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ABSTRACT 

Flood is one of the most widespread natural hazards in the world. Hurricane 

Harvey, a 1000-year flood event, hit Texas in 2017 and resulted in significant property 

damage, bodily injury, and casualty. As one of the most impacted areas, Houston is 

chosen to be the study area of this study. For future flood risk prediction and mitigation, 

it is important to find out the flood dynamics of Hurricane Harvey and generate flood 

inundation maps. 

In these years, Volunteered Geographic Information (VGI) data such as social 

media and crowdsourced data arise as an alternative and supplementary data source to 

enhance the exercise of flood inundation mapping. However, compared to authoritative 

data acquired by government agencies (i.e. stream gage data, remote sensing), the quality 

of crowdsourced data often exists uncertainty due to lack of clear data standard and 

quality assurance/quality control (QA/QC) procedure. Therefore, the primary objective 

of this study was to examine the quality of crowdsourced data for flood mapping of 

Hurricane Harvey in the Houston area. As a free and innovative crowdsourced platform, 

the U-Flood project (map.u-flood.com), which reported and mapped flooded streets in 

the Houston metro area, is the target crowdsourced data to be examined in this study. The 

research questions of this study include (1) Are there any significant differences in the 

water depth among the H&H model (i.e. HEC-RAS), authorized reference (i.e. FEMA) 

and crowdsourced data (i.e. U-Flood data)? (2) Are there any significant differences in 

the inundated areas between the HEC-RAS modeled floodplain and U-Flood data 

observations? To answer these research questions, this study used HEC-RAS to simulate 

flood inundation maps in the Houston study area during Hurricane Harvey and validate 
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the result maps by comparing with Harvey High Water Marks (HWM) points using 

Wilcoxon sign rank test, and comparing with FEMA modeled floodplain using paired-

samples t-test. Next, the crowdsourced U-Flood dataset was validated by comparing with 

HEC-RAS modeled result and the authorized reference (i.e. FEMA modeled flood map 

for Hurricane Harvey and USGS stream gages) in terms of a) water depth (WD) using 

Friedman test and b) the percentage of U-Flood street’s count and length inside / outside 

of HEC-RAS modeled floodplain. In addition, the U-Flood dataset is compared with 

HEC-RAS and FEMA separately using the Wilcoxon Sign Rank test. The statistical 

results showed that there was a statistically significant difference among all comparison 

sets in terms of WD. In addition, the results showed that there was a statistically 

significant difference between the HEC-RAS modeled floodplain and U-Flood data in 

terms of U-Flood count and length inside/outside of HEC-RAS modeled floodplain. The 

results showed that a less consistent decreasing trend between U-Flood data and the 

modeled floodplain over time. Moreover, the U-Flood data distribution map with the WD 

difference level also visually displays spatial distribution.  

Overall, this study provides a preliminary evaluation of data quality of VGI by 

comparing the WD among crowdsourced data, authoritative data, and HEC-RAS 

modeled output. Furthermore, the theoretical significance of this study as the first study 

in empirically comparing crowdsourced data with observed and modeled data in flood 

monitoring. Findings from this study also fill gaps in the literature of improving and 

assessing the uncertainty of crowdsourced data quality, and crowdsourcing data 

supplements in flood mapping research. 
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I. INTRODUCTION 

As one of the world’s most common natural hazards, floods caused more than 

500,000 deaths between 1980 and 2009 (Doocy et al. 2013). In the U.S. alone, 4,586 

deaths could be attributed to the same cause from 1959 to 2005 (Ashley, 2008). Besides 

casualties, flooding is a natural disaster that causes serious economic loss. The average 

property loss is nearly 8 billion U.S. dollars a year from 1981 to 2011 in the U.S. (National 

Oceanic and Atmospheric Administration, 2013). In the hope of flood mitigation to 

minimize human casualties and economic loss, many flood studies explore plausible 

causes (e.g. anthropogenic; Ozkan, 2016) to mitigate future flood disasters. As 

urbanization and population density intensify in urban areas, it is important to understand 

the impacts of flooding on human settlements and populations vulnerable to floods. The 

need for flood management in urban areas has become obvious.  

For example, Hurricane Harvey made landfall in Texas during late-August to early-

September 2017 and affected Houston and other developed areas, which resulted in 

significant property damage, bodily injury, and casualty. Flood mapping through 

computer simulation is a common approach to model the affected areas inundated by 

floods. The conventional approach combines the Geographic Information System (GIS) 

and a Hydrologic and Hydraulic (H&H) model such as Hydrologic Engineering Center's 

River Analysis System (HEC-RAS) (USACE, 2016) to model flood inundation by 

delineating floodplains and estimating the water depth. Moreover, flood inundation maps 

can model the impact of stormwater during a flood. It is important to understand the flood 

dynamics of Hurricane Harvey, a 1000-year flood event (The Washington Post, 2017), 
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and produce flood inundation maps for future flood risk prediction and mitigation in 

Houston.  

Recently, social media and crowdsourced data emerged as an alternative and 

supplementary data source to augment the exercise of flood inundation mapping. For 

example, the inundation extent and water depth data could be extracted from social media 

to support rapid flood inundation mapping (Fohringer et al., 2015). Schnebele et al. 

(2014) also utilized the multi-sources of non-authoritative data, which includes 

crowdsourced aerial photos to map the potential road damage of Hurricane Sandy. In 

particular, crowdsourced data is unique because it provides observations at high temporal 

resolution in near-real-time (comparing to conventional data) and centered around a 

specific theme (comparing to social media) like flood mapping. Crowdsourced data is 

often in-situ data collected by a large number of volunteers equipped with mobile devices 

during the progress of an event (e.g. flood). While some crowdsourced data can be 

encoded in GIS format and published on map platforms via the internet to be shared 

quickly and simultaneously, some can be in any format (e.g. pictures or videos) (Douvinet 

et al., 2017). For crowdsourcing images of flood inundation, geotagged images with fine 

spatial reference may be used to infer the water depth at varying locations in near real-

time. Comparing to authoritative data acquired by government agencies, however, 

crowdsourced data often lack clear data standard and quality assurance/quality control 

(QA/QC) procedure to ensure data quality (Kutija et al., 2014). Therefore, it is necessary 

to validate the quality of crowdsourced data to explore its possible use in flood modeling 

beyond gathering discrete observations about the flood extent and road damage. 
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As a free and innovative crowdsourced platform, the U-Flood project (map.u-

flood.com) reported and mapped flooded streets in the Houston metro area as well as 

other cities such as Galveston, Baton Rouge, and New Orleans which were affected by 

Hurricane Harvey (Figure 1). The U-Flood project was developed by consultants at the 

environmental firm, Marine Weather and Climate, and the tech company, Tailwind Labs. 

Based on more than 1,500 reports of voluntary observations updated by the community, 

there were 991 roads inundated in Houston as a result of Hurricane Harvey (CNET, 2017). 

Hence, the U-Flood project was excellent as the target crowdsourced data to be examined 

in this study. This study compared the U-Flood data against the authorized reference such 

as the FEMA modeled flood map for Hurricane Harvey and USGS stream gages.  

  

Figure 1. Near real-time flood mapping of inundated streets from U-flood street 

map (U-Flood Project, 2017) 

The primary objective of this study was to examine the quality of crowdsourced 

data for flood mapping of Hurricane Harvey in the Houston area. This study used HEC-

RAS to model flood inundation maps in the Houston study area during Hurricane Harvey 
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and compare the result maps with crowdsourced U-Flood dataset. The high temporal 

resolution of U-Flood data also offered a unique lens to ascertain the impacts of dam 

release from Addick Reservoir and Barker Reservoir during the floods. By simulating the 

flood extent of Hurricane Harvey (which includes dam release water from the Addick 

Reservoir and Barker Reservoir during the floods), this study provided useful references 

for disaster management in urban areas for future risk assessment and mitigation. 

The research questions of this study include:  

(1) Are there any significant differences in the water depth among the H&H model 

(i.e. HEC-RAS), authorized reference (i.e. FEMA) and crowdsourced data (i.e. U-Flood 

data)?  

(2) Are there any significant differences in the inundated areas between the HEC-

RAS modeled floodplain and U-Flood data observations?  

To answer these research questions, this study validated the crowdsourced data with 

modeled floodplain to examine its effectiveness in supporting the flood inundation map 

of the HEC-RAS model. This study also discussed possible ways of using crowdsourced 

data to improve model prediction. 

To examine the quality of U-Flood data and its potential to improve the HEC-RAS 

model prediction, the null hypothesis (HA0) states that there are no significant differences 

in Water Depth (WD) among HEC-RAS, FEMA and U-Flood data (i.e. WD HEC-RAS = 

WD FEMA= WD U-Flood). The alternative hypothesis (HA1) is that there would be significant 

differences between these three data sources. To examine the agreement between HEC-

RAS model and U-Flood data, the null hypothesis (HB0) states that there are no significant 

differences in the covered area between the HEC-RAS modeled floodplain and U-Flood 
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data observations (i.e. Covered Area HEC-RAS = Covered Area U-Flood). The alternative 

hypothesis (HB1) is that there would be significant differences between these two data 

results. 
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II. LITERATURE REVIEW 

Flood modeling could be different based on the data type, approach, and data 

quality. This section will review flood modeling studies relevant to this study’s research 

questions. First, this section will review flood modeling calibration with conventional 

data, such as remote sensing (RS) data, to model the water surface elevation. Second, this 

section will review flood modeling calibration with unconventional data, such as 

Volunteered Geographic Information (VGI) data (e.g. social media data and 

crowdsourced data), to augment flood modeling accuracy and examine the modeled water 

surface elevation compared to conventional data in H&H modeling. Finally, this section 

will review the data quality validation of VGI data by various approaches in light of the 

research questions of this study.   

2.1 Flood model calibration with conventional data 

Many studies integrated the GIS and H&H model to simulate flood inundation and 

its impacts on hazard mitigation. Conventional data, including remote sensing (e.g. aerial 

photographs), lidar (Light Detection and Ranging), and in-situ field data (e.g. stream 

gauge, channel transects) are used as data inputs to calibrate the H&H models. In remote 

sensing, radar images portray the spatial distribution of precipitation useful for rainfall-

runoff transformation and could be integrated with GIS and HEC-RAS for floodplain 

mapping. Moreover, extraction of water bodies from post-flood satellite imageries (e.g. 

Landsat TM) can be used to delineate and validate the floodplain boundary (Renschler 

and Wang, 2017). Combined with empirical flow data (e.g. USGS stream gauges), these 

data could be used to calibrate and validate the H&H model output in order to evaluate 

the model’s ability to reproduce the flood.   
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Although conventional data is often regarded as “credible” since it is from the 

authoritative data source or in compliance with established data standards (e.g. Federal 

Geographic Data Committee), the modeled output does not necessarily present an 

accurate situation. Conventional data, such as satellite image or lidar, are limited for 

emergency response because they have fixed temporal resolution or require careful 

planning. Hence, the available products may not reflect the post-event landscape 

immediately after the impact. Besides, the discrepancy between the collection time of 

remote sensing image and storm period may cause model errors such as under- or over-

estimation of flooding (Knebl et al. 2005).  

2.2 Flood model calibration with unconventional data 

In addition to using conventional data, VGI, such as crowdsourced and social media 

data, are good alternatives to assist with flood modeling. Crowdsourced data usually has 

a specific and well-defined scope of the project (e.g. type of data to be collected) and 

some two-way communication channels for volunteers to actively engage. The types of 

data (i.e. geometry, attributes) are usually more structured. Social media, on the other 

hand, uses a web/mobile platform to allow broadcasting of memes or microblogs. The 

topics of social media, however, are very diverse and general. Even on the same topic 

(i.e. hashtags), the relevant messages may cover feelings, opinions, observations, and 

comments. Social media data are often unstructured with different kinds of data types 

(e.g. text, picture, video). In some specific events, social media can be mobilized as a 

platform to crowdsource observations (e.g. civil movements like #metoo). Wang et al. 

(2018) used this method to filter and extract flood information (e.g. water depth) via 

Twitter Application Programming Interface (API) or collect geotagged flood photos from 
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a crowdsourcing app/platform (e.g. MyCoast). Common concerns about unconventional 

data and their use are data quality, including spatial accuracy, temporal currency and 

attribute correctness of those observations (Schnebele et al., 2014; Jérôme et al., 2017; 

Eilander et al., 2016). For example, while data collected by mobile devices with GPS-

enabled should be accurate to several meters, data without GPS may use the place or city 

name mentioned in the user’s profile for geocoding. Similarly, diverse content and topics 

common in social media create significant noise and would require data cleaning before 

analysis. Therefore, it is important to validate the quality of unconventional data. For 

example, water-related information crowdsourced or extracted from social media has 

been compared with authoritative data such as remote sensing data (e.g. satellite images), 

precipitation data, and road closure reports in order to improve the accuracy of flood 

modeling (Wang et al., 2018).   

Many studies focused on the integration of crowdsourced data and social media 

data for flood modeling in order to provide additional flood information for calibration 

(Jérôme et al. 2017; Eilander et al. 2016). Crowdsourced and social media data could 

provide valuable flood information, such as damage reports, flood extent and depth, flow 

velocity and discharge by text, video, and photo (Jérôme et al., 2017). For example, 

Schnebele et al. (2014) fused specific crowdsourced data (Civil Air Patrol photos) and 

social media data (YouTube videos, Tweets) together by kriging interpolation to identify 

damaged areas. The resulting damage assessment could augment existing information 

(e.g. FEMA maps) and provide additional information to evaluate the condition of 

transportation infrastructure. Similarly, Eilander et al. (2016) used the Twitter streaming 

API to derive flood depth and location reference from substantial amounts of Twitter data 
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(text and photo). By combining with Digital Elevation Model (DEM) and H&H 

modeling, they created a flood map in near real-time. In their flood model validation, 

about two-thirds of maximum water depth observations identified from Twitter matched 

the estimated depth in H&H modeling (Eilander et al., 2016). Jérôme et al. (2017) 

examined the crowdsourced methodology of three citizen science projects, including 

Flood Chasers (in Argentina), FloodScale (in France) and RiskScape (in New Zealand), 

launched by research organizations collecting flood-related crowdsourced data from the 

public. By deriving quantitative data from digital photos and videos, they found that the 

calculated surface velocity based on the Large Scale Particle Image Velocimetry 

technique (LSPIV) can be used to calibrate the H&H modeling roughness and to simulate 

the flow conditions of the analyzed event. Besides, time-series photos from the public at 

the same water gate can be used to track flood levels and help pinpoint the maximum 

flooding time during the event. Moreover, water surface elevations could be derived from 

public photos by referencing lidar-derived DEM of the city (Jérôme et al., 2017). 

In order to warrant data quality, the crowdsourcing projects usually provide tutorial 

and guideline for public users without hydrology knowledge to contribute flood 

information (Jérôme et al., 2017).  For the purpose of better H&H modeling, the users are 

required to upload flood-related videos and photos as well as the metadata, such as 

information about the date, time, and location, etc. (Jérôme et al., 2017). In another case, 

Starbird (2011) proposed Tweak the Tweet (TtT), a data protocol to ask Twitter users to 

crowdsource disaster-related tweets with specific hashtags (e.g. #need, #name, #location, 

and #contact tags) to translate these tweets into machine-readable information. Such 

information can be reformatted by adding the right tags and structures in place. Thus, 
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these structured tweets could be utilized by computers to filter, classify, sort and map. 

Besides, Starbird (2011) also discussed some incentives and strategies to motivate 

crowdsourcing for providing information on crisis-related platforms. In TtT, users felt 

motivated by satisfying the social needs of individuals facing tragedy, as well as social 

capital and support from others during the event. Such efforts could be considered as 

crowdsourcing despite the platform is social media; since it had specific calling and data 

collection protocol for users to follow. However, even if crowdsourced texts, videos, and 

photos appear as valuable supplemental data to traditional post-flood discharge 

estimation, they still require further survey (topography survey, fieldwork, etc.) to collect 

data and assure quality (Jérôme et al., 2017). Data quality could vary if crowdsourced 

photos were captured at night or the objects of interest were unable to be seen from the 

shadow. Other data quality issues, such as incorrect information, imprecise location, and 

sampling bias, can also add to the uncertainty of crowdsourced data (Schnebele et al., 

2014). 

In light of data quality, Eilander et al. (2016) considered the uncertainty of 

crowdsourced data and generated flood probability maps based on water depth 

observation from tweeted photos. The likelihood of flooding was determined by the 

number of tweeted photos at the same place during the flood event. In this case, the higher 

likelihood of flooding indicates better reliability of data sources. However, insufficient 

observations could possibly become a limitation to the near real-time application of this 

method, especially in places where social media platform was rarely used. To address this 

issue, user interactions on the social media platform could confirm the presented 

information. Collecting data from multiple platforms (e.g. Instagram, Snapchat, Weibo 
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and Facebook, etc.) could gain more observation samples as well as reliability (Eilander 

et al., 2016).  

2.3 Validation of VGI data  

VGI can provide value-added information at low cost; it can be used to enrich crisis 

management models (e.g. H&H modeling) or to refine its output results (Schade et al., 

2013). However, the uncertainty and lack of credibility of data sources significantly 

obstruct its utilization. The quality of VGI data is highly variable and undocumented since 

it doesn't necessarily comply with the scientific principles of sampling design, and its 

coverage is incomplete (Goodchild and Li, 2012).  

To extract reliable information from vast amounts of VGI with uncertainty, Schade 

et al. (2013) proposed a way to combine various sources of social media by applying 

cross-validation mechanisms. It might improve the accuracy and increase the potential 

utility of VGI in H&H modeling since it would provide more relevant results. In addition, 

random noises in social media could be reduced by filtering the picture tags, such as 

deleting pictures that are most likely not relevant to flood event or evaluate the probability 

that an event may confuse with another type of flood (Schade et al., 2013). These finding 

of social media could also be extrapolated to crowdsourced data. Several approaches are 

used to examine the quality of VGI data. Goodchild and Li (2012) described three 

approaches: crowd-sourcing, social, and geographic approaches. Among them, the 

crowd-sourcing approach uses the wisdom of the crowd to converge on the truth and to 

validate and correct the errors. For example, a single observation is reinforced by 

additional observations from the same or nearby points. The social approach relies on a 

hierarchy of reliable individuals who serve as gate-keepers to assure the quality of 
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voluntary contributions, and such hierarchies of trust emulate the structure of traditional 

authoritative mapping agencies. Both approaches are good for assessment of the accuracy 

and credibility of VGI data. Compared to the previous two approaches, the geographic 

approach needs more research to fill the lack of conceptual or theoretical framework 

(Goodchild and Li, 2012). 

Due to the uncertainties of VGI data, it is important to examine the spatiotemporal 

credibility of VGI and its potential to offer high-quality information to H&H modeling 

and calibration. Hung et al. (2016) assessed the geo-location credibility of the VGI flood 

instances based on locations and spatial distribution of two geo-referenced VGI dataset 

from the crisis mapping platforms (Ushahidi projects) in Brisbane, Australia. 

Approximately 2,000 VGI flood reports were extracted as single-point features and 

validated by authoritative data including physical road network, recreation areas, and 

statistical local area boundary released from the Department of Natural Resources and 

Mines (DNRM) to exclude data of inaccurate position (e.g. 150 m from the reference 

feature). Among them, 1200 reports were regarded as flood incidents in different tags, 

such as “flooded areas”, “evacuations”, “property damage”, “roads affected”, “hazards”, 

or “closed roads”. After data cleaning and classification, Hung et al. (2016) built a binary 

logistic regression model and performed a spatial pattern analysis, mean nearest neighbor 

analysis, for credibility assessment on the VGI dataset of the 2011 flood. Based on the 

feedback provided by Ushahidi platform managers, two labels of “high-credibility” and 

“low-credibility” were used to verify the flood extent and affected streets. If a flood 

incident was validated by a platform manager, the report would be labeled as “high-

credibility”. This finding was consistent with Goodchild and Li (2012) which support the 
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gate-keepers to assure the data credibility. To analyze the relationship between spatial 

distribution and credibility, Hung et al. (2016) overlaid the VGI incidents with flood risk 

zones and DEM data. The results demonstrated that highly credible incidents were not 

randomly distributed; in contrast, they were densely clustered and statistically significant 

(z-score = -22.8; p < 0.01). The following geographic factors were assumed to influence 

credibility: (x1) distance to flood risk zones, (x2) DEM value of VGI point, and (x3) 

distance to nearest VGI, and (x4): Distance to water resource areas. Excluding DEM 

values, all the other three predictors were positively significant. Thus, the final probability 

model of credibility assessment could be written as: 

 𝑃𝑃 = 1
1+𝑒𝑒−(3.778933−0.00021𝑥𝑥1−0.00049𝑥𝑥3−0.00038𝑥𝑥4) 

This probability model developed based on the VGI dataset of the 2011 flood was 

applied as a credibility classifier on the testing VGI dataset for the 2013 flood with 80.4% 

accuracy (Hung et al., 2016). By validating the VGI data quality, it is more reliable and 

more accurate for subsequent hydraulic modeling. Thus, higher quality of VGI could 

better describe flooding events and support disaster monitoring, disaster responses, model 

validation, and decision making.  

2.4 Gaps of the Literature  

The literature explored possible integration of VGI, such as social media and 

crowdsourced data, with hydraulic model simulation and its usage in calibration. 

Furthermore, the literature discussed the limitations of VGI data and ways of data quality 

improvement. However, most studies in the literature used social media data rather than 

crowdsourced data in H&H modeling. Thus, there is insufficient information to support 

the benefits by using crowdsourced data in H&H model calibration. Besides, most 
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crowdsourced data used in previous studies were either an official project held by the 

government or official research institutes. In light of previous findings, this study will 

evaluate the data quality of the U-Flood crowdsourced project which is developed by 

consultants at the environmental firm. Moreover, most of the flood information such as 

timestamps and water depth are extracted from social media and crowdsourced data in 

the format of text, image, and video. This study tries to examine the use of an innovative 

U-Flood data, which crowdsourced and encoded flooded roads directly as GIS polyline 

format. Thus, the U-Flood data are very spatially explicit and unique in portraying the 

evolving inundation, especially after the release of stormwater from the reservoirs.  

As discussed previously, different sources of uncertainties could be introduced in 

the process of VGI utilization (e.g. extraction, interpolation). Instead of examining the 

quality of water-related information inferred from crowdsourced data in previous studies, 

this study is unique in examining the data quality of crowdsourced input directly for H&H 

modeling.  
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III. METHODOLOGY 

3.1 Study area 

Houston is a high-risk area of flooding due to its flat topography, intensive 

urbanization, and constant influx of moisture from the Gulf of Mexico. Recently, 

recurring hurricanes and thunderstorms have left record-breaking precipitation that 

swelled the rivers and inundated many roads. Given the geography of Houston, it is only 

a matter of time when the city would suffer from flooding again.  

The study area lies within the Buffalo Bayou watershed, which is primarily located 

in west-central Harris County, downstream of the Addicks reservoir and Barker reservoir 

in the Houston area (Figure 2). The drainage area of Buffalo Bayou watershed is 

264.2km² (102 square miles). Buffalo Bayou is the primary stream which runs 

approximately 170.59 km (106 miles) through the high-density residential area with 

around 444,602 population in Harris County. The major tributaries include Rummel 

Creek, Soldiers Creek, Spring Branch and Turkey Creek (Harris County Flood Control 

District, 2017). In response to the intensive and continual rainfall throughout Harris 

County during Hurricane Harvey, the reservoirs were approaching the full capacity and 

released stormwater which caused flooding downstream. To examine the flood extent 

during Hurricane Harvey, four USGS stream gages located in the study area (Table 1) 

were used in the HEC-RAS model from upstream to downstream: gage 08073500 (inflow 

of dam release from Addicks Reservoir and Barker Reservoir), gage 08073600, gage 

08073700, and gage 08074000 (outflow near Houston downtown). 

Table 1. Four USGS stream gages in study area 

USGS Gage Number USGS Gage Name 
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08073500 Buffalo Bayou near Addicks, TX 

08073600 Buffalo Bayou at W Belt Dr, Houston, TX 

08073700 Buffalo Bayou at Piney Point, TX 

08074000 Buffalo Bayou at Houston, TX 

 

 

Figure 2. The USGS stream gauges in the study area in Buffalo Bayou watershed 

3.2 Data collection 

In this study, the input data for the flood model are acquired from the authoritative 

GIS database such as Texas Natural Resources Information System (TNRIS), U.S. 

Geological Survey (USGS), and Federal Emergency Management Agency (FEMA). 
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Harvey High Water Marks from USGS was used for model validation. The source of 

crowdsourced data was from the U-Flood project. To examine the quality of 

crowdsourced data and its potential on inundation mapping, this study employed three 

types of data as stated below (Table 2). 

Table 2. The summary of data type, name, sources and the year of acquisition 

Data type Data name Sources Year of 

acquisition 

GIS  County and city boundaries TNRIS, TxDOT, TPWD 2015 

Roadways TNRIS, TxDOT  2015 

Watershed boundaries TNRIS, USGS 2009 

Rivers, Streams, and Waterbodies TNRIS, USGS, EPA 2009-2014 

Real-time Streamflow Stations and 

Discharges 

USGS 2017 

National Flood Hazard Layer 

(NFHL) 

FEMA 2015 

National Land Cover Database  TNRIS, USGS 2011 

USGS - Harvey High Water Marks USGS 2018 

CIP Storm Sewer City of Houston's open 

data portal 

2018 

Remote 

sensing  

National Agriculture Imagery 

Program (NAIP) 1m NC\CIR 

Orthoimagery 

TNRIS, USDA 2016 
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Houston-Galveston Area Council 

(H-GAC) Lidar DEM 

TNRIS 2008 

Crowdsourced  U-Flood flooded streets layer U-Flood project 2017 

 

The crowdsourced data used in this study is the U-Flood data (i.e. crowdsourcing 

to map flooded streets in Houston). The flooded streets layers were contributed by the 

public and were acquired via the script from the U-Flood project (map.u-flood.com) as 

GeoJSON format, which converted into shapefile by this study for ArcGIS. The U-Flood 

data were segregated at hourly from August 31 to September 6, 2017. The resulting 

polyline shapefile was visualized in GIS with a recorded timestamp, road types and flood 

types in the attribute table. Figure 3 shows the maps of U-Flood by date.  

 

Figure 3. The time series of 7 days U-flood maps 
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3.3 Processing Geometry data  

All GIS shapefiles and raster data used the coordinate system projection of the state 

plate coordinate system of Texas in zone 4204 for spatial reference. The roads, streams, 

and the USGS stream gauge shapefiles were clipped within the Buffalo Bayou watershed 

of Harris County. The lidar-derived Digital Elevation Model (DEM) data acquired from 

TNRIS was clipped, mosaicked and converted to a TIN file within the Buffalo Bayou 

watershed for further geometric data processing. The stream centerline, bank lines, flow 

path centerline, and cross-section cut lines were digitized by HEC-GeoRAS extension (a 

set of tools for processing geospatial data in ArcGIS) to prepare the RAS layers needed 

for HEC-RAS (Figure 4).  

 

Figure 4. RAS Layers: river centerline, banks, flow path centerline, cross-sections 

08073500: Buffalo Bayou near Addicks, TX 
08073600: Buffalo Bayou at W Belt Dr, Houston, TX 
08073700: Buffalo Bayou at Piney Point, TX 
08074000: Buffalo Bayou at Houston, TX 
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Editing the geometric data and flow data acceptable to HEC-RAS was a tedious 

and trivial process. The processes to ensure the geometric integrity of cross-sections data 

include cleaning intersected lines; recreating the TIN terrain file without unnatural 

fractures; and capturing representative cross-sections of critical turns along the winding 

stream of the watershed. For example, each cross-section line needs to be perpendicular 

to the stream centerline and non-intersecting to each other. However, it was indeed 

challenging to fully capture the channel geometry of this long and meandering Buffalo 

Bayou. Therefore, it needs to resolve those errors dealing with geometric data and flow 

profiles in order to run the HEC-RAS simulation successfully.   

This study digitized 80 cross-section lines across the Buffalo Bayou watershed to 

capture the places of hydraulic interest (e.g. change in geomorphological landforms) as 

well as USGS gages along the Buffalo Bayou stream. In addition to adding attributes to 

the cross-sections, there was also a need to assign Manning’s n value to cross-sections 

based on land use and land cover (Table 3). Manning’s n value is assigned to three classes 

based on the existing lookup values “Open‐Channel Hydraulics” (Chow, 1959) and HEC‐

RAS River Analysis System 2D Modeling User’s Manual Version 5.0, Figure 3‐19 

(2016): channel 0.04, developed 0.06, and vegetation 0.08. The Manning’s n value 

extracted from the National Land Cover Database 2011 (NLCD 2011) dataset for each 

cross-section. All RAS layers were prepared and exported from HEC-geoRAS and then 

imported into the HEC-RAS model for flood simulation. 

Table 3. Manning’s n value assigned to land use land cover dataset 

LULC Manning's n value 
Open water 0.04 
Dev, open space 0.06 
Dev, low intensity 0.06 
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Dev, medium intensity 0.06 
Dev, high intensity 0.06 
Barren land 0.08 
Deciduous forest 0.08 
Evergreen forest 0.08 
Mixed forest 0.08 
Shrub/scrub 0.08 
Grassland/herbaceous 0.08 
Pasture/hays 0.04 
Cultivated crops 0.04 
Woody wetlands 0.04 
Herbaceous wetlands 0.04 

 

3.4 Data analysis 

The workflow of the methodology involves the following steps: (1) flood 

simulation and inundation mapping using HEC-RAS; (2) model validation against 

authoritative data of FEMA flood inundated map, 3) compare the extent and WD among 

modeled flood inundation maps and U-Flood (Figure 5). 

 

Figure 5. Flow chart of data input, model simulation, calibration, result comparison 

and data quality evaluation 
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3.4.1 Flood simulation 

The flood simulation required several inputs and model parameters, including the 

inflow discharges from the stream gages, cross-sectional profiles of channel geometry 

extracted from lidar-derived DEM, and geometric data such as flow paths and river. The 

USGS stream gage peak inflow discharges were used as the inflow data. The resulting 

flood from Hurricane Harvey routed through the Buffalo Bayou river within the section 

downstream from the reservoirs to downtown Houston. In general, this study used the 

HEC-RAS model to simulate 7 days scenario of flood inundation maps from 2017/8/31 

– 2017/9/6, which matches the date of U-Flood data retrieved from the U-Flood project.  

It is also important to note that each cross-section of the stream can only allow up 

to 500 elevation points in HEC-RAS, so a cross-section point filter was used to remove 

any redundant and excessive elevation points. Another limitation of HEC-RAS cross-

section processing is to verify and simplify over 100 Manning’s n value to 20 for each 

cross-section line. In this study, the goal is to diversify the selection of appropriate 

Manning’s n value to represent the heterogeneity of land use land cover (LULC) over 

channel and floodplain.  

In this study, steady flow analysis was run to simulate the flood inundation maps 

along Buffalo Bayou mainstream. The flow change locations between upstream and 

downstream which corresponding to the specified cross-section line were added and 

entered the flow discharges inputs from four USGS gage with “Known W.S.”. At first, 

the water surface (WS) seemed unnatural and looked like there was a 10-foot height drop 

in the main channel. Therefore, this study set internal changes in WS to modify water 

surface elevation by evenly distribute the height value between the drops and then added 
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to each cross-section in the table. The modified result seemed smooth and natural. After 

setting up the correct geometric data and steady flow data, flood modeling is executed.     

Table 4 lists the input parameters of the four selected USGS stream gages along 

Buffalo Bayou mainstream, which include gage number, gage name, date, time, discharge 

(cms), and gage height (m). In this research, the peak discharge of the USGS stream gage 

08074000 happened on any given day during August 31 to September 6 was used as the 

threshold to calibrate the model, because it holds the largest flow discharge value 

compared to the other gages, which represents the worst flood scenario. Therefore, the 

same time/date when the peak discharge occurred at gage 08074000 was applied in the 

other 3 gages to simulate the worst flood situation.  

Table 4. Flow data input parameters of four USGS stream gages from August 31, 

2017 to September 6, 2017 

Gage Number Gage Name Date Time cms m 
08074000 Buffalo Bayou at Houston, TX 8/31/2017 13:30 441.74 7.84 
08073700 Buffalo Bayou at Piney Point, TX 8/31/2017 13:30 413.43 19.12 

08073600 
Buffalo Bayou at W Belt Dr, Houston, 
TX 8/31/2017 13:30 410.59 21.70 

08073500 Buffalo Bayou near Addicks, TX 8/31/2017 13:30 368.12 23.55 
       

Gage Number Gage Name Date Time cms m 
08074000 Buffalo Bayou at Houston, TX 9/1/2017 1:00 438.91 7.79 
08073700 Buffalo Bayou at Piney Point, TX 9/1/2017 1:00 416.26 19.05 

08073600 
Buffalo Bayou at W Belt Dr, Houston, 
TX 9/1/2017 1:00 399.27 21.56 

08073500 Buffalo Bayou near Addicks, TX 9/1/2017 1:00 353.96 23.44 
       

Gage Number Gage Name Date Time cms m 
08074000 Buffalo Bayou at Houston, TX 9/2/2017 1:15 421.92 7.62 
08073700 Buffalo Bayou at Piney Point, TX 9/2/2017 1:15 379.45 18.71 

08073600 
Buffalo Bayou at W Belt Dr, Houston, 
TX 9/2/2017 1:15 373.78 21.36 

08073500 Buffalo Bayou near Addicks, TX 9/2/2017 1:15 345.47 23.30 
       

Gage Number Gage Name Date Time cms m 
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08074000 Buffalo Bayou at Houston, TX 9/3/2017 0:00 407.76 7.46 
08073700 Buffalo Bayou at Piney Point, TX 9/3/2017 0:00 359.62 18.45 

08073600 
Buffalo Bayou at W Belt Dr, Houston, 
TX 9/3/2017 0:00 362.46 21.21 

08073500 Buffalo Bayou near Addicks, TX 9/3/2017 0:00 342.63 23.23 
       

Gage Number Gage Name Date Time cms m 
08074000 Buffalo Bayou at Houston, TX 9/4/2017 0:00 393.60 7.32 
08073700 Buffalo Bayou at Piney Point, TX 9/4/2017 0:00 356.79 18.28 

08073600 
Buffalo Bayou at W Belt Dr, Houston, 
TX 9/4/2017 0:00 362.46 21.11 

08073500 Buffalo Bayou near Addicks, TX 9/4/2017 0:00 336.97 23.15 
       

Gage Number Gage Name Date Time cms m 
08074000 Buffalo Bayou at Houston, TX 9/5/2017 0:15 382.28 7.20 
08073700 Buffalo Bayou at Piney Point, TX 9/5/2017 0:15 348.30 18.06 

08073600 
Buffalo Bayou at W Belt Dr, Houston, 
TX 9/5/2017 0:15 342.63 20.90 

08073500 Buffalo Bayou near Addicks, TX 9/5/2017 0:15 331.31 23.03 
       

Gage Number Gage Name Date Time cms m 
08074000 Buffalo Bayou at Houston, TX 9/6/2017 0:00 365.29 7.02 
08073700 Buffalo Bayou at Piney Point, TX 9/6/2017 0:00 328.48 17.78 

08073600 
Buffalo Bayou at W Belt Dr, Houston, 
TX 9/6/2017 0:00 322.81 20.64 

08073500 Buffalo Bayou near Addicks, TX 9/6/2017 0:00 317.15 22.87 
Afterward, this study examined the hypotheses based on the water surface elevation 

layer from modeled output to delineate the flood extent and water depth. The layers could 

be visualized and overlaid in GIS and presented as the results.  

3.4.2 Experiment of U-Flood data quality examination 

Based on the above procedures of flood simulation, the quality of crowdsourced U-

Flood data was examined by comparing a) the WD among the HEC-RAS modeled 

floodplain, FEMA flood map and U-Flood data (RQ1) and b) the extent of the modeled 

floodplain (RQ2).  

To answer the research questions, this study compared various flood datasets and 

the corresponding attributes (Table 5).  
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Table 5. Comparison set among HEC-RAS model, FEMA flood map and U-Flood data 

 Comparison set Statistics method Variable Sample 
size 

Date 

1 HEC-RAS and FEMA Paired-Samples t-test WD 1,000 9/1 
2 HEC-RAS and HWMs Wilcoxon sign rank test WD 29 8/31 
3.1 U-Flood, HEC-RAS and 

FEMA 
Friedman test WD 184 9/1 

3.2 U-Flood and HEC-RAS Wilcoxon Sign Rank test WD 303 8/31 
284 9/1 
259 9/2 
234 9/3 
230 9/4 
218 9/5 
188 9/6 

3.3 U-Flood and FEMA Wilcoxon Sign Rank test WD 190 9/1 
4 U-Flood and HEC-RAS % Comparison Count & 

Length 
479 8/31 
472 9/1 
470 9/2 
407 9/3 
399 9/4 
421 9/5 
426 9/6 

In order to verify the quality of the HEC-RAS model, the first comparison set 

examines the significant difference of WD between HEC-RAS modeled floodplain and 

FEMA floodplain. This research used HEC-RAS to simulate floodplain when U-Flood 

data was available, i.e. from August 31, 2017, to September 6, 2017, whereas FEMA 

floodplain depth data is only available from August 27, 2017, to September 1, 2017 (but 

without August 31). Thus, this study compared the modeled floodplain of HEC-RAS 

against the FEMA floodplain on September 1, 2017, the only matched date between the 

two datasets of FEMA and U-Flood. This study examined the agreement of WD between 

baseline HEC-RAS and FEMA floodplain at 1,000 random points. Assuming the water 

level changes gradually, WSE was extracted from the lidar-derived DEM at random 

points within the union of modeled floodplains modeled by HEC-RAS and FEMA. The 

union floodplain serves as the constraining extent to generate 1,000 random points and 
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extracts water depth from both FEMA and HEC-RAS floodplains (Figure 6). The results 

of paired-samples t-test will be shown in section 4.2.  

 

Figure 6. 1,000 random points in constrained floodplain extent 

In addition to verifying the quality of the HEC-RAS model against FEMA 

floodplain, the second comparison set examines any significant difference of WD 

between HEC-RAS modeled floodplain and USGS Harvey High Water Marks (HWM) 

points. These HWM points are measured at 1258 sites after Hurricane Harvey, recording 

visual clues of peak stream height reached by floodwaters during the storm. The 

advantage of using HWM is to ensure that this study was comparing WD where there is 

a flood with an authoritative data source. There were 29 points available to be used in the 

statistical comparison. The 29 HWM points with WSE which was subtracted from the 
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base DEM to estimate the water depth along with these HWM points. Then, these 29 

points were used to extract WD from the HEC-RAS floodplain raster file on August 31, 

2017, to compare with HWM WD. However, the HWM data doesn’t reveal the date of 

the highest watermark and hence there is uncertainty about its timing to be compared with 

flood simulated on August 31. Nevertheless, this is one of the valid authoritative data 

available for WD comparison. A normality test was performed in advance to ensure that 

the sample is normally distributed. Based on the statistical results that were not in a 

normal distribution, this study run a nonparametric test as a statistical method. The 

statistical analyzation of the Wilcoxon sign rank test was shown in section 4.3. 

The third comparison set was to examine any significant differences of WD among 

the HEC-RAS modeled floodplain, FEMA flood map, and U-Flood data. While there is 

no water depth information directly encoded in the U-Flood data, this study derived WD 

from the inundated street segment of U-Flood data using a GIS approach. This study used 

a 25-feet (7.62 meters) buffer around the crowdsourced U-Flood centerline, based on the 

standard width of a lane is 12 ft (American Association of State Highway and 

Transportation Officials) and the typical width of a two-way road segment in the US is 

nearly 25 ft.  Next, this study created random points and obtained zonal maximum 

elevation by overlaying the buffered inundated street segments with the lidar-derived 

DEM. There were 184 points available to be used in the statistical comparison. Assuming 

a constant water surface across the inundated street segment, the 184 points within the 

buffered street segment would assume to be the WSE, which was then subtracted from 

the base DEM to estimate the water depth along the U-Flood inundated street segment. 

Then, these 184 points were used to extract WD from FEMA and HEC-RAS floodplain 
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raster file on September 1, 2017, to compare with the WD of U-Flood (Figure 7). A 

normality test was performed in advance to ensure that the sample is normally distributed. 

Based on the statistical results that were not in a normal distribution, this study run a 

nonparametric test as a statistical method.  The result of the Friedman test was showed in 

section 4.4.1. In addition to comparing the WD of U-Flood, FEMA, and HEC-RAS, this 

study also compared the WD between U-Flood and HEC-RAS in 7 days (from August 31 

to September 6, 2017) as well as the WD between U-Flood and FEMA on September 1, 

2017. Thus, both comparisons set of extracted WD values from the corresponding data 

were analyzed by the Wilcoxon sign rank test and were shown in section 4.4.2 and 4.4.3.  

 

Figure 7. Sample points for extracting WD from U-Flood Buffered Zones  

Besides WD, the fourth comparison in Table 4 was to examine any significant 

differences of flood extent between the HEC-RAS modeled floodplain and U-Flood data 
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in terms of the U-Flood count and length from August 31 to September 6, 2017. This 

study assessed them based on count % and length % of U-Flood inside and outside of the 

HEC-RAS modeled floodplain. All U-Flood data were intersected and constrained in the 

Buffalo Bayou bounding polygon (which was generated based on the cross-sections 

covered zone in HEC-RAS). The first assessment was to compute the percentage of the 

U-Flood data counts inundated in the HEC-RAS modeled floodplain over the total 

number of U-Flood data. In this study, the street segments from U-Flood that intersected 

with the HEC-RAS floodplain were selected to illustrate the inundated roads reported by 

the crowd. The second assessment method was to compare the length of inundated street 

segments reported in U-Flood and the HEC-RAS modeled floodplain to the total length 

of U-Flood data. The inundated length of the U-Flood road was then clipped within the 

HEC-RAS modeled floodplain. Afterward, this study calculated the length of each U-

Flood street segment. The statistical analyzation of the Wilcoxon sign rank test was 

shown in section 4.5. 
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IV. RESULTS 

This section presents the results from flood simulation in HEC-RAS (section 4.1) 

as well as the statistical results of each comparison set. As documented in Table 4, the 

first WD comparison results of HEC-RAS and FEMA are stated in section 4.2. The 

second WD comparison results of HEC-RAS and HWMs are stated in section 4.3. The 

third WD comparison results of (1) U-Flood, HEC-RAS and FEMA, (2) U-Flood and 

HEC-RAS, and (3) U-Flood and FEMA are stated in section 4.4. Finally, the fourth % 

comparison results of U-Flood and HEC-RAS are stated in section 4.5. 

4.1 Visualize flow data in flood inundation maps 

All simulated flows were visualized in GIS to generate the flood inundation maps 

with water depth and bounding polygons. Based on the flow discharge and the gage height 

of the four USGS stream gages from August 31, 2017, to September 6, 2017, the 7 days 

flood maps were presented as Figure 8. The WSE got lower over time (i.e. water receded) 

and flood inundation extent gradually decreased from August 31, 2017, to September 6, 

2017, as the flood maps showed. The biggest change in flood extent across 7 days 

happened in the upper stream along the Buffalo Bayou and the surrounding areas.  
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Figure 8. The time series of 7 days flood inundation maps 

The WD difference distribution map of one subtracting from another (e.g. FEMA 

– HEC-RAS) over the random points are shown in Figure 9a) FEMA – HEC-RAS, b) 

HEC-RAS – U-flood (), c) FEMA – U-flood to visually represent the spatial comparing 

WD difference distribution. There are five different point types to represent WD 

difference (WDD) level between each pair of dataset comparison as follows: (1) ≤ -2 m, 

(2) -2 m < WDD ≤ -1 m, (3) -1 m < WDD ≤ 1 m, (4) 1 m < WDD ≤ 2 m, and (5) > 2 m. 

Take FEMA – HEC-RAS for example, the positive value means the overestimation of 

FEMA over HEC-RAS, while the negative value means the underestimation of FEMA 

over HEC-RAS. From these WD difference distribution maps, it is clear that where the 

HEC-RAS model underestimates or overestimates WD when compared to authoritative 

data (FEMA) or the crowdsourced U-Flood dataset.  
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Figure 9. WD difference distribution maps between a) FEMA and HEC-RAS, b) 

HEC-RAS and U-Flood, and c) FEMA and U-Flood.  

 

4.2 WD comparison between FEMA floodplain and HEC-RAS modeled floodplain  

This study compared 1,000 water depth values between FEMA and HEC-RAS 

model using the paired sample t-test. The mean water depth from FEMA is 0.38 meters 

higher than the HEC-RAS counterpart. Despite the water depth of HEC-RAS modeled 

floodplain is highly correlated with FEMA water depth (r = 0.878), there was a significant 

difference between the water depth of HEC-RAS modeled floodplain and FEMA 

floodplain (t = 8.239; p <0.0001; n = 1,000). Based on Figure 8 above, the most obvious 

difference in floodplain extent and WD occurred near the upstream of Buffalo Bayou. 
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Based on Figure 9A, mostly WD differences are in the range between -1m – 1m (grey 

points), which indicates that there is only a small WD difference between FEMA and 

HEC-RAS modeled floodplain. However, there is some obvious WD difference in the 

range between 1m – 2m (blue points) and above 2 m (dark blue points) cluster along the 

downstream and upstream of the Buffalo Bayou mainstream. The difference in both 

extent and WD between FEMA and HEC-RAS modeled floodplain may be caused by 

many reasons. One possible reason is that FEMA data doesn’t indicate the time it used 

for flood simulation. Therefore, the result of FEMA may be different from HEC-RAS 

which was modeled with USGS gage peak flow discharge of September 1, 2017.  

4.3 WD comparison between HEC-RAS modeled floodplain and HWMs  

This study ran a normality test (e.g. Shapiro-Wilk W test) in advance to ensure 

whether the samples present normal distribution. The results of the Shapiro-Wilk W test 

of two groups showed that each group of the data is not normally distributed (p-value < 

0.05). Therefore, the statistics used in comparing the water depth of HEC-RAS and 

HWMs on August 31, 2017, was the Wilcoxon Signed-Rank test. Based on HEC-RAS 

and HWMs water depth values in the 29 sample points, the result was a significant 

difference at the 0.05 level (Z = -2.0001, p = 0.0455). Due to the means of the two groups, 

it can be concluded that there was a statistically significant difference in the water depth 

between HEC-RAS and HWMs.  

4.4 WD comparison among U-Flood, HEC-RAS and FEMA  

4.4.1 U-Flood, HEC-RAS and FEMA 

Similarly, the normality test revealed that the WD of U-Flood, HEC-RAS, and 

FEMA are not normally distributed (p-value < 0.05). Therefore, the Friedman Test was 



 
 

34 | P a g e  
 

run to examine the null hypothesis. The water depth of September 1, 2017 was selected 

because it is the only date when these three data sources are available. The Friedman (X2
r) 

statistics result rejected the research hypothesis, which indicated that there was a 

significant difference among the three groups at the α = 0.01 significance level (p-value 

< 0.01) (Table 6). Therefore, the null hypothesis (HA0) was rejected.  

Table 6. The statistics table of Friedman Test 

Source Size Number Mean Std Error P-value X2
r 

FEMA 184 1.222 0.096 < 0.0001 72.1168 
HEC-RAS 184 1.223 0.095 
U-Flood 184 0.762 0.087 

 

4.4.2 U-Flood and HEC-RAS 

Again, the results of the Shapiro-Wilk W test rejected the assumption of normal 

distribution in WD of both datasets (p-value < 0.05). Therefore, the statistics used in 

comparing the water depth of U-Flood and HEC-RAS from August 31 to September 6, 

2017 was the Wilcoxon Signed-Rank test. Based on the U-Flood and HEC-RAS water 

depth values in the different sample points on each date, the result was a significant 

difference at 0.01 level (Z = 10.732 to 15.087, p = 0.0000) (Table 7). Based on the means 

of the two groups, it can conclude that there was a statistically significant difference in 

the water depth between U-Flood and HEC-RAS. Based on Figure 9b, mostly WD 

differences are in the range between -1m – 1m (grey points), which indicates that there is 

only a small WD difference between HEC-RAS modeled floodplain and U-Flood. 

However, there is some scattered WD difference in the range between 1m – 2m (blue 

points) cluster near the upstream of the Buffalo Bayou mainstream.  

Table 7. The statistics table of Wilcoxon Signed-Rank Test 

Date Size Number Z-value P-Value 
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8/31 303 15.087 0.0000 
9/1 284 13.573 0.0000 
9/2 259 13.632 0.0000 
9/3 234 13.016 0.0000 
9/4 230 11.977 0.0000 
9/5 218 11.703 0.0000 
9/6 188 10.732 0.0000 

 
4.4.3 U-Flood and FEMA 

This study run the normality test (e.g. Shapiro-Wilk W Test) in advance to ensure 

whether the samples present normal distribution. The result of the Shapiro-Wilk W Test 

of three groups showed that each group of the data is not normally distributed (p-value < 

0.05). Therefore, the statistics used in comparing the water depth of U-Flood and HEC-

RAS on September 1, 2017 was the Wilcoxon Signed-Rank test. Based on the U-Flood 

and FEMA water depth values in the 190 sample points, the result was a significant 

difference at 0.05 level (Z = -2.4217, p = 0.01552). Due to the means of the two groups, 

it can conclude that there was a statistically significant difference in the water depth 

between U-Flood and FEMA. Based on Figure 9c, mostly WD differences are in the range 

between -1m – 1m (grey points), which indicates that there is only a small WD difference 

between FEMA and U-Flood. However, there is some obvious WD difference in the 

range between 1m – 2m (blue points) cluster near the upstream of the Buffalo Bayou 

mainstream. Besides, there is only few WD difference in the range above 2m (red points) 

locate in the center of the floodplain. 

4.5 U-Flood data and HEC-RAS modeled flood inundation map comparison 

Figure 10 shows the extent comparison between U-Flood data and the HEC-RAS 

modeled floodplain in the study area on September 1, 2017. This figure also shows the 
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spatial distribution of the WD difference of U-Flood data. The red line presents U-Flood 

street data outside of HEC-RAS floodplain, while there are three different line types to 

present different WD level of U-Flood street data inside of HEC-RAS floodplain as the 

follows (1) WD difference < 1 m; (2) WD difference ≥ 1 m and < 2 m; and (3) WD 

difference ≥ 2 m. There are 85.9% of WD difference below1 meter, 8.8% of WD 

difference between 1 to 2 meters, and 5.3% of WD difference from 2 to 8 meters. From 

Figure 12, it is clear that those U-Flood segments with significant WD difference (2 - 8 

meters) represented by black bold lines are totally inside of the floodplain. The reason 

will be discussed and stated in section 5.1.  

 

Figure 10. U-Flood Data on September 1, 2017 with HEC-RAS Modeled Floodplain 
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4.5.1 The comparison of the count of U-Flood data observation 

The total number of U-Flood data per day during August 31, 2017, to September 6, 

2017 ranges between 399 – 479, while the number of U-Flood data within the modeled 

floodplain per day during the same period ranges from 188 – 295 (i.e. 44.13% – 61.59% 

of all U-Flood data).  The reported count of U-Flood data inside modeled floodplain is 

consistently decreasing, whereas the total U-Flood observations from August 31, 2017, 

to September 6 change at a slower rate and often rebound especially after September 4 

(Figure 11). It looked like both the modeled floodplain and U-flood data is shrinking in 

extent (i.e. receding flood), but there are relatively less U-flood reporting inside the 

modeled floodplain over time (i.e. more U-Flood data outside the floodplain). There is a 

decreasing trend of the percentage as time progresses, which means fewer U-Flood data 

were in line as the decreasing trend goes. A possible reason could be the HEC-RAS model 

only accounts for riverine flooding in the main channel, whereas U-Flood observations 

may account for tributary flooding and other storm surges (e.g. overland flow, stormwater 

backlash). In general, most of the intersected U-Flood data clustered near the reservoir 

discharge outlet and the upstream of the Buffalo Bayou.  
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Figure 11. Summary of U-Flood counts in HEC-RAS modeled floodplain 

compared to total U-Flood amount on a daily basis 

4.5.2 The comparison of the length of U-Flood data observation 

The total length of U-Flood data in the study area for August 31, 2017, to September 

6 is about 107.83 – 132.87 km, and the length of U-Flood data within the floodplain is 

about 34.81 – 63.00 km, which indicates 29.06% – 47.43% of the total length of U-Flood 

data. There is also a decreasing trend of the length of reported U-Flood data inside 

floodplain from August 31, 2017, to September 6 (Figure 12). The more days passed, the 

less U-Flood data in line with HEC-RAS modeled floodplain.  
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Figure 12. Summary of U-Flood length in HEC-RAS modeled floodplain 

compared to total U-Flood length on a daily basis 

4.5.3 The conclusions of the statistics of two comparisons  

Based on the results, the statistical comparison of count agreement between U-

Flood and the HEC-RAS model from 44.13% – 61.59% while the length agreement from 

29.06% – 47.43%. The average agreement of the count is 55.52%, while the average 

agreement of the length is 39.98%. Therefore, the length percentage agreement is 

relatively low to indicate much agreement between the U-Flood data and HEC-RAS 

model results. As explained earlier, such difference could be attributed to the fact that 

HEC-RAS only predicts riverine flooding in the main channel, whereas the U-Flood data 

still has the potential to be the supplementary data to bring up the HEC-RAS model or 

FEMA to full strength, based on its real-time characteristic.        
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V. DISCUSSION 

5.1 Research Questions  

To answer the research question of whether there are any significant differences in 

the water depth among the H&H model (i.e. HEC-RAS), authorized reference (i.e. 

FEMA) and crowdsourced data (i.e. U-Flood data), the statistics comparison results of 

Table 5 indicates that there was a statistically significant difference among HEC-RAS, 

FEMA, and U-Flood data. Furthermore, there was a statistically significant difference in 

the water depth between U-Flood and HEC-RAS comparison as well as U-Flood and 

FEMA comparison. Therefore, the null hypothesis (HA0) (i.e. WD HEC-RAS = WD FEMA= 

WD U-Flood) was rejected.  

Moreover, the geographic pattern of WD among U-Flood, FEMA, and HEC-RAS 

displayed high similarity at the edge of the floodplain; while there were some WD 

significant difference occurred inside the floodplain (Figure 10). The zonal maximum 

method to extract WD tends to be overestimating especially when 1) the U-Flood road 

segment is long, 2) the slope along those segments is steep (i.e. large elevation change). 

Moreover, another possible reason is that the premise of the WD extraction method using 

by this study is to assume that all U-Flood segments have encountered floodplain 

boundary (where WD = 0). While the maximum DEM of this U-Flood segment occurred 

at the boundary of the floodplain, the derived WD at the sample point (max DEM subtract 

base DEM) would be close to the WD from HEC-RAS modeled floodplain. However, U-

Flood segments that are "totally inside floodplain from start to the end" don't meet this 

assumption. In this scenario, since the U-Flood segment doesn't have at least one end 

touching the boundary of floodplain and the whole U-Flood segment may fall far below 
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the water surface, it will not match the real water surface elevation no matter which DEM 

point collected from the U-flood segment. Thus, the WD of HEC-RAS and U-Flood 

would have a significant difference when using this method to get false WSE. Therefore, 

this study suggests that future studies could exclude U-Flood segments which is "totally 

inside floodplain from start to the end" to avoid this issue. Only the U-Flood segments 

near the floodplain edge can get reasonable WD when using this method.  

According to Figure 9 in section 4.1, there is a geographic pattern of the WD 

difference in each comparison. There is an obvious WD difference between -2 m and 2 

m when comparing the WD difference between HEC-RAS and FEMA. However, it 

seems there is not so much WD difference over 2 m when comparing U-Flood to FEMA 

or HEC-RAS. It could be due to the random sample amounts (i.e. there are 1,000 random 

sample points in FEMA and HEC-RAS comparison, but only 284 points in HEC-RAS 

and U-Flood comparison, and 190 points in HEC-RAS and U-Flood comparison). 

Overall, it required more data and information for further interpretation of the geographic 

pattern. This is also a worthy direction for future research.     

To answer the research question of whether there are any significant differences in 

the inundated areas between the HEC-RAS modeled floodplain and U-Flood data 

observations, the statistics comparison results of Figure 11 and Figure 12 indicates that 

there was a statistically significant difference among HEC-RAS and U-Flood data. 

Therefore, the null hypothesis (HB0) states that there are no significant differences of the 

covered area between HEC-RAS modeled floodplain and U-Flood data observations (i.e. 

Covered Area HEC-RAS = Covered Area U-Flood) was rejected. With regards to the count and 

length comparisons of U-Flood and HEC-RAS modeled floodplain in Figure 11 and 
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Figure 12, the percentage accounted for those U-Flood data outside of the floodplain is 

38.41 – 55.87 % and 52.57 – 70.94 % respectively.  

There was a difference in the underlying geographic pattern among the HEC-RAS 

model, FEMA flood data and U-Flood data. First, the HEC-RAS and FEMA didn’t model 

the tributaries. Instead, the HEC-RAS model deployed in this study only simulates the 

mainstream of the Buffalo Bayou watershed in the study area with only four targets USGS 

gage flow data. However, some U-Flood data may be observed near the tributaries or far 

from the mainstream. Second, the U-Flood data outside the floodplain may be caused by 

ineffective sewer drainage compounded with increased surface runoff from overland 

flow. This study overlaid the Houston storm sewer map with Kernel Line Density which 

produced from U-Flood distribution (Figure 13) for further analysis. From Figure 13, 

there is a high-density cluster of the U-Flood distribution near the upstream and two dams. 

On the other hand, there is only some U-Flood scattered away from the upstream. 

Excluding the sewers that are not connected to the FEMA floodplain in the Buffalo 

Bayou, there are 214 out of 472 (45.34 %) U-Flood data intersected with storm sewers 

on September 1, 2017. This might suggest areas with U-Flood data that did not intersect 

with the storm sewer lines (54.64 %) would suffer from flood inundation due to the 

absence of sewer lines to drain overflows during the Hurricane Harvey. Those areas 

without storm sewers may need to build more storm sewers to cope with future flooding 

during more than 500-year flood levels. These U-Flood data were observed in the urban 

area, so it was possible that the inundated streets were affected by the floodwater from 

multiple sources besides the riverine flooding (e.g. damaged pipelines).    
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Figure 13. Storm Sewer map with U-Flood Distribution Map 

Third, the absence of U-Flood data in some areas (e.g. HEC-RAS modeled 

floodplain or FEMA floodplain) could be attributed to no volunteers to observe or report 

the inundated streets. The results showed that a less consistent decreasing trend between 

U-Flood data and the modeled floodplain over time. It could be a result of a) fewer 

observations volunteered by the crowd or b) less flood across 7 days over a spatially 

heterogeneous inundation landscape. With regards to the former cause, people may not 

report flood information because they didn’t have good signals or devices during or 

immediately after the flood, or some places where floods happened are sparsely 

populated. This phenomenon may be further compounded by the geographic disparity of 

digital divide. However, there was a decreasing reporting trend (about 11% reduction) in 

total number of U-Flood data observation during the study period from August 31, 2017, 
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to September 6; and it was about 36 % reduction in the count of U-Flood data inside 

HEC-RAS modeled floodplain (Figure 11), which means less observation volunteered by 

the crowd might be a partial cause of the inconsistency. Besides, the modeled flood 

inundation maps (Figure 8) and the USGS gage records (Table 8) showed that the flood 

receded gradually over the 7-days period.  

Table 8. The peak value (cms) of each date from USGS gage record 

Date/Gage 08073500 08073600 08073700 08074000 

25-Aug 5.58 15.38 19.77 *NoData 
26-Aug 134.79 170.18 163.96 *124.31 
27-Aug 242.96 328.48 345.47 *NoData 

28-Aug 294.50 342.63 376.61 *923.13    

29-Aug 385.11 342.63 373.78 835.35 
30-Aug *390.77 407.76 410.59 487.05 

31-Aug 370.95 413.43 424.75 441.74 

1-Sep 356.79 402.10 *419.90 436.08 
2-Sep 351.13 379.45 *385.11 421.92 
3-Sep 345.47 368.12 362.46 407.76 
4-Sep 342.63 362.46 356.79 393.60 
5-Sep 331.31 342.63 348.30 379.45 
6-Sep 317.15 325.64 328.48 365.29 

* Lost data on this day 
 

Based on the statistics and the analysis above, the difference of WSE may be caused 

by the limitations of U-Flood crowdsourced data. Due to significant differences found 

among U-Flood data, HEC-RAS model and FEMA floodplain, it is recommended to 

exercise caution in interpreting U-Flood data and its potential use to calibrate the HEC-

RAS model at this stage (to be discussed in the next section). However, U-Flood data still 

has the potential to supplement real-time observations especially outside of the floodway 
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and immediate floodplain to the main channel even outside of the modeled floodplain 

area (Figure 11 and Figure 12). Floodplain modeling (e.g. HEC-RAS) is typically 

restricted to the main channel but not the tributaries and upstream floodplain due to the 

need and availability of USGS gage data for calibration, so such a modeling approach is 

only as good (or as comprehensive) as gage data can support it. Hence, non-riverine 

flooding in those remote areas would go unrecorded and their impacts on the local 

communities could be underestimated. At this time, U-Flood data could be potentially 

helpful as a supplementary data source for HEC-RAS modeling by offering valuable 

observations in regions without USGS stream gages or authoritative data.  

Nevertheless, the quality of U-Flood is of vital importance to the accuracy and 

utility of flood monitoring. Furthermore, it might be possible to reduce the uncertainties 

of U-Flood data by setting the gatekeepers to review reported observations from the 

public. For example, Goodchild and Li (2012) described the social approach that imitates 

the structure of traditional authoritative mapping agencies with “experts” who serve as 

gatekeepers to reconcile any inconsistent observations and assure the quality of voluntary 

contributions. The crowd-sourcing approach (Goodchild and Li, 2012) leverages the 

power of the crowd to approximate the “ground truth” and to validate the errors that can 

potentially improve the credibility of U-Flood data. For example, a single observation 

can be examined by nearby observations to flag any sampling bias. Moreover, informing 

and educating the public to report scientific observations can improve the data quality as 

a long-term strategy. For example, empowering the public with clear instructions of data 

collection protocol along with a user-friendly web/mobile interface can enable effective 

citizen science of essential attributes for each observation to be recorded (i.e. GPS 
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location, flood status, etc.). As a result, such instructions may reduce spatial and/or 

temporal uncertainties associated with such VGI. 

In summary, this study provides some suggestions on “best practices” of 

crowdsourcing data in the digital platform (i.e. app or website) for future applications: a) 

provide a form with easy user interface designed to ease user input; b) users report data 

with GPS turned on for accurate location of flood; c) use existing media outlets (e.g. radio 

stations, social media) to promote the app before storm season to raise public awareness. 

Overall, the combination of the strategies stated above would improve the quality of U-

Flood data. 

5.2 Limitations 

U-Flood data might not fully represent the peak discharge reflected by water depth 

because of several reasons. First, these crowdsourcing projects are often a response to an 

urgent need (e.g. a natural disaster) that would involve time lag. This indicates that we 

should learn from this and be proactive in the future. The data reported from the public 

only available from August 31, 2017, to September 6, which was already far away from 

the most severe flooding happened about August 25, 2017, to August 28. In fact, the daily 

peak flow discharge of USGS stream gage 08074000 was observed when the dam 

released floodwater on August 28, 2017. Second, there may be some data reported from 

the public not in the exact time and the location when and where the flood occurred. Some 

people reported inundated streets or roads hours or even days after they had access to the 

internet, while the flood might already fade or keep flowing rapidly elsewhere. Thus, the 

time lag in the crowdsourced report might not reflect the realistic flooding situation 

corresponding to the time stamp in U-Flood data. Third, U-Flood data has a lot of 
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uncertainties. Some users might report a flood when they were walking or traveling in a 

boat, so the WSE was uncertain. Besides, U-Flood data doesn’t provide attributes 

indicative of the context of local inundation, some of them may come from dam released 

flood water or direct stormwater runoff. Finally, the U-Flood data doesn’t have water 

depth, and any water depth extraction of U-Flood would have some errors to be compared 

with other flood datasets used in this study.    

Moreover, there were a lot of technical challenges in data processing which include 

the diversity of data source, map projection, data format, spatial resolution, and the 

missing flow data on some days. For example, if the multi-source data was not converted 

in the same projection, format, and resolution, the GIS data would cause many errors to 

interrupt the HEC-RAS model. In addition, the U-Flood data need to be transformed from 

JSON format to the shapefile in order to display and compare it to other GIS data. While 

the FEMA floodplain data was modeled from August 27, 2017, to September 1 (except 

August 31), the U-Flood data was only available from August 31, 2017, to September 6. 

This study simulated floodplains in line with specified date and time by HEC-RAS and 

then run several comparisons to examine the quality of U-Flood data.  

Due to the limitation of data availability, this study used the lidar-derived DEM 

(2008) and land cover (2011) and assumes that there were no major topographic changes 

from the time of data collection to August 2017. Although both data might not fully 

account for the current situation, these dated datasets are the best available data. While 

the research hypotheses examined the quality of U-Flood data, this study did not fully 

address any error propagation due to the spatiotemporal uncertainties associated with the 

crowdsourced data despite the results indicate disparities of sampling bias. It is noted, 
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however, that varying degrees of sampling bias would also occur in conventional and 

authoritative datasets (e.g. USGS) and any subsequent models that use them as well. 

Another limitation is the extraction of water surface elevation at random points by 

overlaying the U-Flood data with DEM. This study assumed the water flow to be steady 

and uniform flow (i.e. the WSE changes linearly and gradually over time and space). 

As mentioned, the U-Flood data lacks water depth and has lots of uncertainties. 

Thus, the method to extract WSE from the U-Flood segments may not get the accurate 

water depth. Besides, the information for each U-Flood segment only specified flooded 

or not, but it does not mention whether it was flooded along the whole street or only part 

of the segment. This ambiguous information leads to uncertainty in the statistical 

comparison of WD. On the other hand, data shortage in damaged USGS gauge station 

also limits the HEC-RAS model in representing the “reality” in Hurricane Harvey. 

5.3 Dam release influence 

Besides, anthropogenic activities affect the flood landscape as well. As there have 

been fluxes of dam release from the Addicks and Barker Reservoirs, it was hard to 

distinguish whether the flood extent was affected by the dam release or directly from the 

stormwater. Moreover, the USGS gage (08074000) in the study area was damaged during 

Hurricane Harvey and thus missed some records during Hurricane Harvey. USGS 

announced that the discharge data for the period August 26, 2017, to August 28, 2017, 

were revised based on re-analysis of gage height, the timing of the event, and hydrologic 

comparison of upstream and downstream gages (USGS, 2018). Even if the data had been 

estimated by USGS, there were still some missed flow discharge data from August 25, 

2017, to August 28, 2017. For example, there was no discharge data on August 27 before 
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dam release (August 28) to simulate the flood as well as to compare the storm with or 

without dam release (Figure 14). The missed discharge data of the study period could be 

referred to Table 8 above. Overall, future studies could improve the results from this study 

by using precipitation data as the auxiliary data to derive missing USGS stream gage data 

and better evaluate the impacts of dam release on flood extent. 

 

Figure 14. Missed data in USGS 08074000 record 

According to the USGS hydrograph (Figure 15 and Figure 16), the normal flow 

discharge is about 0 – 100 cfs (2.83 cms) on July 25 and arise dramatically to the 

estimation about 10,000 cfs (283.17 cms) at USGS gage 08073500 (upstream) and 30,000 

cfs (849.51 cms) at USGS gage 08074000 (downstream) around August 28 – August 29 

when US Army announced the release of stormwater from Addicks and Barker Dams. 

The USGS stream gage 08073500 is located upstream which is nearest the outflow of two 

dam release while the USGS stream gage 08074000 is located downstream which is 
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nearest the downtown of Houston. Thus, it could be estimated that about 10,000 – 30,000 

cfs (283.17 – 849.51 cms) was distributed to various locations by the dam release, while 

Harris County Flood Control District estimated an amount of 16,000 cfs (453.07 cms) 

was released from Addicks and Barker Dams (HCFCD, 2017).  

 

Figure 15. July 25 to September 6 USGS 08073500 hydrograph illustrates that 

about 10,000 cfs (283.17 cms) was brought from Hurricane Harvey 
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Figure 16. July 25 to September 6 USGS 08074000 hydrograph illustrates that 

about 30,000 cfs (849.51 cms) was brought from Hurricane Harvey 

  



 
 

52 | P a g e  
 

VI. CONCLUSION 

The primary purpose of this study was to evaluate the quality of crowdsourced data 

for flood mapping of Hurricane Harvey in the Houston area. This study provides a 

preliminary assessment of data quality of VGI by comparing the WD among 

crowdsourced data, authoritative data, and modeled output. The theoretical significance 

of this study as the first study in empirically comparing crowdsourced data with observed 

and modeled data in flood monitoring. This fills a gap in the literature about the usefulness 

of crowdsourced data in flood, but also shed useful insights about their spatiotemporal 

uncertainties (despite there’re lots of uncertainties). Being able to prove where and when 

these uncertainties are with empirical data and visualize them in this study is a good start 

to understanding the quality of big data analytics. In addition, a practical significance is 

to learn from this study to better plan crowdsourcing projects ahead of time from the 

disaster (so there would be less time lag) and be aware of any spatial sampling bias. 

Findings from this study also open new research agenda in improving and assessing the 

uncertainty of crowdsourced data quality, and crowdsourcing data supplements in flood 

mapping research.  

The most notable contribution of this study is conducting a comparative assessment 

in terms of flood extent and WD to evaluate the data quality of the crowdsourced U-Flood 

dataset. From the comparison results, this study identified that there was a decreasing 

trend of U-flood observations in both within and outside the modeled floodplain over 

time in 7 days. The reasons causing these significant differences and geographic 

distribution are worthy to investigate in future studies and will be insightful to illustrate 

the appropriate caution to use crowdsourced data as supplementary data for flood 
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mapping. It is noteworthy to pay more attention to evaluate the accuracy of crowdsourced 

data by checking their quality and improving the workflow to acquire such crowdsourced 

data. Despite the spatiotemporal uncertainties in the crowdsourced U-Flood dataset (e.g. 

the lack of water depth, lag reports from the public), it may present an opportunity to 

serve as supplementary observations to calibrate the hydrologic and hydraulic models, 

especially in areas without USGS stream gage or not covered by the FEMA floodplain 

maps. In particular, U-Flood available outside the modeled floodplain could present 

supplementary data available outside of observed USGS stream gauge and HEC-RAS 

model. The emergence of such crowdsourced data presents an opportunity to be 

cautiously capitalized in future citizen science projects.  
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