

REGRESSION TEST SELECTION FOR ANDROID APPLICATIONS

by

Quan Chau Dong Do, B.S.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Software Engineering
December 2015

Committee Members:

Guowei Yang, Chair

Rodion Podorozhny

Anne Ngu

COPYRIGHT

by

Quan Chau Dong Do

2015

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,
section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations
from this material are allowed with proper acknowledgment. Use of this material for
financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Quan Chau Dong Do, authorize duplication of this
work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

...this research is dedicated to my wife, my resource of encouragement

 v

ACKNOWLEDGEMENTS

 I am thankful to Dr. Guowie Yang for his practical advice and his criticism. He sets

high standard for students in classrooms as well as in research practice. I am grateful to

him for holding such a research standard from proposing a project to enforce strict

validation for research project. I would not be able to finish this project without his

advice.

 I would like to thank my thesis committee. Dr. Rodion Podorozhny and Dr. Anne Ngu

who have been great professors help me prepare to get to this place in my academic life.

 Most importantly, none of this would have been possible without the love, support and

encouragement of my wife, and my parents who live thousand miles away.

 vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF GRAPHS ...x

LIST OF ABREVIATION ... xi

ABSTRACT .. xii

CHAPTER

1. INTRODUCTION ...1

2. MOTIVATING EXAMPLE ..3

3. BACKGROUND ...7

 3.1 Android Development Platform ...7
 3.2 Construction of Control Flow Graph of Java bytecode8
 3.3 Regression Testing ...9

4. APPROACH ..12

 4.1 Overview ..12
 4.2 Impact Analyzer ...13
 4.3 Code Coverage Generator ..13
 4.4 Test Case Selector ..15

5. EMPIRICAL STUDY ..18

 5.1 Artifacts ..18
 5.2 Variables and Measures ...20
 5.2.1 Independent Variables ..20
 5.2.2 Dependent Variables and Measures ..21

 vii

 5.3 Experiment Setup ...22
 5.4 Threats to Validity ...23
 5.5 Results and Analysis ..23

6. DISCUSSION ..30

7. RELATED WORK ..34

8. CONCLUSION AND FUTURE WORK ..36

APPENDIX ..38

REFERENCES CITED ..40

 viii

LIST OF TABLES

Table Page

1. Artifacts Used for the Evaluation ..19

2. Results of execution time for CCG and Emma ..24

3. Results of code coverage for CCG and Emma ..25

4. (a-c). Results of Applying TSFA and RAS to AndStatus app26

 a. Five version of one change ...26

 b. Five version of three changes ...27

 c. Five version of five changes ...27

5. (a-c). Results of Applying TSFA and RAS to Inetify app ...28

 a. Five version of one change ...28

 b. Five version of three changes ...29

 c. Five version of five changes ...29

6. (a-b) Total Execution Time of TSFA and RAS ...32

 a. Inetify Application ..32

 b. AndStatus Application ..32

 ix

LIST OF FIGURES

Figure Page

1. Simple Calculator Android Application ..3

2. Implementations of Four Arithmetic Methods ..4

3. Example of 18 Test Cases ..6

4. Android Development Architecture ...7

5. Examples of CFG ..9

6. Safe Technique ...11

7. Approach Architecture ...12

8. intrumentCCG Algorithm ..15

9. Example of Instrumented Bytecode ...16

10. An Example of a Log File ..17

11. Example of AIC ...20

 x

LIST OF GRAPHS

Graph Page

1. Total Execution Time of the AndStatus Application ...32

2. Total Execution Time of the Inetify Application ...33

 xi

LIST OF ABBREVIATIONS

Abbreviation Description
Davik Virtual Machine DVM
Java Virtual Machine JVM
Control Flow Graph CFG
Impact Analyzer IA
Test Case Selector TCS
Code Coverage Generator CCG
Application Under Test AUT
Anonymous Inner Class AIC

 Retest All Strategy RAS
 Test Selection Framework for Android apps TSFA
 Regression test selection RTS

 xii

ABSTRACT

As the mobile platform pervades human life, much research in recent years has

focused on improving the reliability of mobile applications on this platform, for example

by applying automatic testing. To date, however, researchers have primarily considered

testing of the single version of mobile applications. It has been shown that testing of

mobile applications can be expensive; thus simply re-executing all tests on the modified

application version remains challenging. Regression testing---a process of validating

modified software to ensure that the changes are correct and do not adversely affect other

features of the software---has been extensively studied for desktop application, and many

efficient and effective approaches have been proposed; however, these approaches cannot

be directly applied to mobile applications. Since regression testing on mobile applications

is an expensive process, an effective and well-studied regression test selection can

potentially reduce this expense. In this study, we propose test selection for mobile

applications, especially on the Android Application Platform. Our approach leverages the

combination of static impact analysis with code coverage that is dynamically generated at

run-time, and identify a subset of tests to check the behaviors of the modified version that

can potentially be different from the original version. We implement our approach for

Google Android applications, and demonstrate its effectiveness using an empirical study.

 1

1. INTRODUCTION

Mobile devices have become ubiquitous in modern society. The mobile platform

is separating itself from a variety of areas of desktop applications such as entertainment,

e-commerce and social media. Thus, developers are required to produce high quality

mobile apps in terms of portability, reliability and security. In recent years, a large

number of research projects have focused on improving the reliability of mobile

applications on mobile platform, for example by applying automatic testing. However,

the majority of the researches is only focusing on testing of the single version of mobile

applications. It has been shown that testing of mobile applications is not a trivial task and

can be expensive. As developers periodically maintain a software system, they perform

regression testing to find errors that are caused by program changes and to provide

confidence that the modifications are correct. To support this process, according to Todd

et al (2001), developers often create an initial test suite, and then they reuse it to perform

regression testing. Regression testing---a process of validating modified software to

ensure that the changes are correct, and they do not adversely affect other features of the

software---has been extensively studied for desktop applications. Many efficient and

effective approaches have been proposed; however, these approaches cannot be directly

applied to mobile applications. One of the factors that causes the incompatibility is the

difference between the mobile platform system architectures and the desktop platform.

For example, although Android Platform is written in Java as other Java desktop

applications, it runs under the Dalvik Virtual Machine (DVM). The DVM and the Java

byte-code run-time environment are substantially different, according to Williams (2011).

 2

The traditional approach is known as the Retest All Strategy (RAS). RAS is

simply to re-execute every single test case in the original test suite. However, this

approach can be expensively unacceptable, since it requires a tremendous amount of

time, especially on mobile apps. Since performing regression testing on mobile

applications by applying RAS is an expensive process, an effective and well-studied

regression test selection can potentially reduce this expense. In this study, we propose a

regression test selection technique for mobile applications, especially on the Android

Application Platform. Our approach, a Test Selection Framework for Android apps

(TSFA), identifies which subset of a test suite must be re-executed to test a new version

of an Android application. TSFA leverages the combination of static impact analysis and

dynamic analysis. It first, detect changes between the original version and the modified

version of the program. Then, TSFA will dynamically generate code coverage for each

test case. Lastly, our approach will select a subset of the test suite for re-execution in

order to check the behaviors of the modified version that can potentially be different from

the original version. We implement our approach for Google Android applications, and

demonstrate its efficiency and effectiveness using an empirical study.

 3

2. MOTIVATING EXAMPLE

In this chapter, we use a simple Android application to illustrate the goal of this

study. Note that we developed this application and wrote a test suite to test it. We also

purposely made changes to specific locations of the modified program. This example is

designed for illustration only, not for the determination of the overall performance of our

study. Figure 1 is a screenshot of the Simple Calculator Application, a basic calculator

that takes as input two numbers and performs different arithmetic including addition,

subtraction, multiplication and division by clicking buttons “+”, “-”, “×“, and “/”

respectively. Figure 2 shows the implementations of four buttons. Let T be a test suite

consisting of 18 test cases as described in Figure 3. After executing the test suite, based

on Figure 2, two bugs are found at line number 4 and 22. In terms of maintenance, after

modifying an implementation, software is required to be re-tested in order to assure that

changes do not adversely affect other software components. For the traditional regression

testing, the entire test suite is rerun against the modified code to provide confidence that

the changes are correct. For the Android Platform, this approach remains challenging due

to the cost of executing a large number of test cases. Therefore, reducing the number of

test cases is significantly important. Instead of re-executing the entire test suite, TSFA

selects the test cases that are affected by the program changes. For example, T is used to

Figure 1: Simple Calculator Android Application

 4

test the application. Each test case takes as input two numbers and presses the arithmetic

buttons accordingly. After executing the test suite, a code coverage report for each test

case is generated. For example, the code coverage report for T1, T2, and T3 is 1->6, which

indicates the source code line number 1 to 6 as described in Figure 2.

Let P be the original program. P is modified at line number 4 (x*y becomes x+y)

and at line number 22 (x-y becomes x/y). Let P’ be the modified program. After the

modifications, it is required that only a subset, T’ in T is selected for re-execution. From

the code coverage reports, let ~T be a set of test cases that are not affected by the

changes, it is easy to show that 4 5 6 7 8 9 10 11, 12 13~ , , , , , , { , , }T T T T T T T T T T T= is not eligible

for re-execution. Only a subset of T, that is, 1 2 3 14 15 16 17 18' , , , , , , ,{ }T T T T T T T T T= is selected

1 public void Add {
2 …
3 …
4 int result = x *(+) y;
5 …
6 }
7 public void Minus {
8 …
9 …
10 int result = x - y;
11 …
12 }
13 public void Multiply {
14 …
15 …
16 float result = x * y;
17 …
18 }
19 public void Divide {
20 …
21 …
22 float result = x -(/)y;
23 …
24 }

Figure 2: Implementations of Four Arithmetic Methods

T1,T2,T3
1->6

T4,T5,T6,T7
7->12

T8,T9,T10,T11
T12,T13
13->18

T14,T15,T16,T17,
T18

19->24

 5

for re-execution since the test cases in T’ executed the changes. As the result, only eight

test cases are selected. Suppose each test case takes five seconds to be executed, then it

would take 90 seconds when applying RAS. However, it only takes 40 seconds when

applying TSFA since only 45% of the test cases are selected.

 6

Figure 3: Example of 18 Test Cases

testT1(){
 enterText(“3”,”4”);
 clickOnButton("+");
 result = getView(id.result);
 assertEquals(T1_RESULT,result);
}

testT2(){
 enterText(“-2”,”7”);
 clickOnButton("+");
 result = getView(id.result);
 assertEquals(T2_RESULT,result);
}

testT3(){
 enterText(“-1”,”-4”);
 clickOnButton("+");
 result = getView(id.result);
 assertEquals(T3_RESULT,result);
}

testT4(){
 enterText(“0”,”2”);
 clickOnButton("-");
 result = getView(id.result);
 assertEquals(T4_RESULT,result);
}

testT5(){
 enterText(“-4”,“-5”);
 clickOnButton("-");
 result = getView(id.result);
 assertEquals(T5_RESULT,result);
}

testT6(){
 enterText(“3”,”7”);
 clickOnButton("-");
 result = getView(id.result);
 assertEquals(T6_RESULT,result);
}

testT7(){
 enterText(“9”,”2”);
 clickOnButton("-");
 result = getView(id.result);
 assertEquals(T7_RESULT,result);
}

testT8(){
 enterText(“0”,”1”);
 clickOnButton("x");
 result = getView(id.result);
 assertEquals(T8_RESULT,result);
}

testT9(){
 enterText(“-2”,”-3”);
 clickOnButton("x");
 result = getView(id.result);
 assertEquals(T9_RESULT,result);
}

testT10(){
 enterText(“3”,”-1”);
 clickOnButton("x");
 result = getView(id.result);
 assertEquals(T10_RESULT,result)
}

testT11(){
 enterText(“9999999”,”99999”);
 clickOnButton("x");
 result = getView(id.result);
 assertEquals(T11_RESULT,result)
}

testT12(){
 enterText(“-4”,”5”);
 clickOnButton("x");
 result = getView(id.result);
 assertEquals(T12_RESULT,result)
}

public void testT13(){
 enterText(“0”,”0”);
 clickOnButton("x");
 result = getView(id.result);
 assertEquals(T13_RESULT,result)
}

public void testT14(){
 enterText(“0”,”0”);
 clickOnButton("/");
 result = getView(id.result);
 assertEquals(T14_RESULT,result)
}

public void testT15(){
 enterText(“2”,”2”);
 clickOnButton("/");
 result = getView(id.result);
 assertEquals(T15_RESULT,result)
}

public void testT16(){
 enterText(“2”,”3”);
 clickOnButton("/");
 result = getView(id.result);
 assertEquals(T16_RESULT,result)
}

public void testT17(){
 enterText(“1”,”99999999”);
 clickOnButton("/");
 result = getView(id.result);
 assertEquals(T17_RESULT,result)
}

public void testT18(){
 enterText(“-2”,”4”);
 clickOnButton("/");
 result = getView(id.result);
 assertEquals(T18_RESULT,result)
}

 7

3. BACKGROUND

This chapter provides background knowledge that is relative to our study. First,

we summarize the architecture of developing Android applications. Next, we provide a

brief definition of a Control Flow Graph and we show how it is constructed for Android

applications. Lastly, we recall the concept of regression testing to which the TSFA is

related.

3.1 Android Development Platform

Figure 4: Android Development Architecture

Each Android application is executed under the Davik Virtual Machine (DVM)

and Android applications are written in the Java programming language. As described in

Figure 4, first, the Java source code files are compiled to bytecode class files using

standard Java Virtual Machine (JVM). After the compilation, the Davik dx tool converts

the class files to Davik bytecode file, and composes them into one single dex file. The

dex file contains all of the application classes. Finally, in order to run on an Android

device, the dex file and resources are composed into one executable apk file and the

Android device proceeds installation using the apk file. Our approach assumes that

application’s source code is always available.

 8

We leverage the analysis of Java byte code to implement our framework, which is

divided into two main components. Firstly, we generate code coverage for each test case

that is executed by the application. Before the Davik dx tool coverts the class files into

dex file, we perform code instrumentation for the source code. Then, the final apk file

will contain the instrumentation as it is being used to install the application. Secondly, we

analyze the impact of each version of the application using the available source code.

3.2 Construction of Control Flow Graph of Java bytecode

Definition 3.2.1. Directed Graphs

A directed graph is a graph (,)G N E= with a set of nodes N that are connected

by a set of edges E , with functions start and end. We denote (, ')n n is an edge starts from

node n and ends at node 'n with , 'n n N∈ . For a node n, the sets

() { ' | : () ', () }pred n n e E start e n end e n= ∃ ∈ = = and the sets

() { ' | : () , () '}succ n n e E start e n end e n= ∃ ∈ = = contain all of predecessors and

successors of n, respectively. Entry nodes and exit nodes are nodes that have an empty

pred or succ set, respectively.

 Definition 3.2.2. A Control Flow Graph

A Control Flow Graph (CFG) is a representation of a directed graph. In a

procedure of a programming language, each statement in a procedure will be a node in

the CFG. The control flow is represented by the edges. An entry node and exit node are

uniquely added to the starting and ending point of the procedure.

A node n in a Control Flow Graph for Java Bytecode has multiple bytecode

statements since it represents a basic block of a procedure p. A node ,n s e N∈ indicates a

 9

basic block that has starting statement s and ending statement e. A node ,s sn indicates a

block that has one statement s. An edge , ', '(,)e s e sn n is created when s is a branching

instruction and e’ is its target. Entry node and exit are uniquely added to CFG as 1, 1n− −

and 2, 2n− − , respectively. Figure 5 shows an example of a CFG for a simple if statement.

3.3 Regression Testing

Let P be a program, let 'P be a modified version of P, and let T be a test suite

for P . Regression testing is performed between P and 'P to ensure that changes in 'P

do not affect P by executing T against P’. However, executing T can be unnecessarily

expensive, especially when only a small part of the system is affected. Rothermel G. and

Harrold M. J. (1996) have studied several regression test selections (RTS).

ByteCode CFG
main(){
 0: iconst_0
 1: istore_1
 2: iconst_1
 3: istore_2
 4: iload_1
 5: iload_2
 6: if_icmple 15
 9: iinc 1, 1
 12: goto 18
 15: iinc 2, 1
 18: return
}

Figure 5: Examples of CFG

Retest All is the technique that re-executes all test cases. It can be applied to

situations where no cost of execution time is being concerned.

Random/Ad-Hoc technique randomly selects a percentage of test cases. If fault

detection is not concerned, this technique can reduce a great amount of execution time.

 10

Minimization technique has been studied by Fischer K., Raji F., and Chruscicki A.

(1981) which selects a minimal subset of a test suite that covers all program changes.

Safe technique, according to Rothermel G. and Harrold M. J. (1997), under

certain conditions, selects a test case when it covers at least one change in the modified

program.

 Selecting 'T T⊆ as a set of test cases to execute on 'P will efficiently reduce the

execution time. Hiralal A., Joseph R. H., Edward W. K., Saul A. L. (1993) observed if a

changed statement is not executed by a test case, the program output for that test cannot

be affected. Hence, code coverage for each test case is required in order to determine

which statement is not executed by a test case. We leverage the Safe technique as the

foundation of the TSFA. According to the study of Harrold M. J., and Rothermel G.

(1997), in terms of fault the detection effectiveness, Safe technique performs slightly

better than random technique. Even though, in some cases such as low code coverage,

Safe technique is not efficient in reducing execution time, it is very effective in fault

detection. Figure 6 shows an example of the Safe technique. Given a CFG with 10

nodes. The dash, solid and dot lines represent the code coverage Test 1, Test 2 and Test

3, respectively. Suppose a change is found at Node 4. Then only Test 3 is selected for re-

execution. Since Test 1 and Test 2 do not execute the change, they are eliminated.

According to Todd L. G., Mary J. H., Jung-Min K., Adam P., Gregg R. (2001), this

approach is not always perfect. In other words, this test case selection technique

substantially reduces the cost of execution time while it may eliminate test cases that

could reveal faults in the program, and consequently, reducing the effectiveness of fault

detection. Moreover, Hiralal A., Joseph R. H., Edward W. K., Saul A. L. (1993) also

 11

observed that not all statements in the program are executed under all test cases. A

changed statement might not be executed by any test case, which might result in the

elimination of all test cases. It is a trade-off between reducing execution time and

decreasing the effectiveness of fault detection.

Test 1

Test 2

Test 3

Figure 6. Safe Technique

 12

4. APPROACH

4.1 Overview

TSFA consists of three components: Impact Analyzer (IA), Code Coverage

Generator (CCG) and Test Case Selector (TCS) as described in Figure 7.

Firstly, CCG takes as input the original program P and generates code coverage

report. In this step, CCG performs code instrumentation on P to obtain PT. Then, we run a

test suite T against PT to the collect code coverage for each test case Ti in T. As a test case

Ti is running, our framework records code coverage from PT.

Secondly, IA takes as input the original program P and its the modified version

P’, and generates an impact report that contains locations of changes between P and P’.

Lastly, TCS takes as input the impact report and the code coverage report to

determine which test cases are affected by the changes and select them. As a result, only

a subset 'T of T is selected for re-execution.

Original App

Code Coverage
Generator TS

TC 1
Coverage

TC 2
Coverage

TC N
Coverage

Impact
Analyzer

Impacted
Code

Test Case
Selector

Modified App

Eliminated Test Cases

Figure 7: Approach Architecture

 13

4.2 Impact Analyzer

The IA takes as input an original class file C and a modified class file 'C .

Firstly, it builds a CFG and CFG’ for C , and 'C , respectively. Each CFG represents a

procedureM . Then, IA uses the depth-first search concept to compare C and 'C node by

node, and instruction by instruction. The impact report is stored as a text file whose each

line indicates a location of a basic block where the change occurs. A location of a basic

block is formatted as the following:

 , , name of class name of method first bytecode statement of the changed block

For example,

 [](). . . , ,39 : _1 43 1org andstatus app HelpActivity get aload

In this example, in the class HelpActivity , at method ()get ,the block that has a

starting bytecode statement as []()39: _1 43 1aload has changed in 'P .

4.3 Code Coverage Generator

CCG leverages the combination of static code analysis and dynamic analysis. It

first performs code instrumentation on the original program P. Then, it executes a test

suite to collect code coverage for each test case.

When building a CFG for each method of P, before forming edges between

nodes, the code instrumentation framework inserts new bytecode statements into the

instruction list. Figure 8 shows the code instrumentation algorithm: instrumentCCG. Let I

be a set of all bytecode instructions in procedure p. A node ,n l e N∈ indicates a basic

block that has a starting leading bytecode instruction l and an ending bytecode instruction

e. Let L be a set of all leading bytecode instructions in p. When inserting new bytecode

 14

block ,'l en N∈ , we choose the beginning of each basic block as the inserted position.

Consequently, L now no longer contains the original leading bytecode instructions. In

order to preserve the original L, we introduce LMap , a set of maps such that each map (

'l l→) represents a map from an old leading instruction l to a new leading instruction 'l .

The method getNewLeader() returns 'l by getting the leading instrument of ,'l en . A

program can contain branching instructions such as if-statements, case statements, loops,

etc. If an instruction b ∈ I is a branching instruction, there exists a target instruction t ∈ I

such that a target map (b t→) represents its branching relationship. As a matter of fact, b

is the ending bytecode instruction of one block, and t becomes a leading bytecode

instruction of the target block. Let TMap be a set of target maps. The method

addNewBytecode() takes as input the current leading instruction bytecode and inserts new

block of bytecode on top of it. Given a set of maps {()}M a b= → , for map ()a b→ ,

.M key returns a and .M value returns b.

In the instrumentCCG algorithm, from line 1 to line 5, new block of bytecode

instructions are inserted at the beginning of every l ∈ L . Since every l ∈ L is now no longer

a leading bytecode instruction, LMap stores maps from old leading instructions to new

leading instructions at line 5. A target map (b t→) is also changed due to this

modification since t becomes a leading bytecode statement of another block. From line 6

to line 9, TMap is used to update target maps accordingly to the new leading instructions.

At line 8 and 9, for every t that is equal to l, a new value t’ replaces t. Up to this point, the

actual target instructions in I have not yet been updated. From line 10 to line 13, for every

 15

branching instruction b ∈ I , b is updated accordingly using TMap . Figure 9 shows an

example of instrumented bytecode.

CCG uses the Log system of the Android platform to generate a log file that

contains code coverage information. Specifically, (). , Log d String tag String message

statement prints the message and its tag to an Android log file. As a test suite is executed

against the instrumented program, by automatically instrumenting equivalent bytecode

into the entire program, our framework is able to log code coverage of each test case.

instrumentCCG()
1 for i ∈ I
2 for l ∈ L
3 if i = l
4 addNewBytecode(i)
5 LMap ← (ci → getNewLeader())

6 for Mt ∈ TMap
7 for Ml ∈ LMap
8 if .Mt value = .Ml key
9 .Mt value ← .Ml value
10 for i ∈ I
11 for Mt ∈ TMap

12 if i = .Mt key

13 setNewTarget(i, .Mt value)
end instrumentCCG()

Figure 8: intrumentCCG Algorithm

4.4 Test Case Selector

TCS is a simple Java program that takes as input two text files, namely the impact

report and code coverage report. It determines which test cases are affected by the

changes and selects them for re-execution. Log file analysis process is to (1) parse the log

 16

file, (2) store executed block locations by creating maps between test cases and their

coverage, (3) store impacted block location, and (4) select test cases.

Figure 10 shows an example of the Android log file. First TCS takes as input the

log file, which is created as text file format. Parsing process starts by searching line by

line of the text file.

ByteCode Instrumented Bytecode
main(){

 0: iconst_0
 1: istore_1
 2: iconst_1
 3: istore_2
 4: iload_1
 5: iload_2
 6: if_icmple 15

 9: iinc 1, 1
 12: goto 18

 15: iinc 2, 1
 18: return
}

main()
 0: ldc
 2: ldc
 4: invokestatic
 7: pop
 8: iconst_0
 9: istore_1
 10: iconst_1
 11: istore_2
 12: iload_1
 13: iload_2
 14: if_icmple 31
 17: ldc
 19: ldc
 21: invokestatic
 24: pop
 25: iinc 1, 1
 28: goto 42
 31: ldc
 33: ldc
 35: invokestatic
 38: pop
 39: iinc 2, 1
 42: return
}

Figure 9: Example of Instrumented Bytecode
Let CMap be a set of maps such that each map (1 2[, ,...,a]i nT a a→) where Ti is the

name of the test case, and 1 2, ,...,ana a are the locations of executed blocks. They are

formatted are described in Section 4.2. Let C be a set of changes { 1 2,c ,...,cnc } where

1 2,c ,...,cnc are affected blocks.

 17

When a line starts with the tag I/TestRunner: started, it indicates that the

beginning of a test case has already started. Ti is assigned a value which is the name of

the test case. For example, in Figure 10, at line 1, Ti = testWifiConnected. Every next line

that starts with the tag D/INSTRUMENT indicates the executed block location.

1 2, ,...,ana a are assigned values corresponding to these lines. For example, at line 2 and 3,

a1=ConnectivityActionReceiver,onReceive,0: aload_1[43](1) and

a2=ConnectivityActionReceiver,onReceive,20: aload_2[44](1), respectively. When a line

with the tag I/TestRunner: finished, it indicates the completion of the test case. Then, a

map 1 2[,]iT a a→ is added to CMap . This process is repeated to end of the log file.

1. I/TestRunner: started: testWifiConnected
2. D/INSTRUMENT: ConnectivityActionReceiver,onReceive,0: aload_1[43](1)
3. D/INSTRUMENT: ConnectivityActionReceiver,onReceive,20: aload_2[44](1)
4. D/INSTRUMENT: ConnectivityActionReceiver,onReceive,27: iload[21](2) 4
5. I/TestRunner: finished: testWifiConnected
6. I/TestRunner: started: testAddIgnoredWifi
7. D/INSTRUMENT: DatabaseAdapterImpl,openIfNeeded,17: aload_0[42](1)
8. D/INSTRUMENT: DatabaseOpenHelper,onCreate,0: aload_1[43](1)
9. D/INSTRUMENT: DatabaseAdapterImpl,addIgnoredWifi,62: iconst_1[4](1)
10. I/TestRunner: finished: testAddIgnoredWifi

Figure 10: An Example of a Log File

 TCS takes as input CMap and C to select test cases. For each ci ∈C, if ci ∈

1 2[, ,...,a]na a , then the corresponding Ti is selected. The actual implementation of the

instrumentCCG is presented in the Appendix.

 18

5. EMPIRICAL STUDY

We evaluate the efficiency and correctness of our Code Coverage Generator, by

considering two research questions:

RQ1. How efficient is our Code Coverage Generator compared to an existing Code

Coverage Generator, Emma?

RQ2. Does the Code Coverage Generator achieve the same level of correctness

compared to Emma?

Emma, an effective code coverage generator, is being compared with our CCG

because it is the only code coverage tool that is built-in for the Android Development

Environment. Plus, Emma provides high precision for code coverage.

We then evaluate the overall cost of TSFA relative to RAS by considering two

research questions:

RQ3. How does the number of test cases selected by TSFA compare to RAS, which

re-runs all test cases?

RQ4. How efficient is the time reduction when applying TSFA compared to RAS?

5.1 Artifacts

We selected two Android applications to evaluate TSFA: AndStatus and Inetify.

For each artifact, Table 1 provides information on its associated “Classes” – number of

class files, “Methods” – number of methods, “LOC” – number of lines of code, and

“Version” – number of modified versions we used for the evaluation.

The first artifact, the AndStatus application, is an Android open source project.

This application allows users to login multiple social app accounts such as Twitter and

Pump.io. AndStatus can combine multiple accounts into one Timeline and allow users to

 19

read and post even if they are offline.

The second artifact, the Inetify application, is an Android open source project that

provides two features related to Wifi networks. First, the app gives a notification if a Wifi

network does not provide Internet access. Secondly, it automatically activates Wifi when

being near a Wifi network and deactivates it otherwise.

Table 1. Artifacts Used for the Evaluation

 Classes Methods LOC Version

AndStatus 250 2700 15000 15

Inetify 63 356 1500 15

We evaluate TSFA on multiple versions of each artifact in order to increase the

degree of randomization when modifying the application under test (AUT) to reduce bias.

When creating modified versions of the AUTs, we examine the extensive dimension of

changes, including different numbers of changes, locations, and change type. We

consider three possible numbers of changes to apply: one, three, and five. By simulating

changes, we are able to create multiple versions for each artifact. Although the changes

are not actual modifications from, for example, developers or testers, we have control

over locating them in such a systematic way that large scale applications can be

thoroughly evaluated. The changes include modification, deletion, and addition of source

code statements. In the modified AUTs, changes are located at, (1) control statements,

including if statements, case statements, and while, for, and do loops, (2) non-control

statements, (3) general locations such as top, middle and bottom of the program source

code, (4) Anonymous Inner Class (AIC). Different from regular Java procedures, which

 20

are defined as a separated method, AIC is defined as an inner procedure of another

procedure. Figure 11 shows an example of AIC.

 The method setOnClickListener() is an AIC procedure defined as an inner

procedure of the onCreate() method. We consider the case of AIC procedures because,

as a result, Android Development Environment generates separate class files for them.

Plus, IA takes as input class files to generate the impact report. Hence, considering

changes in AIC procedures will increase the ability of finding changes in the modified

AUTs. Control statements are modified by changing the comparison operator, for

example, from > to >=, or the operand, for example, switching local variables defined in

the procedures. Non control statements are modified by changing values of local

variables defined within their scope.

5.2 Variables and Measures

5.2.1 Independent Variables

 The independent variables that we used in the empirical study are the code

instrumentation framework and the regression test selection for Android applications. To

study RQ1 and RQ2, we use CCG, which involves the instrumentCCG algorithm

public void onCreate(Bundle savedInstanceState) {
 addButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 try {

int val1 = Integer.parseInt(value1.getText().toString());
 int val2 = Integer.parseInt(value2.getText().toString());

 Integer answer = val1 + val2;
 result.setText(answer.toString());

 } catch (Exception e) {
 Log.e(LOG_TAG, "Failed to add numbers", e);
 }
 }
 });
}

Figure 11: Example of AIC

 21

described in Section 4.3, to compare with Emma (http://emma.sourceforge.net/), a built-

in testing framework for Android Platform. To study RQ3 and RQ4, we compare the

efficiency and the effectiveness of TSFA with RAS.

5.2.2 Dependent Variable and Measures

 To study our research questions, we selected three dependent variables and

measures which are relatively used to determine the costs of CCG versus Emma, and

TSFA versus RAS. Given an original program P, which is modified to a new version P’.

Note that the costs can be measured differently depending on what technique is being

applied. CCG and Emma are only applied to P. For TSFA, only CCG is applied to P, and

IA and TCS are applied to P’.

 The first dependent variable is execution time. To study RQ1, we need to measure

execution time to compare the efficiency of CGG versus Emma. We denote TCCG and

TEmma for the execution time of CGG and Emma, respectively. Since execution of CGG

includes execution of instrumentation code phase and log file analysis, we denote them as

TIC and TLA, respectively. To study RQ4, we also need to measure execution time to

compare the efficiency of TSFA and RAS. The execution time of TSFA is also divided

into the execution time of its components, namely, IA and TCS. We denote TIA and TTCS

for the execution time of IA and TCS, respectively. We also denote Tfull, and Tsub as the

execution time of the test suite and its subset, respectively.

 The second dependent variable is code coverage. To study RQ2, although

execution time determines the efficiency, code coverage also needs to be measured to

guarantee the correctness since TSFA is strictly based on it. We denote CCCG and CEmma

as code coverage for CGG and Emma, respectively.

 22

 The third dependent variable is the number of selected test cases. To study RQ3, we

need to measure the number of selected test cases since we are reducing the number of

test cases. In addition, not all test cases are the same in terms of length and testing

criteria. For example, some test cases are short in length, but due to the testing criteria,

they are executed by a large number of blocks of code. However, there are also some

long test cases that are only executed by a small number of blocks of code. Hence,

reduction in the number of test cases does not necessarily correlate with reduction in

time. Therefore, we need to take the number of selected test cases into consideration. We

denote Nsub as the number of selected test cases.

5.3 Experiment Setup

We run TSFA by using the Android Development Environment, together with the

Ant tool and Eclipse. We use the Windows operation system running 3.4GHz with

8GByte of memory to conduct our study. We automate the process from analyzing

change impact, generating code coverage reports, to selecting test cases by running batch

file under Windows operation system.

For each artifact:

• We applied CCG and Emma to P and collected TCCG, TEmma, CCCG, CEmma,

Tfull, TIC, and TLA

 For each version of P:

• We applied TSFA and collected TIC, and TLA

For each version of P’:

• We applied RAS and collected TRAS.

• We applied TSFA and collected TLA, TTCS, Tsub, and Nsub

 23

5.4 Threats to Validity

The primary threats to external validity for our study are (1) the changes applied

to the modified programs, (2) selection of artifacts used to evaluate TSFA. The actual

changes might or might not emulate the changes that we applied to the modified program.

However, to control this threat, we systematically vary the changes based on their

location, change type, and number of changes. Although only two artifacts are selected to

evaluate our approach, they consist of all components of the Android Development

Architecture, which is relative to most of popular large-scale Android applications.

 The primary threats to internal validity are possible faults in the implementation of

algorithms, and in tools that we use to perform the evaluation. We controlled this threat

by using small programs that cover all scenarios. For such programs, we can manually

generate the expected results and compare with the actual results.

 With respect to threats to construct validity, the metrics that we used to evaluate the

cost of TSFA are commonly used to measure the cost of regression test selection

technique.

5.5 Results and Analysis

In this section, we present the results of our experiments, and analyze the results

with respect to our four research questions.

RQ1. How efficient is our Code Coverage Generator compared to an existing

Code Coverage Generator Emma?

Table 2 presents the results of execution time for CGG and Emma. In the table,

for each artifact, the results are presented for our two dependent variables, namely, time

and code coverage. To present the results for code coverage, we divided it into two

 24

different components, namely, “executed blocked” and “ratio”. Thus, columns with

header “Executed Block” represent the number of blocks that are executed by the test

suite. Columns with header “Ratio” represent the percentages of blocks that are executed.

To present the execution time, we accumulate TIC, Tfull, and TLA into columns with header

“Total”.

Table 2. Results of execution time for CCG and Emma

Apps
Number

of
test cases

TCCG TEmma

ICT
(s)

fullT
(s)

LAT
(s)

Total

(s)
ICT

(s)
fullT

(s)
LAT

(s)

Total

(s)
Inetify 206 1 134 1 136 1 134 206 341

AndStatus 99 1 495 1 497 1 495 99 595

We observed that, for each artifact, TIC, and Tfull for both CGG and Emma are

equal, though TLA remains different. It only takes one second for CGG to analyze one

single log file and generates code coverage report for each test case. Note that, by default,

Emma generates one single code coverage report for the entire test suite. However, this is

not applicable for regression testing where each individual test case coverage is required.

We need to reconfigure Emma to fix this issue by repeating the process of executing a

test case, and analyzing its log file. That is, for Emma, it takes one second to analyze a

log file. Since there are 206 test cases, it would take 206 seconds to analyze the log files.

Hence, the time that it takes for Emma to generate code coverage depends on both test

suite execution time and number of test cases. Our CCG, as opposing, only depends on

test suite execution time. We conclude that, for the use of regression testing, CCG

performs more efficient than Emma.

RQ2. Does the Code Coverage Generator achieve the same level of correctness

 25

compared to Emma? In Table 3, we measure the number of generated blocks and the

number of executed blocks in order to calculate code coverage for each artifact. Note that

CGG generates 71304 blocks and Emma generates 65904 blocks.

Table 3. Results of code coverage for CCG and Emma

Apps
Number

of
Test cases

CCG EMMA
Generated

Blocks
Executed
Blocks CCGC (%)

Generated
Blocks

Executed
Blocks EmmaC (%)

Inetify 206 7403 4930 66.6 6691 4452 66.5

AndStatus 99 71304 41071 57.6 65904 37770 57.3

During the process of code instrumentation, we insert some virtual blocks such as

entry blocks and ending blocks for each CFG, which causes the greatest number of

blocks. In addition, since we do not have knowledge of Emma’s implementation, we are

unable to verify what type of measurement being used to count number of blocks causing

the less number of generated blocks. Despite the difference in the number of blocks, CCG

and Emma achieve almost the same in precision for code coverage.

Table 3 and Table 4 present the results of applying TSFA and RAS to our

artifacts. For the original program, columns with headers TRAS , Tfull , TIC, TLA represent

the execution time of RAS, test suite, instrumentation code and log analysis, respectively.

For the modified program, columns with headers TTSFA, TIA, TTCS, Tsub represent the

execution time of TSFA, IA, TCS and a subset of the test suite, respectively. Columns

with header Nsub represent the number of selected test cases.

RQ3. How does the number of test cases selected by TSFA compare to RAS, which

re-runs all test cases? Table 4 (a-c), show the results of running TSFA and RAS on each

version of the artifact AndStatus. Note that, in Table 4b, subN for v0 3v→ and v0 4v→ is

 26

an interesting observation. Even though only three changes are made at different

locations of the program, the difference in numbers of selected test cases for the two

versions is 28 (46−18). We calculate the average of numbers of selected test cases for

one, three, and five changes with the result of 37 test cases. The average of 38% of the

test suite is reduced for re-execution. Overall, the result meets our expectation. Compare

to RAS, our approach effectively reduces the number of test cases.

Table 4 (a-c). Results of Applying TSFA and RAS to AndStatus app

Table 4a. Five versions of one change

One
Change

Original Program Modified Program

Our Approach RAS
(s) Our Approach

Instrumentation
Code

(s)

Full
Test
Suite

(s)

Log
Analysis

(s)

#of
test

cases

RAS
(s)

Impact
Analysis

(s)

Select
TC
(s)

Subset
of TCs

(s)

of
selected

test

v0→v1 2 495 1 99 495 2 1 40 8

v0→v2 2 495 1 99 495 2 1 45 9

v0→v3 2 495 1 99 495 2 1 20 4

v0→v4 2 495 1 99 495 2 1 50 10

v0→v5 2 495 1 99 495 2 1 40 8

 27

Table 4b. Five versions of three changes

Three
Changes

Original Program Modified Program

Our Approach RAS
(s) Our Approach

Instrumentation
Code

(s)

Full
Test
Suite

(s)

Log
Analysis

(s)

#of
test

cases

RAS
(s)

Impact
Analysis

(s)

Select
TC
(s)

Subset
of TCs

(s)

of
selected

test

v0→v1 2 495 1 99 495 2 1 200 40

v0→v2 2 495 1 99 495 2 1 185 37

v0→v3 2 495 1 99 495 2 1 90 18

v0→v4 2 495 1 99 495 2 1 230 46

v0→v5 2 495 1 99 495 2 1 220 44

Table 4c. Five versions of five changes

Five
Changes

Original Program Modified Program

Our Approach RAS
(s) Our Approach

Instrumentation
Code

(s)

Full
Test
Suite

(s)

Log
Analysis

(s)

#of
test

cases

RAS
(s)

Impact
Analysis

(s)

Select
TC
(s)

Subset
of TCs

(s)

of
selected

test

v0→v1 2 495 1 99 495 2 1 275 55

v0→v2 2 495 1 99 495 2 1 335 67

v0→v3 2 495 1 99 495 2 1 320 64

v0→v4 2 495 1 99 495 2 1 350 70

v0→v5 2 495 1 99 495 2 1 330 66

RQ4. How efficient is the time reduction when applying TSFA compared to RAS?

Table 5 (a-c) shows the results of running TSFA and RAS on each version of the

artifact Ientify. Each table presents results of one, three and five number of changes,

together with five versions of each. For example, Table 4a can be interpreted as the

following:

Given an original program P , and its modified program 'P , the number of

changes between P and 'P is one. For each version from v0 1v→ to v0 5v→ , we

 28

calculate RAST and TSFAT for 'P . For example, with v0 1v→ , the overhead is small because

it only takes 2 seconds to perform instrumentation code and log analysis. With subN = 56

in 'P , it takes 39 seconds (IAT + TCST + subT) to run. Hence, it takes TSFA the total of 41

seconds on P’. For RAS, with v0 1v→ , it takes 134 seconds for RAS to run on P’.

When there is one change in the application, Table 5a shows that it takes 41

seconds for TSFA to run and 134 seconds for RAS to run on P’. So the execution time is

reduced by 69 %. We calculate the average for the time reduction for one, three, and five

changes with the result of 75%. We observed that as long as the number of changes stays

low, the execution time is substantially reduced. Overall, the execution time is efficiently

reduced when applying TSFA compared to RAS.

Table 5 (a-c). Results of Applying TSFA and RAS to Inetify app

Table 5a. Five versions of one change

One
Change

Original Program Modified Program

Our Approach RAS
(s) Our Approach

Instrumentation
Code

(s)

Full
Test
Suite

(s)

Log
Analysis

(s)

#of
test

cases

RAS
(s)

Impact
Analysis

(s)

Select
TC
(s)

Subset
of TCs

(s)

of
selected

test

v0→v1 1 134 1 206 134 1 1 37 56

v0→v2 1 134 1 206 134 1 1 25 38

v0→v3 1 134 1 206 134 1 1 26 39

v0→v4 1 134 1 206 134 1 1 24 36

v0→v5 1 134 1 206 134 1 1 35 53

 29

Table 5b. Five versions of three changes

Three
Changes

Original Program Modified Program
Our Approach RAS

(s)
Our Approach

Instrumentation
Code

(s)

Full
Test
Suite

(s)

Log
Analysis

(s)

#of
test

cases

RAS
(s)

Impact
Analysis

(s)

Select
TC
(s)

Subset
of TCs

(s)

of
selected

test

v0→v1 1 134 1 206 134 1 1 71 108

v0→v2 1 134 1 206 134 1 1 41 63

v0→v3 1 134 1 206 134 1 1 62 95

v0→v4 1 134 1 206 134 1 1 73 111

v0→v5 1 134 1 206 134 1 1 56 86

Table 5c. Five versions of five changes

Five
Changes

Original Program Modified Program

Our Approach RAS
(s) Our Approach

Instrumentation
Code

(s)

Full
Test
Suite

(s)

Log
Analysis

(s)

#of
test

cases

RAS
(s)

Impact
Analysis

(s)

Select
TC
(s)

Subset
of TCs

(s)

of
selected

test

v0→v1 1 134 1 206 134 1 1 89 136

v0→v2 1 134 1 206 134 1 1 91 140

v0→v3 1 134 1 206 134 1 1 82 126

v0→v4 1 134 1 206 134 1 1 106 162

v0→v5 1 134 1 206 134 1 1 112 171

 30

6. DISCUSSION

Table 6 (a-b) presents the results of total execution time for each artifact. For

example, when the number of changes is one, RAS takes 134 seconds to complete

regression testing of v1 of the Inetify application. TSFA takes 41 seconds. We also use

average ratios of total time of TSFA and total time of RAS to express the efficiency and

effectiveness of TSFA on Graph 1 and Graph 2.

Table 6 (a-b) shows the consistency of the results when applying TSFA. Our

study focuses on reducing the number of test cases after the original program is modified.

According to Graph 1 and Graph 2, as the number of changes increases, the total

execution time also increases since the number selected test cases increases. This

observation meets our expectation.

The number of selected test cases can be affected by testing criteria. For instance,

if the testing criteria are focusing on one particular part of an application, then the

majority of the test cases will be executed by that part. On the one hand, one change from

that part can select the majority of test cases. On the other hand, many changes from

different parts of the application can only select a small number of test cases. To resolve

this issue, we have chosen a systematic way to create versions of modified programs with

changes that vary in locations, type change, and the number of changes.

Different from the Inetify app, the AndStatus app is a much larger scale Android

application based on the information from Table 1. Note that, the number of test cases

executed on the AndStatus app (99) is only a half of the number of test cases executed on

the Inetify app (206). Based on these two facts, we can predict that the test suite for the

AndStatus app will result in low code coverage since there is not enough test cases to

 31

cover the large system. Hence, the number of the selected test cases will decrease.

Therefore, we can predict that only a small number of test cases are selected for the

AndStatus app, which reduces the execution time. However, Table 6b shows that, after

one change, the average of 54% of time reduction remains. This is an interesting

observation. Despite our prediction, the execution time does not remain low. The factor

that makes our prediction incorrect is the characteristic of the test suite. Without

examining the test suite, we can conclude that the majority of the test cases is greater in

length. Moreover, the test criteria upon which they are designed covers a large number of

blocks in the application.

 We assume that the characteristic of the test suite results in low execution time.

Then we would have correctly predicted the outcome. This is when the trade-off between

the time required to run selected test cases and fault detection ability comes in. Suppose

that many changes have found in the program. The greater number of test cases is

eliminated, the less effective is the ability to detect faults. Therefore, three factors that

can affect our study are the AUTs, the characteristic of the test suite, and the program

changes.

 32

Table 6 (a-b). Total Execution Time of TSFA and RAS

Table 6a. Inetify Application

Version

1 change 3 change 5 change

RAST (s) TSFAT (s) Ratio RAST (s) TSFAT (s) Ratio RAST (s) TSFAT (s) Ratio

v0 1v→ 134 41 0.31 134 75 0.56 134 93 0.7

v0 2v→ 134 29 0.22 134 45 0.34 134 95 0.71

v0 3v→ 134 30 0.23 134 66 0.5 134 86 0.65

v0 4v→ 134 28 0.21 134 77 0.58 134 110 0.83

v0 5v→ 134 39 0.3 134 60 0.45 134 116 0.87

Table 6b. AndStatus Application

Version

1 change 3 change 5 change

RAST (s) TSFAT (s) Ratio RAST (s) TSFAT (s) Ratio RAST (s) TSFAT (s) Ratio

v0 1v→ 495 46 0.1 495 206 0.42 495 281 0.57

v0 2v→ 495 51 0.11 495 191 0.39 495 341 0.69

v0 3v→ 495 26 0.06 495 96 0.2 495 326 0.66

v0 4v→ 495 56 0.12 495 236 0.48 495 356 0.72

v0 5v→ 495 46 0.1 495 226 0.46 495 336 0.68

Graph 1: Total Execution Time of the AndStatus Application

0

50

100

150

one	
 change three	
 changes five	
 changes

AndStatus

Traditional	
 Approach Proposed	
 Approach

 33

Graph 2: Total Execution Time of the Inetify Application

0

50

100

150

one	
 change three	
 changes five	
 changes

Inetify

Traditional	
 Approach Proposed	
 Approach

 34

7. RELATED WORK

Many researches have been conducted only focusing on testing a single version of

applications. For example, Azim T., Neamtiu I. (2013) presented an approach that allows

popular Android apps to be explored systematically while running on an actual phone.

This work successfully addressed its purpose in term of GUI exploration. Since the work

is done without having access to source code, but by the analysis of bytecode, all possible

transitions (i.e. method invocations) to new activities should be taken into account.

Another single version application testing example is the work of Yang W., Prasad M. R.,

and Xie T. (2013). The researchers proposed a tool that implements the grey-box

approach of automated model extraction for Android apps and its evaluation in

demonstrating the effectiveness at generating high-quality GUI models.

 Domenico A., Fasolino A. R., and Tramontana P. (2011) proposed a type of

regression testing of Android applications using the Monkey Runner tool to check the

modifications by comparing the output screenshots to a set of screenshots that are known

to be correct. This approach only provides a high level of comparability to find the

changes in the modified versions.

 Another research conducted by Crussell J., Clint G., and Hao C. (2012) detects the

similarity between an Android application’s versions by constructing Program

Dependency Graph (PDG) for each version using an existing tool and comparing the

PDGs to find the semantical difference of code at the method level. Compared to our

approach, we construct CFGs (similar to PDGs) from scratch, instead of using an existing

tool. This provides a more flexible way to build and compare the CFGs. Then we detect

program changes at the syntax level, not semantic level.

 35

 Memon A. M., and Soffa M. L. (2003) proposed a regression testing technique for

GUIs application in general. The study only focuses on regression testing of desktop

applications.

 36

8. CONCLUSION AND FUTURE WORK

We have presented a new approach for regression test selection of mobile

platform. Our approach leverages the concept of static analysis to detect the

modifications on different versions of an Android application. Because of the changes,

only a subset of test cases is selected to avoid the cost of executing the entire test suite.

More importantly, our study has fulfilled the gap of lacking of regression test selection

technique on Android applications. We also evaluate the efficiency and the effectiveness

of our approach using an empirical study.

As far as the availability of code coverage tools, they are mainly used to collect

code coverage information of programs. However, none of them is specifically developed

for regression testing of Android applications. CCG has the ability to generate code

coverage for each individual test case in an efficient way, whereas other tools can only

generate code coverage for the entire test suite, which cannot be beneficial in selecting

test cases.

 One limitation of our approach is that we only leverage the concept of static

analysis at source code level. Changes in different places such as XML layout files,

library, hardware, etc. In the future, we plan to optimize a broader range of static analysis

that is used for the impact analysis in our framework. In addition, not only do we focus

on the physical changes of the source code, but also the changes in behavior of Android

applications.

 Moreover, we want to conduct more evaluation for our study. Instead of using two

artifacts, we will evaluate our approach on additional Android applications. Since the

 37

changes in the modified versions of the programs are randomly seeded, we will improve

the evaluation by using changes made by real developers.

 38

APPENDIX

instrumentCGG{

for (ih = il.getStart(); ih != null; ih = ih.getNext()) {
Iterator lead = leaders.iterator();
while (lead.hasNext()){
 if(ih.equals(lead.next())){

 setInstrument(il,cpg,cg,INSTRUMENTSTRING,"~"+cg.getClassName()+","+mg.getName()+","+ih.getPo
sition()+": "+ih.getInstruction().toString() ,ih);
 numInstru++;
 if(!(ih.getInstruction() instanceof ReturnInstruction))
 leaderMap.put(ih, moveToNewLeader(ih));
 else
 leaderMap.put(ih, ih);
 }
}
}

/*
* Update position
*/
il.setPositions();

/*
* Update targetMap
*/
Iterator it = targetMap.entrySet().iterator();
while (it.hasNext()) {
Map.Entry pairTarget = (Map.Entry)it.next();
Iterator it2 = leaderMap.entrySet().iterator();
while (it2.hasNext()) {
 Map.Entry pairLeader = (Map.Entry)it2.next();
 if(pairTarget.getValue().equals(pairLeader.getKey())){
 pairTarget.setValue(pairLeader.getValue());
 }
}
}

/*
* Update targets for new bytecode
*/
for (ih = il.getStart(); ih != null; ih = ih.getNext()) {
Iterator it3 = targetMap.entrySet().iterator();
while (it3.hasNext()) {
 Map.Entry pairLeader1 = (Map.Entry)it3.next();
 if(ih.equals(pairLeader1.getKey())){
 insn = ih.getInstruction();
 if (insn instanceof Select){
 InstructionHandle ih2 = (InstructionHandle)pairLeader1.getValue();
 Select selectInstr = (Select) insn;
 //Defaut case
 target = selectInstr.getTarget();
 if(leaderMap.containsKey(target)){
 InstructionHandle newTarget = (InstructionHandle) leaderMap.get(target);
 selectInstr.updateTarget(target, newTarget);
 }
 // Case Targets
 InstructionHandle [] targets = selectInstr.getTargets();
 for(int k = 0; k < targets.length;k++){

 39

 if(leaderMap.containsKey(targets[k])){
 InstructionHandle newTarget = (InstructionHandle) leaderMap.get(targets[k]);

 selectInstr.updateTarget(targets[k], newTarget);
 }
 }
 }else{
 InstructionHandle ih2 = (InstructionHandle)pairLeader1.getValue();
 ((BranchInstruction) insn).setTarget(ih2);
 }

 }
}
}

/*
* update new leaders
*/
leaders.clear();
Iterator it4 = leaderMap.entrySet().iterator();
while (it4.hasNext()) {
Map.Entry pairLeader1 = (Map.Entry)it4.next();
leaders.add(pairLeader1.getValue());
}
}

// Add calculated basic blocks
Iterator leadersIt = leaders.iterator();
Iterator endIt = ends.iterator();
while (leadersIt.hasNext() && endIt.hasNext()) {
InstructionHandle startHandle = (InstructionHandle) leadersIt
 .next();
InstructionHandle endHandle = (InstructionHandle) endIt.next();

Node block = new Node(startHandle.getPosition(),
 endHandle.getPosition());
block.setStartHandle(startHandle);
block.setEndHandle(endHandle);
allBasicBlocks.put(startHandle.getPosition(), block);
}

}

 40

REFERENCES CITED

Android Developer Guide. Android Developers. N.p., n.d. Web. 20 Oct. 2015.

http://developer.android.com/

Azim T., and Neamtiu I. (2013). Targeted and Depth-first Exploration for Systematic

Testing of Android Apps. Proceedings of the 2013 ACM SIGPLAN

international conference on Object oriented programming systems languages

& applications. Pages 641-660.

Chen Y., D. Rosenblum, and K. Vo. TestTube: A system for selective regression testing.

In Proceedings of the 16th International Conference on Software Engineering,

pages 211-222.

Crussell J., Clint G., and Hao C. (2012). Attack of the Clones: Detecting Cloned

Applications on Android Markets. 17th European Symposium on Research in

Computer Security, Pisa, Italy.

Domenico A., Fasolino A. R., and Tramontana P. (2011). A GUI Crawling-based

technique for Android Mobile Application Testing. I CSTW '11 Proceedings of

the 2011 IEEE Fourth International Conference on Software Testing,

Verification and Validation Workshops. Pages 252-261.

EMMA: A free Java code coverage tool (n.d). Retrieved October 20, 2015

http://emma.sourceforge.net/

Fischer K., Raji F., and Chruscicki A. (1981). A methodology for retesting modified

software. In Proceedings of the National Telecommunications Conference B-6-3,

pages 1-6.

 41

Harrold M. J., and Rothermel G. (1997). A safe, efficient regression test selection

technique. ACM Trans. Softw. Eng. Meth., 6(2):173–210.

Hartmann J. and D. Robson. Techniques for selective revalidation. IEEE Software,

16(1):31- 38.

Hiralal A., Joseph R. H., Edward W. K., Saul A. L. (1993). Incremental Regression

Testing. IEEE Conference of Software Maintenance.

Inetify. (n.d). Retrieved October 20, 2015. https://code.google.com/p/inetify

Memon M. Memon, Soffa Mary Lou. Regression Testing of GUIs. ESEC/FSE-

11 Proceedings of the 9th European software engineering conference held

jointly with 11th ACM SIGSOFT international symposium on Foundations of

software engineering. Pages 118-127.

Monkeyrunner .(n.d). Retrieved October 20, 2015

http://developer.android.com/tools/help/monkeyrunner_concepts.html

Rothermel G. and Harrold M. J. (1996). Analyzing regression test selection techniques.

IEEE Trans. Softw. Eng., 22(8):529–55.

Rothermel G. and Harrold M. J. (1997). A safe, efficient regression test selection

technique. ACM Transactions on Software Engineering and Methodology,

6(2):173-210.

Todd L. G., Mary J. H., Jung-Min K., Adam P., Gregg R. (2001). An Empirical Study of

Regression Test Selection Techniques, ACM Transactions on Software

Engineering and Methodology, Vol. 10, No. 2.

 42

Volkov, Y. (n.d). AndStatus. Retrieved October 20, 2015

https://github.com/andstatus/andstatus

Yang W., Prasad M. R., and Xie T. (2013). A Grey-box Approach for Automated GUI-

Model Generation of Mobile Applications. FASE'13 Proceedings of the 16th

international conference on Fundamental Approaches to Software

Engineering. Pages 250-265.

