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POSITIVE PERIODIC SOLUTIONS OF NEUTRAL LOGISTIC
EQUATIONS WITH DISTRIBUTED DELAYS

YONGKUN LI, GUOQIAO WANG, HUIMEI WANG

ABSTRACT. Using a fixed point theorem of strict-set-contraction, we establish
criteria for the existence of positive periodic solutions for the periodic neutral
logistic equation, with distributed delays,

x’(t):x(t)[a(t)—i:a-(t)/o x(t+9)du-(0)—§:b-(t)/0 x'(t+9)dy,-(9)]
= e Z j=1 ’ T T

where the coefficients a, a;, b; are continuous and periodic functions, with the
same period. The values T;, Tj are positive, and the functions p;,v; are non-
decreasing with fET du; =1 and fET dy; = 1.

i J

1. INTRODUCTION

Consider the single species neutral logistic model, with discrete delays,

T = MO [al)-BON -3 B ON=7(0)=3 & (N} (t-05(0)] . (1)

i=1 j=1

where the functions a(t), 5(t), b;(t), c;(t), 7(t), o, (t) are continuous w-periodic, and
a(t) >0, B(t) >0, b;(t) >0, ¢;(t) >0 (i=1,2,...,n, j =1,2,...,m). An eco-
logical justification of model can be found in [3 [ 6, [10]. Using continuation
theory for k-set-contractions, Lu [§], Lu and Ge [9] studied the existence of positive
periodic solutions of . Yang and Cao [I1] used Mawhin’s continuation theorem
[2] to investigated the existence of positive periodic solutions of (L.I). The main
results obtained in [6], 9] required ¢; € C',0; € C? and o, <1(=12,...,n). To
the best of our knowledge, this is the first paper to study the existence of periodic
solutions of neutral logistic equations with distributed delays.

The main purpose of this paper is by using a fixed point theorem of strict-set-
contraction [I [5] to establish the existence of positive periodic solutions of the
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following neutral functional differential equation, with distributed delays,

0

2(t) = [ Zal / 2(t+0) dpi (0 ibj /

2 (t+0) dv(0)]

T; =T
(1.2)

where a,a;,b; € C(R,R") are w-periodic functions, Tz,’f’ are postive conbtants,

wi,v; : [=T;,0] — [0, 00) are nondecreasing functions and f Cdp =1, f dyj =

1, fori=1,2,...,n,j=1,2,...,m. Note that ( . is a spemal case of . For

an ecological justiﬁcation of , we refer the reader to [7].

For convenience, we introduce the following notation:

)\:effowa(s)ds7 A= ; {)\Zal(s)be](s)] dS7
i=1 j=1
= Iy a;(s - i(s)| ds M — max
=[x 0+ L] s 1 = e (510,
fm= tg[lgg}{f(t)},

where f is a continuous w-periodic function. Also we introduce the following as-
sumptions:

(H1) X :==exp (— [y a(s)ds) <

(H2) AYT0, ai(t) — 3075, b;(t) >0

(H3) (1+ )% > MaXye(ow)] { i ai(t) + Z;nzl b; (t)}
(H4) H)E((ll 7\)1) < minyepo ) A ailt) — Z;nzl bj(t)}.
(H5) 522 (XL, b31) < 1.

,_.

H5

>

2. PRELIMINARIES

To obtain the existence of periodic solutions to , we make the following
preparations:

Let E be a Banach space and K be a cone in E. The semi-order induced by the
cone K is denoted by “<”. That is, x < y if and only if y — x € K. In addition,
for a bounded subset A C E, let the Kuratowski measure of non-compactness be
defined by

ag(A) = inf {(5 > 0: there is a finite number of subsets A; C A
such that A =U;4; and diam(4;) < 5},

where diam(A4;) denotes the diameter of the set A;.
Let £, F' be two Banach spaces and D C E, a continuous and bounded mapping
® : Q) — Fis called k-set contractive if for every bounded set S C D we have

ar(®(S)) < kag(S).

The mapping ® is called strict-set-contractive if it is k-set-contractive for some
0 <k < 1. From [I} 2], we cite the following lemma which is useful for the proof of
our main result.
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Lemma 2.1 ([T, [5]). Let K be a cone of the real Banach space X and K, p =
{r € K : r < |lz|]| < R} with R > r > 0. Suppose that & : K, p — K is
strict-set-contractive such that one of the following two conditions is satisfied:

(i) (®zx Lz forallz € K, ||z|| =7) and (Px # x for adllx € K, |z| = R).
(i) (®z £ x forallz € K, ||z|| =1) and (Px £ = for allz € K, ||z|| = R).
Then ® has at least one ﬁxed point in K, r.
To apply Lemman to , we set
cﬁ:{xeC%KRyx@+w):wm}
with the norm |z[op = max;ejo ) {|2(t)|}, and
Cl={rec C'(R,R): (t +w) = z(t)}

with the norm |z|; = max{|z]o, |2'|o}. Then C? and CJ are all Banach spaces.
Define the cone K in CJ by

K ={zxecCl:x(t)> \Nz|,t €[0,w]}. (2.1)
Let the mapping ® be defined by
t+w
(Px)(t) = G(t,s) [Z a;(s / (s+0)du(9)
t ’L
m 0 (2.2)
+ Z b;(s) / ~2(s+0) duj(ﬁ)} ds,
j=1 -7
where z € K,t € R, and
o= J a(0)do
G(t,s) = € [t,t+w].

1—e™ fo“’ a(6)de’
It is easy to see that G(t + w, s + w) = G(t, s) and
A 1
L <
Ty SGts) s
Next, we give some lemmas concerning the K and ® defined above.
Lemma 2.2. Assume that (H1)-(H3) hold.
(i) If a™ < 1, then ® : K — K is well defined.
(ii) If (H4) holds and a™ > 1, then ® : K — K is well defined.

Proof. For any = € K, it is clear that ®x € C'(R,R). In view of (2.2), for ¢t € R,
we obtain

€ [t,t+w].

t+2w

(Pz)(t + w) =/ Gt+w,s)x [Zaz / x(s+60)du;(6)

4w =T;

+Zb /_ s+9)duj(9)} ds

T;
0

/tt+‘“ Glt+w,u+w)z(u+w) {a(uwtw) [T- z(u+w+ 0) du(0)

’ 2 (u+w+0) duj(H)} du

+b(u+w)/A

—T
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t4w 0

= G(t,u)x(u) {a(u) / x(u+ 0)du;(0)

0 o
+ b(u) [ o) v, (0)]
— (@2)(1).

That is, (®z)(t + w) = (®z)(t), t € R. So &z € CL. In view of (H2), for z € K,
t € [0,w], we have

Zai(t)/ .x(t+9)dui(9)+2bj(t)/ z'(t +6) dv;(0)

0 m 0
>N a(t) /4_ 2(t+0) dpi(0) — Y b;(t) /J |2/ (t + 0)| dv;(6)

1 i 7j=1 J

n 0 m
ZZai(t)/ Nl dp(0) = by(t / |z, dv;(0)
- —T: j=1

J

(2.3)

Therefore, for xz € K, t € [0,w], we find

n 0

balo < 5 [ 2@ [Lailo) [ als+0)du0)

z'(s +0) dv, (9)} ds

and
A t+w

(@) 2 1= | {Zaz / (s + ) dus(8)

+Zb / s+0)dyj(0)]ds

1_A/‘ wio [ stsroauo

+Zb / 3+9)d1/3(9)]d5

.7

Now, we show that (®z)'(t) > A|(Px)'|o,t € [0,w]. From ([2.2)), we have

0
(P2)'(t) = G(t,t + w)a(t +w) [a(t +w) /7TY z(t+w+0)du;(0)
0

+b(t+w)/

(- w o+ 0) du(0)]
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— Gt bz [Zaz / (t+ 0) dpi (0)

2/ (t+0) dyj(e)} + a(t)(®z)(t) (2.5)

= a(t)(® [Zal/ 2(t+ 0) dui (0)
+Zb / t+9)du](6)]

It follows from and (2.5)) that if (®x)'(t) > 0, then
(@) (t) < a(t)(Pz)(t) < o™ (R2)(t) < (D) (1). (2.6)
On the other hand, from (Z4), (&3) and (H3), if (®2)(t) < 0, then
— (®2)'(t)
[ial / O d0) + ibj(t) /OA 2/ (¢ + 6) du, (6)

j=1 T
—a(t)(®x)()

< |a? [Zaz )+ > byt }—a’”((bx)(t)

=1

m 1)\2 m%/ [)\Zal ; )} ds — o™ (®x)(t)
:<1+am)/0 2 )\|x|1{)\|x\12al —Jaly Zb )] ds — ™ (@a)(1)

1—|—am/ G(t,s)x Zaz /_ (s + 6) dpi (0)

12/(0 + s)| dyj(e)} ds — a™ () (1)

— T2

t+w

<(1+a™) G(t,s)x [Zal / z(s +0) dpi(0)

+ Z bi( / "0+ s) dVJ(Q)} ds — a™ () (1)
(1+a )(@iz)(t) — a™(P)(t)
= (Q)(1).

It follows from the above inequality and (2.6) that |(®z)'|op < |Pz|p. So |Px|; =
|Px|o. By (2.2) we have (®x)(t) > A|®z|;. Hence, ®z € K. The proof of (i) is
complete.



6 Y. LI, G. WANG, H. WANG EJDE-2007/13

(ii) In view of the proof of (i), we only need to prove that (®x)’(t) > 0 implies
(@) (1) < () (1)
From (2.3), (2.5)), (H2) and (H4), we obtain

(®i) (1) < a(t)(®2)(1) — Nl [gj 0 [ sti+0am0)
- jilbj“) / T /(04 0)] iy ()]
a(t)(@a)(t) — Alal? [Azaz i bi(0)]
@) el [ [ +]§bj<s>} s

t+w n

<a(@a)(0) - @ -1 [ 1 leh il |x|1+2b i) ds

t

1=

< oM (@) (t) — (a™ — 1)[“ [zn:a / (t+ 0) dui (0)

0
=3 byt )/_T (1 +0) vy (6)] s

j=1

M(®g)(t) / G(t,s)x [Zaz / x(t+ 0) du;(0)
+Zb /_ t+9)dyj(9)]ds

]

= aM(@év)( ) = (@™ = 1)(®x)(t)

= (D) (t).
The proof of (ii) is complete. O
Lemma 2.3. Assume that (H1)-(H3) hold and R}, b < 1.

(i) If a™ <1, then ® : KN Qg — K is strict-set-contractive,
(i) If (H4) holds and a™ > 1, then ® : K\ Qg — K is strict-set-contractive,

where Qr = {x € CL : |z|; < R}.

Proof. We only need to prove (i), since the proof of (ii) is similar. It is easy

to see that ® is continuous and bounded. Now we prove that aci(®(S)) <
(RZJ L b3)acs (S) for any bounded set S C Qg. Let n = ac1(S). Then, for
m

any positive number ¢ < (R 2 =1 b; M)n, there is a finite family of subsets {S;}
satisfying S = J,; S; with diam(S;) <7+ e. Therefore,

|t —yl1 <n+e forall z,yes. (2.7
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As S and S; are precompact in CY, it follows that there is a finite family of subsets
{Si;} of S; such that S; = Uj S;; and

|z —ylo <e forall z,y € S;;. (2.8)

In addition, for any z € S and ¢ € [0,w], we have
t+w n 0
\(®2)(8)] = / G(t. $)a(s) [ S ailt) / alt+0)dg(0)
t i=1 T

3 b0 /_ o) v (0)] ds

j=1 T;
< 1?2/\ /tH-w {éal(s) +]§:1bj(s)} ds:=H
and
n 0
(@) ()] = |o(0@2)(0) =20 ) [ als+0) (o)
£3006) / T 2/ (s +0) dv; (0)] |

j=1
< aMH—FRQZ(aM—FbM).
j=1

Applying the Arzela-Ascoli Theorem, we know that ®(S) is precompact in CU.
Then, there is a finite family of subsets {S;;.} of S;; such that S;; = |J,, Sijx and

|Px — Pyl < e for allz,y € Sijk. (2.9)
From , and — and (H2), for any z,y € S;ji, we obtain
[(@z)" — (®y)'lo
= max {|a(t)(@2)(t) — a(t)(@y)(®)

te[0,w]

2/ (t+ ) dv; (0)]

+u[Ya) [ u(t+0)dyu(8) + 3 by (1) /Oh y(t+0)dv;0)]|}

T =1 =T

+ max {’z(t){zai(t) /OT 2(t+0)dpi(0) + Y _ bi(t) /OA 2/ (t +0) dvj(f))]

T;

—y0] Y ail) /O y(t+0)dui(9)+§:bj(t) /OA y(t+0)dv;(0)] |}
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< s {r[(Sao [ s oano

T;

+Zb / t—i—H)dVJ(H))

J

(zal [

m 0

4 0)du(6) + Y bi(e) [

=1 =T

+ max {|y(t) [iaxt)/_(; y(t +0) dpui(6)

te[0,w]

+Zb / t+e)du](e)}[(t)—y(t)]\}

TJ
< aMe + R max Zal / |z(s+0) — y(s + w)| dp;(s)

te[0,w]

t) /T |2 (s 4+ 6) — v/ (s + w)| dv;(s)
ee s {300 [ o

<a 5+R52a +R(n+e) ZbM—FREEn:a +R€ZbM

i=1 j=1 =1 j=1

m 0
(t+6)du; (9 Z /T Y (t+0) duj(a)}

T

anZby—i—fIa
j=1
where H = a™ + 2R, aM +2RY"

we have

=1 ] . From the above equation and (| .,

| Pz — Dyl < (RZb;-VI)n-i-er for all z,y € Sijr.
j=1

Since € is arbitrary small, it follows that

va (R Z b ) Oécl
Therefore, @ is strict-set-contractive. The proof of Lemma is complete. O

3. MAIN RESULT
Our main result of this paper is as follows.

Theorem 3.1. Assume that (H1)-(H3), (H5) hold.

(i) If a™ < 1, then system (1.2)) has at least one positive w-periodic solution.
(ii) If (H4) holds and a™ > 1, then system (1.2) has at least one positive w-
periodic solution.
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Proof. We only need to prove (i), since the proof of (i) is similar. Let R = 17 2

and 0 <7 < @ Then we have 0 < r < R. From Lemma and [2.3] we know
that @ is strict-set-contractive on K, g. In view of , we see that if there exists
z* € K such that ®x* = x*, then z* is one positive w-periodic solution of .
Now, we shall prove that condition (ii) of Lemma [2.1] hold.

First, we prove that ®z # =, for all # € K, |z|; = r. Otherwise, there exists
x € K, |x|1 = r such that ®= > x. So |z| > 0 and &z — z € K, which implies that

(Px)(t) —2z(t) > APz —z|; >0 for all t € [0,w]. (3.1)

Moreover, for ¢t € [0,w], we have

(P)(t) = /t W [Zaz /_ (s 4 0) dp (0)
3 0)dv;(9)| ds
JZ:: /’ B v } (3.2)
1

< T r|x|0/ {Zal Z (s)] ds

1

In view of (3.1 and (3.2)), we have

|z|o < [@x|o < Alz|o < |20,

which is a contradiction. Finally, we prove that ®z £ x for all € K, |z|; = R
also holds. For this case, we only need to prove that

Prtax zeK,|z)1 =R

Suppose, for the sake of contradiction, that there exists x € K and |z|; = R such
that @z < z. Thus x — ®x € K \ {0}. Furthermore, for any ¢ € [0,w], we have

z(t) — (Pz)(t) > Az — dx|y > 0. (3.3)
In addition, for any t € [0,w], we find

(Px)(t) = /tm [Zal / (s 4 0) dp;(0)

T;

+ibj(8) /OA (s +0) duj(e)} ds
T - (3.4)
= %leﬁ/o [)\Zai(s) — ij(s)} ds
2
- Xar-r

From and (3.4), we obtain |z| > |®z|o > R, which is a contradiction. There-
fore, conditions (i) and (ii) hold. By Lemma we see that ® has at least one
nonzero fixed point in K. Therefore, has at least one positive w-periodic
solution. The proof of Theorem is complete. O
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We remark that from the proof of our results, if some (or all) Tj (j=1,2,...,n)
are replaced by oo the conclusion of Theorem remains valid.
As an example of ([1.1]), consider the equation

0 o 0
2 (t) = z(t) {M—(5—2sint)/ x(t+9)d9_ﬂ/ 2(t40)d0]. (3.5)
471' 1 20 1
Obviously,
1+ cost ) 1 —sint
a(t)*T, ay(t) = 5 — 2sint, bl(t)fT,

Furthermore, we have

1
A=e" 2, og?éw{)\al(t) —bi(t)} > 1.7>0,

2m
A= / [Aaq(s) — b1(s)]ds = 10me™ 7 — i71' > 18,
0

10
sy {an() + b0} = 17,
(1+ am)iA > 16 > a > max {ai(t) +b1(¢)}
1—A 10 © o<t<or ’
1—X _3
A <595 %1070 < 1.

Hence, (H1)—(H3), (H5) hold and a < 1. According to Theorem system (3.5))
has at least one positive 2m-periodic solution.
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