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STABILITY ANALYSIS OF AN AGE-STRUCTURED VIRAL
INFECTION MODEL WITH LATENCY

CHUNYANG LI, XIU DONG, JINLIANG WANG

ABSTRACT. Age structure and cell-to-cell transmission are two major infection
mechanisms in modeling spread of infectious diseases. We propose an age-
structured viral infection model with latency, infection age-structure and cell-
to-cell transmission. This paper aims to reveal the basic reproduction number
and prove it to be a sharp threshold determining whether the infection dies
out or not. Mathematical analysis is presented on relative compactness of the
orbit, existence of a global attractor, and uniform persistence of system. We
further investigate local and global stability of the infection-free and infection
equilibrium.

1. INTRODUCTION

In the past two decades, since the pioneering work of Perelson et al. [20], within-
host virus dynamics has attracted considerable attention of researchers. Many
mathematical models describing the dynamics inside the host of various infectious
diseases such as HIV, HBV have been formulated and studied [I5, 16}, 18] 19} 22} 29
35]. The investigation of such models can help better understanding the interaction
mechanisms of target cells, infected cells, and free virus particles through time in
an infected individual.

The classical viral infection model in Perelson et al. [20] neglects certain features
that may be important to consider for HIV, such as age structure in the infected cell
component. By allowing for mortality rate and viral production rate of infected
cells are functions of the infection age of the infected cells instead of constant,
Nelson et al. [I7], Huang et al. [6], Browne et al. [2], and Wang et al. [32] have
studied age-structured model of HIV infection by considering infection age to be
a continuous variable. These models generalizes the discrete and distributed delay
viral infection model (modeling time delay between viral entry of a target cell and
viral production from the newly infected cell. Further, such formulation of a hybrid
system of ODEs and PDEs have already made the mathematical analysis very
challenging in determining the threshold dynamics of equilibrium in viral infection
model, which may allow us to have a good understanding on productively infected
cells.
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Recently, HIV latency have been considered together in the viral infection model,
which is the main reason that long-term low viral load persistence in patients on
antiretroviral therapy. Usually, suppress the plasma viral load to below the detec-
tion limit may last half life of months or years [22]. Recent studies reveals the decay
dynamics of the latent reservoir, such as latency infected CD4+ T cells, see e.g.
Muller et al. [I4], Kim and Perelson [9] and Strain et al. [27]. Latently infected cells
could be activated by specific antigen. Strain et al. [27] found that cells specific
to frequently encountered antigens are activated soon while cells specific to rare
antigens are not. It may be important for latently infected cells activation to be
more general functions of cellular infection-age. Alshorman et al. [I] introduced
latency infection age to model the heterogeneity of latently infected CD4+ T cells.

Recently, based on the facts that HIV latency remains a major obstacle to viral
elimination, Wang and Dong [31] considered the model

MOy ar(e) - sryv e,
(% + %)e(a,t} = —01(a)e(a,t),
1o (1.1)
(m 8b) (b,t) = —02(b)i(b, 1),
v (¢)

oo
with boundary and initial conditions

¢(0.1) = FAT(OV (1),
i(0.1) = (1 )8 /5

T(0) =Ty >0, e(a,0) = ey )€L1(0 0),
i(b,0) = io(b) € L (0,00), V(0) =V, >0,

where T'(t),e(a,t),i(a,t),V(t) the concentration of uninfected CD4+ T cells at
time ¢, latently infected T cells with latency age a at time ¢, productively infected
cells with infection age b at time ¢, and virions in plasma at ¢, respectively. The
parameter h, d, $ and c are the production rate of uninfected CD4+ T cells, the per
capita death rate of uninfected cells, infection rate of CD4% T cells by infectious
virus and the viral clearance rate, respectively. In model , a small fraction
f € (0,1) is assumed to be latency infected cells and that the remaining 1 — f
become productively infected cells (see also in [I]. 61(a) is used to illustrate the
decreasing effect of the pool size of latent infected cells when latently infected
cells are activated. 62(b) represents the death rate of productively infected cells.
&(a ) denotes the activation rate of latently infected T cells with latency age a.
fo e(a,t) da denotes the total number of productively infected cells from the
actlvatlon of latently infected cells. p(b) is the production rate of viral particles
with infection age b. LL(O7 o0) is the set of all integrable nonnegative functions on
R. :=[0,400). In [31], the authors shows that has a global attractor, and it
is uniformly persistent if the basic reproduction number is greater than one. The
threshold dynamics of infection-free and infection equilibrium subject to latently
age and infection age are also addressed by Lyapunov functionals techniques.
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However, more and more research pay attention to the fact that virus can also
spread by direct cell-to-cell transmission [3, 4 [7, 10} 12} 23], 24} 3T]. Viral parti-
cles can be simultaneously transferred from infected target cells to uninfected ones
through virological synapses during cell-to-cell transmission [7]. Some evidences
reveal that cell-to-cell transmission may have a lower risk of being neutralized by
neutralizing antibodies or cleared by cytotoxic T lymphocytes [I2]. Dimitrov et
al. [4] found that the infectivity of HIV-1 during cell-to-cell transmission is greater
than the infectivity of cell-free viruses. Sigal et al. [24] claimed that cell-to-cell
spread of HIV-1 does reduce the efficacy of antiretroviral therapy. Lai and Zou
[10] formulated viral infection model incorporating both the virus-to-cell infection
and cell-to-cell transmission in the form of discrete and distributed delay differen-
tial equations and obtain the threshold dynamics in term of the basic reproduction
number. Wang et al. [32] considered the variance in the infectivity with respect
to the infection age of the infected cells in the cell-to-cell transmission. Thus, it
is natural to consider a model incorporating Latency infection age, infection age
and cell-to-cell transmission. This constitutes one motivation of the present paper.
Our second motivation comes from a series of works on infection age within host
models [I7, 6, 2, 2] [32], which are devoted to understanding the joint effects of
the age structure and the cell-to-cell transmission on threshold dynamics of these
models. Our study is mainly motivated by [31], [32] where the authors proved that
the threshold dynamics of the model. It is then interesting to see whether similar
results hold for our present model.

In this article, we propose and study the following age-structured HIV infection
model with latency and and both cell-free and cell-to-cell transmission modes.

dT'(t)

T = h=dT(0) - BTV - AT | )i, 1 b,

(% + %)e(a,t) = —01(a)e(a,t),

(1.2)
(% + %)i(b, £) = —2(b)i(b, ),
%ﬁ” _ /O p(B)i(b, 1) db — eV (1),
with boundary conditions
e(0,) = F(BTWVE) + BT [ a(b)ith,t)ab).
( /0 ) (1.3)

0.0 = (0= N(ETOVO + AT [ awit.0d)+ [ teeta.n da
and initial conditions
70)=T5>0, V(0)=Vy=>0,
e(a,0) = ep(a) € LL(0,00), i(b,0) =1io(b) € L1 (0, 00),

where 3; and B2 are the infection rate of CD4™ T cells by infectious virus and
productively infected cells, respectively. The meaning of other parameters in (|1.2))

are the same as in (|1.1)).
We make the following assumptions on the parameters and functions in (|1.2]).

Assumption 1.1. (i) h, d, B1, B2, ¢ > 0;
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(ii) For 1 =1,2, q(-),0:(-), p(-),&(-) € LT (0, 00) satisfy the conditions:

q = eS8 SUPpe(g, 00y A(b) < 00, B 1= esSSUP,e(g,00) Bi(@) < 00,
P = ess supae[o’oo)p(a) < o0, £:= €SS SUPgc[0,00) &(a) < oo,

(iii) ¢(), p(-), &(-) are Lipschitz continuous on Ry := [0,00) with Lipschitz
constants Mgy, M, M¢ respectively;

(iv) There exists uo € (0,d] such that 01 (a), 02(b) > uo for all a > 0;

(v) There exists a maximum age b™ > 0 for the viral production such that
p(b) > 0 for b € (0,b") and p(b) = 0 for b > b*.

The remaining part of this article proceeds as follows. In the next Section, we
give some preliminary results including solution semi-flow, Volterra formulation of
solutions, boundedness of solutions, basic reproduction number and existence of
equilibria. Section 3 is devoted to the relative compactness of solution semi-flow
and the existence of global attractor. The uniform persistence of is proved
in Section 4. We obtain the local stability of the infection-free equilibrium and the
infection equilibrium in Section 5. Then we establish their global attractivity in
Section 6.

2. PRELIMINARIES
2.1. Semi-flow solution. We define the state space of as
Y =Ry x L} (0,00) x L (0,00) x Ry
endowed with the norm

1z, 0,0 9)lly = [l + Ml + [Pl + |yl for (z,0,9,y) € V.

If any initial value Xy = (o, e0(+),%0(+), Vo) € Y satisfies the coupling equations
e(0,0) = f (51T0Vo + 82T / q(b)io(b) db),
0

0.0 = (1= D(eTaVa++52T0 [ a0)ia(®) ) + [ elaeo(aa,

then (1.2)) is well-posed under Assumption according to Tannelli [§] and Magal
[11].

In fact, it is easy to show that (T(¢),e(,t),i(-,t),V(t)) € Y for each t > 0. We
still assume that the initial values satisfy the coupling equations in the remaining
context. Thus we have a continuous solution semi-flow ® : R, x Y — Y defined by

® (t, Xo) = ©4(Xo) == (T(t),e(-,t),i(-,£),V(t)), t>0, Xg€ . (2.1)
For the ease of notation, we introduce
Qa) = e~ Jo 1T P(p) = e~ Jo 02(M)dm for b > 0, (2.2)
Q= [ awit.ndn, MO = [ et
0 0
) db

N(t) = / )it
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It follows from (ii) and (v) of Assumption [1.1]that for all a,b > 0,
0<Qa) <e M 0<T(b) < e Hob
V(a) = —01(a)Q(a), T'(b) = —062(b)L'(b).

2.2. Volterra formulation. Along the characteristic lines t — a = const. and
t — b = const., the second and third equations of (1.2) can be calculated as

FIBIV(t = a) + B2Q(t — a)] T(t — a)Q(a) = €(0,1 — a)Q(a),
(a.1) = if0<a<t, (25)
e(a,t) = eoa— t)%, .

if0<t<a;

(2.4)

and

(2.6)

i(b,t) = {(Ot—b) ), it0<b<t,

io(b— t)F(b(ﬁ)t), if0<t<b,

where i(0,t —b) = {(1 — f) [B1T(t = b)V(t — b) + B2T(t — b)Q(t — b)] + M (t — b)}.
2.3. Boundedness of solutions.

Proposition 2.1. Let us define

= . h
== {Xo = (To,c0,i0, Vo) € Vs To + [leo(a) |2 < %,

‘ h hp§ h
To + |leo(a)l[zr + lio (D)2 < e , Vo < ™ + ” ; 12:(Xo)[ly < No}
where 1o 1o
ro 14+ £ 424 2L° S
cpo Ho

Then Z is a positively mvarmm‘ subset for ®@; that is,

O(t,Xo) €E forallt >0 and Xy € =.
Moreover, ® is point dissipative and Z attracts all points in ).
Proof. Tt follows from and changing variables that

leC )]l :/o e(0,t — a)2(a) da+/t°° eo(a—t)sug(i(a_)wda

t %) Q
:/ e(0,0)Q(t — o) da—i—/ eO(T)MdT.
0 0 Q(r)
Thus
dlle(-, t)llzr _ Q(t+7) ' d)(t — o)
g7 Q 7 ———=dr —|—/0 e(0,0) o do.
It follows from and changmg of Varlables that
dlle(',t)llu /°° eo(7)
———— =¢(0,%)Q2(0) — 01(t+ 1)t + 7)dr
S = e(0.000) - [ g0+ 7)
t
- / e(0,0)01(t — o)t — o) do (2.7
0

- /OO 01(a)e(a,t) da
0
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This, combined with the first equation in (1.2)) and (v) of Assumption gives us

d(T(t) + [le(, t)llz)
dt

— h— dT(t) - BTV (L) - BT / " ybicb.tydb
+ fIB TV (t) + BT /000 q(b)i(b,t) db] — /000 61(a)e(a,t)da

< h—po(T(t) + [le(- )|l zr)
for t > 0. An application of the variation of constants formula immediately yields
t>0, (2.8)

h
7@+ llesDller < 7= = ““t{— — (To + lleollz) },

E then T'(t) + [le(-,t)[|r < & for t > 0. Further, we

which implies that if X, €

can derive
dlliC, Ollzr _ (1= HBTE)V(t) + BT /OO q(b)i(b, t) db]
0

dt
+ /O g(a)e(a, t) da — /O 02(b)i(b, t) db.

t)lz1)

It follows that
d(T(t) + lle-, )llLr) + i,

dt
:h—dT+/ E(a)e atda—/ 01(a atda—/ 02(b)i(b,t) db.
0

From and (v) of Assumption [1.1]
d(T(t) + lleC, )llzr) + i t)llzr)

dt
Sh+&lleC Ol — po(T@) + lleC )l + i D))
_h .
shté-- po(T(#) + lleC, )l pr + i 1)l r)-
Using the variation of constants formula again gives
1T() + lleC £)llzr) + H'(' )IIL1
h+§ b _ (2.9)
S ¢ t{ —(T@®) + lle, )l +i( )}, t>0.
From (2.9)), we have ||i( )||L1 < % + % Similarly, it follows from
av(t) . &h
— < ot —cV(t) < =) —cV(t
L <Al = V) <+ 55) - vy
that B
s+ 52) h hpE
V() g SR 8L ey PR RRE
¢ CHo  CHo (2.10)
ph  h h hpE
< P PPE ey Ph | PDE
Clo  Clg Clo  ClHy
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Summing (2.8)), (2.9) and (2.10]), we conclude that if X € =, then for ¢ > 0,
[[@¢(Xo)lly

&P PN f (& P PENR
S (1+ 12%) + C + C/J,())/j,o e {<1+ Ho + C C,U, ) HXOHy} (211)
h h h
= L et Xy} < .
[0 ‘ {ﬁo | OHy}_ﬁo

Consequently, = is positively invariant with respect to ®. From (2.9)) and (2.11])) if
follows that limsup, , [T(t) + |le(-,t)||1:] < ﬁ and limsup, . [|[®:(Xo)[ly < 7=
for any Xy € Y, that is, ® is point dissipative and = attracts all points in ). This
completes the proof. Il

The following result is a direct consequence of Proposition [2.I] which will be
used later.

Proposition 2.2. Let A > h/fig be given. If Xo € Y satisfies || Xolly < A, then
the following statements hold for all t > 0.
(i) T(), lleC, )y, il Dz, V() < A;
(if) M(t) <€A and N(t) < pA; B
(iii) e(0,t) < fBA%, i(0,1) < (1 — [)BA® + €A, where B = b1 + Baq.

2.4. Existence of equilibria. System (|1.2)) admits an infection-free equilibrium
PO = (T° €% (a),i%(b),V°) := (%,0,0,0).
An equilibrium (T*,e*,:*,V*) € Y of (1.2)) should satisfy

oo
h—dT* — B T*V* — BoT* / q(b)i* (b) db = 0,
0

d * _ *
Zoe" (@) = ~1(a)e’ (a),
d -k . *
() = ~620)8" (1),

(2.12)

(0) = [RT V" + BT / " g(b)i*(b) db,
i*(0) = (1— HBTV* + (1— f)BT" /O 4(b)i (b) db + / é(a

where T*, e*(a), *(b), and V* are not zero. We denote

K = / ¢(a)Qa) da, J:/O p(D)T(b) db, L:/Oooq(b)l“(b)db.

We define the basic reproduction number of (1.2) as

C (&

Ry = + (1 = f)BT°L + + BT KL.

After a simple calculation, we see that if Ry > 1 then (|1.2) has a unique infection
equilibrium P* = (T*, e*(a),i*(b), V*) with
1

T =2, ¢*(a) = fh(l - R—(})Q(a), (2.13)
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1 1 [
") = (1~ [+ K)h(1 - o)D), V= f/ pB)i*(b)db.  (2.14)
Ro Cc Jo
Thus we arrive at the following result.
Theorem 2.3. (i) System (1.2)) always has an infection-free equilibrium P°.

(ii) If Ro > 1, then (1.2)) admits a unique infection equilibrium
P* = (T*.e*(a), " (a), V") defined by @.13).

3. ASYMPTOTIC SMOOTHNESS OF ®(¢, Xo)

In this section, we begin with showing the asymptotic smoothness of semiflows,
then by [B) Theorem 3.4.6], the semiflow has a compact attractor. In what follows,
we adopt the approach in [30, Theorem 4.2 of Chapter IV].

Definition 3.1 ([28]). A set A in ) is called a compact attractor of a set B C X
if A is compact, invariant, and non-empty and ®;(B) — A as ¢ — oo. The last

means that, for every open subset U of ) with A C U, there is some r > 0 such
that ®,(B) C U for all t > r (i.e. ®([r,00) x B) C U).

The following proposition reveals that the functions M (¢t) and N (t) are Lipschitz
continuous. The proof comes from using Proposition Assumption and [33
Proposition 4.1]. We omit it.

Proposition 3.2. For any solution of (1.2), the functions M(t) , N(t) and Q(t)
are Lipschitz continuous on Ry with Lipschitz coefficients Ly, Ly and L.

Next we divide ® : R4 x )Y — Y into the following two operators ©, ¥ :
Ry xY—=Y:
@(t, XO) = (07 @e(W t)a ¢1(7 t)a O)a
\Il(ta XO) = (T(t)a é‘(7 t)a %(7 t)a V(t))v
where
- 0, ift>a>0, _ 0, ift>b>0,
Pe(a,t) = : L i(bt) =9 . .
e(a,t), ifa>t>0; i(b,t), ifb>t>0;
t), ift >0, - i(b,t), ift>b>0
é"(a’ t) — e(a7 )’ % > a — ) Z’(b’ t) — Z( ) )7 ? > — )
0, ifa>t>0; 0, ifb>¢t>0.
Then ®(t, Xo) = O(t, Xo) + ¥(¢, Xo) for t > 0. Following the proof of [34, Propo-
sition 3.13], we can arrive at the main result of this section.
Theorem 3.3. For X, € E, the orbit {®(t, Xo) : t > 0} has a compact closure in
Y if the following two conditions hold:

(i) There exists a function A : Ry x Ry — Ry such that, for any r > 0,
lims 00 A (t,7) = 0 and if Xo € Q with || Xolly < r then |© (¢, Xo) |y <
A(t,r) fort >0;

(ii) Fort >0, U (t,-) maps any bounded sets of = into sets with compact closure

my.
Proof. (i) Let A(t,r) = e #0'r then lim; oo A(t,7) = 0. By (2.5) and (2.6)),

(e ) 0, ift>a>0,
e\, = a .
v eola —1) Q?é_)t), ifa>t>0;
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) 0, ift>b>0,

io(b— 1)y, ifb>t>0.

Then, for X, € = satisfying || Xo||y < r and for ¢t > 0, we have
10 (£, Xo) [ly = [0] + [[@e (-, )| x + @i (-, 1) |22 + 0]

:/tooeo(a—t)QQ@)|da+/too|i0(b—t) LO) 4

(a —1t) r'b—1t)
e Qo+t [F. T+t
—/0 eo(o) =g d +/O o)

:/ ‘60(0—)67‘1‘;+t91(7-)d7-|d0'+/ ‘7:0(0—)67‘[:+t62(7-)d7|d0'
0 0

< e "legllpr + e lio]| s

< e[ Xol|y.

(ii) We next claim that ¥ (¢, -) maps any bounded sets of = into sets with compact
closure in Y. It follows from Proposition that T'(t) and V(t) remains in the
compact set [0,h/fig] C [0,A]. We only need to verify that é(a,t) and i (b,t)
remain in a precompact subset of Ll+ (0, 00), which is independent of X, € =. We
follow the method of [26] Theorem B.2]) to check the following conditions valid to
é(a,t) and 7 (b, 1),

(i) The supremum of ||€ (-, ¢) || with respect to Xy € E is finite;

(i) limp—oo [, €(a,t) da = 0 uniformly with respect to Xo € Z;
(iil) limp—o4 fooo |é (a+ h,t)—é(a,t)|da = 0 uniformly with respect to Xy € Z;
(iv) limp—o+ foh é(a,t) da = 0 uniformly with respect to Xy € E.

It follows from (2.5)), (2.6), Proposition and (2.4]) that
é(a,t) < fBA%e 100,
i(b,t) < [(1— f)BA® + EA] e 1P,

Thus, (i), (ii), and (iv) are satisfied.
Next we verify condition (iii). For sufficiently small h € (0,t), we have

/ |e(a+ h,t) —é(a,t)| da
0
¢

_ /Ot—h le(a + h,t) — e(a, )| da + /t—h |0 — e(a,t)|da
_ /th ’e(O,t —a—h)Qa+h) —e0,t— a)ﬂ(a)\ da + /t \6<0»t — a)(a)|da
o t

—h
<Ay + Ay + fBAh,

where

Ay = /the(O,t —a—h)|Qa+h) — Qa)|da,
0

t—h
Ay = /o le(0,t —a —h) —e(0,t — a)|2a) da.
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We first estimate A;. Directly calculations give

/Ot_h (a + h) — (a)|da = /Ot_h (2a) ~ Qa + 1)) da

:/Othg(a) da—/th(a) da
_/Othgz(a) da—/hthQ(a) da—/tthQ(a)da

h ¢
= / Q(a) da — / Q(a)da < h,
0 t—h
it follows from Proposition [2.2] that
A, < fBAh.

Next we estimate Ay. Rewriting Ay as

t—h
A2:/0 (0, — a— h) — e(0,t — a)|Qa)da

t—h
= /0 ‘(fﬁlT(t —a—h)V(Et—a—h)+ fBT({t—a—h)Q(t—a—h))
— (fBiT(t —a)V(t —a) + fBT(t — a)Q(t — a)) 'Q(a) da

t—h
< /0 (ATt —a—WV(t—a—h)— fBT(E — a)V(t - a)|a) da

t—h
+ /O |fBT(t —a—h)Q(t —a—h) — fBT(t —a)Q(t — a)|a) da.

Since T'(t) and V() are both Lipschitz continuous on Ry with Lipschitz constants
Mr = h+ dA + B1A% + B2gA? and My = (p + c)A, respectively. It follows from
Proposition and [I3l Proposition 6] that T(¢)V (¢)is Lipschitz continuous with
Lipschitz constants My = AMy + AMp and Mpg = AMg + GAMy. Denote that
G = fﬁlMTV + fﬂgMTQ. Thus
t—h
Ay < Gh/ e Ho%a < @
0 Ho
Hence

T : G
/0 |é(a + h,t) —é(a,t)|da < (ZfﬁAQ + %)h,

and condition (iii) follows.
As for i (b, t), we have

/ |li(b + h,t) —i(b,t)| db
0
i

t—h
:/ |i(b+h,t)—i(b,t)|db+/ 10 — i(b, t)|db
0 t

—h

:/th|z'(0,t—b—h)F(b+h)—i(O,t—b)F(b)|db+/t [i(0, ¢ — B)T(b)| db
0 t—h

<Y1+ Yo+ [(1- f)BA> +EA] ,
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where

t—h

le/‘ i(0,6 — b— B)[T(b+ h) — T(b)| db,
o

Tf:/ 160, — b— h) — i(0, ¢ — B)|T(b) db.
0

Similarly, we have fotfh ‘F(b + h) —T'(b)|db < h. Hence from Proposition , we
can conclude that
Y1 <[(1 - f)BA® + AR

For Y5, we have
t—h
<=0 [ | @e-b-nyvie-s-n-10-nViE-b)
0
+ Ba (T(t —b—h)Q(t —b—h) — T(t — b)Q(t — b)) |T'(b) db
+/thM@bin@®W@Mb
0

As before, My = AMy + AMr, Mrqg = AMg + GAMr. Recall that M(t) is
Lipschitz continuous on Ry with Lipschitz constants Ly = (§fSA + £61 + M¢)A.
Set H = (1 — f)(BiMrv + BaMrg) + Lar, By a zero-trick, then we have

t—h
Hh
ngfﬂa/ e Hobdh < —.
0 Ho

Finally, we have
= z — H
/ i(b+ h,t) —i(b,t)[db < {2[(1 — f)BA* + EA] + /T}h’
0 0
thus condition (iii) follows. This completes the proof. 0

According to Smith and Thieme [26], we arrive at the following theorem for the
existence of global attractors of the semi-flow {®(¢)};>0.

Theorem 3.4. The semi-flow {®(t)}1>0 has a global attractor A in Y, which at-
tracts any bounded subset of ).

4. UNIFORM PERSISTENCE

The aim of this section is to show that (1.2)) is uniformly persistent when the
basic reproduction number is greater than one. Let é(t) := e(0,t) and i(¢) := (0, t).
Then the first three equations of ([1.2]) can be rewritten as

JNﬂ:h—dﬂﬂ—;dW

dt
elat) = é(t—a)a), ift>a>0,
) eo(a —1t) Qg(léi)t)’ ifa>t>0; (4.1)

io(b—t) B if b >t >0,

it —b)I(b ift>b>0
u@w:{“ o), - it2620,
T(b—t)°
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where
o) = F(BTOVO + 6T [ qitb ) ab). (42)
0
=0~ (B1T( W)+ T [ oy db)
(4.3)
/{ é(t —a) da+/ &(a a—t eo(a —t) da.
Lemma 4.1. If Ry > 1, then there exists a positive constant €y such that
limsup é(¢) > €. (4.4)
t—o00
Proof. We first get an estimate on i(t) as follows. By , we have
(02 (- H(BTOVE) + 5T [ aw)ilb ) )
0 (4.5)

/«5 a)é(t — a)da.

It follows from the fourth equation in that
t T t T
V() > —c(t=) b)i(b,7)dbdr = —c(t=7) DT(b)i(T — b) dbdr.
<>_/Oe /Op<>z< ) dbdr / /Op<><>z<f ) dbdr
This, combined with , gives us
t T t
1— T —c(t=T) b)T(b)i(T — b) dbd T b)i(t — b)T(b) db
( f)(ﬁl/e | i~y avar + 7 [ aice - nre) )
t—a T
+f[31/ £(a tfa)/o efc(tf‘“'r)/o p(D)T(b)i(T — b) dbdr da (4.6)
t
T(t — b)i(T — b)T(b) dbda < i(t).
+f62/§ a>/0q<>z<7 T (b) dbda < i(t)

Since Ry > 1, there exists a sufficiently small €; > 0(e; = %60) such that

U=fbih=a [ r (b)db+@ —a /OOS(a)Q(a)da/mp(b)F(b)db
0 0

c d 0

L= ne" 0 [T aore s (4.7

+ [ B2 h ;61 /ODO £(a)Q(a) da /OOO q(b)T'(b) db > 1.

We claim that (4.4)) holds for this €y. Otherwise, there exists a T' > 0 such that

é(t) <e forallt>T.

Then it follows from () that “G2 > h — dT(t) — e for ¢ > T. This implies that
liminf; o T'(t) > h dgl. Thus there exists 7' > T such that T(t) > % for all
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t > T and hence (£.6) becomes
h — €1

(1= )b /Ot e~ et=7) /OTp(b)F(b)%(T —b)dbdr

+ 1= pp o —om) b

1 [ s@ew [ e [ e - b duar da

(4.8)
+ fB

h—61

18" [ @) [ awit - nreyavda <o),

for all ¢ > T. Without loss of generality, we can assume that (4.8) holds for all
t > 0 (just replace Xy by ®(T, Xy)). Then taking the Laplace transforms on both
sides of (4.8)), we obtain

h—q 1
d c+
h—€1 e —_\b s
+ (1= f)f— /Oe q(b)T(b) dbL]i]
h*El 1 o
d c+XJg

h;“ /0 e Ng(b)T(b) db /0 " e Mag(a)0a) dalfi].

Lli]>(1- A

/ h e p(b)T(b) dbL][1]
0

+ fp

e p(b)T(b) db / h e 2¢(a)Q(a) daLlli]
0

+ fB2

Here L[i] denotes the Laplace transform of 7, which is strictly positive because
of (4.2) and Assumption Dividing both sides of the above inequality by L][¢]
and letting A — 0 give us

1> %% /Ooop(b)I‘(b) db+ (1— f)B," - /OOO q(b)T(b) db

S0 T m [ e

[ aeros [ d@o) da

which contradicts (4.7). This completes the proof. O

+ fB2

We define a function p: Y — Ry on Y by

p (2, 0,0,y) = fPray + faa /0 dbYeb) b, (z,0,10,y) € V.

We easily see that p(®,(Xo)) = é(t) for t > 0 and Xo € Y. Then Lemma [L.1] tells
us that if Ry > 1 then the semi-flow ® is uniformly weakly p-persistent. Further,
from Theorem and the Lipschitz continuity of ¢ and Smith and Thieme 26,
Theorem 5.2], we conclude that the uniform weak p-persistence of the semi-flow ®
implies its uniform (strong) p-persistence. We have the following result.

Theorem 4.2. If Ry > 1, then the semi-flow ® is uniformly (strongly) p-persistent.
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When R > 1, the uniform persistence of immediately follows from The-

orem In fact, it follows from (4.1) that |le ( ) > fo é(t — a)Q(a)da and
hence from a variation of the Lebesgue-Fatou lemma [25 Section B.2] we obtain

liminf [le(-, )] 2 > & / Q(a) da,

where é*° = liminf;_, é(¢). Under Theorem there exists a positive constant
€ > 0 such that é* > € if Rg > 1 and hence the persistence of e(a,t) with respect
to || - ||p: follows. By a similar argument, we can prove that T'(¢t) and V (¢) are
persistent with respect to | - | and i(a,t) is persistent with respect to || - ||p:. To
summarize, we obtain the following result.

Theorem 4.3. If Ry > 1, then the semi-flow {®(t) }1>0 is uniformly persistent in
Y, that is, there exists a constant € > 0 such that, for each Xg € Y,

“ﬁi{}fT(f) > e, lig(i)lgf lle(-, )|l > e, ligiorolf li(-, ) ||Lr > e, litrg(i;lf V(t) > e

5. LOCAL STABILITY OF INFECTION-FREE AND INFECTION EQUILIBRIUM
We begin with the local stability of infection-free equilibrium PP°.

Theorem 5.1. The infection-free equilibrium P° = (h/d,0,0) is locally asymptot-
ically stable if Ro < 1 while it is unstable if Ry > 1.

Proof. Linearizing (1.2]) around the disease-free equilibrium P° under introducing
the perturbation variables

z1(t) =T(t) — > za(a,t) =e(a,t), x5(b,t) =1i(b,t), z4(t)=V(1),
we obtain the system
T — () = ate) = By [ a0
(5 + oo )aa(at) = ~Br(a)es(a ),
(7 %)mg = —05(b)as(b,1),
d$4

/Ooop x3(b,t) db — cxy(t), (5.1)
22(0,1) = f(ﬂ1gx4(t +52d/ b)xs(b,t) b)

2a(0,0) = (1= ) (B 3ea(0) + 82y [ ahaa(t.0) )
- a)xo(a,t)da
+ [ @
We set

z1(t) = 20eM,  ao(a,t) = 23(a)eM,  x3(bt) = x5 (b)e, x4(t) = xie” (5.2)
where z¥, 29 (a), z3(b), 2§ are to be determined. Plugging (5.2)) into (L.1)), we have

A = —daf — 61— o / O(b) db,
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Aaf(a) + == = ~0(a)zf(a),

25(0) =f(ﬁlgx2+ﬁzg /0 q(b)xg(b)db),

A(b) + df”dgb(b) = —62(b)a3(b),

80 = 1= (584 8l [ a®so) ) + [ d@aia

Ao = [ plbrae) b - et
0
By integrating the first equation in (5.3)) and (5.4]) from 0 to a, we obtain
o8 = 0)eme I o

29(b) = 23(0)e= 20~ Js ba(s)ds
= [( f)(51 9+ Bo— /Ooo q(0)z3(b) db)
+/0 f(a)mg(a)da}e—*b—f;02(s)dg
and from, , , and ’ we have

5(0)

_ ﬂ% 0 > —Xb—[? 02(s)ds
= 0 / p(b)e b

I hﬁl 29 / ¢(a)e a8 01(9)dsda/ p<b)e—,\b—f(§’92(s)dsdb
A+c 0

+(1- f)ﬁzgwgm) / " qv)e o0 g

0

h o0 a o0
+ fﬁ23x8(0)/ g(a)e—)\a—fo 91(s)dsda/ q(b)e—)\b—fé’ 02(s)ds db.
0

0
It follows that

where

— 1- f Lﬁl ‘/Oo —/\b—f(f 02(s)ds
H(N) = i d ), p(b)e db

Adc d Jy 0
4 (1 o f)ﬂQ%/ q(b)efx\bffob 02(s)ds db
0

ho[® \ o0 ‘
+[Bay / E(a)e A= le Ou()ds gy / g(b)e =g 02()ds g,
0

0

f Lﬁl /OO g(a)e,)\affoa 01 (s)dsda /OO p(b)e,)\bffob 02(s)ds db

15

(5.3)

(5.9)

Since H is a continuously differentiable with limy_, H(A) = 0, limy_,_oo H(A) =
oo, and H'(N\) < 0, it follows that (5.9) has a unique real root, say A*. Moreover,
noting H(0) = R, we have A* < 0 if Rp < 1 and A\* > 0 if Ry > 1, which implies
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that P? is unstable if Ry > 1. Now suppose that Ry < 1. Let A = p + vi be an
arbitrary complex root of (5.9). Then
L= [H\)| = [H(p + vi)| < H(p),

which implies that 0 > A* > p. In other words, all roots of ([5.9)) have negative real
parts and hence PC is locally asymptotically stable if Rg < 1. This completes the
proof. ([

Theorem 5.2. The unique infection equilibrium P* of (L1.2)) is locally asymptoti-
cally stable when Ry > 1.

Proof. Linearizing the system ((1.2)) at P* under introducing the perturbation vari-
ables
yi(t) =T) =T, ya(t)=V(¢)
y?(a; t) = 6(0,, t) - e*(a), y3(b7 t) = Z(bv t) - Z*(b)v
we obtain the system

WD — —dRan (1)~ 5T uu(0) = 82T [ a0t 00,
0

(% + %)yz(avt) = —01(a)y2(a, 1),

(&4 2Yusl0.1) = ~02(byys(0.),
dy;t(t) = AOO p(b)ys (b, t) db — cya(t), (510)

y2(0,1) = fd(Ro — Dn () + FBT yalt) + fPaT" / " 4By (b, 1) db,
y3(0,t) = (1 — f)d(Ro — D)y (t) + (1 — )BT ya(t)
(1 )BT / a(B)ys(b. ) db + / £(a)ya(a, t)da,
We set

yi(t) = ie™,  yala,t) = y5(a)e™,  ys(bt) =y5(b)e™,  wa(t) =yie™, (5.11)
where 49, y9(a), y5(b), v are to be determined. Substituting (5.11]) into (5.10) yields

Ayp = —dRoy) — BTy} — 62T*/ q(b)y5(b) db, (5.12)
0
dyd(a
M) + 22 — g @)8)
(5.13)

y3(0) = fd(Ro — )0 + FBT ) + BT /0 g(b)8(b) db,

0
280) + 2510 — 0, 0)580)

y9(0) = (1= f)d(Ro — 1)y + (1 — )BTy (5.14)

+a-nar | " a)80) db+12(0) / " glaperom N Oehdegg,

O o0
M = / p(b)u3(b) db — e, (5.15)
0
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Integrating the first equation of (5.13)), from 0 to a yields
y3(a) = y3(0)e Ao r()ds, (5.16)
y3(6) = y3(0)e N0 P2
= (0= PdRa = 0oh + (1= DAT G + (L= DT [ a0 )

% efAbfbe 02 (s)ds +y8(0)/ f(a)e**a*fo” Ol(s)dsda.efx\bffob 02 (s)ds
0

and from (5.15]), we have

o _ Jo p()ys(®)db
y4 )\+C

1- f * *
x / p(b)e I 025 g
0

e Aa—[§ 01(s)ds 4 ble— oo b2(s)ds g3,
O [ gerseis i go [~ et

Substituting (5.12]) and (5.13)) in (5.17) yields the characteristic equation at P*,

oo

a(b)y3(b) )
(5.17)

H\) = A+ d)H1(A) = A —dRo =0, (5.18)
where
Hl()\) _ 1- fﬁlT* /OO p(b)e—kb—fob Og(s)dsdb
A + c o
+ 75 T*/ £(a e~ Aa—[g 61(s) dsda/ p(b)@*/\b*fob b2(s)ds gp,
A+c o

+(1- f)ﬂzT*/ g(b)e I 2()3s gy,
0

+ fBT" / E(a)eamId r()dsgq / g(b)e =3 02(5)ds gy,
0

0

It is sufficient to show that ([5.18)) has no roots with non-negative real parts. By
way of contradiction, suppose that it has a root A = p + v¢ with g > 0. Then we
have

(p+vi+d)Hi(p+vi)— p—iv—dRo = 0.
Separating the real part of the above equality gives

(1 + dRo)(pu + d) + v
(b +d)?+v2

Re Hi(p +vi) = > 1. (5.19)

Noticing that #H;(0) = T*%’ =1 and H; is a decreasing function, we have
Re Hi(p+vi) < [Hi(p)| = Hi(p) < Hi(0) =
which contradicts with ((5.19). This completes the proof. O
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6. GLOBAL STABILITY OF THE INFECTION-FREE AND INFECTION EQUILIBRIUM

Set g(-) on (0,00) defined by g(xr) = — 1 —Inz for z € (0,00). Obviously, g(+)
has a unique minimum at 1 with g(1) = 0.

Theorem 6.1. The infection-free equilibrium P° of (1.2) is globally attractive if
Ro < 1.

Proof. By Theorem it remains to show that P° is globally attractive in ) by
the method of Lyapunov function. Consider candidate Lyapunov functional,

Lirgp(t ) = [:1( )Jrﬁz( )+ Ls(t) +£4(t)
where £1(t) = T°g( &) ). La(t) = [ dla)e(a, t) da, Ls(t) = [;° 1 (b)i(b, t) db, and

L4(t) = 1T V(t). Here the nonnegatlve kernel functlonb o(a ) and ¢( ) will be
determlned later. The derivative of £; along the solutions of ( is calculated as
follows,

O o0
d,cdlt(t) =(1- T?) (h —dT — BT (H)V (t) — BT /0 a(b)i(b, ) db)
(1 — TT) (dTO dT — BT (t)V(t) — BT /000 q(b)i(b, 1) db)
= *dTo(T? + % - 2) BTV + BTV

o0

— BT /0 h q(b)i(b,t) db + BT° / q(b)i(b,t) db.

0
By using integration by parts, we have

dﬁz / s(a Beat
Ry

_ _¢(a)e(a,t)’z° + /Ooo & (a)e(a, t) da — /OOO #(a)b1 (a)e(a, t) da
—60e0.0)+ [ " (@) ~ (@61 (@) )ela. .

Similarly,
dLs(t)
dt
It is easy to see that

dea(t) _ AT (/Oop(b)i(b,t) db—cV) _ BTt /Ocp(b)i(b,t) db— /i TV
0 0

w0, + [ (50 v(0)0a(0))ibrt) b

dt c c
Therefore,
dc(t) o(T° T .

n d(La(t) + L3(t) + La(2))
dt
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T T
— _d70° _
N dT<T+TO 2)

+ (£6(0) + (1 = f)ip(0) — 1) (BlTV BT /O°° JO)ilh.1) db)
+ /Ooo ¢(a)f:(a) +1/J(0)§(a))e(a7t>da

00 TO
[ (00 = 00820 + PEp0) + 700 (b1) b
Now we choose

vib) = / OO(MO () + s T%(u))e B 02y,
/ (0 [0 @) gy,

Then ¢(0) = 210 4 8, TOL, ¢(0) = AKS 4 3, TOKL, and ¢ and ¢ satisfy
51

P'(b) — ¥ (b)02(D) + p(b) + B2Tq(b) = 0,
¢'(a) — d(a)01(a )+¢(0)€(a) =0.
The derivative of L;rg along solutions of is

d[,[FE(t) 0 70 T
SHFEY) 47 —_ 9
dt d ( T + T0 )

+(000) + (1= o) - ) (ATV + 82T [ g(0)io.1) o)

_ —dTO(TTO + % - 2) +(Ro —1) (/31TV + BT /OOO q(b)i(b,t) db)
- 7dT°(T?O + % ~2) + (Ro - 1)f e(0,1).

Notice that dﬁ%f(t) = 0 implies that T = T°. It can be verified that the largest

invariant set where dﬁ%f(t) = 0 is the singleton {P°}. Therefore, by the invariance

principle, P° is globally attractive when Ro < 1. (]

The following result immediately follows from Theorem and Theorem

Theorem 6.2. If Ry < 1, then the infection-free equilibrium P° of (1.2) is globally
asymptotically stable.

We next establish the global stability of the infection equilibrium.
Lemma 6.3. Suppose that Ro > 1. Then every solution (T'(t),e(a,t),i(b,t), V(t))
of (1.2)) satisfies

i R e(0,1)i*(0
(- f>(m vt [ a) - S0
0

e*(0)i(0,t)
el 0)if(0);,
/f 0% ="
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Proof. We have

- P . e(0,t)i*(0)
(1 *f)(51T V* + BT /o q(b)i*(b) db)m
a, t)i* (0)
+ [ e @ g e

_ ((1 —f)(ﬁTV+62T/ i(b,t) db) + / £(a)e(a, t) da) (0(02)

_(0)
and

(1—f)(51T*V*+ﬂ2T*/O q(b db / &(a)e*(a)da = i*(0).
This immediately gives . (I

Theorem 6.4. Assume that Rg > 1. Then the unique infection equilibrium P* =
(T*,e*(a),i*(a), V*) of (1.2 defined by (2.13)) is globally asymptotically stable.

Proof. By Theorem [5.2] it suffices to show that P* is globally attractive. We show
this by applying the Lyapunov technique again. Let

Glz,y) == —y—ylnf7 for x,y > 0.
Yy
It is easy to see that G is non-negative on (0,00) x (0, 00) with the minimum value
0 only when z = y. Furthermore, it is easy to verify that G,[z,y] + yGy[z,y] =

Glz,y].
Consider as a candidate the Lyapunov functional

Ler(t) =Hi(t) + Ha(t) + Ha(t) + Ha(t),

where
H1(t) = G[T, T*] / o1(a a,t),e*(a)|da,
BT

Hs(t) = /Ooo Y1(b)Gi(b,t),i*(b)] db, Ha(t) = GV, V™,

with

) = / T (O ) + 52T*q<u>)e-fb“ s g,

/ wl — [ 01 (w)dw du .

(The reason of this choice is similar to that in the Proof of Theorem [6.1]) One can
easily see that ¢1(0) = 252 4 B, T KL, 41 (0) = 227 + 8,7+ L,

YLB) —r (0)8a(0) = ~ T () — T (),
¢1(a) — ¢1(a)01(a) = —¢1(0)¢(a).

Next we calculate the derivative of H along solutions of (|1.2). Firstly, differentiating
H1(t) along solutions of (1.2]) yields

d%i;t() (1—3)@ dT = JiT(t)V ()—52T/Oooq(b)i(b,t)db)
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™ T
= —dT* (— = 2)
R

Secondly, using (|2 , we have

/ 61()Ge(0, £ — )(a), ¢* (a)]da

1 T, .
F= ) 0) = e0.)).

/ ¢1(a)Gleg(a — t)e _f;?tal(w)dw,e*(a)]da

= / o1t —r)Gle(0,r)Q(t — 1), e (t — r)|dr

/ 210 co(r)e™ 7O et 4 p)]dr
= Boo(t) + Be(t).
The derivative of B, and B¢ take the form
dBoo (t)
dt
= 610G O+ [ 64t~ NGl e B A - ] ar

t
- / d1(t—1)01(t =) {6(0, re” Jo @ g [e(0,r)e” Jom (@) e*(t—r)]
0

+e"(t—1)Gy [6(07 r)e” Is Or(w)dew e*(t — T)]] dr,

and

dBe (1)

= / Pt +1r)G [eo(r)e_ A O1(w)dw e*(t+ ’I“):| dr
0
_ / Gr(t+7)01(t+7) [eo(r)e— Je O1(w)dw y [60<r)e— fitr el(w)dw7 (1 + r)]
0

+e"(t+1)Gy [eo(r)e_ A b1 (w)dew e*(t+ 7")}} dr.

We obtain the derivative of Ha(t),

dHJ( ) = 610)GL0.6), ¢ (0)] + / " [6h(0) ~ 61 (@0, (@)] Glela 1), " (@) da
0

= ¢1(0)G|[ / ¥1(0 a,t),e*(a)] da.

A similar argument as in the derivative of Hs, we calculate the derivative of Hgs,

DL _ ya)clio, 0, (0) + /OOO [¥/(6) = (®)62(5)] GLi(h, 1), " (b)) db

= 1 (0)G[i(0,t),7*(0)] — /Ooo (51T*

We calculate the derivative of Hy,

dH4(t) _ B T*
dt c

p(b) + B2T"a(b) ) GLi(b,1), " ()] db.

/O p(B)i(b,t) db— BTV + BTV — D! p /O p(b)i(b, t) db.
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If follows from ;(0) = 220 4 B, 7L and ¢ (0) = 2L KL 4 3, T* KL that

dlpE
dt

_ de*(% n T? - 2) ! 7= T?*) (€*(0) — e(0,1))

+ ¢1(0) / ¥1(0 a,t),e*(a)lda

F0)CT0, t>z<o>1—/0 (516
ﬁ1

(6.2)

p(b) + BT a(b) ) Gli(b, 1), " (b)] db
i(b,t)db+ LTV — /1 TV

B V* 61 T*

Recall that

(1) (B TV - TV 4 T [ g @) - T [ it )

/ &(a a) —e(a,t)) da

2(0 t),
and
fo1(0) + (1 - ) 1(0)
_ (L= )BT

Tra-pprepy I0TRI

- + BT KL
_ (( f)ﬁlJ +(
c

0
f)ﬁzL+fﬁlK +f62KL)T =1.

Ro
Thus (6.2) becomes

at
_ —dT*(% + T? ~2)+ }(1 _ %) (e*(0) — (0, 1))

+2Ge0.00- [ 20

Gli(b, t),i*(b)] db
+11(0) {(1 - f)(51T*V* 4 BT /OOO o(b)i* (b) db) n e(0,1)i*(0)

e*(0)i(0,t)
0, 1)i*(0)
/ fla 0]
g

i(b,t)db+ BT V* — BTV

ﬂlT*
p
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It follows that

dLEpE(t)
dt
T T
=T (- —2)
1 T

* e(O,t) . o )
_ ?e (0)(? +1In = (0) ) + 62T /0 q(b)i(b,t) db
- /0 (ﬁlcT p(b) + 52T*Q(b))G[i(b, t),i*(b)] db
+1(0) [(1 - (m*v* [ a0 a)m S0

e*(0)i(0,t)
) *(0)
/ {a 5i0.5%)
ﬂl tydb+ B T*V* ——/ AT” p(b)i(b,t) db.
Recall that e*(0) = f(BiT*V* + BoT* [2° q(b)i*(b) db) and [ p(b)i*(b) db = cV*
in - Collecting the terms of . y1elds
dLpp(t) T T*
a7 (FJF?_Q)

FOa=D (MW* a1 [ a0y ) o) S50

0 e*(0)i(0,t)
@, 0" (0)
+ 10 /f (@0, )da
i(b, 1)
ot [ (b)(() FO-rom e
[ Ao (2 410 00 T, A0 VDY,

wb) T e(0)  Vir(b)

* > . * > - T 6(0, t)
+ 82T /0 q(b)i(b, 1) db — BT /0 a(b)i (b)(T ) ) o
Further, we have

dLpE(t)

a4 (7+7_2>
+ BT / ( e* + In Zzib(’;))) db
+¢1(0 < V4B
( 0ir(0) 0. ) (0
(11 0i(0,0) e (0 )z(O,t))
e(a, t)i*(0) e(a, t)i*(0)
+41(0 / §(a e* a];z(O )+lne*(a§i(07(z))d

BlTp T T V*i(b,t)
/ (-7 +h7 Vi (b)
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+In

VHibt)  TVe (0) TVe*(0)
Vir)  Tvee(0,0) T m T*V*e(o,t)) db

€(0,0i°(0)
*(0)i(0,1)

- w1<0){<1 -1 (M*v* [ i) 1

a, t)i* (0)
d
/ éa ()i (0, t)] a}
7/ HT"p(b) . 7TVe(O))db.
0 ¢ T*V*e(0,t)
Recall that Lemma [6.3 holds. Putting (6.1)) into the above inequality, we have

dLEE(t)

di
T T
- de*(—+— —2)

— (0 / éa <f2§)d“

oo

+ (1= (BT V" + BT / aO)F () db)g e*<o)i(;,t>>db}
)

0

0

INT) TINTVeb)
i 2,

)
+ BoT* /OOO q()i*(b) (1 - W>
t)

ot [Cawiro)(1- 7w
)

Ti(b,t)e*(0
T*i*(b)e(0, t))

> 61T*p(b) ., TVe*(
/0 c () TRV e( O t) )db
(
0,

+1-

Notice that

Tz(b t)e*(0)

car [ <b>(1— T )y

t)
and

o Lilb) | Tilh,0e(0)

T e Tm) T T T te o)

T* Ti(b,t)e*(0) In Ti(b,t)e*(0)
N T (b)e(O 5 T (0)e(0,1)

—~
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:_dT*(%Jr*—Q — (0 /g ( ZZO(%)

+(1—f)(51T*V*+/32T*/0 a(b db)g( ZO,O a)
s CCITERRY ( i) g(;fo o)
— B,T* /OOO q(b)i* (b) {g(%) + (Wﬂdb <0

and 2£22() — 0 implies that T = T* and

dt
ib,t) i(0,t) V. e(0,t) e(at)
i*(b)  i*(0)  V*  ex(0)  e*(a)’

for all a,b > 0.

It is not difficult to check that the largest invariant subset {M = 0} is the
singleton {P*}. By the invariance principle, P* is globally attractive and this
completes the proof. O
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