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ABSTRACT 

Eye movements present a novel and unique solution to the challenges faced by 

modern biometrics. Consisting of both physical and neurological components, and due to 

the minute scale, the accurate replication of eye movements outside of a living subject is 

practically infeasible (if not impossible), providing an inherent level of liveness detection 

and counterfeit-resistance. Further, recent advances in video-oculography allow for the 

efficient capture of eye movements from even low-quality image sensors, reducing the 

cost of entry and enabling integration with many existing iris, periocular, and facial 

recognition systems. 

The following thesis describes the development of biometric techniques for the 

automated identification of human subjects based on patterns of eye movements that 

occur naturally during directed viewing of a visual stimulus. The proposed techniques are 

then evaluated according to standard practices in the biometric field to assess 

performance under varying environmental conditions. The results of this evaluation are 

analyzed to provide recommendations for suitable applications of the described 

techniques and direction for future research in this area.
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1. INTRODUCTION 

Biometric authentication refers to the automated process of extracting, processing, 

and comparing physical or behavioral traits for the purposes of identifying an unknown 

identity or verifying a claimed identity [1]. Biometrics has earned a crucial role in the 

fields of law enforcement, criminal justice, and corporate and personal security. Suspect 

identification, criminal conviction, access restriction, and personalized interfaces 

constitute only a small subset of the applications of biometrics in modern society. 

The systematic collection of physical or behavioral characteristics for the 

purposes of identification dates as far back as 1858, with the collection of handprints to 

identify workers [2], and has since expanded to include such features as: fingerprints [3], 

iris patterns [4], signature [5], and speech [6]. As technology advances, however, 

biometric traits are becoming easier to reproduce, circumventing the purposes of 

biometric authentication techniques and leaving gaps in the efficacy of the systems that 

use them [7]. To combat this, improvements must continue to be made to existing 

biometric systems to increase the accuracy and specificity of biometric authentication 

techniques. 

There are two primary usage scenarios for biometric authentication [1], shown in 

Figures 1 and 2. Biometric verification is a 1-to-1 comparison, in which an individual’s 

biometric template is compared against the existing (enrolled) template of a claimed 

identity; in many ways this is similar to using a password to log-in to a computer or 

website. Biometric identification is a 1-to-many comparison, in which an individual’s 

biometric template is compared against all of the enrolled templates in a database, and the 

identity of the closest match is returned; this can be related to the typical search engine. 
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In a verification scenario, there are a number of metrics typically associated with 

biometric accuracy. False acceptance rate is defined as the rate at which impostor match 

scores exceed the acceptance threshold, false rejection rate is defined as the rate at which 

genuine match scores fall below the acceptance threshold, and true positive rate is 

defined as the rate at which genuine match scores exceed the acceptance threshold. The 

equal error rate is the rate at which false acceptance rate and false rejection rate are equal. 

In this scenario, biometric accuracy is typically evaluated by equal error rate [1], where a 

lower equal error rate indicates a higher accuracy. 

In an identification scenario, there is typically only one metric that is considered, 

the identification rate. Identification rate is defined as the rate at which enrolled subjects 

are successfully identified as the correct individual, where rank-k identification rate is the 

rate at which the correct individual is found within the top k matches. In this scenario, 

biometric accuracy is typically evaluated by the rank-1 identification rate [1]; that is, the 

rate at which the correct individual has the highest match score. 

Figure 1. Biometric Verification. 
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There are a number of factors that must be considered when implementing an 

automated biometric system: accuracy, counterfeit-resistance, speed, and cost. For 

example, a human observer might review facial photographs with perfect accuracy, but 

too slowly to be considered useful; or, a fingerprint scanner may be implemented with 

acceptable accuracy and speed, but be easily fooled by duplicate images. 

Biometric Authentication 

The human face is one of the most distinctive features with which we assign and 

recognize identity in our daily lives, and its overall structure is largely dependent on the 

physical structure of the human visual system. Facial geometry was first proposed as a 

biometric trait in the 1960s [8], but did not begin to gain traction with the biometric 

community until the 1990s [9]. Early research in this area was highly susceptible to aging 

effects [10, 11] and environmental factors [12], such as angle and lighting; however, 

recent developments have made significant progress in eliminating these issues [13]. 

Figure 2. Biometric Identification. 
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Today, there are many techniques for performing facial recognition, which may 

be broadly described by two categories: those that compare geometric features of the face, 

and those that compare statistical features of the image [1]. Techniques in the former 

category, such as elastic bunch graph matching [14], typically model salient features of 

the face, such as the nose, mouth, and eyes; while techniques in the latter category, such 

as tensor factorization [13], apply mathematical transformations and analysis to the 

individual pixels of the facial image. 

Fingerprints are often regarded as the gold standard of biometric accuracy [1], 

with open dataset competitions showing equal error rates approaching 2% under the 

effects of skin distortion and rotation [3]; however, fingerprint biometrics suffer from two 

major drawbacks. First, and most notably, fingerprints are easy to forge; and while 

fingerprint biometrics provide substantial resistance to zero-effort attacks, it takes 

minimal effort to defeat such a system [15]. Second, fingerprint biometrics are intrusive; 

that is, in order for biometric features to be collected, an individual must physically 

interact with the biometric sensor. 

Speculation about the identifying characteristics of iris patterns can be traced as 

far back as the late 1800s [16], but was largely ignored in a biometric context until the 

1980s, when an unfortunate patent [17] stifled innovation for nearly a decade. The study 

of iris pattern biometrics picked up quickly however [18], and was achieving 

authentication accuracies that rival fingerprints [3] by the early 2000s [19]. Unfortunately, 

like fingerprints, iris pattern biometrics are easily fooled by minimal-effort attacks [20]. 

Much of the current work in this area is based on the principles of Daugman’s 

research [21], in which the iris pattern is projected onto a Gabor wavelet, and compared 
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with a test for statistical independence. Often it is necessary to correct for orientation and 

occlusions, but even still these techniques are highly efficient, with computation times 

measurable in milliseconds on modern hardware [22]. 

Over the past decade, study of the human visual system has shown that eye 

movements may be utilized to uniquely identify individuals in a biometric context [23, 

24]. Consisting of both physical and neurological components [25], and due to the minute 

scale, the accurate replication of eye movements outside of a living subject is practically 

infeasible (if not impossible), providing inherent levels of counterfeit-resistance and 

liveness detection that many traditional biometrics cannot [26]. 

Further, eye movements may be captured and processed in real-time using an 

unmodified camera [27] through the use of modern video-oculography techniques. Not 

only does this make the collection of eye movement data cheap and efficient, but the 

ability to capture iris patterns and eye movements with a single sensor allows for easy 

integration into multi-modal biometric systems [28]. 

Human Visual System 

The oculomotor plant encompasses the primary physical components of the 

human visual system [29], shown in Figure 3, and is composed of the eye globe, six 

extraocular muscles, surrounding tissues, ligaments, tendon-like components, and viscous 

fluids. The extraocular muscles include: the lateral and medial recti, responsible for 

horizontal rotation; the superior and inferior recti, responsible for vertical rotation; and 

the superior and inferior obliques, responsible for torsional rotation. 
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When considered as a cohesive system, each component adds specific properties 

to the mechanics of the whole [25]. The extraocular muscles provide the forces required 

to rotate the eye globe, with opposing muscle pairs performing mutually exclusive roles 

of agonist and antagonist, where the agonist muscle contracts and pulls the eye globe, and 

the antagonist muscle expands to resist the pull. Each extraocular muscle is composed of 

both thin and thick filaments that cause a strict dependence between the force exerted by 

a muscle and its length/velocity of contraction. The eye globe provides inertia to the 

system, along with the resistive properties of the surrounding tissue and ligaments [30]. 

The brainstem control, shown in Figure 4, describes the complex network of 

neurological components that signal the extraocular muscles to expand and contract [25]. 

It should be noted that the term brainstem control is based on early modeling of the 

human visual system, whereas eye movements are generated by components throughout 

the brain, not isolated to the brainstem itself. These components include sub-regions of 

the thalamus, superior colliculus, and posterior parietal cortex [31], where: the thalamus 

is responsible for engaging visual attention; the superior colliculus is responsible for 

relocating visual attention; and the posterior parietal cortex is responsible for disengaging 

visual attention. 

Figure 3. Oculomotor Plant. 
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The oculomotor plant, driven by the neuronal control signal, primarily exhibits six 

eye movement types [25]. Fixation occurs when the eye globe is held in a relatively 

stable position to provide high visual acuity on a fixed point; saccades occur when the 

eye globe rotates rapidly between points of fixation, with little visual acuity maintained 

during rotation; smooth pursuit occurs when the eye globe rotates slowly, maintaining 

fixation on a slowly moving point; optokinetic reflex refers to the sequence of smooth 

pursuit and saccadic eye movements which occur when the eye attempts to maintain a 

fixation on a rapidly moving point; vestibule-ocular reflex refers to the corrective eye 

movements which occur to maintain a fixation on a stationary point during head 

movement; and vergence refers to the corrective eye movements which occur to maintain 

a fixation on a point whose distance changes, without horizontal or vertical motion. 

Figure 4. Brainstem Control. 
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Of the various eye movement types, fixations and saccades are of particular 

interest in the field of human-computer interaction, as they are simple to evoke, measure, 

and identify on a stationary screen. These eye movements are affected not only by the 

physical structure of the oculomotor plant, but also by the frequency characteristics of the 

neuronal control signal and its speed of propagation. 

At a higher level of abstraction, learned behaviors and subconscious memory 

mechanisms are involved in the coordination of eye movements over time, as evidenced 

by the inhibition of return and scanpath theory phenomena. Inhibition of return refers to 

the marked tendency to avoid re-fixation on previously examined features during visual 

search, effecting both oculomotor programming and target detection [32], while scanpath 

theory describes the phenomenon in which individuals tend to repeat certain scanpath 

trajectories during repeated viewings of a given pattern [33]. 

Eye Movement Biometrics 

Human eye movements are representative of the cognitive strategies employed by 

the brain throughout the guidance of visual search, and are directly influenced by the 

anatomical properties of the eye, the neurological properties of the brain, conscious 

thought processes, and subconscious memory mechanisms [25, 31]. A number of 

biometric techniques have been devised over the past decade that take advantage of 

different aspects of human eye movements to differentiate individuals. 

The foundations of eye movement biometrics stem from early research in 

scanpath theory, where the term scanpath refers to the spatial path formed by an ordered 

sequence of fixations and saccades. In 1971, Noton and Stark [33] found that the 

scanpath formed by a subject during the initial viewings of a pattern was repeated in 65% 
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of subsequent viewings. Further, it has been found by various sources that the scanpath 

produced for a given stimulus pattern tends to vary from person to person [34, 35]. These 

inherent properties of scanpaths–subconscious reproduction, variation by subject, and 

variation by stimulus–provide a basis for the use of eye movements as a behavioral 

biometric. 

To the best of our knowledge, Kasprowski and Ober [24, 36] were the first to 

investigate the use of eye movements as a behavioral biometric, in 2004. Applying 

techniques commonly used in voice recognition [37], they examined the first 15 cepstral 

coefficients of the positional eye movement signal, using Bayes classifiers, C4.5 decision 

trees, polynomial support vector machines, and k-nearest neighbor (k = 3 and k = 7). On 

a dataset of 9 subjects, the described techniques achieved an average 1% false positive 

rate and 23% false negative rate. 

Silver and Biggs [38] followed in 2006, investigating a set of higher-level features, 

including: most significant fixations, fixation count, average fixation duration, average 

saccade velocity, average saccade duration, and average vertical position, with feature 

vectors combined using a neural network. On a subject pool of 21 student participants, 

the described techniques achieved an average 66% true positive rate and 98% true 

negative rate. 

Holland and Komogortsev [39] began the investigation of complex eye movement 

patterns (CEM-P) in 2011, examining high-level and aggregate features such as: fixation 

count, average fixation duration, average vectorial saccade amplitude, average horizontal 

saccade amplitude, average vertical saccade amplitude, average vectorial saccade 

velocity, average vectorial saccade peak velocity, velocity waveform indicator, scanpath 
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length, scanpath convex hull area, regions of interest, inflection count, coefficient of the 

amplitude-duration relationship, and coefficient of the amplitude-peak velocity 

relationship. Features were compared using a Gaussian kernel and combined with a linear 

combination. With a subject pool of 32 participants, the considered techniques achieved 

an equal error rate of 27%. 

Komogortsev et al. [40] made use of mathematical models of the oculomotor 

plant (OPC), in 2012, to extract the anatomical characteristics unique to a given 

individual from the observable properties of human eye movements. Feature vectors were 

compared between recordings using the Hotelling T2 test to obtain a measure of 

similarity. On a dataset of 59 subjects, the considered techniques achieved a 19% 

minimum half-total error rate. 

Rigas et al. [41] applied graph-based matching techniques, similar to those 

utilized in facial recognition [14], to the positional eye movement signal in 2012, 

comparing minimum spanning trees with a multivariate Wald-Wolfowitz runs test. On a 

dataset of 15 subjects, the proposed techniques achieved a 70% rank-1 identification rate 

and 30% equal error rate. 

Komogortsev and Holland [42] examined high-level features related to sub-

conscious corrective eye movements (COB) in 2013, considering multiple types of 

saccadic dysmetria and express saccades. On a dataset of 32 subjects, these techniques 

achieved an equal error rate of 25% and a rank-1 identification rate of 47%. 

Most recently, in 2013, Holland and Komogortsev [23] improved upon the 

complex eye movement pattern biometrics (CEM-P) originally developed in 2011 [39], 

describing complex eye movement behavior (CEM-B) by comparing the distribution of 
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fixations and saccades with statistical techniques such as the two-sample t-test, the 

Ansari-Bradley test, the two-sample Kolmogorov-Smirnov test, and the two-sample 

Cramér-von Mises test. On a dataset of 32 subjects, the proposed techniques achieved 

83% rank-1 identification rate and 17% equal error rate. 

State of the Art 

Having existed for less than a decade [24], the field of eye movement biometrics 

is still in its infancy. Despite this, and perhaps because of it, the achievable accuracy and 

robustness has increased at an exponential rate. In just the past year, equal error rates 

have seen a reduction of 63%, from 27% equal error rate to 17% equal error rate, while 

rank-1 identification rates have seen an increase of 157%, from 53% rank-1 identification 

rate to 83% rank-1 identification rate. 

As a behavioral – rather than physical – biometric, it is expected that eye 

movements may never achieve the level of accuracy afforded by physical traits, such as 

fingerprints and iris patterns; however, when considered in the context of behavioral 

biometrics, eye movements are quite promising. For example, gait recognition was 

proposed in the mid-1970s [43], but did not begin to achieve reasonable accuracy until 

the early 2000s, with equal error rates ranging from 18-25% [44] and rank-1 

identification rates ranging from 30-70% [45, 46], depending largely on the angle and 

speed of gait. Similarly, face recognition was proposed in the 1960s [8], but was largely 

ignored in a biometric context until the mid-1990s [9], with early work being highly 

susceptible to aging effects, achieving equal error rates of 1-7% [11] and rank-1 

identification rates of 80-90% [10] for images captured within a single recording session, 

which became dramatically reduced to equal error rates of 12-23% [11] and rank-1 
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identification rates of 30-60% [10] after as little as one week between enrollment and 

authentication. 

Unfortunately, in much the same way that smudged fingerprints and off-angle 

facial images reduce recognition accuracy in their respective systems, the quality of the 

recorded eye movement signal has been shown to reduce the accuracy of eye movement 

biometrics [47, 48]; and in much the same way that speed of gait can affect the accuracy 

of gait recognition, it is unclear if the particular pattern of eye movements, invoked by a 

specific stimulus, has a noticeable effect on the accuracy. 
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2. BACKGROUND 

The work presented in this thesis is the culmination of several years of research in 

the field of eye movement biometrics, encompassing the development of novel biometric 

techniques for human identification [23, 39], the construction of a modular biometric 

framework for testing and evaluation [23], and the release of a live biometric system for 

real-world use [49]. Over the past two years, the research conducted in pursuit of this 

thesis has improved the accuracy of eye movement biometrics from near-random to 

levels approaching modern face recognition. 

Biometric Techniques 

Complex eye movement patterns (CEM-P), proposed in 2011 [39], were 

originally developed as an extension of eye movement research in the field of automated 

usability testing [50, 51]. Eye movements provide a strong indicator for human thought 

processes, and the initial investigation of CEM-P was based largely on the notion that 

humans perceive patterns differently, and that differences in perception are reflected 

through variation in eye movements. 

In this way, CEM-P focused on eye movement features that might give insight 

into conscious or sub-conscious thought. For example, prolonged fixation might indicate 

an increased cognitive load, as an individual takes longer to process the available 

information. Similarly, a series of rapid saccades might indicate difficulty locating a 

visual search target, as the individual scans across the visual field. 
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To this end, a range of high-level features, illustrated in Figure 5, were selected to 

provide broad classification of individuals based on their eye movements. These features 

could be described as fitting into one of three primary categories, based on different 

aspects of the human visual system: fixation-based, saccade-based, and scanpath-based. 

Fixation-based features include fixation count and average fixation duration. 

These features are most closely related to conscious thought processes, and are dependent 

upon the dorsal layers and rostral pole of the superior colliculus, nucleus raphe 

interpositus in the midline of the pons, posterior parietal cortex, and visual cortex areas 

V1 – V5 [52]. 

Saccade-based features include average vectorial saccade amplitude, average 

horizontal saccade amplitude, average vertical saccade amplitude, average vectorial 

saccade velocity, average vectorial saccadic peak velocity, slope of the amplitude-

duration relationship, slope of the amplitude-peak velocity relationship, and velocity 

waveform indicator. These features are most closely related to sub-conscious thought 

processes, and are dependent upon the ventral layers of the superior colliculus, 

Figure 5. Complex Eye Movement Patterns (CEM-P). 
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paramedian pontine reticular formation, rostral interstitial nucleus of the medial 

longitudinal fasciculus, frontal eye fields, and lateral intra parietal [52]. 

Scanpath-based features include scanpath length, scanpath convex hull area, 

regions of interest, and inflection count. These features are also dependent upon the brain 

regions involved in fixation- and saccade-based features, and are often related to the 

visual search strategy employed in extracting information from a given stimulus [53]. 

In a biometric context, each of these features is compared using a distance 

function, and the distances between features are then combined using an information 

fusion algorithm. Previous research made use of a Gaussian kernel [54] to account for the 

variation typically present in physical systems, with information fusion by linear 

combination [55] to allow each feature to contribute to the final match score according to 

its accuracy. 

Complex eye movement behavior (CEM-B), proposed in 2013 [23], is a natural 

extension of CEM-P, which attempts to address its predecessors major shortcomings. 

Specifically, the high-level features employed by CEM-P traded information for 

intuition; that is, reducing the eye movement signal to a set of average and aggregate 

features, while easier to visualize and understand from a human perspective, also reduced 

the available information that could be used to identify an individual. 

In contrast, CEM-B builds on the principles of CEM-P, while reducing 

information loss by maintaining a focus on low-level features. Over the course of a 

recording, an individual will make multiple fixations and saccades. Each fixation has a 

start time, duration, and position on the screen, and each saccade has a start time, 

duration, amplitude, velocity, and peak velocity. 
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In a biometric context, basic eye movement features are compared between 

recordings using non-parametric statistical tests on the distribution of eye movements 

over time, illustrated in Figure 6, with match scores for specific eye movement features 

(such as fixation duration) combined by information fusion. Previous research achieved 

the best results using a two-sample Cramér-von Mises test [56] for feature comparison, 

with information fusion by random forest [57]. 

As shown in Figure 7, the application of eye movement biometrics begins with 

eye tracking, recording the eye movements of a subject across a given stimulus. These 

eye movements are stored in a recording as a set of tuples (t, x, y), where t is the 

timestamp in milliseconds, x is the horizontal gaze position in degrees of the visual angle, 

and y is the vertical gaze position in degrees of the visual angle. The recording is passed 

Figure 6. Complex Eye Movement Behavior (CEM-B). 
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to a biometric algorithm, such as CEM-P or CEM-B, for feature extraction, which 

produces a feature vector from the recording. The feature vector (i0, …, in) may be single-

dimensional (CEM-P) or multi-dimensional (CEM-B), and is compared to an existing 

feature vector (j0, …, jn) using a distance function specific to the technique to produce a 

set of match scores. The match scores (α0, …, αn) produced by template matching are 

combined using an information fusion algorithm, to produce a single match score, α, that 

can be used for the purposes of biometric authentication.  

Figure 7. Eye Movement Biometrics. 
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Biometric Framework 

In order to develop and evaluate these techniques, it was necessary to construct an 

extensible software framework for eye movement biometrics. Due to its comprehensive 

library of scientific toolkits (Symbolic Math, Statistics, Curve Fitting, etc.), simple 

concurrency mechanisms (parfor), and support for system modeling (Simulink), 

MATLAB was selected as the primary language for this framework [58]. 

The biometric framework was designed with modularity and concurrency in mind, 

and attempted where possible to employ functional programming practices (i.e. functions 

do not modify variables created outside of their scope). It was important that individual 

components could be added or modified in-place, without causing side-effects. The 

overall structure of the framework, shown in Figure 8, was based largely on the structure 

of existing biometric systems [1], which are typically comprised of the following major 

components: biometric sensor, feature extraction, quality assessment, biometric matching, 

and authentication decision. 

The biometric sensor module parses individual eye movement recordings, 

combining available left and right eye coordinates, and removing invalid data points from 

the eye movement signal. This is also where dithering and downsampling occur, for 

examining artificial reduction in spatial accuracy and sampling rate, respectively. Eye 

movement recordings are stored in memory as an eye movement database, with the eye 

movement signal linked to the experiment, trial, and subject that generated the recording. 

The feature extraction module generated feature templates for each record in the 

eye movement database. Eye movement features are primarily composed of fixations and 

saccades. The eye movement signal is parsed to identify fixations and saccades using an 
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eye movement classification algorithm [59], followed by micro-saccade and micro-

fixation filters. The individual data points that make up each fixation and saccade are 

then merged, identifying fixation- and saccade-specific features. 

The quality assessment module identifies the biometric viability of the generated 

feature templates. In this context, we utilize the fixation quantitative score, ideal fixation 

quantitative score, fixation qualitative score, and saccade quantitative score [60] as 

tentative measures of the quality of features obtained from the recording. 

The biometric matching module partitions the feature templates, splitting the 

database into training and testing sets, by subject, according to a uniformly random 

distribution. Individual templates are then compared against each other, generating match 

scores for a given biometric technique (such as those described in the previous section, 

CEM-P and CEM-B). The match scores for each comparison are combined into a single 
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Figure 8. Biometric Framework. 
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match score with an information fusion algorithm [61], with thresholds and parameters 

generated on the training set. 

The authentication decision module calculates error rates for individual features, 

along with the information fusion, under biometric verification and identification 

scenarios. Under the verification scenario, each record in the testing set is compared to 

every other record in the testing set exactly once, with false acceptance rates and true 

positive rates calculated for all possible acceptance thresholds. Under the identification 

scenario, every record in the testing set is compared to every other record in the testing 

set, and identification rates are calculated from the largest match score(s) from each of 

these comparison sets. 

Finally, an analysis module calculates various statistics used to measure different 

aspects of biometric performance. This includes measurements of randomness and 

information density (such as the Wald-Wolfowitz runs test and Shannon entropy), the 

distribution of match scores (normality and uniformity), and the ability of the match 

scores to predict similarity (overfitting and underfitting, as measured by bias and 

variance). The error rates calculated in the decision module are combined into a single 

dataset, and rational regression is performed across the entire dataset to produce an 

accurate model of biometric performance. Regression is performed across verification 

error rates to produce the parametric receiver operating characteristic, and across 

identification error rates to produce the parametric cumulative match characteristic [62]. 

Early versions of this analysis module utilized non-parametric curves for the 

receiver operating and cumulative match characteristics [39], with error rates averaged 

over multiple random partitions. While this is a common practice in biometrics literature 
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[1], it was determined that a more accurate representation of error rates over the 

population could be achieved by performing binormal regression across the error rates of 

all partitions, constructing a model of the population as a whole [63]. 

The construction of parametric receiver operating characteristics through 

binormal regression is a common technique in the fields of epidemiology [64], radiology 

[65], bioinformatics [66], and laboratory [67] and diagnostic testing [68], and has the 

added benefit of allowing the calculation of confidence intervals around the receiver 

operating and cumulative match characteristics, a statistical guarantee that the actual 

population model falls within a given range with a specified degree of probability. 

Further, this allows for the calculation of an exact equal error rate based on the equation 

and coefficients of the regression line, rather than estimation based on the nearest data 

points, providing equal error rates that are substantially more accurate. 

Live Biometric System 

While the biometric framework was designed to process and analyze large 

batches of offline eye movement recordings, it is not capable of performing biometric 

authentication with a live eye tracking system. Further, the MATLAB [58] environment 

lends itself to command-line interfaces, which are useful for developing and debugging 

algorithms, but impractical for real-world usage. To this end, a live biometric system was 

developed to interface with common eye tracking systems, provide a usable interface to 

the end-user, and allow real-time authentication with eye movement biometrics. 

As a high-level object-oriented language, with an extensive set of standard 

libraries and native graphical user interface support, C# was selected as the language of 

choice for this project. Incidentally, many commercial eye tracking systems, such as 
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those produced by Tobii [69] and EyeTribe [70], provide software development kits for 

C#, while support for alternative languages is mixed. 

The live biometric system is composed of three major components, following 

roughly the model-view-controller architecture: the biometric system, the user interface, 

and the device wrappers. The user interface describes all forward-facing components with 

which the end-user may interact, the device wrappers provide a common interface for 

various eye tracking devices, and the biometric system contains the algorithms and 

procedures necessary to perform biometric authentication. 

The initial user interface window, shown in Figure 9, presents the primary 

authentication form, through which the end-user provides a claimed identity and selects 

Figure 9. Live Biometric System. 
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an available eye tracking device, stimulus, and biometric modality. The authentication 

form provides feedback through the large status message displayed below the claimed 

identity textbox. The authentication form itself contains no logic, and only provides an 

intuitive interface to the methods exposed by the biometric system and eye tracking 

device wrappers. 

The calibration window displays a sequential grid of stimuli, calculating the 

difference between the measured and predicted gaze points at each stimulus location. 

This procedure is necessary for most eye tracking devices to allow the system to 

compensate for known error. The stimulus window is generated at run-time from XML 

files that store the sequence and duration of stimuli. This makes it easy to add and modify 

the stimulus used for biometric authentication, without the need to modify and compile 

source code. Further, this allows the end-user to create their own stimuli, making it more 

difficult to prepare targeted spoof recordings, and increasing the overall flexibility and 

security of the system. 

Despite the fact that most commercial eye tracking systems perform similar 

actions, and provide similar output, the hardware and software interfaces of these devices 

vary widely. To reduce this variability, a common eye tracking class uses reflection to 

identify device wrappers and list all available eye tracking devices at run-time. The end-

user selects one of the available devices, and the common class uses the interface to 

invoke the necessary functions from the device wrapper. While this means that new 

device wrappers must still be incorporated at compile time, it is as simple as providing a 

class that maps the relevant API calls to a common interface, and does not involve 

modification of any existing code. 
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The biometric system provides the logic for the primary biometric modalities: 

enrollment, verification, and identification; and provides biometric comparison 

algorithms for the CEM-P [39], CEM-B [23], and COB [42] biometric techniques, with 

plans to add support for OPC [40] in the near future. Further, the biometric database used 

to store enrollment recordings is encrypted and compressed to improve security and 

reduce space requirements. For this purpose, the biometric system uses DEFLATE 

compression with 256-bit AES encryption. With 1.1 × 1077 possible key combinations, it 

is estimated that a brute-force attack against 256-bit AES encryption could take as long as 

3.3 × 1056 years to crack at an operating frequency of 10.5 Pentaflops (the rate of the 

world’s fastest super-computer in 2012) [71].  

Figure 10. EyeLink 1000. 
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3. METHODOLOGY 

To examine the properties of eye movement biometrics under various 

environmental conditions, a series of experiments were conducted using the CEM-P [39] 

and CEM-B [23] biometric techniques. Eye movement recordings were collected as part 

of an NSF CAREER grant study, overseen by Dr. Oleg Komogortsev, and 

experimentation was performed using the biometric framework described in the previous 

section. 

Apparatus & Software 

Eye movements were recorded using an EyeLink 1000 eye tracking system [72], 

shown in Figure 10, with a sampling rate of 1000 Hz, vendor-reported spatial accuracy of 

0.5º, average calibration accuracy of 0.5º (SD = 0.2º), and average data validity of 97% 

(SD = 5%). Stimuli were presented on a flat screen monitor positioned at 550 millimeters, 

with dimensions of 474×297 millimeters, and screen resolution of 1680×1050 pixels. 

In all cases, the pupil was illuminated by an infrared LED to improve eye tracking 

accuracy, and a chin rest was employed to improve stability, as shown in Figure 11. 

Stimulus presentation was consistent across all recordings. All algorithms and data 

analysis were implemented and conducted in MATLAB [58], and run using a 3.5 GHz 

quad-core CPU with 16 GB memory. 

Participants 

Eye movement data was collected for a total of 335 subjects (178 male, 157 

female), ages 19 – 46 with average age of 22 (SD = 4). 322 of the subjects performed 2 

recordings for each stimulus, 1 of the subjects performed 1 recording for each stimulus, 

and 12 of the subjects were unable to produce usable recordings, for a total of 323 
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subjects and 645 unique eye movement recordings per stimulus. Texas State University’s 

institutional review board approved the study, and all subjects provided informed consent. 

Stimulus Design 

The horizontal pattern stimulus made use of a technique typically employed in 

eye movement research to evoke a fixed-amplitude horizontal saccade at regular intervals 

[25]. A small white dot jumped back and forth across a plain black background, eliciting 

a saccade for each jump. The distance between jumps was set to correspond to 30º of the 

visual angle, due in part to screen constraints, complications separating low-amplitude 

saccades (less than 1º), and variation in the dynamics of high-amplitude saccades (greater 

Figure 11. Recording Setup. 
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than 50º). Subjects were instructed to follow the white dot with their eyes, with 100 

horizontal saccades elicited per session, and 2 recording sessions per subject. 

The random pattern stimulus was similar in presentation to the horizontal pattern 

stimulus. A small white dot jumped across a plain black background in a uniformly 

distributed random pattern, eliciting a saccade for each jump. Subjects were instructed to 

follow the white dot with their eyes, with 100 randomly directed oblique saccades elicited 

per session, and 2 recording sessions per subject. 

The textual pattern stimulus made use of various excerpts from Lewis Carroll’s 

poem [73], “The Hunting of the Snark.” The poem was chosen for its difficulty and 

nonsensical content, forcing readers to progress slowly and carefully through the text. 

Textual excerpts were selected to ensure that reading required approximately 1 minute, 

line lengths and the difficulty of materials was consistent, and learning effects did not 

impact subsequent readings. Subjects were given different textual excerpts for each 

recording session, with 2 recording sessions per subject. 

Experimental Procedure 

Eye movement recordings were generated for three distinct stimulus patterns: 

horizontal, random, and textual. Eye movement recordings were parsed and processed to 

remove invalid data points. Recordings were stored in an eye movement database, with 

each record linked to the stimulus, subject, and session that generated the recording. 

Dithering and downsampling were applied (exclusively) to the eye movement recordings 

to artificially reduce spatial accuracy and sampling rate for the best performing stimulus. 

The recordings were then classified into fixations and saccades using an eye movement 

classification algorithm [59]. 
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A velocity threshold algorithm (I-VT) with documented accuracy [60] was 

employed to classify individual data points with a velocity greater than 20°/sec as 

belonging to a saccade, with all remaining points belonging to fixations. A micro-saccade 

filter re-classified saccades with amplitude less than 0.5° as fixations, followed by a 

micro-fixation filter which re-classified fixations with a duration less than 100 

milliseconds. Manual inspection was conducted on a subset of recordings to ensure the 

accuracy of this classification scheme. 

Eye movement recordings were partitioned into training and testing sets, by 

subject, according to a uniformly random distribution; such that all recordings from half 

of the subject pool of a given dataset appeared in the training set, with the other half of 

the subject pool in the testing set, and there was no subject overlap between training and 

testing sets. Error rates were calculated under biometric verification and identification 

scenarios for 20 random partitions of training and testing sets. Binormal regression was 

performed on the error rates achieved across all partitions, using the MATLAB Curve 

Fitting toolbox, to generate parametric receiver operating characteristic and cumulative 

match characteristic curves. 

Biometric template matching followed the published methods for complex eye 

movement behavior (CEM-B) [23] and complex eye movement pattern (CEM-P) [39] 

techniques. In the case of CEM-B, we utilize the two-sample Cramér-von Mises test for 

comparison, with information fusion by 50-tree random forest. In the case of CEM-P, we 

utilize a Gaussian kernel for comparison, with information fusion by linear combination. 
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Performance Measures 

The primary concern of these experiments is to measure biometric accuracy under 

varied environmental factors; the most succinct measures of biometric accuracy are the 

equal error rate, rank-1 identification rate, and area-under-curve of the receiver operating 

and cumulative match characteristics.  While the equal error rate and rank-1 identification 

rate provide a point-measure of the achievable accuracy of biometric verification and 

identification, respectively; area-under-curve provides a measure of biometric accuracy 

across the range of possible usage scenarios. 
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4. RESULTS 

For each experiment, recordings were partitioned into training and testing sets by 

subject, according to a uniformly random distribution. With half of the subject pool in the 

training set, and half of the subject pool in the testing set, without overlap. Regression 

was performed on biometric error rates over 20 random partitions, and 95% confidence 

intervals were calculated for each regression. Error bars in relevant figures indicate the 

95% confidence interval for the regression of error rates. 

An equal error rate of 0% represents perfect verification accuracy, where an equal 

error rate of 50% is equivalent with random chance; a rank-1 identification rate of 100% 

represents perfect identification accuracy, with a rank-1 identification rate of 1/N, where 

N is the maximum rank, representing random chance; area-under-curve of 100% 

represents perfect authentication accuracy in both biometric scenarios, with area-under-

curve of 50% representing random chance. 

The Effects of Stimulus Type 

To examine the effects of stimulus on biometric accuracy, three different stimulus 

patterns were presented to each subject. Eye movements were recorded for the horizontal, 

random, and textual stimulus patterns described in the previous section, each of which 

exercises different aspects of the human visual system. Biometric performance measures 

under the verification scenario are presented in Figure 12, with identification scenario 

presented in Figure 13. 
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Figure 12. Stimulus Type (Verification). 

 

  
Figure 13. Stimulus Type (Identification). 



 32 

While the horizontal and random stimuli provided similar accuracy, the textual 

stimulus provided a slight, but clear, advantage. This is likely due to the flexibility of the 

stimulus; without a fixed target, subjects are able to progress at their own speed. Further, 

there are a number of eye movement patterns that are unique to reading tasks [34, 35, 74, 

75], which may contribute to this variation. Overall, the differences in accuracy 

attributable to stimulus are minor, and can likely be ignored for practical purposes. 

The Effects of Sampling Rate 

To examine the effects of sampling rate on biometric accuracy, downsampling 

was applied to the recordings for the textual stimulus prior to eye movement 

classification. Downsampling reduced the sampling rate by removing data points to lower 

the average time between points; considered sampling rate tiers from a hardware base of 

1000 Hz include: 1000 Hz, 500 Hz, 250 Hz, 120 Hz, 75 Hz, and 30 Hz. Biometric 

performance measures under the verification scenario are presented in Figure 14, with 

identification scenario presented in Figure 15. 

The sampling rate of the eye tracking system appears to have a cliff-and-plateau 

effect on the biometric accuracy of eye movements. There is a noticeable increase in 

biometric accuracy going from 30 Hz to 75 Hz, and a much more gradual increase from 

75 Hz to 250 Hz, after which biometric accuracy remains largely unchanged. This seems 

to indicate that, while sampling rates less than 75 Hz should be avoided, anything above 

75 Hz should provide reasonable accuracy, with no discernable increase in accuracy 

beyond 250 Hz. 
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Figure 14. Sampling Rate (Verification). 

 

  
Figure 15. Sampling Rate (Identification). 
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The Effects of Spatial Accuracy 

To examine the effects of spatial accuracy on biometric accuracy, dithering was 

applied to recordings for the textual stimulus prior to eye movement classification. 

Dithering reduced spatial accuracy by adding uniformly distributed error to the recorded 

eye movement position; considered spatial accuracy tiers from a hardware base of 0.5º 

include: 0.5º, 0.6º, 0.7º, 0.8º, 0.9º, and 1.0º. Biometric performance measures under the 

verification scenario are presented in Figure 16, with identification scenario presented in 

Figure 17. 

There is an obvious linear trend in both verification and identification scenarios, 

as spatial accuracy is reduced, so is biometric accuracy. Further, as spatial accuracy 

reduction approaches 1.0º, the accuracy of both CEM-P and CEM-B biometric techniques 

becomes essentially random. This indicates that the spatial accuracy and stability of the 

eye tracking system is of paramount importance to the accuracy of biometric 

authentication. This also seems to imply that as the accuracy of eye tracking systems 

improves, so too will the accuracy of eye movement biometrics. 

When interpreting these results, it is important to note that the dithering approach 

used to reduce spatial accuracy may not accurately model the spatial accuracy of specific 

individuals and systems. At this time, there exists no literature that mathematically 

describes the distribution of eye tracking error across the screen. As such, we have 

employed a uniform distribution of random noise, from which we hope to draw general 

conclusions. 
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Figure 16. Spatial Accuracy (Verification). 

 

  
Figure 17. Spatial Accuracy (Identification). 
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The Effects of Age and Gender 

To examine the impact of age on biometric accuracy, the recordings were split 

into two groups of approximately equal size, subjects 20 years of age and under, and 

subjects older than 20 years of age. The below-20 age group contained 151 subjects, 

while the above-20 age group contained 172 subjects. To examine the impact of gender 

on biometric accuracy, the recordings were split into two groups of approximately equal 

size based on gender. The male group contained 171 subjects, while the female group 

contained 152 subjects. Biometric performance measures under the verification scenario 

are presented in Figure 18, with identification scenario presented in Figure 19. 

The Effects of Scaling 

To examine the impact of scaling on the estimation of biometric accuracy, error 

rates were calculated on subsets of the total subject pool for the textual stimulus. Subsets 

of the subject pool were selected randomly according to a uniform distribution, without 

regard for factors such as age or gender; considered subject pools included: 50, 100, 150, 

200, 250, 300, and 323 subjects. Biometric performance measures under the verification 

scenario are presented in Figure 20, with identification scenario presented in Figure 21. 

Biometric accuracy was relatively consistent across the considered subject pools, 

though there was a slight reduction in rank-1 identification rates and a tendency towards 

tighter confidence interval bounds as subject pool increased. This seems to suggest that 

experiments conducted with as few as 50 subjects can achieve a reliable approximation of 

expected biometric accuracy for eye movement biometrics, though subject pools larger 

than 250 subjects are recommended. 
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Figure 18. Age & Gender (Verification). 

 

  
Figure 19. Age & Gender (Identification). 
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Figure 20. Scaling (Verification). 

 

  
Figure 21. Scaling (Identification). 
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5. DISCUSSION 

The results suggest the use of eye tracking equipment capable of at least 0.6º 

spatial accuracy and a minimum sampling rate of 75 Hz, though 0.5º spatial accuracy and 

250 Hz sampling rate is recommended for best performance. While stimulus had little 

effect on the biometric viability of eye movements, the textual stimulus provided a slight 

advantage, potentially due to the unique properties of eye movements during reading. 

Further, there was little discernible difference in the biometric error rates produced for a 

subject pool of 50 individuals compared to a subject pool of 323 individuals. 

Performance Analysis 

In order to estimate the computational performance of the CEM-P and CEM-B 

techniques, the biometric framework was instrumented with profiling code to measure the 

execution times of specific modules and algorithms. Profiling was averaged over 100 

iterations, using 4 parallel worker threads, for random subsets of 50 subjects with 2 

recordings each (100 recordings total). The sensor module required an average 5.0 

seconds (SD = 0.2) to load and parse all recordings; that is, 49.8 milliseconds per 

recording. The feature extraction module required 14.6 seconds (SD = 0.4) to classify and 

merge fixations and saccades across all recordings; or, 145.6 milliseconds per recording. 

The matching module required 96.0 seconds (SD = 3.4) to perform comparison, 

information fusion, and calculate match scores for the CEM-P technique, and 347.4 

seconds (SD = 9.6) for the CEM-B technique for all recording combinations (100 choose 

2 = 4950); or, 19.4 milliseconds per comparison for the CEM-P technique and 70.2 

milliseconds per comparison for the CEM-B technique. 
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If we separate the boilerplate code and measure only the execution times of 

specific algorithms under the same circumstances, the CEM-P algorithm required an 

average of 58.2 seconds (SD = 1.3) to compare all recording combinations, while the 

linear combination of CEM-P match scores required 34.0 seconds (SD = 1.6) to combine 

match scores for all recording combinations; or, 11.8 milliseconds for comparison and 

6.9 milliseconds for fusion of each comparison. The CEM-B algorithm required an 

average of 53.5 seconds (SD = 1.1) to compare all recording combinations, while the 

random forest required 282.0 seconds (SD = 4.9) to combine match scores for all 

recording combinations; or, 10.8 milliseconds for comparison and 57.0 milliseconds for 

fusion of each comparison. 

Then, the total execution time for a single authentication attempt from sensor to 

decision is only 264.6 milliseconds for CEM-P and 315.4 milliseconds for CEM-B in a 

verification scenario, or more generally 49.8 * (N + 1) + 145.6 + 19.4 * N milliseconds 

for CEM-P and 49.8 * (N + 1) + 145.6 + 70.2 * N milliseconds for CEM-B in an 

identification scenario, where N is the total number of recordings in the database. 

According to standard usability practices [76], a delay of less than 100 milliseconds is 

typically regarded as unnoticeable, and a delay of less than 1 second is necessary to avoid 

interruption of the user thought process. Based on these criteria, both CEM-P and CEM-

B can be considered suitable for real-time verification systems. 

Liveness Detection 

Liveness detection is an important problem in the biometric domain, due to the 

fact that it is relatively simple to create convincing replicas of many existing biometrics. 

For example, commercial iris identification systems can be spoofed by high-resolution 
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images of the eye printed on paper, with a hole to present the intruder’s pupil, bypassing 

liveness detection mechanisms [20, 77]. There are further examples of fingerprint 

scanners being spoofed by common household items like gelatin [78], and face detection 

systems spoofed by printed images of the face [79-81]. 

The potential attack vectors for eye movement biometrics are limited, and may 

consist of mechanical or graphical representations. For a mechanical representation, the 

impostor must construct a robotic and anatomically convincing model of the human eye, 

and for a graphical representation, the impostor may utilize a graphics-generated model 

of the human eye presented on a display medium, such as a phone. Assuming that both 

representations of an artificial eye can be calibrated by the eye tracking system and 

bypass existing liveness detection techniques based on image analysis, the attack vector 

must generate an artificial eye movement signal that corresponds with the physical and 

neurological state of the intended target. 

In 2013, Komogortsev and Karpov [26] generated a number of such attack vectors 

based on existing mathematical models of the human visual system. Using the maximum 

eigenvalues of feature vectors from the OPC technique, they were able to correctly 

classify 80-93% of recordings as human or spoof, over a subject pool of 32 participants. 

A similar study conducted with the CEM-P technique was able to achieve 100% 

classification accuracy on the same subject pool, using support vector machines to 

classify biometric feature vectors as human or spoof. Due to the non-paired, multi-

dimensional feature vectors produced by the CEM-B technique, it is unsuited for either of 

these liveness detection techniques; but it is likely that future research will identify 

similar methods which demonstrate a high level of liveness detection capability. 
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Multi-Modal Biometrics 

Multi-modal biometrics refers to the combination of multiple sources of biometric 

information to improve the overall system. While eye movements are not yet capable of 

competing with existing biometric standards in standalone systems, they possess a 

number of qualities that make them well suited for multi-modal systems. Most 

importantly, eye movements can be captured in tandem with image acquisition for face, 

iris, and periocular biometrics from a single image sensor [27]; this means that it is both 

cheap and efficient to implement multi-modal biometric systems that incorporate these 

traits, and further that many existing systems could be retrofitted to utilize these traits. 

As well, many eye movement biometrics target different aspects of the human 

visual system, and can therefore be combined to improve the overall accuracy. For 

example, in 2012, Komogortsev et al. showed that a combination of CEM-P and OPC 

techniques increased authentication accuracy by 30% when compared to individual 

techniques [82], and that a multi-modal system utilizing both iris and eye movement 

biometrics improved authentication accuracy by 19% when compared to iris alone [83]. 
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6. CONCLUSION 

As technology advances, biometric traits are becoming easier to reproduce, 

circumventing the purposes of existing biometric identification techniques and leaving 

gaps in the efficacy of the systems that use them. Eye movements present a novel and 

unique solution to the challenges faced by modern biometrics. Consisting of both 

physical and neurological components, and due to the minute scale, the accurate 

replication of eye movements outside of a living subject is practically infeasible (if not 

impossible), providing an inherent level of liveness detection and counterfeit-resistance. 

Further, recent advances in video-oculography allow for the efficient capture of eye 

movements from even low-quality image sensors, reducing the cost of entry and enabling 

integration with many existing iris, periocular, and facial recognition systems. 

This thesis has described the development of biometric techniques for the 

automated identification of human subjects based on patterns of eye movements that 

occur naturally during directed viewing of a visual stimulus. The proposed techniques 

were evaluated according to standard practices in the biometric field to assess 

performance under varying environmental conditions. The results suggest that reasonable 

biometric accuracy can be achieved with eye tracking equipment capable of capturing eye 

movements with at least 0.6º spatial accuracy and 75 Hz sampling rate, well within the 

capabilities of today’s consumer-grade devices. 

Limitations 

The described techniques are obviously limited in their practical applications due 

to the relatively high error rates, an order of magnitude behind accepted physical 

biometrics such as fingerprint [3] and iris [19]; however, the research presented in this 



 44 

thesis has demonstrated a direct increase in the biometric viability of eye movements to 

levels approaching modern face recognition [10, 11], illustrated in Figure 22. It is likely 

that more advanced techniques will be developed that may bring eye movements closer to 

current standalone systems, but even in their current state eye movement biometrics are 

ideal for inclusion in multi-biometric systems, and have been shown to improve both 

accuracy [83] and counterfeit-resistance [26].  

It is worth noting that the relatively smaller number of acceptance comparisons to 

rejection comparisons results in false rejection rates that are statistically less sound than 

false acceptance rates. This is a common issue in biometrics, however, which results from 

the constraints on same-subject experimentation. To achieve equivalent amounts of 

acceptance and rejection comparisons, it would be necessary for each participant to 

Figure 22. Growth of Eye Movement Biometrics. 



 45 

perform a number of trials greater than the total number of participants, which becomes 

increasingly prohibitive as the number of participants increases. 

As well, it is likely that the dithering approach applied to reduce spatial accuracy 

may not accurately model the spatial accuracy of specific individuals and systems. There 

exists no current literature that mathematically describes the distribution of eye tracking 

accuracy across the screen. As such, a uniform distribution of random noise was used as 

an approximation, which may accurately model random system noise, but cannot account 

for variability in eye tracking accuracy caused by physiological or algorithmic sources. 

Future Research 

While there is an obvious need for algorithmic improvements to close the 

accuracy gap between eye movement biometrics and accepted biometric standards, such 

as fingerprints and iris, this is not the only avenue for continued study. As a relatively 

recent sub-field of biometrics, there are many aspects of eye movement biometrics which 

are yet unstudied. For example, while we have demonstrated that reduction in spatial 

accuracy and sampling rate may have a negative effect on biometric accuracy, there are 

known techniques that can be used to improve sample quality, and by extension biometric 

accuracy. Spatial accuracy can be improved by filtering techniques, such as the median 

filter or Kalman filter, and sampling rate can be improved by upsampling, utilizing 

polynomial or cubic spline interpolation. It will be necessary for future works to examine 

these techniques in detail to determine their ability to improve biometric accuracy. 

In addition, there are various external factors that have not yet been examined. 

Studies have shown that altered mental state due to fatigue, caffeine, tobacco, or alcohol 

can cause variation in eye movements [25]; however, these effects have yet to be studied 
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in a biometric context, and further research will be necessary to quantify the extent of 

their influence. Further, the development of quality metrics, with which to identify and 

reject unsuitable eye movement recordings is still necessary to ensure that enrollment and 

authentication are not skewed by system noise. 

Finally, ongoing advancements in hardware design and video-oculography 

techniques may lend future devices an incidental increase in biometric accuracy. 

Increases in the frame rate and resolution of consumer-grade cameras will directly affect 

the spatial accuracy and sampling rate of video-oculography systems, as will algorithmic 

improvements in video-oculography techniques. Since face and iris detection are already 

key components in many video-oculography techniques, it is likely that future research 

will find interesting prospects in the design of multi-modal systems that are able to 

incorporate face, iris, and eye movement biometrics through a single image sensor. 
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