built. Figure 

5.11 illustrates the frame of the near real-time space-time O3 pollution scenario cube for 

the Austin region. The between-layer pollution predictions were then generated using 

Equation 4.2. 

 

 

Figure 5.11. The Near Real-Time Space-Time O3 Pollution Scenario Cube 

Constructed Using the Spatial Interpolation Methods in the Austin Region on 

November 2nd, 2010. 
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San Antonio Air Pollution Cube 

Similar to the Austin region, there are 11 EPA O3 monitoring sites in the San 

Antonio region (see Figure 5.12). The number of monitoring sites is not enough for the 

LUR modeling. Only the spatial interpolation methods were used to predict the hourly 

outdoor O3 pollution in the San Antonio region. EPA monitoring sites were not divided 

into the training subsets and the test data sets because the number of involved EPA air 

monitoring sites was small in the San Antonio region. 

 

 

Figure 5.12. The EPA Air Monitoring Sites Managed by the TCEQ in the San 

Antonio Region in 2010. 

Data source: TCEQ, 2010. 
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Spatial Interpolation 

One day (October 26th, 2010) diurnal ambient O3 scenarios of the San Antonio 

region were modeled to build the San Antonio air pollution cubes. Three spatial 

interpolation methods – IDW (power: 2, neighbors: 5), RBF (neighbors: 5), and ordinary 

kriging with spherical semivariogram – were applied to create hourly outdoor near real-

time air pollution scenarios in the San Antonio region.  

The performance of the three spatial interpolation methods was assessed by 

examining the RMSEs and MEs of each model (see Table 5.8). The lowest RMSEs for 

each component layer model were highlighted in bold. Among the three interpolation 

methods, IDW did not generate predictions with the lowest RMSE; kriging method 

generated 3 predictions with the lowest RMSE; RBF prediction generated 9 lowest 

RMSEs. Consequently, results of RBF were best for the San Antonio region. 

At each time point, maps with lowest RMSEs were selected as the hourly 

component layers for outdoor O3 prediction in the San Antonio region on October 26th, 

2010 (see Figure 5.13). The ambient O3 levels in the San Antonio region ranged from 0 to 

53 ppb. In the noon time, O3 concentrations were relative high. 
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Table 5.8. The RMSEs and MEs for Outdoor O3 Assessment Using the 3 Spatial 

Interpolation Methods – IDW, RBF, and Kriging in the San Antonio Region on 

October 26th, 2010. 

Model # 
Time 

(hr:min) 

IDW RBF Kriging 

ME RMSE ME RMSE ME RMSE 

1 8:30am 0.56 3.86 0.81 3.05 0.26 3.91

2 9:30am 0.54 3.42 0.41 3.41 0.04 3.52

3 10:30am 0.40 3.20 0.25 3.16 0.05 3.15

4 11:30am 0.45 2.82 0.55 2.62 0.03 2.87

5 12:30pm 0.52 2.87 0.66 2.62 0.12 2.81

6 13:30pm 0.57 3.22 0.65 2.95 0.15 3.09

7 14:30pm 0.62 2.72 0.52 2.59 0.46 2.58

8 15:30pm 0.32 2.70 0.31 2.65 0.31 2.87

9 16:30pm 0.09 3.92 0.46 3.36 -0.07 3.99

10 17:30pm 0.61 6.19 1.01 5.68 0.23 6.13

11 18:30pm 0.61 10.77 0.28 9.88 0.67 9.74

12 19:30pm 0.56 14.75 0.12 13.66 0.83 14.34

Note: The units of the RMSEs and MEs: ppb. 

For each model, the lowest RMSE across the different predicting methods is 

highlighted as bold. 
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Figure 5.13. The Hourly Component Layers (Model #1 - Model #12) for Outdoor O3 

Prediction in the San Antonio Region on October 26th, 2010. 
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Indoor-Outdoor Microenvironment 

2010 San Antonio land use data were obtained from the COSA web site. Parcels 

with land use codes 11** (Residential), 2*** (Commercial), 3*** (Industrial), and 40** / 

4100 (Public Institutional) were assumed to be indoor microenvironment; other land was 

assumed to be outdoor microenvironment.  

The indoor-outdoor microenvironment was acquired based on land use / land 

cover data, which had a spatial resolution of 30m (see Figure 5.14). 

 

 

Figure 5.14. The Indoor-Outdoor Microenvironment in the San Antonio Region in 

2010. 
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Constricting the Air Pollution Cube 

Because the study period (i.e., October 26th, 2010) of the Austin air pollution cube 

constructing is in the fall season, Equation 2.12 was used to describe the indoor-outdoor 

O3 relationship. 

By integrating the hourly outdoor air pollution scenario layers and the indoor-

outdoor microenvironment, the hourly near real-time space-time air pollution scenario 

layers were generated (see Figure 5.15). 
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Figure 5.15. The Hourly Component Layers (Model #1 - Model #12) for O3 

Prediction in the San Antonio Region on October 26th, 2010. 
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By registering and stacking the hourly O3 pollution component layers, the 

backbone for a near real-time space-time O3 pollution scenario cube was built. Figure 

5.16 illustrates the frame of the near real-time space-time O3 pollution scenario cube for 

the San Antonio region. The between-layer pollution predictions were then generated 

using Equation 4.2. 

 

 

Figure 5.16. The Near Real-Time Space-Time O3 Pollution Scenario Cube 

Constructed Using the Spatial Interpolation Methods in the San Antonio Region on 

October 26th, 2010.
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  CHAPTER VI 6.

INDIVIDUAL REAL-TIME MONITORING 

Individual Real-Time Monitoring in the Houston Region 

Individual Real-Time Space-Time Behavior Monitoring 

On December 27th & 28th, 2010, an adult male volunteer traveled in the Houston 

region and collected two data sets – the individual real-time space-time behavior data set 

and the individual real-time air pollution exposure ground truth data set. 

The volunteer’s two-day travel trajectory in the Houston region was shown on 

Figure 6.1. Figure 6.2 is a 3D visualization of the two-day trajectory of the volunteer. In 

the 3D space-time path map, the vertical dimension (z) represents the two-day travel 

time; the horizontal dimensions (x, y) represent the space of the Houston region. 
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Figure 6.1. The Volunteer’s 2D Travel Trajectory in the Houston Region on 

December 27th & 28th, 2010. 
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Figure 6.2. The Volunteer’s Space-Time Path in the Houston Region on December 

27th & 28th, 2010. 

 

Individual Real-Time Air Pollution Exposure Monitoring 

The volunteer’s real-time individual O3 exposure in the Houston region on 

December 27th & 28th, 2010, including ambient O3 concentrations and real-time AQIs 

were recorded; real-time individual O3 intake rates were calculated (see Figure 6.3). 

૜ࡻࢋ࢚ࢇࡾ ൌ ࡯ ∗  .Equation 6.1    ࢘࢏࡭ࢋ࢚ࢇࡾ

where ܴܽ݁ݐைయ is the real-time individual O3 intake rate, ܥ is the real-time ambient O3 

concentration, and ܴܽݐ ஺݁௜௥ is the real-time individual air intake volume per minute (see 

Table 2.2). 
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I found that the measured ambient O3 concentrations (ground truth data) ranged 

from 20 ppb to 80 ppb on December 27th & 28th, 2010. During the afternoon of December 

27th, the measured ambient O3 concentrations varied a lot. According to GPS data and 

travel diary, the O3 concentrations were medium when the volunteer traveled on major 

roads (e.g., Interstate 10, Interstate 45, and W Sam Houston Parkway S); the O3 

concentrations were low when the volunteer traveled on minor roads or stayed indoors 

for shopping and rest. This may be explained by the fact that the O3 concentrations are 

closely related to traffic emissions in urban areas. During the night of December 27th and 

the morning of December 28th, the O3 concentrations stayed low. During this period of 

time, the volunteer stayed in a hotel for most of time, except a 40-minute morning 

exercise, which included jogging and walking. Because the volunteer’s travel range was 

limited at that time, ambient O3 concentrations were stable. During the noon of December 

28th, the O3 concentrations were relative high. During this period of time, the volunteer 

traveled through the city of Houston along highways. During the afternoon of December 

28th, the O3 concentrations were low. During this period of time, the volunteer traveled in 

a small distance, but the space-time activities were complex, including staying, walking, 

and running. 

The individual O3 intake is more complex than individual O3 exposure; the 

variation of the volunteer’s real-time individual O3 intake rates is quite different from that 

of the ambient O3 concentrations in the Houston region during the two days. Generally 

speaking, the volunteer’s individual O3 intake rates were higher and more instable during 

the daytime. During the daytime, the volunteer visited different places and had many 

different daily activities, e.g., walking, running, and staying. These daily activities 
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affected the breathing rate, and resulted in a dramatic change in the individual O3 intake. 

During the nighttime, the volunteer stayed inside. This explains the low and stable O3 

intake rates at that time. I found that the individual O3 intake rate line had six peaks (i.e., 

O3 intake rates>10-6 L/min) – two peaks were occurred in the afternoon of December 

27th, one peak in the morning of December 28th, one peak in the noon of December 28th, 

and two peaks in the afternoon of December 28th (see Figure 6.3).  

 

 

Figure 6.3. The Volunteer’s Real-Time Air Pollution Exposure and Intake in the 

Houston Region on December 27th & 28th, 2010. 

Note: (a): O3 Intake rates (10-8 L/min), (b): Portable air pollution sampler collected 

ambient O3 concentrations (ppb), (c): Personal AQI values, which were converted 

from ambient O3 concentrations using the AQI calculator. 

 



130 

 

Because AQIs are converted from O3 concentrations directly, the variation of the 

volunteer’s real-time personal AQIs is similar to that of the ambient O3 concentrations. 

Following the U.S. AQI standard, I used different colors to visualize the volunteer’s real-

time personal AQIs – green color indicates good air quality (AQI range: 0-50), yellow 

color indicates moderate air quality (AQI range: 51-100), and orange color indicates that 

the air quality is unhealthy for sensitive groups (AQI range: 101-150) (see Figure 6.4). 

 

 

Figure 6.4. The Volunteer’s Space-Time Path with Personal AQIs in the Houston 

Region on December 27th & 28th, 2010. 
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Individual Real-Time Monitoring in the Austin Region 

Individual Real-Time Space-Time Behavior Monitoring 

On November 2nd, 2010, an adult male volunteer traveled in the Austin region and 

collected two data sets – the individual real-time space-time behavior data set and the 

individual real-time air pollution exposure ground truth data set. 

The volunteer’s one-day travel trajectory in the Austin region was shown on 

Figure 6.5. Figure 6.6 is a 3D visualization of the one-day trajectory of the volunteer. In 

the 3D space-time path map, the vertical dimension (z) represents the one-day travel 

time; the horizontal dimensions (x, y) represent the space of the Austin region. 
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Figure 6.5. The Volunteer’s 2D Travel Trajectory in the Austin Region on 

November 2nd, 2010. 
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Figure 6.6. The Volunteer’s Space-Time Path in the Austin Region on November 

2nd, 2010. 

 

Individual Real-Time Air Pollution Exposure Monitoring 

The volunteer’s real-time individual O3 exposure and intake in the Austin region 

on November 2nd, 2010, including ambient O3 concentrations, real-time AQIs, and real-

time O3 intake rates were recorded / calculated (see Figure 6.7). The measured ambient 

O3 concentrations (ground truth data) ranged from 0 ppb to 40 ppb in the daytime. 

According to GPS data and travel diary, during the morning of the day, the volunteer 

traveled on major roads (e.g., Interstate 35 and Highway 183); the O3 concentrations were 

low (O3 concentrations: 20-30ppb); traffic emissions were assumed to be the major air 
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pollution source during this period of time. Then the volunteer visited the friend’s house 

for about 3 hours; the O3 concentrations in this period of time were very low (O3 

concentrations: 0-10ppb); this may be explained by the fact that the volunteer stayed 

indoors, and indoor O3 concentrations in the friend’s house was very low. During the 

noon time, the volunteer traveled to the downtown area of Austin; the travel time was 

about half an hour. The O3 concentrations increased to 30-40ppb, which indicated that 

outdoor O3 concentrations during the noon time were higher than those during other time 

periods in the Austin region. Although outdoor O3 concentrations during the noon time 

were relative high, the air quality was still not bad because AQIs were less than 50, which 

is a sign of good air quality. This aspect was also shown in Figure 6.10. The volunteer 

stayed in the downtown area for a long time (about 6-7 hours) for shopping and resting. 

Because the volunteer almost stayed indoors in this period of time, the measured O3 

concentrations were very low (O3 concentrations: 0-10ppb). During the evening, the 

volunteer drove in the city of Austin; the measured O3 concentrations rose to 20-30ppb. 

Six O3 intake peaks (i.e., O3 intake rates>2*10-7 L/min) were found in Figure 6.7. 

Two of them (i.e., the third peak and the fifth peak) were related to indoor 

microenvironment; physical activities, e.g., walk, were the major reason for high intake 

rates. The other peaks were related to outdoor O3 concentrations. 
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Figure 6.7. The Volunteer’s Real-Time Air Pollution Exposure and Intake in the 

Austin Region on November 2nd, 2010. 

Note: (a): O3 Intake rates (10-8 L/min), (b): Portable air pollution sampler collected 

ambient O3 concentrations (ppb), (c): Personal AQI values, which were converted 

from ambient O3 concentrations using the AQI calculator. 

 

Generally speaking, both O3 concentrations and AQIs were low in the Austin 

Region on November 2nd, 2010. In other words, the diurnal air quality was good on that 

day. The variation of the volunteer’s real-time personal AQIs is similar to that of the 

ambient O3 concentrations. The ambient O3 concentrations ranged from 0 ppb to 40 ppb; 

the AQIs ranged from 0 to 34. Based on the U.S. AQI color standard, i.e., green color 

indicates good air quality (AQI range: 0-50), yellow color indicates moderate air quality 

(AQI range: 51-100), and orange color indicates that the air quality is unhealthy for 



136 

 

sensitive groups (AQI range: 101-150), the volunteer’s space-time path with personal 

AQIs was mapped (see Figure 6.8). Only green color was found in the map. 

 

 

Figure 6.8. The Volunteer’s Space-Time Path with Personal AQIs in the Austin 

Region on November 2nd, 2010. 
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Individual Real-Time Monitoring in the San Antonio Region 

Individual Real-Time Space-Time Behavior Monitoring 

On October 26th, 2010, an adult male volunteer traveled in the San Antonio region 

and collected two data sets – the individual real-time space-time behavior data set and the 

individual real-time air pollution exposure ground truth data set. 

The volunteer’s one-day travel trajectory in the San Antonio region was shown on 

Figure 6.9. Figure 6.10 is a 3D visualization of the one-day trajectory of the volunteer. In 

the 3D space-time path map, the vertical dimension (z) represents the one-day travel 

time; the horizontal dimensions (x, y) represent the space of the San Antonio region. 

 



138 

 

 

Figure 6.9. The Volunteer’s 2D Travel Trajectory in the San Antonio Region on 

October 26th, 2010. 
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Figure 6.10. The Volunteer’s Space-Time Path in the San Antonio Region on 

October 26th, 2010. 

 

Individual Real-Time Air Pollution Exposure Monitoring 

The volunteer’s real-time individual O3 exposure and intake in the San Antonio 

region on October 26th, 2010, including ambient O3 concentrations, real-time AQIs, and 

real-time O3 intake rates were recorded / calculated (see Figure 6.11). The measured 

ambient O3 concentrations (ground truth data) ranged from 10 ppb to 60 ppb in the 

daytime. According to GPS data and travel diary, during the morning of the day, the 

volunteer drove on major roads (e.g., Interstate 10 and Interstate 37); the O3 

concentrations were very low (O3 concentrations: 10ppb); air quality was good. The 

volunteer stayed in the downtown area of San Antonio for about 5 hours (9:00am-
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2:00pm). In the period of time, the main microenvironment was indoors. The O3 

concentrations were very low and constant (O3 concentrations: 10ppb). During 2:00pm to 

3:30pm on the same day, the volunteer drove across the city of San Antonio. The major 

roads he traveled included U.S. Highway 87, U.S. Highway 90, and Interstate 410. The 

O3 concentrations ranged from 40 ppb to 60 ppb. Traffic emissions were the major air 

pollution source. Then the volunteer stayed in the downtown area for 3 hours and a half. 

GPS data showed that the main microenvironment was indoors; the O3 concentrations 

were very low and constant (O3 concentrations: 10ppb). In the evening, the volunteer 

drove back to home, Seguin, Texas, which is located in the east of San Antonio. In the 

period of time, the O3 concentrations ranged from 10 ppb to 20 ppb. 

Four O3 intake peaks (i.e., O3 intake rates>2*10-7 L/min) were found in Figure 

6.11. The first three peaks were related to indoor physical activities. Walking and running 

caused the increase of respiratory rates, so that O3 intake rates were increased. The last 

peak was related to outdoor O3 concentrations because the volunteer was driving and the 

respiratory rate was constant. 
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Figure 6.11. The Volunteer’s Real-Time Air Pollution Exposure and Intake in the 

San Antonio Region on October 26th, 2010. 

Note: (a): O3 Intake rates (10-8 L/min), (b): Portable air pollution sampler collected 

ambient O3 concentrations (ppb), (c): Personal AQI values, which were converted 

from ambient O3 concentrations using the AQI calculator. 

 

Generally speaking, the air quality in the San Antonio on October 26th, 2010 was 

good. In Figure 6.12, the volunteer’s space-time path with personal AQIs showed a 

majority of green color, which meant good air quality; the only yellow color (i.e., 

moderate air quality) was found located in the downtown area around 3:30pm. 
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Figure 6.12. The Volunteer’s Space-Time Path with Personal AQIs in the San 

Antonio Region on October 26th, 2010. 
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  CHAPTER VII 7.

INDIVIDUAL-BASED AIR POLLUTION EXPOSURE MODELING 

Individual-Based Air Pollution Exposure Modeling in the Houston Region 

The near real-time space-time O3 pollution scenario cube constructed using LUR 

modeling method in the Houston region on December 27th & 28th, 2010 (see Figure 5.6) 

was used as the near real-time air pollution information platform for the individual air 

pollution exposure modeling in the Houston region. The volunteer’s real-time space-time 

path in the Houston region on December 27th & 28th, 2010 (see Figure 6.2) was used as 

the individual real-time space-time behavior monitoring data for the individual air 

pollution exposure modeling in the Houston region. After ArcGIS operations such as 

raster calculation, raster extraction, and zonal statistics, PIRAM estimated individual O3 

exposure in the Houston region was calculated (see Figure 7.1). The curve of PIRAM 

estimated individual O3 exposure fitted well with the result of portable air pollution 

sampler collected ambient O3 concentrations (i.e., the observed ground truth data), which 

indicated that the PIRAM model can effectively assess individual’s personal exposure to 

air pollution in the Houston region. This aspect was also verified through the paired-

sample t-test for comparing PIRAM estimated individual O3 exposure and portable air 

pollution sampler collected ambient O3 concentrations in the Houston region on 

December 27th & 28th, 2010 using SPSS (see Table 7.1). Volunteer’s individual O3 
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exposure was sampled every ten minutes in the two days. Ninety-two paired-samples 

were analyzed. The p-value of the paired-sample t-test was 0.341. There was no 

significant difference between the two groups. Based on the result, hypothesis 1 in the 

Houston region was supported. 

 

 

Figure 7.1. PIRAM Estimated Individual O3 Exposure (a) vs. Portable Air Pollution 

Sampler Collected Ambient O3 Concentrations (b) in the Houston Region on 

December 27th & 28th, 2010. 

Note: Unit: (ppb). 
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Table 7.1. The Paired-Samples T-Test for Comparing PIRAM Estimated Individual 

O3 Exposure and Portable Air Pollution Sampler Collected Ambient O3 

Concentrations in the Houston Region on December 27th & 28th, 2010. 

 

Paired Samples Test

 

Paired Differences 

t df 

Sig. (2-

tailed) Mean 

Std. 

Deviation 

Std. 

Error 

Mean 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Pair 

1 

PIRAM 

estimated    - 

Sampler 

collected 

.3167210 3.1713639 .3306375 -.3400498 .9734919 .958 91 .341

 

AQIs have a segmented linear relationship with air pollutant concentrations (see 

Equation 2.15). Consequently the effectiveness of the PIRAQI model may be different 

from that of the PIRAM model. 

PIRAM estimated individual O3 AQIs and portable air pollution sampler collected 

ambient O3 AQIs in the Houston region on December 27th & 28th, 2010 were converted 

using the AQI calculator (see Figure 7.2). The curve of PIRAM estimated individual O3 

AQIs fitted well with the result of portable air pollution sampler collected ambient O3 

AQIs, which indicated that PIRAQI can effectively assess individual AQIs in the 

Houston region. Through the paired-sample t-test for comparing PIRAM estimated 

individual O3 AQIs and portable air pollution sampler collected ambient O3 AQIs in the 

Houston region on December 27th & 28th, 2010 using SPSS, I found the p-value of the t-
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test was 0.464, which meant that there was no significant difference between the two 

groups (see Table 7.2). 

 

 

Figure 7.2. PIRAM Estimated Individual O3 AQIs (a) vs. Portable Air Pollution 

Sampler Collected Ambient O3 AQIs (b) in the Houston Region on December 27th & 

28th, 2010. 

Note: Unit: (ppb). 
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Table 7.2. The Paired-Samples T-Test for Comparing PIRAM Estimated Individual 

O3 AQIs and Portable Air Pollution Sampler Collected Ambient O3 AQIs in the 

Houston Region on December 27th & 28th, 2010. 

 

Paired Samples Test

 

Paired Differences 

t df 

Sig. (2-

tailed) Mean 

Std. 

Deviation 

Std. 

Error 

Mean 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Pair 

1 

Estimated AQI – 

Observed AQI 

-.457 5.951 .620 -1.689 .776 -

.736 

91 .464

 

Real-time individual O3 intake rate is decided by the real-time ambient O3 

concentrations and real-time individual air intake volume per minute. In this dissertation 

research, real-time individual air intake volume per minute was estimated using Holmes’s 

table of individual average air intake volume per minute, which is related to population 

groups (i.e., children, adult females, and adult males) and their physical activities (e.g., 

staying, walking, and running). Data needed for deciding individual average air intake 

volume per minute included questionnaire & travel diary, land use / land cover data, and 

GPS data. The ratio of PIRADS estimated individual O3 intake to portable air pollution 

sampler collected ambient O3 intake equals to the ratio of PIRADS estimated individual 

O3 exposure to portable air pollution sampler collected ambient O3 concentration.  

ࡿࡰ࡭ࡾࡵࡼࡵ
ࢊࢋ࢒࢖࢓ࢇࡿࡵ

ൌ ࢘࢏࡭ࡾࡵ∗ࡹ࡭ࡾࡵࡼࡱ
࢘࢏࡭ࡾࡵ∗ࢊࢋ࢒࢖࢓ࢇࡿ࡯

ൌ ࡹ࡭ࡾࡵࡼࡱ
ࢊࢋ࢒࢖࢓ࢇࡿ࡯

  Equation 7.1. 
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where ܫ௉ூோ஺஽ௌ is PIRADS estimated real-time individual O3 intake, ܫௌ௔௠௣௟௘ௗ is portable 

air pollution sampler collected ambient O3 intake, ܧ௉ூோ஺ெ is PIRAM estimated real-time 

individual O3 exposure, ܥௌ௔௠௣௟௘ௗ is real-time ambient O3 concentration, and ܴܫ஺௜௥ is real-

time individual air intake volume per minute. 

Consequently the effectiveness of the PIRADS model is same as that of the 

PIRAM model. The PIRADS model can effectively estimate individual’s personal air 

pollution intake in the Houston region. 

Individual-Based Air Pollution Exposure Modeling in the Austin Region 

The near real-time space-time O3 pollution scenario cube constructed using the 

spatial interpolation methods in the Austin region on November 2nd, 2010 (see Figure 

5.11) was used as the near real-time air pollution information platform for the individual 

air pollution exposure modeling in the Austin region. The volunteer’s real-time space-

time path in the Austin region on November 2nd, 2010 (see Figure 6.6) was used as the 

individual real-time space-time behavior monitoring data for the individual air pollution 

exposure modeling in the Austin region. After ArcGIS operations such as raster 

calculation, raster extraction, and zonal statistics, PIRAM estimated individual O3 

exposure in the Austin region was calculated (see Figure 7.3). The curve of PIRAM 

estimated individual O3 exposure did not fit well with the result of portable air pollution 

sampler collected ambient O3 concentrations (i.e., the observed ground truth data), which 

indicated that the PIRAM model may not effectively assess individuals’ personal 

exposure to air pollution in the Austin region. However, through the paired-sample t-test 

for comparing PIRAM estimated individual O3 exposure and portable air pollution 



149 

 

sampler collected ambient O3 concentrations in the Austin region on November 2nd, 2010 

using SPSS (volunteer’s individual O3 exposure was sampled every ten minutes in the 

day. Sixty-seven paired-samples were analyzed.), I found the p-value of the t-test was 

0.087, which meant that there was significant difference between the two groups at the 90 

percent confidence level (see Table 7.3). Based on the result, hypothesis 1 in the Austin 

region was not supported. 

 

 

Figure 7.3. PIRAM Estimated Individual O3 Exposure (a) vs. Portable Air Pollution 

Sampler Collected Ambient O3 Concentrations (b) in the Austin Region on 

November 2nd, 2010. 

Note: Unit: (ppb). 
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Table 7.3. The Paired-Samples T-Test for Comparing PIRAM Estimated Individual 

O3 Exposure and Portable Air Pollution Sampler Collected Ambient O3 

Concentrations in the Austin Region on November 2nd, 2010. 

Paired Samples Test

 

Paired Differences 

t df 

Sig. (2-

tailed) Mean 

Std. 

Deviation 

Std. 

Error 

Mean 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Pair 

1 

PIRAM 

estimated   - 

Sampler 

collected 

.9741294 4.5893719 .5606810 -.1453064 2.0935651 1.737 66 .087

 

PIRAM estimated individual O3 AQIs and portable air pollution sampler collected 

ambient O3 AQIs in the Austin Region on November 2nd, 2010 were converted using the 

AQI calculator (see Figure 7.4). The curve of PIRAM estimated individual O3 AQIs did 

not fit well with the result of portable air pollution sampler collected ambient O3 AQIs, 

which indicated that PIRAQI may not effectively assess individual AQIs in the Austin 

region. Through the paired-sample t-test for comparing PIRAM estimated individual O3 

AQIs and portable air pollution sampler collected ambient O3 AQIs in the Austin Region 

on November 2nd, 2010 using SPSS, I found the p-value of the t-test was 0.013, which 

meant that there was significant a difference between the two groups (see Table 7.4). 
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Figure 7.4. PIRAM Estimated Individual O3 AQIs (a) vs. Portable Air Pollution 

Sampler Collected Ambient O3 AQIs (b) in the Austin Region on November 2nd, 

2010. 

Note: Unit: (ppb). 

 

Table 7.4. The Paired-Samples T-Test for Comparing PIRAM Estimated Individual 

O3 AQIs and Portable Air Pollution Sampler Collected Ambient O3 AQIs in the 

Austin Region on November 2nd, 2010. 

Paired Samples Test

 

Paired Differences 

t df 

Sig. (2-

tailed) Mean 

Std. 

Deviation 

Std. 

Error 

Mean 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Pair 

1 

Estimated AQI – 

Observed AQI 

1.149 3.673 .449 .253 2.045 2.561 66 .013
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Because the effectiveness of the PIRADS model is same as that of the PIRAM 

model, the PIRADS model can effectively estimate individual’s personal air pollution 

intake in the Austin region. 

Individual-Based Air Pollution Exposure Modeling in the San Antonio Region 

The near real-time space-time O3 pollution scenario cube constructed using the 

spatial interpolation methods in the San Antonio region on October 26th, 2010 (see Figure 

5.16) was used as the near real-time air pollution information platform for the individual 

air pollution exposure modeling in the San Antonio region. The volunteer’s real-time 

space-time path in the San Antonio region on October 26th, 2010 (see Figure 6.10) was 

used as the individual real-time space-time behavior monitoring data for the individual air 

pollution exposure modeling in the San Antonio region. After ArcGIS operations such as 

raster calculation, raster extraction, and zonal statistics, PIRAM estimated individual O3 

exposure in the San Antonio region was calculated (see Figure 7.5). The curve of PIRAM 

estimated individual O3 exposure did not fit well with the result of portable air pollution 

sampler collected ambient O3 concentrations (i.e., the observed ground truth data), which 

indicated that the PIRAM model may not effectively assess individuals’ personal 

exposure to air pollution in the San Antonio region. However, through the paired-sample 

t-test for comparing PIRAM estimated individual O3 exposure and portable air pollution 

sampler collected ambient O3 concentrations in the San Antonio region on October 26th, 

2010 using SPSS (volunteer’s individual O3 exposure was sampled every ten minutes in 

the day. Sixty-seven paired-samples were analyzed), I found the p-value of the t-test was 

0.198, which meant that there was no significant difference between the two groups (see 

Table 7.5). Based on the result, hypothesis 1 in the San Antonio region was supported. 
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Figure 7.5. PIRAM Estimated Individual O3 Exposure (a) vs. Portable Air Pollution 

Sampler Collected Ambient O3 Concentrations (b) in the San Antonio Region on 

October 26th, 2010. 

Note: Unit: (ppb). 

 

Table 7.5. The Paired-Samples T-Test for Comparing PIRAM Estimated Individual 

O3 Exposure and Portable Air Pollution Sampler Collected Ambient O3 

Concentrations in the San Antonio Region on October 26th, 2010. 

Paired Samples Test

 

Paired Differences 

t df 

Sig. (2-

tailed) Mean 

Std. 

Deviation 

Std. 

Error 

Mean 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Pair 

1 

PIRAM 

estimated  - 

Sampler 

collected 

.5905473 3.7197922 .4544449 -.3167813 1.4978759 1.299 66 .198
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PIRAM estimated individual O3 AQIs and portable air pollution sampler collected 

ambient O3 AQIs in the San Antonio Region on October 26th, 2010 were converted using 

the AQI calculator (see Figure 7.6). The curve of PIRAM estimated individual O3 AQIs 

did not fit well with the result of portable air pollution sampler collected ambient O3 

AQIs, which indicated that PIRAQI may not effectively assess individual AQIs in the 

San Antonio region. Through the paired-sample t-test for comparing PIRAM estimated 

individual O3 AQIs and portable air pollution sampler collected ambient O3 AQIs in the 

San Antonio Region on October 26th, 2010 using SPSS, I found the p-value of the t-test 

was 0.020, which meant that there was significant a difference between the two groups 

(see Table 7.6). 

 

 

Figure 7.6. PIRAM Estimated Individual O3 AQIs (a) vs. Portable Air Pollution 

Sampler Collected Ambient O3 AQIs (b) in the San Antonio Region on October 26th, 

2010. 

Note: Unit: (ppb). 
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Table 7.6. The Paired-Samples T-Test for Comparing PIRAM Estimated Individual 

O3 AQIs and Portable Air Pollution Sampler Collected Ambient O3 AQIs in the San 

Antonio Region on October 26th, 2010. 

 
Paired Samples Test

 

Paired Differences 

t df 

Sig. (2-

tailed) Mean 

Std. 

Deviation 

Std. 

Error 

Mean 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Pair 

1 

Estimated AQI - 

Observed AQI 

.910 3.127 .382 .148 1.673 2.383 66 .020

 

Because the effectiveness of the PIRADS model is same as that of the PIRAM 

model, the PIRADS model can effectively estimate individual's personal air pollution 

intake in the San Antonio region. 

Summary 

The effectiveness of the pseudo individual near real-time air pollution monitoring 

(PIRAM) models in the Houston region, the Austin region, and the San Antonio region 

was examined using the paired-sample t-test. T-test results showed that the PIRAM 

models in the Houston region and the San Antonio region were effective (the p-values of 

the two models were greater than 0.10). Hypothesis 1 for Houston and San Antonio was 

accepted. However, the PIRAM model in the Austin region was not effective at the 90 

percent confidence level. Hypothesis 1 for Austin was not rejected.  
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Furthermore, the effectiveness of the PIRAM models in different cities was 

different. T-test results showed that the effectiveness of the PIRAM model in the Houston 

region was highest, in the San Antonio region was medium, and in the Austin region was 

lowest. Hypothesis 2 was rejected. 

The effectiveness of the pseudo individual near real-time air quality index 

(PIRAQI) models in the Houston region, the Austin region, and the San Antonio region 

was examined using the paired-sample t-test too. Among the PIRAQI models in the three 

regions, only the PIRAQI model in the Houston region was effective at the 90 percent 

confidence level.  

The effectiveness of the pseudo individual near real-time air pollution dose 

simulation (PIRADS) models was similar to that of the PIRAM models. Consequently, 

the PIRADS models in the Houston region and the San Antonio region were effective; 

the PIRADS model in the Austin region was not effective. 
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  CHAPTER VIII 8.

CONCLUSION AND DISCUSSION 

Summary of Research and Findings 

Through a series of spatial analysis and modeling approaches, this dissertation 

research enhances the knowledge regarding individual near real-time measurement for air 

pollution exposure and intake in three selected Texas cities – Houston, Austin, and San 

Antonio. This research builds upon individual-based air pollution exposure measures and 

offers a new method to assess individual air pollution exposure. The main purpose of this 

research was to build models to estimate individual near real-time air pollution exposure 

and intake. Three innovative aspects of the study included: development of near real-time 

space-time air pollution scenario cubes, individual real-time space-time behavior 3D 

mapping, and integrating space-time cubes and space-time behaviors to develop the 

pseudo individual near real-time air pollution monitoring models. 

First, this study adopted a near real-time space-time air pollution scenario cube 

approach to portray a dynamic urban air pollution scenario across space and time. 

Originating from time geography, space-time cubes provide an approach to integrate 

spatial and temporal air pollution information into a 3D space. The base of the cube 

represents the variation of air pollution in a 2D geographical space while the height 

represents time. This way, the changes of pollution over time can be described by the 
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different component layers of the cube from the base up. The diurnal ambient ozone (O3) 

pollution conditions in Houston, Austin, and San Antonio, Texas were modeled using the 

space-time air pollution cube approach. Two methods, i.e., the LUR modeling and the 

spatial interpolation methods, were applied to build the hourly component layers for the 

air pollution cube in the Houston region. It was found that the LUR modeling performed 

better than the spatial interpolation methods in predicting air pollution level. The spatial 

interpolation methods were applied in the Austin region and the San Antonio region. 

With the availability of real-time air pollution data, this approach can be extended to 

produce real-time air pollution cube for more accurate air pollution measurement across 

space and time, which can provide important support to studies in epidemiology, health 

geography, and environmental regulation. 

Second, volunteers’ individual real-time space-time travel behavior data in the 

three study areas were geovisualized using 3D space-time path maps. Comparing with 

conventional 2D maps, 3D maps can show individual travel behavior without losing 

temporal information and make individual travel path more readable. The volunteer’s 

space-time travel data were processed in ArcScene. In the 3D space-time path maps, the 

vertical dimension (z) represents travel time; the horizontal dimensions (x, y) represent 

the horizontal space of study areas. 

Third, the integrated pseudo individual near real-time air pollution monitoring 

(PIRAM) models, the integrated pseudo individual near real-time air quality index 

(PIRAQI) models, and the integrated pseudo individual near real-time air pollution dose 

simulation (PIRADS) models were developed on the base of the near real-time space-
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time cubes, the individual real-time space-time travel paths, the AQI calculator, and 

individual real-time air intake volume per minute. 

Consequently, this study was carried out through developing models and 

answering the two major research questions about the models: 

 Does the pseudo individual near real-time air pollution monitoring model 

effectively assess individuals' personal exposure to air pollution? 

 Is the monitoring model equally effective in different cities and regions? 

Results of paired-sample t-tests for comparing PIRAM estimated individual O3 

exposure and portable air pollution sampler collected ambient O3 concentrations showed 

the PIRAM models in the Houston region and the San Antonio region were effective (p-

values were 0.341 and 0.198 in the Houston region and the San Antonio region, 

respectively). However, the PIRAM model in the Austin region was not effective at the 

90 percent confidence level (p-value was 0.087). The effectiveness order of the PIRAM 

models is Houston greater than San Antonio greater than Austin. The effectiveness order 

is similar to the order of the numbers of EPA air monitoring sites in each region, which 

largely impacts the accuracy of the near real-time space-time air pollution scenario cube. 

In other words, the effectiveness of the PIRAM model is related to the number of EPA air 

monitoring sites in the region. 

The effectiveness of the PIRADS models was similar to that of the PIRAM 

models (see Equation 7.1). Consequently, the PIRADS models in the Houston region and 

the San Antonio region were effective; the PIRADS model in the Austin region was not 

effective. 
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AQIs have a segmented linear relationship with air pollutant concentrations (see 

Equation 2.15). Consequently the effectiveness of the PIRAQI model may be different 

from that of the PIRAM model. Results of paired-sample t-tests for comparing PIRAM 

estimated individual O3 AQIs and portable air pollution sampler collected ambient O3 

AQIs were different. The PIRAQI model in the Houston region was effective (p-value 

was 0.464); the PIRAQI models in the Austin region and the San Antonio region were 

not effective (p-values were 0.013 and 0.020, respectively). Given the limited numbers of 

EPA air monitoring sites in the Austin region and the San Antonio region, the PIRAQI 

model is suitable for cities with a large number of EPA air monitoring sites. 

Comparing results of the PIRAM models and the PIRAQI models in the study 

area, I found that both models were effective in the Houston region; the PIRAM model 

was effective and the PIRAQI model was not effective in the San Antonio region; both 

models were not effective in the Austin region. The results show that the practical 

application of the dissertation research needs to consider the actual condition of the study 

area. 

The severity of O3 pollution in the three selected Texas cities is Houston greater 

than San Antonio greater than Austin. The different air pollution scenarios in these 

regions cause the variations of the degree of concerns about air pollution and adverse 

health effect, and influence government decision-making for air monitoring, which is 

related to the numbers of regional EPA air monitoring sites. Consequently, in heavily 

polluted cities, near real-time space-time urban ambient air pollution scenario cubes are 

more accurate, and then pseudo individual near real-time air pollution monitoring models 

are more effective. The second research question can be answered as: the pseudo 
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individual near real-time air pollution monitoring model is not equally effective in 

different cities and regions; the effectiveness of the model is positively correlated to the 

degree of air pollution in the region. 

It should be noted that the PIRAM model has very flexible structures because 

individual position monitoring and the air pollution monitoring are allowed to operate 

separately. This approach is not unfamiliar to the public considering that numerous 

mobile phone users are already recording real-time location through the embedded GPS 

units and that thousands public air monitoring sites (including EPA sites) in the U.S. have 

been recording real-time air pollution concentration. With proper integration mechanism 

designed, the application of the PIRAM model could be accepted by the general 

population relatively easily. Citizens do not need to carry any additional air pollution 

sampler; a regular smart phone is the only personal equipment needed. The whole 

monitoring process is automatic; personal daily activities are not affected. 

Limitations 

Several limitations may impact the accuracy of the pseudo individual near real-

time measurement for assessing air pollution exposure. First, the accuracy of the PIRAM 

models may be influenced by the outdoor air pollution assessment method. Because when 

constructing the near real-time space-time air pollution scenario cube, the outdoor air 

pollution maps were generated by either the LUR model or the interpolation of the EPA 

air monitoring site report data, the accuracy of the hourly outdoor air pollution maps were 

affected by the number and the distribution of the monitoring sites and the modeling 

method applied. Consequently, in the lightly polluted cities such as the Austin region, 
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where the EPA air monitoring site report data is very limited, the hourly outdoor air 

pollution maps may not depict the spatial variation of pollution actually. Nevertheless, 

because the air pollution spatial heterogeneity in the lightly polluted cities is not as 

obvious as that in the heavily polluted cities, the insufficiency of EPA air monitoring 

sites is not a critical limitation. Second, the accuracy of the PIRAM models may be 

influenced by the indoor air pollution assessment method. In this dissertation research, 

indoor air pollution was calculated by the indoor-generated and the outdoor-penetrated 

air pollution. Indoor-generated O3 and ventilation-filter-removed O3 were not considered 

because of their small proportion. The outdoor-penetrated air pollution was decided by 

the outdoor air pollution concentration and the ACH, which is season-specific instead of 

building-specific. Third, the integration of the indoor-outdoor microenvironments and the 

individual space-time travel trajectories may not be accurate enough. In this dissertation 

research, the indoor-outdoor microenvironments were defined on the basis of land use / 

land cover data instead of on site measurement. The individual space-time travel 

trajectories were collected by GPS units. Because the GPS units have system errors and 

multipath errors, it is possible that the GPS records show the individual is in a building 

(i.e., indoor) but in fact the individual is on the side of the road (i.e., outdoor). Besides, 

the GPS units may lose signal inside buildings. The volunteer’s travel diaries were used 

to help mitigate the GPS system error and signal problem. Fourth, real-time individual air 

intake volume per minute was estimated instead of measured. Because it is very hard to 

measure volunteer’s real-time individual air intake volume per minute directly, this study 

applied Holmes’s table of individual average air intake volume per minute and used 

questionnaire, travel diary, land use / land cover data, and GPS data to estimate 
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volunteer’s real-time individual air intake volume per minute. This approach may affect 

the effectiveness of the PIRADS models. Fifth, only one volunteer was used in each 

region. The PIRAM models may suffer from problems such as sample representativeness. 

Given these limitations, this dissertation research is not free from uncertainties for 

the individual-based air pollution exposure modeling. 

Future Research 

This dissertation research is motivated by the needs to assess individual air 

pollution exposure. It is grounded by the theory of time geography, spatial analysis and 

statistical analysis, geographic information technologies, information technologies, and 

health and epidemiology. This dissertation research tries to depict an individual-based air 

pollution exposure and dose accumulation scenario. This dissertation research is an 

exploratory study that provides a quick-response and low-cost individual near real-time 

air pollution exposure assessment solution. 

Due to the limitations in the individual-based air pollution exposure modeling 

approach as discussed above, future research may focus on three aspects. First, efforts 

will be made to enhance the accuracy of the individual-based air pollution exposure 

modeling. As one important module of the individual-based air pollution exposure 

modeling, the space-time air pollution scenario cube needs to be improved. In cities with 

limited numbers of EPA air monitoring sites (e.g., Austin), other sampling methods, such 

as local government and private ambient air sampling network, are good supplementary 

approaches. Indoor air pollution assessment method needs to be refined. Besides outdoor-

penetrated O3, O3 from other sources should be estimated appropriately. Second, the 
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representativeness and effectiveness of the individual-based air pollution exposure 

modeling will be further examined by recruiting more volunteers in similar age groups 

and/or from similar backgrounds. For example, it would be interesting to modeling near 

real-time air pollution exposure for specific population groups (e.g., housewives and 

school-age children). The individual-based air pollution exposure modeling will be 

applied in other regions to evaluate its adaptability. Third, other air pollutants (e.g., PM2.5 

and SO2) will be included to widen the application of the model and improve the model 

as a near real-time personal air monitoring platform. 

The major focus of this dissertation research was the development of the PIRAM 

model. Two derivatives of the PIRAM model (i.e., the PIRAQI model and the PIRADS 

model) are not investigated intensively. They are important models – the PIRAQI model 

can concisely indicate individual’s personal air pollution exposure level and personal air 

pollution health concern; the PIRADS can provide the detailed inhaled air pollutant dose, 

it is suitable to profile individual real-time air pollution health risk. Further study on the 

PIRAQI model and the PIRADS model will be undertaken to support the study of human 

health effect of air pollution. 
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