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ABSTRACT 

As the mobile platform pervades human life, much research in recent years has 

focused on improving the reliability of mobile applications on this platform, for example 

by applying automatic testing. To date, however, researchers have primarily considered 

testing of the single version of mobile applications. It has been shown that testing of 

mobile applications can be expensive; thus simply re-executing all tests on the modified 

application version remains challenging. Regression testing---a process of validating 

modified software to ensure that the changes are correct and do not adversely affect other 

features of the software---has been extensively studied for desktop application, and many 

efficient and effective approaches have been proposed; however, these approaches cannot 

be directly applied to mobile applications. Since regression testing on mobile applications 

is an expensive process, an effective and well-studied regression test selection can 

potentially reduce this expense. In this study, we propose test selection for mobile 

applications, especially on the Android Application Platform. Our approach leverages the 

combination of static impact analysis with code coverage that is dynamically generated at 

run-time, and identify a subset of tests to check the behaviors of the modified version that 

can potentially be different from the original version. We implement our approach for 

Google Android applications, and demonstrate its effectiveness using an empirical study. 

 
 
 



  

  1 

1.   INTRODUCTION 

Mobile devices have become ubiquitous in modern society. The mobile platform 

is separating itself from a variety of areas of desktop applications such as entertainment, 

e-commerce and social media. Thus, developers are required to produce high quality 

mobile apps in terms of portability, reliability and security. In recent years, a large 

number of research projects have focused on improving the reliability of mobile 

applications on mobile platform, for example by applying automatic testing. However, 

the majority of the researches is only focusing on testing of the single version of mobile 

applications. It has been shown that testing of mobile applications is not a trivial task and 

can be expensive. As developers periodically maintain a software system, they perform 

regression testing to find errors that are caused by program changes and to provide 

confidence that the modifications are correct. To support this process, according to Todd 

et al (2001), developers often create an initial test suite, and then they reuse it to perform 

regression testing. Regression testing---a process of validating modified software to 

ensure that the changes are correct, and they do not adversely affect other features of the 

software---has been extensively studied for desktop applications. Many efficient and 

effective approaches have been proposed; however, these approaches cannot be directly 

applied to mobile applications. One of the factors that causes the incompatibility is the 

difference between the mobile platform system architectures and the desktop platform. 

For example, although Android Platform is written in Java as other Java desktop 

applications, it runs under the Dalvik Virtual Machine (DVM). The DVM and the Java 

byte-code run-time environment are substantially different, according to Williams (2011).  
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The traditional approach is known as the Retest All Strategy (RAS). RAS is 

simply to re-execute every single test case in the original test suite. However, this 

approach can be expensively unacceptable, since it requires a tremendous amount of 

time, especially on mobile apps. Since performing regression testing on mobile 

applications by applying RAS is an expensive process, an effective and well-studied 

regression test selection can potentially reduce this expense. In this study, we propose a 

regression test selection technique for mobile applications, especially on the Android 

Application Platform. Our approach, a Test Selection Framework for Android apps 

(TSFA), identifies which subset of a test suite must be re-executed to test a new version 

of an Android application. TSFA leverages the combination of static impact analysis and 

dynamic analysis. It first, detect changes between the original version and the modified 

version of the program. Then, TSFA will dynamically generate code coverage for each 

test case. Lastly, our approach will select a subset of the test suite for re-execution in 

order to check the behaviors of the modified version that can potentially be different from 

the original version. We implement our approach for Google Android applications, and 

demonstrate its efficiency and effectiveness using an empirical study. 
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2.   MOTIVATING EXAMPLE 

In this chapter, we use a simple Android application to illustrate the goal of this 

study. Note that we developed this application and wrote a test suite to test it. We also 

purposely made changes to specific locations of the modified program. This example is 

designed for illustration only, not for the determination of the overall performance of our 

study. Figure 1 is a screenshot of the Simple Calculator Application, a basic calculator 

that takes as input two numbers and performs different arithmetic including addition, 

subtraction, multiplication and division by clicking buttons “+”, “-”, “×“, and  “/” 

respectively. Figure 2 shows the implementations of four buttons. Let T be a test suite 

consisting of 18 test cases as described in Figure 3. After executing the test suite, based 

on Figure 2, two bugs are found at line number 4 and 22. In terms  of maintenance, after 

modifying an implementation, software is required to be re-tested in order to assure that 

changes do not adversely affect other software components. For the traditional regression 

testing, the entire test suite is rerun against the modified code to provide confidence that 

the changes are correct. For the Android Platform, this approach remains challenging due 

to the cost of executing a large number of test cases. Therefore, reducing the number of 

test cases is significantly important.  Instead of re-executing the entire test suite, TSFA 

selects the test cases that are affected by the program changes. For example, T is used to 

Figure 1: Simple Calculator Android Application 
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test the application. Each test case takes as input two numbers and presses the arithmetic 

buttons accordingly. After executing the test suite, a code coverage report for each test 

case is generated. For example, the code coverage report for T1, T2, and T3 is 1->6, which 

indicates the source code line number 1 to 6 as described in Figure 2.  

Let P be the original program. P is modified at line number 4 (x*y becomes x+y) 

and at line number 22 (x-y becomes x/y). Let P’  be the modified program. After the 

modifications, it is required that only a subset, T’ in T is selected for re-execution. From 

the code coverage reports, let ~T  be a set of test cases that are not affected by the 

changes, it is easy to show that 4 5 6 7 8 9 10 11, 12 13~ , , , , , ,  { , ,  }T T T T T T T T T T T=   is not eligible 

for re-execution. Only a subset of T, that is, 1 2 3 14 15 16 17 18'  , , , , , , ,{ }T T T T T T T T T=  is selected 

1 public void Add { 
2  … 
3 …  
4    int result = x *(+) y;    
5 … 
6 } 
7 public void Minus { 
8 … 
9 …      
10   int result = x - y;    
11 … 
12 } 
13 public void Multiply { 
14 … 
15 …       
16   float result = x * y; 
17 … 
18 } 
19 public void Divide { 
20 …      
21 …     
22   float result = x -(/)y;    
23 … 
24 } 
 
 
 

Figure 2: Implementations of Four Arithmetic Methods 

T1,T2,T3 
1->6 

 
 

T4,T5,T6,T7 
7->12 

 
 

T8,T9,T10,T11 
T12,T13 
13->18 

 
 

T14,T15,T16,T17,
T18 

19->24 
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for re-execution since the test cases in T’ executed the changes. As the result, only eight 

test cases are selected. Suppose each test case takes five seconds to be executed, then it 

would take 90 seconds when applying RAS. However, it only takes 40 seconds when 

applying TSFA since only 45% of the test cases are selected. 
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Figure 3: Example of 18 Test Cases 

testT1(){ 
 enterText(“3”,”4”);  
 clickOnButton("+"); 
 result = getView(id.result); 
 assertEquals(T1_RESULT,result); 
} 

testT2(){ 
 enterText(“-2”,”7”);  
 clickOnButton("+"); 
 result = getView(id.result); 
 assertEquals(T2_RESULT,result); 
} 

testT3(){ 
 enterText(“-1”,”-4”);  
 clickOnButton("+"); 
 result = getView(id.result); 
 assertEquals(T3_RESULT,result); 
} 

testT4(){ 
 enterText(“0”,”2”);  
 clickOnButton("-"); 
 result = getView(id.result); 
 assertEquals(T4_RESULT,result); 
} 

testT5(){ 
 enterText(“-4”,“-5”);  
 clickOnButton("-"); 
 result = getView(id.result); 
 assertEquals(T5_RESULT,result); 
} 

testT6(){ 
 enterText(“3”,”7”);  
 clickOnButton("-"); 
 result = getView(id.result); 
 assertEquals(T6_RESULT,result); 
} 

testT7(){ 
 enterText(“9”,”2”);  
 clickOnButton("-"); 
 result = getView(id.result); 
 assertEquals(T7_RESULT,result); 
} 

testT8(){ 
 enterText(“0”,”1”);  
 clickOnButton("x"); 
 result = getView(id.result); 
 assertEquals(T8_RESULT,result); 
} 

testT9(){ 
 enterText(“-2”,”-3”);  
 clickOnButton("x"); 
 result = getView(id.result); 
 assertEquals(T9_RESULT,result); 
} 

testT10(){ 
 enterText(“3”,”-1”);  
 clickOnButton("x"); 
 result = getView(id.result); 
 assertEquals(T10_RESULT,result) 
} 

testT11(){ 
 enterText(“9999999”,”99999”); 
 clickOnButton("x"); 
 result = getView(id.result); 
 assertEquals(T11_RESULT,result) 
} 

testT12(){ 
 enterText(“-4”,”5”);  
 clickOnButton("x"); 
 result = getView(id.result); 
 assertEquals(T12_RESULT,result) 
} 

public void testT13(){  
 enterText(“0”,”0”);  
 clickOnButton("x"); 
 result = getView(id.result); 
 assertEquals(T13_RESULT,result) 
} 

public void testT14(){  
 enterText(“0”,”0”);  
 clickOnButton("/"); 
 result = getView(id.result); 
 assertEquals(T14_RESULT,result) 
} 

public void testT15(){   
 enterText(“2”,”2”);  
 clickOnButton("/"); 
 result = getView(id.result); 
 assertEquals(T15_RESULT,result) 
} 

public void testT16(){  
 enterText(“2”,”3”);  
 clickOnButton("/"); 
 result = getView(id.result); 
 assertEquals(T16_RESULT,result) 
} 

public void testT17(){  
 enterText(“1”,”99999999”);  
 clickOnButton("/"); 
 result = getView(id.result); 
 assertEquals(T17_RESULT,result) 
} 

public void testT18(){  
 enterText(“-2”,”4”);  
 clickOnButton("/"); 
 result = getView(id.result); 
 assertEquals(T18_RESULT,result) 
} 
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3.   BACKGROUND 

This chapter provides background knowledge that is relative to our study. First, 

we summarize the architecture of developing Android applications. Next, we provide a 

brief definition of a Control Flow Graph and we show how it is constructed for Android 

applications. Lastly, we recall the concept of regression testing to which the TSFA is 

related.  

3.1   Android Development Platform 

Figure 4: Android Development Architecture 

Each Android application is executed under the Davik Virtual Machine (DVM) 

and Android applications are written in the Java programming language. As described in 

Figure 4, first, the Java source code files are compiled to bytecode class files using 

standard Java Virtual Machine (JVM). After the compilation, the Davik dx  tool converts 

the class files to Davik bytecode file, and composes them into one single dex file. The 

dex file contains all of the application classes. Finally, in order to run on an Android 

device, the dex file and resources are composed into one executable apk  file and the 

Android device proceeds installation using the apk  file. Our approach assumes that 

application’s source code is always available. 
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We leverage the analysis of Java byte code to implement our framework, which is 

divided into two main components.  Firstly, we generate code coverage for each test case 

that is executed by the application. Before the Davik dx tool coverts the class files into 

dex file, we perform code instrumentation for the source code. Then, the final apk file 

will contain the instrumentation as it is being used to install the application. Secondly, we 

analyze the impact of each version of the application using the available source code. 

3.2   Construction of Control Flow Graph of Java bytecode 

Definition 3.2.1.  Directed Graphs  

A directed graph is a graph ( , )G N E=   with a set of nodes N  that are connected 

by a set of edges E , with functions start and end. We denote ( , ')n n   is an edge starts from 

node n and ends at node 'n  with , 'n n N∈ . For a node n, the sets

( ) { ' | : ( ) ', ( ) }pred n n e E start e n end e n= ∃ ∈ = =  and the sets 

( ) { ' | : ( ) , ( ) '}succ n n e E start e n end e n= ∃ ∈ = =  contain all of predecessors and 

successors of n, respectively. Entry nodes and exit nodes are nodes that have an empty 

pred or succ set, respectively.  

 Definition 3.2.2.  A Control Flow Graph  

A Control Flow Graph (CFG) is a representation of a directed graph. In a 

procedure of a programming language, each statement in a procedure will be a node in 

the CFG. The control flow is represented by the edges. An entry node and exit node are 

uniquely added to the starting and ending point of the procedure.   

A node n in a Control Flow Graph for Java Bytecode has multiple bytecode 

statements since it represents a basic block of a procedure p. A node ,n s e N∈ indicates a 
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basic block that has starting statement s and ending statement e. A node ,s sn   indicates a 

block that has one statement s. An edge , ', '( , )e s e sn n is created when s is a branching 

instruction and e’ is its target. Entry node and exit are uniquely added to CFG as 1, 1n− −

and 2, 2n− − , respectively. Figure 5 shows an example of a CFG for a simple if statement. 

3.3   Regression Testing 

Let P  be a program, let 'P  be a modified version of P, and let T   be a test suite 

for P . Regression testing is performed between P  and 'P  to ensure that changes in 'P  

do not affect P by executing T  against P’. However, executing T  can be unnecessarily 

expensive, especially when only a small part of the system is affected. Rothermel G. and 

Harrold M. J. (1996) have studied several regression test selections (RTS). 

ByteCode CFG 
main(){ 
   0: iconst_0 
   1: istore_1 
   2: iconst_1 
   3: istore_2 
   4: iload_1 
   5: iload_2 
   6: if_icmple     15 
   9: iinc          1, 1 
  12: goto          18 
  15: iinc          2, 1 
  18: return 
} 

 

Figure 5: Examples of CFG  

Retest All is the technique that re-executes all test cases. It can be applied to 

situations where no cost of execution time is being concerned. 

Random/Ad-Hoc technique randomly selects a percentage of test cases. If fault 

detection is not concerned, this technique can reduce a great amount of execution time. 
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Minimization technique has been studied by Fischer K., Raji F., and Chruscicki A. 

(1981) which selects a minimal subset of a test suite that covers all program changes. 

Safe technique, according to Rothermel G. and Harrold  M. J. (1997), under 

certain conditions, selects a test case when it covers at least one change in the modified 

program.  

  Selecting 'T T⊆ as a set of test cases to execute on 'P  will efficiently reduce the 

execution time. Hiralal A., Joseph R. H., Edward W. K., Saul A. L. (1993) observed if a 

changed statement is not executed by a test case, the program output for that test cannot 

be affected. Hence, code coverage for each test case is required in order to determine 

which statement is not executed by a test case. We leverage the Safe technique as the 

foundation of the TSFA. According to the study of Harrold M. J., and Rothermel G. 

(1997), in terms of fault the detection effectiveness, Safe technique performs slightly 

better than random technique. Even though, in some cases such as low code coverage, 

Safe technique is not efficient in reducing execution time, it is very effective in fault 

detection.  Figure 6 shows an example of the Safe technique. Given a CFG with 10 

nodes. The dash, solid and dot lines represent the code coverage Test 1, Test 2 and Test 

3, respectively. Suppose a change is found at Node 4. Then only Test 3 is selected for re-

execution. Since Test 1 and Test 2 do not execute the change, they are eliminated. 

According to Todd L. G., Mary J. H., Jung-Min K., Adam P., Gregg R. (2001), this 

approach is not always perfect. In other words, this test case selection technique 

substantially reduces the cost of execution time while it may eliminate test cases that 

could reveal faults in the program, and consequently, reducing the effectiveness of fault 

detection. Moreover, Hiralal A., Joseph R. H., Edward W. K., Saul A. L. (1993) also 
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observed that not all statements in the program are executed under all test cases. A 

changed statement might not be executed by any test case, which might result in the 

elimination of all test cases. It is a trade-off between reducing execution time and 

decreasing the effectiveness of fault detection.  

 

 
 

 

 

 

 

 

 

 

Test 1 

Test 2 

Test 3 

Figure 6. Safe Technique 
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4.   APPROACH 

4.1   Overview 

TSFA consists of three components: Impact Analyzer (IA), Code Coverage 

Generator (CCG) and Test Case Selector (TCS) as described in Figure 7. 

Firstly, CCG takes as input the original program P and generates code coverage 

report. In this step, CCG performs code instrumentation on P to obtain PT. Then, we run a 

test suite T against PT to the collect code coverage for each test case Ti in T. As a test case 

Ti is running, our framework records code coverage from PT. 

Secondly, IA takes as input the original program P and its the modified version 

P’, and generates an impact report that contains locations of changes between P and P’.  

  

Lastly, TCS takes as input the impact report and the code coverage report to 

determine which test cases are affected by the changes and select them. As a result, only 

a subset 'T  of T is selected for re-execution.  

 

Original App 

Code Coverage 
Generator TS 

TC 1 
Coverage 

TC 2 
Coverage 

TC N 
Coverage 

 

Impact 
Analyzer 

Impacted 
Code 

Test Case 
Selector 

Modified App 

Eliminated Test Cases 

Figure 7: Approach Architecture 
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4.2   Impact Analyzer 

The IA takes as input an original class file C  and a modified class file 'C . 

Firstly, it builds a CFG and CFG’ for C , and 'C , respectively. Each CFG represents a 

procedureM . Then, IA uses the depth-first search concept to compare C and 'C  node by 

node, and instruction by instruction. The impact report is stored as a text file whose each 

line indicates a location of a basic block where the change occurs. A location of a basic 

block is formatted as the following: 

  ,    ,        name of class name of method first bytecode statement of the changed block        

For example, 

 [ ]( ). . . , ,39 :  _1 43 1org andstatus app HelpActivity get aload  

In this example, in the class HelpActivity , at method ()get ,the block that has a 

starting bytecode statement as [ ]( )39:  _1 43 1aload   has changed in 'P .  

4.3   Code Coverage Generator 

CCG leverages the combination of static code analysis and dynamic analysis. It 

first performs code instrumentation on the original program P.  Then, it executes a test 

suite to collect code coverage for each test case.  

When building a CFG for each method of P, before forming edges between 

nodes, the code instrumentation framework inserts new bytecode statements into the 

instruction list. Figure 8 shows the code instrumentation algorithm: instrumentCCG. Let I 

be a set of all bytecode instructions in procedure p. A node ,n l e N∈ indicates a basic 

block that has a starting leading bytecode instruction l and an ending bytecode instruction 

e. Let L be a set of all leading bytecode instructions in p.  When inserting new bytecode 
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block ,'l en N∈ , we choose the beginning of each basic block as the inserted position. 

Consequently, L now no longer contains the original leading bytecode instructions. In 

order to preserve the original L, we introduce LMap ,  a set of maps such that each map (

'l l→ ) represents a map from an old leading instruction l to a new leading instruction 'l . 

The method  getNewLeader() returns 'l  by getting the leading  instrument of ,'l en .  A 

program can contain branching instructions such as if-statements, case statements, loops, 

etc. If an instruction b ∈ I   is a branching instruction, there exists a target instruction t ∈ I

such that a target map (b t→ )  represents its branching relationship. As a matter of fact, b   

is the ending bytecode instruction of one block, and t becomes a leading bytecode 

instruction of the target block. Let TMap be a set of target maps. The method 

addNewBytecode() takes as input the current leading instruction bytecode and inserts new 

block of bytecode on top of it. Given a set of maps {( )}M a b= → ,  for map ( )a b→ , 

.M key  returns a and .M value returns b.  

In the instrumentCCG  algorithm, from line 1 to line 5, new block of bytecode 

instructions are inserted at the beginning of every l ∈ L .  Since every l ∈ L  is now no longer 

a leading bytecode instruction,  LMap stores maps from old leading instructions to new 

leading instructions at line 5. A target map (b t→ )  is also changed due to this 

modification since t becomes a leading bytecode statement of another block. From line 6 

to line 9, TMap   is used to update target maps accordingly to the new leading instructions. 

At line 8 and 9, for every t that is equal to l, a new value t’ replaces t. Up to this point, the 

actual target instructions in I have not yet been updated. From line 10 to line 13, for every 
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branching instruction b ∈ I ,  b is updated accordingly using TMap .  Figure 9 shows an 

example of instrumented bytecode.  

CCG uses the Log system of the Android platform to generate a log file that 

contains code coverage information. Specifically, ( ).  ,   Log d String tag String message  

statement prints the message and its tag to an Android log file. As a test suite is executed 

against the instrumented program, by automatically instrumenting equivalent bytecode 

into the entire program, our framework is able to log code coverage of each test case. 

 

instrumentCCG() 
1     for i ∈ I  
2         for l ∈ L  
3               if i = l 
4                     addNewBytecode(i) 
5                                           LMap ← (ci →   getNewLeader()) 

6     for Mt ∈   TMap     
7           for Ml ∈   LMap     
8               if .Mt value  =   .Ml key   
9                               .Mt value  ←  .Ml value   
10      for i ∈ I   
11           for Mt ∈   TMap  

12               if i  = .Mt key  

13               setNewTarget(i,   .Mt value) 
end instrumentCCG() 

Figure 8: intrumentCCG Algorithm 

4.4   Test Case Selector 

TCS is a simple Java program that takes as input two text files, namely the impact 

report and code coverage report. It determines which test cases are affected by the 

changes and selects them for re-execution. Log file analysis process is to (1) parse the log 
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file, (2) store executed block locations by creating maps between test cases and their 

coverage, (3) store impacted block location, and (4) select test cases. 

Figure 10 shows an example of the Android log file. First TCS takes as input the 

log file, which is created as text file format. Parsing process starts by searching line by 

line of the text file.  

ByteCode Instrumented Bytecode 
main(){ 
 
 
 
 
   0: iconst_0 
   1: istore_1 
   2: iconst_1 
   3: istore_2 
   4: iload_1 
   5: iload_2 
   6: if_icmple     15 
 
 
 
 
   9: iinc          1, 1 
  12: goto          18 
 
 
 
 
  15: iinc          2, 1 
  18: return 
} 

main() 
   0: ldc                            
   2: ldc                            
   4: invokestatic                   
   7: pop 
   8: iconst_0 
   9: istore_1 
  10: iconst_1 
  11: istore_2 
  12: iload_1 
  13: iload_2 
  14: if_icmple     31 
  17: ldc                           
  19: ldc                             
  21: invokestatic                  
  24: pop 
  25: iinc          1, 1 
  28: goto          42 
  31: ldc                           
  33: ldc                           
  35: invokestatic                  
  38: pop 
  39: iinc          2, 1 
  42: return 
}  

Figure 9: Example of Instrumented Bytecode 
Let CMap   be a set of maps such that each map ( 1 2[ , ,...,a ]i nT a a→ )  where Ti is the 

name of the test case, and 1 2, ,...,ana a   are the locations of executed blocks. They are 

formatted are described in Section 4.2. Let C be a set of changes {   1 2,c ,...,cnc  } where 

1 2,c ,...,cnc   are affected blocks.  
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When a line starts with the tag I/TestRunner: started, it indicates that the 

beginning of a test case has already started. Ti  is assigned a value which is the name of 

the test case. For example, in Figure 10, at line 1, Ti = testWifiConnected. Every next line 

that starts with the tag D/INSTRUMENT indicates the executed block location.

1 2, ,...,ana a are assigned values corresponding to these lines. For example, at line 2 and 3, 

a1=ConnectivityActionReceiver,onReceive,0: aload_1[43](1) and 

a2=ConnectivityActionReceiver,onReceive,20: aload_2[44](1), respectively. When a line 

with the tag I/TestRunner: finished, it indicates the completion of the test case. Then, a 

map 1 2[ , ]iT a a→   is added to CMap . This process is repeated to end of the log file.  

1.   I/TestRunner: started: testWifiConnected 
2.   D/INSTRUMENT: ConnectivityActionReceiver,onReceive,0: aload_1[43](1) 
3.   D/INSTRUMENT: ConnectivityActionReceiver,onReceive,20: aload_2[44](1) 
4.   D/INSTRUMENT: ConnectivityActionReceiver,onReceive,27: iload[21](2) 4 
5.   I/TestRunner: finished: testWifiConnected 
6.   I/TestRunner: started: testAddIgnoredWifi 
7.   D/INSTRUMENT: DatabaseAdapterImpl,openIfNeeded,17: aload_0[42](1) 
8.   D/INSTRUMENT: DatabaseOpenHelper,onCreate,0: aload_1[43](1) 
9.   D/INSTRUMENT: DatabaseAdapterImpl,addIgnoredWifi,62: iconst_1[4](1) 
10.   I/TestRunner: finished: testAddIgnoredWifi  

Figure 10: An Example of a Log File 

 TCS takes as input  CMap and C to select test cases. For each ci ∈C, if ci ∈ 

1 2[ , ,...,a ]na a , then the corresponding Ti is selected. The actual implementation of the 

instrumentCCG is presented in the Appendix.  

 

 

 

 

 



  

  18 

5.   EMPIRICAL STUDY 

We evaluate the efficiency and correctness of our Code Coverage Generator, by 

considering two research questions:  

RQ1. How efficient is our Code Coverage Generator compared to an existing Code 

Coverage Generator, Emma?  

RQ2. Does the Code Coverage Generator achieve the same level of correctness 

compared to Emma? 

Emma, an effective code coverage generator, is being compared with our CCG 

because it is the only code coverage tool that is built-in for the Android Development 

Environment. Plus, Emma provides high precision for code coverage. 

We then evaluate the overall cost of TSFA relative to RAS by considering two 

research questions: 

RQ3. How does the number of test cases selected by TSFA compare to RAS, which 

re-runs all test cases? 

RQ4. How efficient is the time reduction when applying TSFA compared to RAS? 

5.1   Artifacts 

We selected two Android applications to evaluate TSFA: AndStatus and Inetify. 

For each artifact, Table 1 provides information on its associated “Classes” – number of 

class files, “Methods” – number of methods, “LOC” – number of lines of code, and 

“Version” – number of modified versions we used for the evaluation. 

The first artifact, the AndStatus application, is an Android open source project. 

This application allows users to login multiple social app accounts such as Twitter and 

Pump.io. AndStatus can combine multiple accounts into one Timeline and allow users to 
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read and post even if they are offline.  

The second artifact, the Inetify application, is an Android open source project that 

provides two features related to Wifi networks. First, the app gives a notification if a Wifi 

network does not provide Internet access. Secondly, it automatically activates Wifi when 

being near a Wifi network and deactivates it otherwise.  

Table 1. Artifacts Used for the Evaluation 

 Classes Methods LOC Version 

AndStatus 250 2700 15000 15 

Inetify 63 356 1500 15 

  

We evaluate TSFA on multiple versions of each artifact in order to increase the 

degree of randomization when modifying the application under test (AUT) to reduce bias. 

When creating modified versions of the AUTs, we examine the extensive dimension of 

changes, including different numbers of changes, locations, and change type. We 

consider three possible numbers of changes to apply: one, three, and five. By simulating 

changes, we are able to create multiple versions for each artifact. Although the changes 

are not actual modifications from, for example, developers or testers, we have control 

over locating them in such a systematic way that large scale applications can be 

thoroughly evaluated. The changes include modification, deletion, and addition of source 

code statements. In the modified AUTs, changes are located at, (1) control statements, 

including if statements, case statements, and while, for, and do loops, (2) non-control 

statements, (3) general locations such as top, middle and bottom of the program source 

code, (4) Anonymous Inner Class (AIC). Different from regular Java procedures, which 
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are defined as a separated method, AIC is defined as an inner procedure of another 

procedure. Figure 11 shows an example of AIC. 

  The method setOnClickListener() is an AIC procedure defined as an inner 

procedure of the onCreate() method. We consider the case of AIC procedures because, 

as a result, Android Development Environment generates separate class files for them. 

Plus, IA takes as input class files to generate the impact report. Hence, considering 

changes in AIC procedures will increase the ability of finding changes in the modified 

AUTs. Control statements are modified by changing the comparison operator, for 

example, from > to >=, or the operand, for example, switching local variables defined in 

the procedures. Non control statements are modified by changing values of local 

variables defined within their scope.  

5.2   Variables and Measures  

5.2.1   Independent Variables 

 The independent variables that we used in the empirical study are the code 

instrumentation framework and the regression test selection for Android applications. To 

study RQ1 and RQ2, we use CCG, which involves the instrumentCCG algorithm 

public void onCreate(Bundle savedInstanceState) { 
 addButton.setOnClickListener(new OnClickListener() { 
  public void onClick(View v) { 
   try { 

int val1 = Integer.parseInt(value1.getText().toString()); 
    int val2 = Integer.parseInt(value2.getText().toString()); 
 
    Integer answer = val1 + val2; 
    result.setText(answer.toString()); 
     
   } catch (Exception e) { 
    Log.e(LOG_TAG, "Failed to add numbers", e); 
   } 
  } 
 }); 
} 

Figure 11: Example of AIC 
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described in Section 4.3, to compare with Emma (http://emma.sourceforge.net/), a built-

in testing framework for Android Platform. To study RQ3 and RQ4, we compare the 

efficiency and the effectiveness of TSFA with RAS. 

5.2.2   Dependent Variable and Measures 

  To study our research questions, we selected three dependent variables and 

measures which are relatively used to determine the costs of CCG versus Emma, and 

TSFA versus RAS. Given an original program P, which is modified to a new version P’. 

Note that the costs can be measured differently depending on what technique is being 

applied. CCG and Emma are only applied to P. For TSFA, only CCG is applied to P, and 

IA and TCS are applied to P’. 

  The first dependent variable is execution time. To study RQ1, we need to measure 

execution time to compare the efficiency of CGG versus Emma. We denote TCCG and 

TEmma for the execution time of CGG and Emma, respectively. Since execution of CGG 

includes execution of instrumentation code phase and log file analysis, we denote them as 

TIC and TLA, respectively. To  study RQ4, we also need to measure execution time to 

compare the efficiency of TSFA and RAS. The execution time of TSFA is also divided 

into the execution time of its components, namely, IA and TCS. We denote TIA and TTCS 

for the execution time of IA and TCS, respectively. We also denote Tfull, and Tsub as the 

execution time of the test suite and its subset, respectively.  

  The second dependent variable is code coverage. To study RQ2, although 

execution time determines the efficiency, code coverage also needs to be measured to 

guarantee the correctness since TSFA is strictly based on it. We denote CCCG and CEmma 

as code coverage for CGG and Emma, respectively. 
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  The third dependent variable is the number of selected test cases. To study RQ3, we 

need to measure the number of selected test cases since we are reducing the number of 

test cases. In addition, not all test cases are the same in terms of length and testing 

criteria. For example, some test cases are short in length, but due to the testing criteria, 

they are executed by a large number of blocks of code. However, there are also some 

long test cases that are only executed by a small number of blocks of code. Hence, 

reduction in the number of test cases does not necessarily correlate with reduction in 

time. Therefore, we need to take the number of selected test cases into consideration. We 

denote Nsub  as the number of selected test cases. 

5.3   Experiment Setup 

We run TSFA by using the Android Development Environment, together with the 

Ant tool and Eclipse. We use the Windows operation system running 3.4GHz with 

8GByte of memory to conduct our study. We automate the process from analyzing 

change impact, generating code coverage reports, to selecting test cases by running batch 

file under Windows operation system.  

For each artifact:  

•   We applied CCG and Emma to P and collected TCCG, TEmma, CCCG, CEmma, 

Tfull, TIC, and TLA  

 For each version of P: 

•   We applied TSFA and collected TIC, and TLA 

For each version of P’: 

•   We applied RAS and collected TRAS. 

•   We applied TSFA and collected TLA, TTCS, Tsub, and Nsub  
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5.4   Threats to Validity 

The primary threats to external validity for our study are (1) the changes applied 

to the modified programs, (2) selection of artifacts used to evaluate TSFA. The actual 

changes might or might not emulate the changes that we applied to the modified program. 

However, to control this threat, we systematically vary the changes based on their 

location, change type, and number of changes. Although only two artifacts are selected to 

evaluate our approach, they consist of all components of the Android Development 

Architecture, which is relative to most of popular large-scale Android applications.  

  The primary threats to internal validity are possible faults in the implementation of 

algorithms, and in tools that we use to perform the evaluation. We controlled this threat 

by using small programs that cover all scenarios. For such programs, we can manually 

generate the expected results and compare with the actual results.  

 With respect to threats to construct validity, the metrics that we used to evaluate the 

cost of TSFA are commonly used to measure the cost of regression test selection 

technique.  

5.5   Results and Analysis 

In this section, we present the results of our experiments, and analyze the results 

with respect to our four research questions.  

RQ1. How efficient is our Code Coverage Generator compared to an existing 

Code Coverage Generator Emma?  

Table 2 presents the results of execution time for CGG and Emma. In the table, 

for each artifact, the results are presented for our two dependent variables, namely, time 

and code coverage. To present the results for code coverage, we divided it into two 
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different components, namely, “executed blocked” and “ratio”. Thus, columns with 

header “Executed Block” represent the number of blocks that are executed by the test 

suite. Columns with header “Ratio” represent the percentages of blocks that are executed. 

To present the execution time, we accumulate TIC, Tfull, and TLA into columns with header 

“Total”.  

Table 2. Results of execution time for CCG and Emma 

Apps 
Number 

of 
test cases  

 

TCCG TEmma 

ICT
(s) 

fullT
(s) 

LAT
(s) 

Total 

(s) 
ICT

(s) 
fullT

(s) 
LAT

(s) 

Total 

(s) 
Inetify 206 1 134 1 136 1 134 206 341 

AndStatus 99 1 495 1 497 1 495 99 595 

 

We observed that, for each artifact, TIC, and Tfull for both CGG and Emma are 

equal, though TLA remains different. It only takes one second for CGG to analyze one 

single log file and generates code coverage report for each test case. Note that, by default, 

Emma generates one single code coverage report for the entire test suite. However, this is 

not applicable for regression testing where each individual test case coverage is required. 

We need to reconfigure Emma to fix this issue by repeating the process of executing a 

test case, and analyzing its log file. That is, for Emma, it takes one second to analyze a 

log file. Since there are 206 test cases, it would take 206 seconds to analyze the log files. 

Hence, the time that it takes for Emma to generate code coverage depends on both test 

suite execution time and number of test cases. Our CCG, as opposing, only depends on 

test suite execution time. We conclude that, for the use of regression testing, CCG 

performs more efficient than Emma.  

RQ2. Does the Code Coverage Generator achieve the same level of correctness 
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compared to Emma? In Table 3, we measure the number of generated blocks and the 

number of executed blocks in order to calculate code coverage for each artifact. Note that 

CGG generates 71304 blocks and Emma generates 65904 blocks. 

Table 3. Results of code coverage for CCG and Emma 

Apps 
Number 

of 
Test cases 

CCG EMMA 
Generated 

Blocks 
Executed  
Blocks CCGC (%) 

Generated  
Blocks 

Executed  
Blocks EmmaC (%) 

Inetify 206 7403 4930 66.6 6691 4452 66.5 

AndStatus 99 71304 41071 57.6 65904 37770 57.3 

 

During the process of code instrumentation, we insert some virtual blocks such as 

entry blocks and ending blocks for each CFG, which causes the greatest number of 

blocks. In addition, since we do not have knowledge of Emma’s implementation, we are 

unable to verify what type of measurement being used to count number of blocks causing 

the less number of generated blocks. Despite the difference in the number of blocks, CCG 

and Emma achieve almost the same in precision for code coverage.  

Table 3 and Table 4 present the results of applying TSFA and RAS to our 

artifacts. For the original program, columns with headers TRAS , Tfull , TIC, TLA represent 

the execution time of RAS, test suite, instrumentation code and log analysis, respectively. 

For the modified program, columns with headers TTSFA, TIA, TTCS, Tsub represent the 

execution time of TSFA, IA, TCS and a subset of the test suite, respectively. Columns 

with header Nsub represent the number of selected test cases. 

RQ3. How does the number of test cases selected by TSFA compare to RAS, which 

re-runs all test cases? Table 4 (a-c), show the results of running TSFA and RAS on each 

version of the artifact AndStatus. Note that, in Table 4b, subN   for v0 3v→ and v0 4v→  is 
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an interesting observation. Even though only three changes are made at different 

locations of the program, the difference in numbers of selected test cases for the two 

versions is 28 (46−18). We calculate the average of numbers of selected test cases for 

one, three, and five changes with the result of 37 test cases. The average of 38% of the 

test suite is reduced for re-execution. Overall, the result meets our expectation. Compare 

to RAS, our approach effectively reduces the number of test cases.  

Table 4 (a-c). Results of Applying TSFA and RAS to AndStatus app 

Table 4a. Five versions of one change 

One 
Change 

Original Program Modified Program 

Our Approach RAS 
(s) Our Approach 

Instrumentation 
Code 

(s) 

Full 
Test 
Suite 

(s) 

Log 
Analysis 

(s) 

#of 
test 

cases 

RAS 
(s) 

Impact 
Analysis 

(s) 

Select 
TC 
(s) 

Subset 
of TCs 

(s) 

# of 
selected 

test 

v0→v1 2 495 1 99 495 2 1 40 8 

v0→v2 2 495 1 99 495 2 1 45 9 

v0→v3 2 495 1 99 495 2 1 20 4 

v0→v4 2 495 1 99 495 2 1 50 10 

v0→v5 2 495 1 99 495 2 1 40 8 
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Table 4b. Five versions of three changes 

Three 
Changes 

Original Program Modified Program 

Our Approach RAS 
(s) Our Approach 

Instrumentation 
Code 

(s) 

Full 
Test 
Suite 

(s) 

Log 
Analysis 

(s) 

#of 
test 

cases 

RAS 
(s) 

Impact 
Analysis 

(s) 

Select 
TC 
(s) 

Subset 
of TCs 

(s) 

# of 
selected 

test 

v0→v1 2 495 1 99 495 2 1 200 40 

v0→v2 2 495 1 99 495 2 1 185 37 

v0→v3 2 495 1 99 495 2 1 90 18 

v0→v4 2 495 1 99 495 2 1 230 46 

v0→v5 2 495 1 99 495 2 1 220 44 

 
Table 4c. Five versions of five changes 

Five 
Changes 

Original Program Modified Program 

Our Approach RAS 
(s) Our Approach 

Instrumentation 
Code 

(s) 

Full 
Test 
Suite 

(s) 

Log 
Analysis 

(s) 

#of 
test 

cases 

RAS 
(s) 

Impact 
Analysis 

(s) 

Select 
TC 
(s) 

Subset 
of TCs 

(s) 

# of 
selected 

test 

v0→v1 2 495 1 99 495 2 1 275 55 

v0→v2 2 495 1 99 495 2 1 335 67 

v0→v3 2 495 1 99 495 2 1 320 64 

v0→v4 2 495 1 99 495 2 1 350 70 

v0→v5 2 495 1 99 495 2 1 330 66 

 

RQ4. How efficient is the time reduction when applying TSFA compared to RAS?  

Table 5 (a-c) shows the results of running TSFA and RAS on each version of the 

artifact Ientify. Each table presents results of one, three and five number of changes, 

together with five versions of each. For example, Table 4a can be interpreted as the 

following:  

Given an original program P , and its modified program 'P , the number of 

changes between P and 'P is one. For each version from v0 1v→   to   v0 5v→ , we 
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calculate RAST   and TSFAT for 'P . For example, with v0 1v→ , the overhead is small because 

it only takes 2 seconds to perform instrumentation code and log analysis. With subN = 56 

in 'P , it takes 39 seconds ( IAT + TCST + subT ) to run. Hence, it takes TSFA the total of 41 

seconds on P’. For RAS, with v0 1v→ , it takes 134 seconds for RAS to run on P’.  

When there is one change in the application, Table 5a shows that it takes 41 

seconds for TSFA to run and 134 seconds for RAS to run on P’. So the execution time is 

reduced by 69 %. We calculate the average for the time reduction for one, three, and five 

changes with the result of 75%. We observed that as long as the number of changes stays 

low, the execution time is substantially reduced. Overall, the execution time is efficiently 

reduced when applying TSFA compared  to RAS. 

Table 5 (a-c). Results of Applying TSFA and RAS to Inetify app 

Table 5a. Five versions of one change 

One 
Change 

Original Program Modified Program 

Our Approach RAS 
(s) Our Approach 

Instrumentation 
Code 

(s) 

Full 
Test 
Suite 

(s) 

Log 
Analysis 

(s) 

#of 
test 

cases 

RAS 
(s) 

Impact 
Analysis 

(s) 

Select 
TC 
(s) 

Subset 
of TCs 

(s) 

# of 
selected 

test 

v0→v1 1 134 1 206 134 1 1 37 56 

v0→v2 1 134 1 206 134 1 1 25 38 

v0→v3 1 134 1 206 134 1 1 26 39 

v0→v4 1 134 1 206 134 1 1 24 36 

v0→v5 1 134 1 206 134 1 1 35 53 

 
 

 

 

 



  

  29 

Table 5b. Five versions of three changes 

Three 
Changes 

Original Program Modified Program 
Our Approach RAS 

(s) 
Our Approach 

Instrumentation 
Code 

(s) 

Full 
Test 
Suite 

(s) 

Log 
Analysis 

(s) 

#of 
test 

cases 

RAS 
(s) 

Impact 
Analysis 

(s) 

Select 
TC 
(s) 

Subset 
of TCs 

(s) 

# of 
selected 

test 

v0→v1 1 134 1 206 134 1 1 71 108 

v0→v2 1 134 1 206 134 1 1 41 63 

v0→v3 1 134 1 206 134 1 1 62 95 

v0→v4 1 134 1 206 134 1 1 73 111 

v0→v5 1 134 1 206 134 1 1 56 86 

 
Table 5c. Five versions of five changes 

 

Five 
Changes 

Original Program Modified Program 

Our Approach RAS 
(s) Our Approach 

Instrumentation 
Code 

(s) 

Full 
Test 
Suite 

(s) 

Log 
Analysis 

(s) 

#of 
test 

cases 

RAS 
(s) 

Impact 
Analysis 

(s) 

Select 
TC 
(s) 

Subset 
of TCs 

(s) 

# of 
selected 

test 

v0→v1 1 134 1 206 134 1 1 89 136 

v0→v2 1 134 1 206 134 1 1 91 140 

v0→v3 1 134 1 206 134 1 1 82 126 

v0→v4 1 134 1 206 134 1 1 106 162 

v0→v5 1 134 1 206 134 1 1 112 171 
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6.   DISCUSSION 

Table 6 (a-b) presents the results of total execution time for each artifact. For 

example, when the number of changes is one, RAS takes 134 seconds to complete 

regression testing of v1 of the Inetify application. TSFA takes 41 seconds. We also use 

average ratios of total time of TSFA and total time of RAS to express the efficiency and 

effectiveness of TSFA on Graph 1 and Graph 2. 

Table 6 (a-b) shows the consistency of the results when applying TSFA. Our 

study focuses on reducing the number of test cases after the original program is modified. 

According to Graph 1 and Graph 2, as the number of changes increases, the total 

execution time also increases since the number selected test cases increases. This 

observation meets our expectation.  

The number of selected test cases can be affected by testing criteria.  For instance, 

if the testing criteria are focusing on one particular part of an application, then the 

majority of the test cases will be executed by that part. On the one hand, one change from 

that part can select the majority of test cases. On the other hand, many changes from 

different parts of the application can only select a small number of test cases. To resolve 

this issue, we have chosen a systematic way to create versions of modified programs with 

changes that vary in locations, type change, and the number of changes.  

Different from the Inetify app, the AndStatus app is a much larger scale Android 

application based on the information from Table 1. Note that, the number of test cases 

executed on the AndStatus app (99) is only a half of the number of test cases executed on 

the Inetify app (206). Based on these two facts, we can predict that the test suite for the 

AndStatus app will result in low code coverage since there is not enough test cases to 
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cover the large system. Hence, the number of the selected test cases will decrease. 

Therefore, we can predict that only a small number of test cases are selected for the 

AndStatus app, which reduces the execution time. However, Table 6b shows that, after 

one change, the average of 54% of time reduction remains. This is an interesting 

observation. Despite our prediction, the execution time does not remain low. The factor 

that makes our prediction incorrect is the characteristic of the test suite. Without 

examining the test suite, we can conclude that the majority of the test cases is greater in 

length. Moreover, the test criteria upon which they are designed covers a large number of 

blocks in the application.  

  We assume that the characteristic of the test suite results in low execution time. 

Then we would have correctly predicted the outcome. This is when the trade-off between 

the time required to run selected test cases and fault detection ability comes in. Suppose 

that many changes have found in the program. The greater number of test cases is 

eliminated, the less effective is the ability to detect faults. Therefore, three factors that 

can affect our study are the AUTs, the characteristic of the test suite, and the program 

changes.  
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Table 6 (a-b). Total Execution Time of TSFA and RAS 

Table 6a. Inetify Application 

Version 

1 change 3 change 5 change 

RAST (s) TSFAT (s) Ratio RAST (s) TSFAT (s) Ratio RAST (s) TSFAT (s) Ratio 

v0 1v→  134 41 0.31 134 75 0.56 134 93 0.7 

v0 2v→  134 29 0.22 134 45 0.34 134 95 0.71 

v0 3v→  134 30 0.23 134 66 0.5 134 86 0.65 

v0 4v→  134 28 0.21 134 77 0.58 134 110 0.83 

v0 5v→  134 39 0.3 134 60 0.45 134 116 0.87 

 
Table 6b. AndStatus Application 

 

Version 

1 change 3 change 5 change 

RAST (s) TSFAT (s) Ratio RAST (s) TSFAT (s) Ratio RAST (s) TSFAT (s) Ratio 

v0 1v→  495 46 0.1 495 206 0.42 495 281 0.57 

v0 2v→  495 51 0.11 495 191 0.39 495 341 0.69 

v0 3v→  495 26 0.06 495 96 0.2 495 326 0.66 

v0 4v→  495 56 0.12 495 236 0.48 495 356 0.72 

v0 5v→  495 46 0.1 495 226 0.46 495 336 0.68 

 

 

Graph 1: Total Execution Time of the AndStatus Application 
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Graph 2: Total Execution Time of the Inetify Application 
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7.   RELATED WORK 

Many researches have been conducted only focusing on testing a single version of 

applications. For example, Azim T., Neamtiu I. (2013) presented an approach that allows 

popular Android apps to be explored systematically while running on an actual phone. 

This work successfully addressed its purpose in term of GUI exploration. Since the work 

is done without having access to source code, but by the analysis of bytecode, all possible 

transitions (i.e. method invocations) to new activities should be taken into account. 

Another single version application testing example is the work of Yang W., Prasad M. R., 

and Xie T. (2013). The researchers proposed a tool that implements the grey-box 

approach of automated model extraction for Android apps and its evaluation in 

demonstrating the effectiveness at generating high-quality GUI models.  

  Domenico A., Fasolino A. R., and Tramontana P. (2011) proposed a type of 

regression testing of Android applications using the Monkey Runner tool to check the 

modifications by comparing the output screenshots to a set of screenshots that are known 

to be correct. This approach only provides a high level of comparability to find the 

changes in the modified versions. 

  Another research conducted by Crussell J., Clint G., and Hao C. (2012) detects the 

similarity between an Android application’s versions by constructing Program 

Dependency Graph (PDG) for each version using an existing tool and comparing the 

PDGs to find the semantical difference of code at the method level. Compared to our 

approach, we construct CFGs (similar to PDGs) from scratch, instead of using an existing 

tool. This provides a more flexible way to build and compare the CFGs. Then we detect 

program changes at the syntax level, not semantic level.  
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 Memon A. M., and Soffa M. L. (2003) proposed a regression testing technique for 

GUIs application in general. The study only focuses on regression testing of desktop 

applications. 
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8.   CONCLUSION AND FUTURE WORK 

We have presented a new approach for regression test selection of mobile 

platform. Our approach leverages the concept of static analysis to detect the 

modifications on different versions of an Android application. Because of the changes, 

only a subset of test cases is selected to avoid the cost of executing the entire test suite. 

More importantly, our study has fulfilled the gap of lacking of regression test selection 

technique on Android applications. We also evaluate the efficiency and the effectiveness 

of our approach using an empirical study. 

As far as the availability of code coverage tools, they are mainly used to collect 

code coverage information of programs. However, none of them is specifically developed 

for regression testing of Android applications. CCG has the ability to generate code 

coverage for each individual test case in an efficient way, whereas other tools can only 

generate code coverage for the entire test suite, which cannot be beneficial in selecting 

test cases.  

  One limitation of our approach is that we only leverage the concept of static 

analysis at source code level. Changes in different places such as XML layout files, 

library, hardware, etc. In the future, we plan to optimize a broader range of static analysis 

that is used for the impact analysis in our framework. In addition, not only do we focus 

on the physical changes of the source code, but also the changes in behavior of Android 

applications.  

  Moreover, we want to conduct more evaluation for our study. Instead of using two 

artifacts, we will evaluate our approach on additional Android applications. Since the 
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changes in the modified versions of the programs are randomly seeded, we will improve 

the evaluation by using changes made by real developers. 
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APPENDIX 

 
instrumentCGG{ 

for (ih = il.getStart(); ih != null; ih = ih.getNext()) { 
Iterator lead = leaders.iterator(); 
while (lead.hasNext()){ 
 if(ih.equals(lead.next())){ 
 
 setInstrument(il,cpg,cg,INSTRUMENTSTRING,"~"+cg.getClassName()+","+mg.getName()+","+ih.getPo
sition()+": "+ih.getInstruction().toString() ,ih); 
  numInstru++; 
  if(!(ih.getInstruction() instanceof ReturnInstruction) ) 
   leaderMap.put(ih, moveToNewLeader(ih)); 
  else 
   leaderMap.put(ih, ih); 
 } 
} 
} 
 
/* 
* Update position 
*/ 
il.setPositions(); 
 
/* 
* Update targetMap 
*/ 
Iterator it = targetMap.entrySet().iterator(); 
while (it.hasNext()) { 
Map.Entry pairTarget = (Map.Entry)it.next(); 
Iterator it2 = leaderMap.entrySet().iterator(); 
while (it2.hasNext()) { 
 Map.Entry pairLeader = (Map.Entry)it2.next(); 
 if(pairTarget.getValue().equals(pairLeader.getKey())){ 
  pairTarget.setValue(pairLeader.getValue()); 
 } 
} 
} 
 
/* 
* Update targets for new bytecode 
*/ 
for (ih = il.getStart(); ih != null; ih = ih.getNext()) { 
Iterator it3 = targetMap.entrySet().iterator(); 
while (it3.hasNext()) { 
 Map.Entry pairLeader1 = (Map.Entry)it3.next(); 
 if(ih.equals(pairLeader1.getKey())){ 
  insn = ih.getInstruction(); 
  if (insn instanceof Select){ 
   InstructionHandle ih2 = (InstructionHandle)pairLeader1.getValue(); 
   Select selectInstr = (Select) insn; 
   //Defaut case 
   target = selectInstr.getTarget(); 
   if(leaderMap.containsKey(target)){ 
    InstructionHandle newTarget = (InstructionHandle) leaderMap.get(target); 
    selectInstr.updateTarget(target, newTarget); 
   } 
   // Case Targets 
   InstructionHandle [] targets = selectInstr.getTargets(); 
   for(int k = 0; k < targets.length;k++){ 
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    if(leaderMap.containsKey(targets[k])){ 
     InstructionHandle newTarget = (InstructionHandle) leaderMap.get(targets[k]); 
      
     selectInstr.updateTarget(targets[k], newTarget); 
    } 
   } 
  }else{ 
   InstructionHandle ih2 = (InstructionHandle)pairLeader1.getValue(); 
   ((BranchInstruction) insn).setTarget(ih2); 
  } 
 
 } 
} 
} 
 
/* 
* update new leaders 
*/ 
leaders.clear(); 
Iterator it4 = leaderMap.entrySet().iterator(); 
while (it4.hasNext()) { 
Map.Entry pairLeader1 = (Map.Entry)it4.next(); 
leaders.add(pairLeader1.getValue()); 
} 
} 
 
// Add calculated basic blocks 
Iterator leadersIt = leaders.iterator(); 
Iterator endIt = ends.iterator(); 
while (leadersIt.hasNext() && endIt.hasNext()) { 
InstructionHandle startHandle = (InstructionHandle) leadersIt 
 .next(); 
InstructionHandle endHandle = (InstructionHandle) endIt.next(); 
 
Node block = new Node(startHandle.getPosition(), 
 endHandle.getPosition()); 
block.setStartHandle(startHandle); 
block.setEndHandle(endHandle); 
allBasicBlocks.put(startHandle.getPosition(), block); 
} 

} 
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