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CONVERGENCE BEHAVIOUR OF SOLUTIONS TO DELAY
CELLULAR NEURAL NETWORKS WITH NON-PERIODIC
COEFFICIENTS

BING XIAO, HONG ZHANG

ABSTRACT. In this note we studied delay neural networks without periodic
coefficients. Sufficient conditions are established to ensure that all solutions of
the networks converge to a periodic function. An example is given to illustrate
our results.

1. INTRODUCTION

Let n be the number of units in a neural network, z;(t) be the state vector of
the i-th unit at time ¢, a;;(¢) be the strength of the j-th unit on the i-th unit at
time ¢, b;;(t) be the strength of the j-th unit on the i-th unit at time ¢ — 7;;(¢), and
7;;(t) > 0 denote the transmission delay of the i-th unit along the axon of the j-th
unit at the time t. It is well known that the delayed cellular neural networks are
described by the differential equations

zi(t) = —ci(t)zi(t) + Z aij () f5(x;(8)) + Z bij(t)g; (2 (t — 7i; (1)) + Li(t), (1.1)

for i = 1,2,...,n, for any activation functions of signal transmission f; and g;.
Here I,;(t) denotes the external bias on the i-th unit at the time ¢, ¢;(t) represents
the rate with which the i-th unit will reset its potential to the resting state in
isolation when disconnected from the network and external inputs at time ¢.

Since the cellular neural networks (CNNs) were introduced by Chua and Yang
[2] in 1990, they have been successfully applied to signal and image processing, pat-
tern recognition and optimization. Hence, CNNs have been the object of intensive
analysis by numerous authors in recent years. In particular, extensive results on
the problem of the existence and stability of periodic solutions for system are
given out in many literatures. We refer the reader to [3 Bl [l [6, [7, 8, @] and the
references cited therein. Suppose that the following condition holds:

(HO) ¢;,1;,a45,b;5,: R — R are continuous periodic functions, where i,j =

1,2,...,n.
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Under this assumption, most of reference above obtain that all solutions of sys-
tem converge to a periodic function. However, to the best of our knowledge,
few authors have considered the convergence behavior for solutions of without
assuming (HO0). Thus, it is worth while to consider the convergence behavior for
solutions of in this case.

The main purpose of this paper is to give the new criteria for the convergence
behavior for all solutions of . By applying mathematical analysis techniques,
without assuming (HO), we derive some sufficient conditions ensuring that all so-
lutions of system converge to a periodic function. These results are new and
complement of previously known results. An example is provided to illustrate our
results.

Consider the delay cellular neural networks

zi(t) = —cj () (t) + Z ai; () fi(z;(t) + Z bi; (1) g (zj(t —7i5(t))) + 17 (¢), (1.2)

where 7 = 1,2,...,n. For the rest of this paper this paper, for 7,7 = 1,2,...,n, it

will be assumed that ¢}, I}, aj;, b7;, 7i; : R — R are continuous w-periodic functions.
Then, we can choose a constant 7 such that

- (). 1.3
T 123&{&3&}%()} (1.3)

We also use the following conditions:

(H1) Foreach j € {1,2,...,n}, there exist nonnegative constants Zj and L; such
that

[f5(u) = f;)] < Ljlu—vl, |gj(u) = g;(v)| < Ljlu —v|, Vu,v€R.  (14)

(H2) There exist constants 7 > 0, A > 0 and & > 0,7 =1,2,...,n, such that for
allt>0andi=1,2,...,n,

—lei (1) = A& + D laf;(OILi€ + Y 5 (8)]eX Lyg; < —n < 0,
j=1 j=1

(H3) Fori,j =1,2,...,n, ¢, I;,aij,b;; : R — R are continuous functions, and
i (e(t) — () =0, lim (5(1) ~ I} (1)) =
i (s (1) — aiy (1)) = 0, Tim_(bis (1) — b3, (1)) = 0.

The following lemma will be useful to prove our main results in Section 2.

Lemma 1.1 ([7]). Let (H1) and (H2) hold. Then system (1.2)) has exactly one
w-periodic solution.

As usual, we introduce the phase space C([—7,0];R"™) as a Banach space of
continuous mappings from [—7,0] to R" equipped with the supremum norm,

loll = max sup lea(®)]
for all ¢ = (p1(t), a(t), ..., a(t))" € C([~7,0;R").
The initial conditions associated with system are of the form
zi(s) = pi(s), sel-71,0, i=12,...,n, (1.5)
where ¢ = (1(t), p2(t), ..., u(t))” € O([=7,0;R™).
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For Z(t) = (x1(t), 22(t), ..., 2,(t))T, we define the norm
120l = _max €7 0)

IR EREEE)

The remaining part of this paper is organized as follows. In Section 2, we present
some new sufficient conditions to ensure that all solutions of system converge
to a periodic function. In Section 3, we shall give some examples and remarks to
illustrate our results obtained in the previous sections.

2. MAIN RESULTS

Theorem 2.1. Assume (H1)-(H3) and that Z*(t) = (z}(t),z5(t),..., x5 (t)7T is
the w-periodic solution of (1.2). Then every solution

Z(t) = (z1(t), 22(t), ..., 2n(t))T
of with initial value ¢ = (p1(t), p2(t), ..., pn(t)T € C([~7,0];R"), satisfies

lim |z;(t) —z;(t)|=0, i=1,2,...,n.
t——+o0

Proof. Set

5i(t) = —[ei(t) — )+ Z a;(t (1 (25(t))

+Z i ( (0)]g; (5 (t = 735 () + [L:(t) — L7 (B)],

where i = 1,2,...,n. Since Z*(t) = (2%(t),z5(t),...,z%(t))T is w-periodic, to-
gether with (Hz) and (H3), then for all ¢ > 0, we can choose a sufficient large
constant 7' > 0 such that

1
10:(t)] < 77e forall t > T, (2.1)
and
n N n 1
Né+ > lag(DIL& + D by (D)]eM L& < —5n <0, (2:2)
=1 j=1

forallt >T,i=1,2,...,n. Let Z(t) = (z1(t),z2(t),...,2,(t))T be a solution of
(1.1)) with initial value o = (@1 (t), p2(t),...,on ()T € C([~7,0];R™). Define

2
u(t) = (ua(t),ua(t), .. un (1) = Z(t) = Z*(t).
Then for ¢ =1,2,...,n,

u(t) = —ci(t)ui(t) + Zaw [fi (25 () = fi (= (2))]

+ 3 bi(t)gs (8 = 7i5(1))) — g5 (@ (¢ =735 (0))] + 6i(t).

Jj=1

(2.3)

Let 7; be an index such that

&, ua, (8)] = [lu(®)]le- (2.4)
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Calculating the upper right derivative of e**|u;_(s)| along (2.3), in view of (2.1)
and (H1), we have

D*(e**[uz, (s)])

= )\e/\t|uit )] + e sign(u;, (t)){ = ci, (Huq, () + Z a;, () [fi(@; (1) — f; (25 )]

n

) b (g (i (t— 7,5 (1) — g5 (2 (E = 73,5(6)] + 8, (75)}
j=1
< GM{ —[es, () = Nlus, (1€, &, + Y @i, (O Ljlu; (1)1
j=1
£ 3 b (Ll ¢~ sl )+ mee
Jj=1
(2.5)
Let
M(t) = jglgajét{eks|\U(8)||5}- (2.6)

It is obvious that e |ju(t)||¢ < M(t), and M (t) is non-decreasing. Now, we consider
two cases.
Case (i). If

M(t) > eM|lu(t)||le forall t > T. (2.7)
Then, we claim that
M(t) = M(T) (2.8)

which is a constant for all ¢ > T'. By way of contradiction, assume that (2.8)) does
not hold. Consequently, there exists t; > T such that M (t;) > M(T). Since

e>‘t||u(t)||5 <M(T) forall —7<t<T.
There must exist 5 € (T, t1) such that

e [lu(B)lle = M(t) > M(B),

which contradicts (2.7). This contradiction implies (2.8)). It follows that there exists
to > T such that

u(t)||e < e MM(t) = e MM(T) < e forall t >t (2.9)
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Case (ii). If there is a point to > T such that M(tg) = e ¢|lu(to)|¢, Then, using

21, 22) and [23), we get
D¥ (e fug, (s)])

s=tg

< { = [ciy, (o) = NleMuz, (o) l€7, &,y + D ai,i(to) Lie* [u;(to) €51,
j=1

n

o e 1
+ D by (to) Lie 00 D (kg — 7, (k)€ e "OJ(tO)éj} + Z??ﬁﬁ”“
j=1

n 5 n . 1
< { = lei,, (to) — A&y, + Z; ai,, j(to) L;i&; + Z; bi,, i (to)e” Ljﬁj}M(to) + 17766”0
j= j=

1 1
< —inM(to) + §T]€6>\t0.

In addition, if M(to) > ee?o, then M(t) is strictly decreasing in a small neighbor-
hood (tg,to + o). This contradicts that M (t) is non-decreasing. Hence,

6)‘t°||u(t0)||5 = M(tp) < ee’Mo,  and llu(to)lle < e (2.10)

Furthermore, for any ¢ > to, by the same approach used in the proof of (2.10]), we
have

Mut)le <ee, and Jut)le <e, i M) = e ut)]e.
On the other hand, if M(t) > e*|u(t)||¢,t > to. We can choose to < t3 < t such
that

M(ts) = ellults)lle, lults)lle <e, M(s) > e*[lu(s)]le for all s € (t3,1].
Using a similar argument as in the proof of Case (i), we can show that
M (s) = M(t3)
which is a constant for all s € (¢3,¢] which implies that
lu(t)lle < e MM () = e M M(ts) = ults)]lee ") < e
In summary, there must exist N > 0 such that [|u(t)||¢ < € holds for all ¢ > N.

This completes the proof of Theorem 2.1. O
Remark 2.2. Without assumption (H3), we suppose that
(H1*) For each j € {1,2,...,n}, there exist nonnegative constants L; and L such
that

()] < Lylul,  |g;(w)] < Lylul, for all u € R
(H2*) There exist constants K > 0,7 >0, A>0and & >0,7=1,2,...,n, such
that for all t > K, there holds

—[es(t) = N&i + ) lais (DL€ + D [bi(0)]eX L& < —n <0,
j=1 =1

are satisfied for i = 1,2,...,n.

Moreover, assume that I;(¢) converge to zero as t — oo. Then, applying the similar
mathematical analysis techniques in this paper, we find that the sufficient conditions
can be established to ensure the convergence to zero of all solutions of (1.1)).
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Remark 2.3. If the original system has asymptotically periodic coefficients, there
may not be sufficient conditions ensuring the existence and the convergence of

periodic solutions, which is the case in the example 2/(t) = —x(t) + ﬁ sin?t.

3. AN EXAMPLE

In this section, we illustrate the results obtained in previous sections. Consider
the cellular neural networks with time-varying delays:

2 1 12
B () = ~( = om0+ (G T AE0) + (55 + 1) falaal)
+ (i t s j )91 (1t = sin® 1)) + (% +1 ftQ )ga(wa(t — 2sin’ t))
+ (cost + l—iiﬂ)’
4 15
F(0) = ~( = o))+ (0 ) Ao ) + (G + ) wa(0)
(4 oot = 5sin® ) + () + s (ea(t — sint 1)
+ (sint 4+ ﬁ),
(3.1)
where f1(x) = fa(x) = g1(x) = go(x) = arctan z.
Noting the following cellular neural networks
#(0) = —a(0) + L) + 55 B(ea(0) + gon(ea(t —sin® 1)
+ igg(QCQ(t — 2sin?t)) + cost,
36 (3.2)

25(t) = —aa(t) + fi(z1(t) + %f(mg(t)) + g1 (1 (t — 5sin’t))

1
+ Zgz(l‘g(t —sint)) + sint,

where
G =) = In = Lo = Fy = o =1,
ajy (t) = b1, (t) = 1 aja(t) = bio(t) = 367
* * % " 1
ag (t) =03 (1) =1, az(t) =b3(t) = T d.
Then
1 * T * ..
diy = Gy (WL +0OL;) 47 =12,
1/2 1/18
D = (dij)ax2 = ( é 1//2> .

Hence, p(D) = 5/6 < 1. It follows from the theory of M-matrix in [9] that there
exist constants 77 > 0 and & > 0, ¢ = 1,2, such that for all ¢ > 0, there holds

—c; (W& + Y lay(DIL;& + Y b5 (DILE < —n <0, i=1,2.
=1 j=1
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Then, we can choose constants > 0 and 0 < A < 1 such that
—[e; () = N&G + D lag;(O)I1L;&5 + > by (0N L& < —n <0, i=1,2, ¥t >0,
j=1 j=1

which implies that systems (3.1)) and (3.2)) satisfy (H1)-(H3). Hence, from Lemma
1.1 and Theorem 2.1, system (3.2]) has exactly one 27-periodic solution. Moreover,
all solutions of (3.1]) converge to the periodic solution of (3.2)).

Remark 3.1. Since CNNs is a delayed neural networks without periodic
coefficients, the results in 3] Bl [, 6] [7, 8, O] and the references therein can not be
applied to prove that all solutions converge to a periodic function. This implies
that the results of this paper are essentially new nd they complement previously
known results.
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