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ABSTRACT 
 

 
A FAST FOURIER TRANSFORM APPROACH TO FINDING THE THICKNESS OF  

SINGLE-LAYER THIN FILMS WITH SLOWLY VARYING INDICES OF  

REFRACTION AND NEGLIGIBLE ABSORPTION COEFFICIENTS 

 
by 
 
 

Geoffrey F. Miller, B.S. 
 
 

Texas State University-San Marcos 
 

August 2012 
 
 

SUPERVISING PROFESSOR: MATTHIAS CHRISTOPH CHUNG 
 

 A nonstandard photolithographic exposure tool motivates the search for a method 

to determine photoresist thickness in real time. Optical physics of two-interface thin film 

systems and the theory of Fourier series reveal a way to calculate photoresist thickness by 

applying an FFT (fast Fourier transform) algorithm to the reflectance spectrum of a light 

beam incident on the photoresist. Analyses of simulated data and preliminary 

measurements assess the speed and accuracy of the FFT algorithm and suggest further 

areas of research. 
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CHAPTER I 
 
 

MOTIVATION OF THE STUDY 
 
 

General Background 
 

 Photolithography is a process that uses a chemical bath to selectively remove 

exposed or unexposed parts of a light-sensitive thin film layer, often called a photoresist, 

from a substrate material. In effect, the process involves writing patterns onto the 

photoresist via light, hence the etymology of the term "photolithography," which 

originates from the Greek φῶς (phos), which means light, λίθος (lithos), which means 

stone, and γράφειν (graphien), which means to write. Modified spaces in the photoresist 

left behind by the chemical bath permit the placement of diverse microstructures and 

nanostructures. Photolithographic processes thus play major roles in many modern 

industries, especially those concerned with the fabrication of integrated electronic 

circuits, magnetic devices such as hard disk drive heads, optical devices like those found 

in laser pointers, mechanical devices such as bubble jet printer components, and 

combinations of aforesaid technologies fundamental to the operation of liquid crystal 

displays and magnetic random access memory.  

 
Our Nonstandard Exposure Tool 

 Standard exposure tools write projected patterns from stenciled masks onto a flat 

wafer covered by a uniform layer of photoresist, but they lack the depth of field needed to
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treat non-uniform arrangements, such as those resulting from using a non-flat substrate. 

The optical characterization laboratory at Texas State University-San Marcos is 

developing an exposure tool to perform photolithography on non-flat substrates. Such a 

tool would allow the combination of integrated optics, mechanics, and electronics in 

novel 3D devices. A schematic of the tool is depicted in Figure 1 below.  

 

 We have chosen to use a positive photoresist, Shipley S1813, with our system, 

such that areas exposed to a proper amount of light at wavelength 

€ 

405 nm will become 

soluble in developer chemicals. It is important to note that our photoresist has a 

negligible absorption coefficient and a slowly varying index of refraction. The meaning 

Figure 1. Nonstandard Exposure Tool. A 405 nm laser chemically alters portions of a non-uniform 
photoresist layer that is deposited on a substrate, which are subsequently removed in a chemical bath. 
The objective moves along the z-axis and the table positions the sample in the xy-plane. 
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and importance of these properties will be explained in the next chapter. Please refer to 

the datasheet in Appendix A for more detailed information about our photoresist. 

 Our apparatus is nonstandard and uses a laser to expose a sample situated on a 

movable table in the xy-plane, labeled "Fast Coupled Position Control" in Figure 1. The 

photons emitted by the laser are at a sufficiently high enough energy to chemically alter 

the photoresist. Focusing our laser is accomplished by adjusting the objective along the z-

axis with a piezoelectric transducer that has fine control 

€ 

±50 µm and a step-motor that 

has coarse control 

€ 

±12 mm. Exposure is done without using a stenciled mask, instead 

inscribing the desired pattern directly onto the photoresist using the focused laser 

analogously to a pencil.  

 Other portions of our apparatus also require explanation. "Topographical 

Information" is used to move the objective along the z-axis to keep the sample in focus. 

The photons emitted from the filtered halogen lamp do not have a sufficient amount of 

energy to alter our photoresist. A dichroic beam splitter separates the reflected laser light 

beam (wavelength 

€ 

λ = 405 nm) from the reflected halogen beam (

€ 

500 nm < λ <1000 nm

). The reflected halogen beam is received into the fast spectrometer, labeled "Real Time 

Photoresist Thickness Information." We define the beam's reflectance spectrum as the 

square of the ratio of the norm of the amplitude of the reflected light waves to that of 

incident light waves at each wavelength in the beam. How to use the reflectance spectrum 

to determine photoresist thickness, and thus an appropriate photoresist exposure dosage 

of 

€ 

405 nm light, will be the primary focus of our thesis. The instrument labeled "Real 

Time Bleaching Information" presents an alternative method to measure the required 

exposure dosage that is beyond the scope of our study. We will briefly touch upon the 
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components collectively labeled "Beam Shaping and Beam Steering" in the final chapter 

of our thesis. 

 
Problem Statement 

 A photoresist layer deposited by a spinner on a flat wafer is rather homogeneous 

with slight variations in thickness near the edges; however, covering a non-flat substrate 

with photoresist using an eyedropper or airbrush will result in a non-homogeneous 

photoresist layer, with thickness conforming to surface topography. Photolithography on 

a substrate with unknown and variable photoresist layer thickness requires assessment of 

thin film depth at each point of exposure to ensure a correct dosage of light is given. 

Thus, for our exposure tool to work on arbitrary samples, it will be necessary to 

accurately measure the local thickness of the photoresist layer in real time and to correct 

the intensity of the laser or the speed of the movable table in the xy-plane accordingly.  

 Our accuracy goal is to calculate photoresist thickness within 

€ 

±6%  of the actual 

value. Our rationale stems from our apparatus' registration error, 

€ 

±0.125 µm, in locating 

an exact x or y position on the xy-plane. For the patterns the laser writes, we want the line 

width error due to thin film thickness miscalculation to be less than this value, so 

referring to Figure 2, we find that our exposure dosage should be 

€ 

165 ± 30 mJ/cm2 . 

Referring to Figure 3, the allowable error in thickness estimation is therefore 

€ 

±6% . 
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 The justification for our time goal of less than one millisecond comes from the 

fact that we can only write one pixel per millisecond due to the constraints imposed by 

the intensity of our laser. To write our patterns as efficiently as possible, we need to 

finish the thickness calculation in less than this amount of time so that for every pixel we 

can determine the photoresist thickness and thus determine the required exposure dosage. 

 

Figure 2. Linewidth vs. Exposure Dose. See 
Appendix A for original context. 

Figure 3. Exposure Dose vs. Photoresist 
Thickness. See Appendix A for original context.  
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Plan of the Thesis 

 In the next chapter, we will review relevant optical principles and discuss how the 

physical properties of our Shipley S1813 photoresist permit us to calculate thickness from 

the periodicity of a reflectance spectrum for a beam of light containing wavelengths 

beyond the range of those that can chemically alter our thin film. 

 In the third chapter, we will present the general theory of Fourier series, explain 

why a Fourier series expansion of the modeling equation for a reflectance spectrum is 

legitimate, and explain how a fast Fourier transform can find the approximate periodicity 

of a reflectance spectrum. 

 In the final chapter, we will use Film WizardTM from SCI (Scientific Computing 

International) to generate simulated reflectance spectra for differing substrates, angles of 

incident light, thin film thicknesses, and intensities of white noise to emulate the noise 

present in measurements obtained by our exposure tool. We will analyze our results in 

light of the goals set in our problem statement, discuss relevant optical features of our 

apparatus, and suggest further areas of research as well as critique the utility of our 

simulations for predicting the behavior of data obtained using our apparatus. We will also 

look at some preliminary measurement data for our photoresist on a SiN substrate.
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CHAPTER II 
 
 

PHYSICAL THEORY OF THIN FILMS 
 
 

Plan of the Chapter 
 

 As mentioned in the previous chapter, the optical properties of our photoresist 

will suggest a method of calculating the thin film's thickness from its reflectance 

spectrum.  

 In the first section, we will review the law of refraction, derive the Fresnel 

coefficients at a single interface using Maxwell's equations, and finally construct a 

modeling equation for the reflectance spectrum of a single-layer thin film system 

involving two interfaces. In the second section, we will calculate thin film thickness from 

the periodicity of our modeling equation.  

 
Obtaining Reflectance Coefficients from Maxwell's Equations 

The Refractive Index 

 Light travels at different speeds through different materials. When light passes 

from one medium to another, this change in speed results in a change in direction. We 

call this phenomenon refraction and define the refractive index 

€ 

n  of a given material as 

the speed of light in a vacuum divided by the speed of light in the material. Snell's Law 

governs refraction, where the angles of incidence 

€ 

θa  and refraction 

€ 

θ f  are related by
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€ 

sinθa

sinθ f

=
n f

na
,        [II.1] 

where 

€ 

na and 

€ 

n f  refer to the refractive indices for the respective media (the subscript 

€ 

a  

refers to the ambient, the subscript 

€ 

f  refers to the single-layer thin film, and the 

subscript 

€ 

s, which has not been used yet, refers to the substrate). Another portion of light 

is reflected at an angle 

€ 

θ r = θa . Figure 4 illustrates the situation. 

 

 

 
 
 Most materials also absorb some of the light that passes through them. We can 

thus speak of a complex index of refraction, 

€ 

˜ N = n − ik , where 

€ 

n  is the refractive index 

previously defined, 

€ 

i  is the imaginary number, and 

€ 

k  is the extinction coefficient; the 

extinction coefficient is related to 

€ 

α , the absorption coefficient, by 

€ 

α =
4πk
λ

, where 

€ 

λ  

refers to the wavelength of incident light. Snell's Law still holds for this new quantity 

(Tompkins and McGahan 1999, 220). However, dielectrics have negligible absorption 

coefficients and our substrates, such as Si and SiN, and thin film, Shipley S1813 

photoresist, behave like dielectrics for light wavelengths above 

€ 

500 nm. We may thus 

assume that we are only dealing with the real number version of the refractive index. 

Figure 4. Single-Interface 
Thin Film System. A beam of 
light is incident at the interface 
of an ambient and thin film. 
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Moreover, because the refractive indices of our photoresist and substrate are slowly 

varying, we may consider 

€ 

n f  and 

€ 

ns constant over the domain 

€ 

500 nm to 

€ 

1000 nm. 

Fresnel Equations for a Single-Layer Interface 

 We are ultimately working toward finding an equation to model the reflectance 

spectrum, so we will start by finding the Fresnel reflection/transmission coefficients at a 

planar single-layer interface like that depicted in Figure 4.  

 Let us define the plane of incidence to be parallel to the page. We can distinguish 

four distinct amplitudes for the incident light wave: the electric field component 

€ 

Ea
||  

parallel to the plane of incidence, the electric field component 

€ 

Ea
⊥  perpendicular to the 

plane of incidence, and the magnetic field components 

€ 

Ba
||  and 

€ 

Ba
⊥ , which are defined 

analogously. Similarly, we have 

€ 

Er
|| , 

€ 

Er
⊥ , 

€ 

Br
||, and 

€ 

Br
⊥ for the reflected light wave and 

€ 

E f
|| , 

€ 

E f
⊥ , 

€ 

Bf
|| , and 

€ 

Bf
⊥  for the transmitted light wave. Our Fresnel coefficients are 

 

€ 

r|| =
Er
||

Ea
|| , r⊥ =

Er
⊥

Ea
⊥ ,

t|| =
Et
||

Ea
|| , t⊥ =

Et
⊥

Ea
⊥ .

   

   [II.2] 

 We wish to express the ratios of [II.2] in terms of refractive indices and angles of 

incidence and transmission only. Graphical construction methods that utilize certain 

boundary conditions for electric and magnetic waves are possible (Doyle 1980, 646). 

However, in our opinion, Maxwell's equations offer a more insightful and intuitive way 

to derive the aforementioned boundary conditions and thus the desired form of [II.2].  

 We turn in particular to the integral forms of Gauss' law for electric fields and 

magnetism, Faraday's law, and Ampere's law, which are listed below, in order; note that 

€ 

ε0 refers to the vacuum permittivity and 

€ 

µ0 refers to the vacuum permeability, also 
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known as the electric and magnetic constants, respectively (Jackson 1999, 2, 16-17). If 

any other symbols seem unfamiliar, do not worry; we will explain our notation as we 

discuss the boundary conditions for each equation. 

  

€ 

ε0

 
E ⋅ d ˆ A 

S
∫ = ρ dV

V
∫ ,       [II.3a] 

  
  

€ 

 
B ⋅ d ˆ A 

S
∫ = 0,        [II.3b]  

  

€ 

 
E ⋅ dˆ s 

Γ

∫ = −
dΦB

dt
,       [II.3c]  

  

€ 

 
B 
µ0
⋅ dˆ s 

Γ

∫ =
 
J ⋅ d ˆ A ∫ +ε 0

dΦE

dt
.      [II.3d]  

 

 

 Equations [II.3a] and [II.3b] are area integrals taken over a Gaussian surface 

€ 

S  

that is positioned across the single-layer interface, as pictured in Figure 5. Note that our 

charge density 

€ 

ρ = 0 throughout the volume 

€ 

V  contained by our Gaussian surface. By 

letting the thickness of our surface approach zero and noticing that   

€ 

 
B  and   

€ 

 
E  are 

perpendicular to each other and perpendicular to the direction of wave propagation, i.e. 

Figure 5. Boundary Conditions. A Gaussian surface and an 
Amperian/Faradian loop are positioned across the single-layer interface. 
These imaginary geometric constructs are used to determine boundary 
conditions for Maxwell's equations. 
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€ 

 
B = n ˆ k ×

 
E , where 

€ 

ˆ k  is a unit vector pointing in the direction of the light wave's 

propagation, we get our first two boundary conditions, 

  

€ 

0 = ε0

 
E ⋅ d ˆ A 

S
∫ = Ea

|| cosθa + Er
|| cosθ r − E f

|| cosθ f

∴ Ea
|| − Er

||( )cosθa = E f
|| cosθ f ,

0 =
 
B ⋅ d ˆ A 

S
∫ = Ba

|| cosθa − Br
|| cosθ r − Bf

|| cosθ f

∴na Ea
⊥ − Er

⊥( )cosθa = n f E f
⊥ cosθ f .

   [II.4] 

 Equations [II.3c] and [II.3d] are line integrals along an Amperian/Faradian loop 

€ 

Γ 

that is positioned across the single-layer interface, as pictured in Figure 5. By letting the 

width of our loop approach zero, we reduce the magnetic and electric fluxes through the 

loop (

€ 

ΦB  and 

€ 

ΦE , respectively) to zero; the flow of current through the loop,   

€ 

 
J ⋅ d ˆ A ∫ , 

also goes to zero. We thus obtain our last two boundary conditions, 

  

€ 

0 =
 
E ⋅ dˆ s 

Γ

∫ = Ea
⊥ + Er

⊥ − E f
⊥

∴Ea
⊥ + Er

⊥ = E f
⊥,

0 =

 
B 
µ0
⋅ dˆ s 

Γ

∫ = Ba
⊥ + Br

⊥ − Bf
⊥

∴na Ea
⊥ + Er

⊥( ) = n f E f
⊥ .

      [II.5] 

 Algebraic manipulation of our boundary conditions in [II.4] and [II.5] yields the 

desired forms of the Fresnel coefficients, 

€ 

r|| =
n f cosθa − na cosθ f

n f cosθa + na cosθ f

, r⊥ =
na cosθa − n f cosθ f

na cosθa + n f cosθ f

,

t || =
2na cosθa

n f cosθa + na cosθ f

, t⊥ =
2na cosθa

na cosθa + n f cosθ f

.

  [II.6] 
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Total Reflection Coefficient for a Two-Interface System 

 Our thin film lies on a substrate, and due to repeated internal reflections, we must 

use the Fresnel coefficients at two distinct interfaces to formulate a total reflection 

coefficient for the whole system. To simplify calculations, we introduce a new notation: 

each Fresnel coefficient will be labeled with an ordered pair of subscript letters indicating 

the interface in question and the direction in which light waves are propagating. For 

example, 

€ 

raf
|| =

n f cosθa − na cosθ f

n f cosθa + na cosθ f

 refers to the reflection coefficient for light waves 

traveling from the ambient to the thin film, polarized parallel to the plane of incidence. 

Thus, suppose we consider light waves traveling from medium 

€ 

x  to medium 

€ 

y . Then 

from [II.6] we have 

€ 

rxy
|| =

ny cosθ x − nx cosθ y

ny cosθ x + nx cosθ y

, rxy
⊥ =

nx cosθ x − ny cosθ y

nx cosθ x + ny cosθ y

,

txy
|| =

2nx cosθx
ny cosθx + nx cosθ y

, txy
⊥ =

2nx cosθx
nx cosθx + ny cosθ y

.

  [II.7] 

 To find the total reflection coefficient, we must consider the contributions of 

internal reflections that are partially transmitted back into the ambient. Our system is 

depicted below in Figure 6. 



 

 

13 

 

 
  

 When light waves are first incident at the surface of the thin film, reflected waves 

of either orientation to the plane of incidence are reflected back with 

€ 

raf  times the 

amplitude of the original waves incident on the sample. The waves transmitted at the 

ambient-film interface will partly reflect at the film-substrate interface; after one internal 

reflection at the film-substrate interface, waves at 

€ 

taf rfst fae
− i2β  times the amplitude of the 

incident waves will escape back into the ambient; etc. We must also take into account a 

phase shift, 

€ 

β = 2π d
λ

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ n f cosθ f ,

       
[II.8] 

incurred by the wave while traveling through the thin film, where 

€ 

d  denotes thin film 

thickness and 

€ 

λ  denotes the wavelength of the incident light waves (Tompkins and 

McGahan 1999, 19). Note that our photoresist has negligible absorption for 

€ 

λ > 500 nm, 

so 

€ 

n f  and 

€ 

θ f  are real, whence 

€ 

β is real. The process of internal reflection and partial 

transmission back into the ambient carries on indefinitely. Thus, our total reflection 

coefficient is give by the series 

Figure 6. Two-Interface Thin Film System. A beam of light 
travels through a two-interface thin film system and undergoes 
internal reflection within the thin film layer. 
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€ 

R = raf + taf t farfse
− i2β + taf t farfarfs

2e− i4β + taf t farfa
2 rfs

3e− i6β +

= raf + taf t farfse
− i2β 1+ rfarfse

−i2β + rfarfse
−i2β( )

2
+⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ .

  [II.9] 

However, recall the well-known identity,  

  

€ 

1
1− x

=1+ x + x 2 + x 3 + x 4 +, x 2 <1.
    

[II.10] 

If we set 

€ 

x = rfarfse
−i2β , we may thus write 

€ 

R = raf +
taf t farfse

− i2β

1− rfarfse
−i2β .      [II.11] 

We can further simplify our expression by observing that [II.7] implies 

€ 

ryx = −rxy,

tyx =
1− rxy

2

txy
.
        [II.12] 

Therefore, we obtain 

€ 

R =
raf + rfse

− i2β

1+ raf rfse
− i2β .       [II.13] 

 Again, all that we have said in this section holds for light polarized either parallel 

to or perpendicular to the plane of incidence. That is why we have left off the superscripts 

€ 

|| and 

€ 

⊥  in our notation. Reflectance 

€ 

ℜ  is defined simply as the square of the norm of 

the total reflection coefficient given by [II.13]. This is the expression we have been 

seeking to model our reflectance spectrum. 

 
Calculating Thickness from the Periodicity of Reflectance Spectra 

Locating Local Extrema 

 Because reflectance 

€ 

ℜ  is defined relative to [II.13], we have the following 

proportionality relation between 

€ 

ℜ and 

€ 

RR*, 
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€ 

ℜ∝ RR* =
raf + rfs exp −i2β( )( ) raf + rfs exp i2β( )( )
1+ raf rfs exp −i2β( )( ) 1+ raf rfs exp i2β( )( )

=

raf
2 + rfs

2 + raf rfs exp −i2β( ) + exp i2β( )( )
1+ raf

2 rfs
2 + raf rfs exp −i2β( ) + exp i2β( )( )

=
raf
2 + rfs

2 + raf rfs2cos 2β( )
1+ raf

2 rfs
2 + raf rfs2cos 2β( )

.

 [II.14] 

Note that because of the negligible absorption of light by our photoresist and substrate, 

we have assumed that 

€ 

raf  and 

€ 

rfs are real. We observe that 

€ 

RR* is a function of 

€ 

β, which 

is in turn a function of 

€ 

λ . Taking the derivative of [II.14] with respect to 

€ 

λ  will thus give 

us the local extrema of reflectance spectra for two-interface systems where each medium 

has a negligible absorption coefficient. Setting 

€ 

d RR*( )
dλ

= 0, we find 

€ 

4βraf rfs raf
2 −1( ) rfs2 −1( )sin 2β( )

λ 1+ raf
2rfs

2 + 2raf rfs cos 2β( )( )
2 = 0.     [II.15] 

 Therefore, [II.14] will exhibit local extrema whenever 

€ 

β = m π
2
,m∈Ζ . It follows 

that maxima (resp. minima) will occur every 

€ 

π  units in 

€ 

β. Again, note that in the 

derivation of [II.15], we assumed that our photoresist and substrate have negligible 

absorption and that the optical properties of the photoresist and substrate are not 

dependent on wavelength.  

Calculating Thin Film Thickness from Local Extrema 

 Let 

€ 

λm  and 

€ 

λm+1 be wavelengths at adjacent maxima (resp. minima) on the 

reflectance spectrum. It follows that, 
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€ 

mπ = 2π d
λm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ n f cosθ f

m =
2dn f

λm
cosθ f

,
m +1( )π = 2π d

λm+1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ n f cosθ f

m +1 =
2dn f

λm+1
cosθ f

,   

[II.16] 

€ 

2dn f

λm+1
−
2dn f

λm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ cosθ f = m +1( ) −m =1

2dn f λm − λm+1( )cosθ f = λmλm+1

d =
λmλm+1

2n f λm − λm+1( )cosθ f

.
    

 

In terms of photon energy measured in 

€ 

eV , we obtain  

  

€ 

d =
c

2n f Em+1 − Em( )cosθ f

,      [II.17] 

where 
  

€ 

E =
c
λ

,   

€ 

c ≈1240 eV⋅ nm . 

Calculating Thin Film Thickness from Periodicity 

 The advantage of expression [II.17] is that when reflectance is plotted against 

photon energy, local extrema are equally spaced (Tompkins and McGahan 1999, 59). 

This means that the thickness of the thin film can be determined from the periodicity of 

the reflectance spectrum, which may be calculated from the maximum mode of the 

corresponding discrete Fourier spectrum as detailed in Chapter III. For now, suffice it to 

say that if we denote the dominant periodicity by 

€ 

ρ , we may rewrite [II.17] as 

  

€ 

d =
c

2n f ρcosθ f

.       [II.18] 

 Equation [II.18] remains valid for reflectance spectra of light waves with arbitrary 

polarization or even random polarization, since any light wave can be expressed as the 

linear superposition of component waves polarized parallel to and perpendicular to the 

plane of incidence (Sakurai and Napolitano 2011, 6-8). Equation [II.18] certainly holds 
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for these two basic polarizations of light, and if the functions 

€ 

R||R||
*  and 

€ 

R⊥R⊥
*  each have a 

periodicity 

€ 

ρ , then the function 

€ 

RR* = w||R||R||
* + w⊥R⊥R⊥

* , where 

€ 

w||  and 

€ 

w⊥ are appropriate 

constants, must also have a periodicity 

€ 

ρ .
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CHAPTER III  
 
 

DEVELOPING AN FFT ALGORITHM 
 
 

Plan of the Chapter 

 In the previous chapter, we found that the thickness of a thin film can be 

determined from the periodicity 

€ 

ρ  of its corresponding reflectance spectrum, provided 

that certain physical conditions are met.  

 We could calculate 

€ 

ρ  by scrolling linearly through the data and picking out local 

extrema, then doubling the average distance between them. However, noise is inherent in 

measurements, and will not afford us such a simple solution. Consider, for instance, a 

sine wave with 10% white noise, sampled at 50 equidistant points. Looking at Figure 7, it 

is hard to intuit a scheme that could scroll through the data linearly, toss out all the 

spurious local extrema introduced by the "spikes," and yet keep the actual local extrema. 

Figure 7. Noisy Sine Wave. A sine wave sampled at 50 
equidistant points, with 10% random noise. 
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 A better approach is to use what is called a discrete Fourier transform to construct 

an approximation of the original function from a linear superposition of exponential 

functions. The periodicity of the original function can then be estimated from the weights 

of the superposition, as we shall explain in a later section.  

 We will start our discussion with an example. The following Mathematica 7 code 

uses a discrete Fourier transform to find the periodicity of our simple sine function with 

10% white noise as depicted in Figure 7. 

 

 

Notice that the output gives the correct period. Chapter III of our thesis boils down to 

explaining how and why the above code snippet works.  

 Before we can talk more about discrete Fourier transforms, we must define what 

Fourier series are and discuss what kind of functions can be expanded as Fourier series. 

 
Overview and Preliminaries 

Definition of Fourier Series 

 Suppose a function 

€ 

f x( )  has the period 

€ 

2τ  and can be expanded as 

€ 

f x( ) =
a0
2

+ an cos
πn
τ
x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + bn sin

πn
τ
x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

n=1

∞

∑ ,    [III.1] 

where 

€ 

an, bn  are constants. We call this expansion the Fourier series for 

€ 

f x( ) . With an 

appropriate substitution of variables, 

€ 

x =
τ
π
t , we can transform [III.1] into a function of 

In[1]:= data � Table�Sin�x� � RandomReal���0.1, 0.1��, �x, 0, 2 Pi, 2 Pi�50��;
f � Rest�Abs�Fourier�data���;
pos � Position�f, Max�f����1, 1��;
2 Pi�pos

Out[4]= 2 Π
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periodicity 

€ 

2π , and vice versa. Thus, from hereon out, we shall assume that all our 

functions are periodic on an interval of 

€ 

2π , 

€ 

0,2π[ ] , whence [III.1] becomes simply 

€ 

f x( ) =
a0
2

+ an cosnx + bn sinnx( )
n=1

∞

∑ .     [III.2] 

We will also assume that all such functions are integrable, unless specified otherwise; we 

require this to calculate our Fourier coefficients, 

€ 

an, bn , in the next section. 

 Using Euler's formula, 

€ 

eix = cos x + isin x , we can rewrite our Fourier series in 

terms of the exponential basis, 

€ 

einx{ }, as follows: 

€ 

f x( ) = cne
inx

n=−∞

∞

∑ , cn =

1
2
an − ibn( ) , n > 0,
1
2
a0 , n = 0,

1
2
a−n + ib−n( ) , n < 0.

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

   [III.3] 

 For some applications, such as determining the maximum mode of a frequency 

spectrum, it is easier to work with [III.3]. In our opinion, however, many properties of 

Fourier series are more intuitively established using [III.2], since complex functions are 

harder to visualize. We will thus be alternating between the two representations. 

Calculating Fourier Coefficients 

 To calculate the Fourier coefficients, 

€ 

an, bn , we will exploit the orthogonality of 

the trigonometric basis. An infinite collection of functions 

€ 

ϕi{ } is said to be orthogonal 

provided that the following conditions are satisfied, where 

€ 

i, j  are non-negative integers 

such that 

€ 

i ≠ j  and the symbol 

€ 

*  denotes the complex conjugate, 
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€ 

ϕi x( )ϕ j
* x( )dx

0

2π

∫ = 0

and

ϕi x( )ϕi
* x( )dx

0

2π

∫ ≠ 0.

       [III.4] 

 

Proposition 1: The trigonometric basis,   

€ 

1, cos x, sin x, cos2x, sin2x,…{ }, is orthogonal. 

 Proof: For any integer 

€ 

n ≠ 0 , we have 

€ 

cosnx dx = 0
0

2π

∫  and 

€ 

sinnx dx = 0
0

2π

∫ . We 

observe the following,  

€ 

cos2 nx dx
0

2π

∫ =
1+ 2cosnx

2
dx

0

2π

∫ = π,

sin2 nx dx
0

2π

∫ =
1− 2cosnx

2
dx

0

2π

∫ = π.

     [III.5] 

Moreover, for another integer 

€ 

m ≠ n , we have 

€ 

cos nx cos mx dx
0

2π

∫ =
1
2

cos n +m( )x + cos n −m( )x[ ]dx
0

2π

∫ = 0,

sin nx sin mx dx
0

2π

∫ =
1
2

cos n −m( )x − cos n +m( )x[ ]dx
0

2π

∫ = 0,

sin nx cos mx dx
0

2π

∫ =
1
2

sin n +m( )x + sin n −m( )x[ ]dx
0

2π

∫ = 0.

 [III.6] 

This completes the proof. � 

  

Corollary 1: The exponential basis, 

€ 

einx{ }, is orthogonal.  

 Proof: Since 

€ 

einx = cosnx + isinnx , this follows from Proposition 1. � 
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 To find 

€ 

a0, we integrate both sides of [III.2] over the interval 

€ 

0,2π[ ] . We obtain 

€ 

f x( )dx
0

2π

∫ =
a0
2

dx + an cosnx dx
0

2π

∫ + bn sinnx dx
0

2π

∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n=1

∞

∑
0

2π

∫

= πa0 .
  [III.7] 

To find 

€ 

am  (resp. 

€ 

bm ), 

€ 

m > 0, we return to our modified equation [III.1] and multiply 

both sides by 

€ 

cosmx  (resp. 

€ 

sinmx ), and integrate as before. From Proposition 1, we 

obtain 

€ 

f x( )cosmx dx
0

2π

∫ =
a0
2

cosmx dx
0

2π

∫

+ an cosnx cosmx dx
0

2π

∫
⎛ 

⎝ 
⎜ 

n=1

∞

∑

+ bn sinnx cosmx dx
0

2π

∫
⎞ 

⎠ 
⎟ 

= am cos2mx dx
0

2π

∫ = amπ,

f x( )sinmx dx
0

2π

∫ =
a0
2

sinmx dx
0

2π

∫

+ an cosnx sinmx dx
0

2π

∫
⎛ 

⎝ 
⎜ 

n=1

∞

∑

+ bn sinnx sinmx dx
0

2π

∫
⎞ 

⎠ 
⎟ 

= bm sin2mx dx
0

2π

∫ = bmπ.

   [III.8] 

The complex Fourier coefficients, 

€ 

cn , are determined similarly, 

€ 

cn =
1
2π

f x( )e− inxdx
0

2π

∫ .      [III.9] 
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Convergence of Fourier Series 

Criterion for the Convergence of Fourier Series 
 
 Now that we know what a Fourier series is, we may tackle the question of what 

functions have Fourier series expansions, and in particular, whether one exists for the 

model of our reflectance spectrum, [II.14]. This leads to the criterion for the convergence 

of Fourier series, which obliges us to introduce some new vocabulary. First, we state the 

theorem, then, we will provide the definitions.  

 

Main Theorem: The Fourier series of a function 

€ 

f x( )  that is smooth on 

€ 

0,2π[ ]  converges 

absolutely and uniformly to 

€ 

f x( )  for all values of 

€ 

x ∈ 0,2π( ) .  

 

 We say that a function is smooth on an interval if the function is everywhere 

differentiable. It is easy to see that every smooth function is continuous. By absolute and 

uniform convergence, we mean the usual definitions found in introductory analysis 

textbooks, or more intuitively, that our original function can be approximated to arbitrary 

closeness by taking only a finite number of terms from its Fourier expansion. 

 Our model for the reflectance spectrum, [II.14], satisfies the conditions of our 

Main Theorem if we remember the physical constraint 

€ 

rxy ∈ 0,1( ) . Expression [II.14] can 

be made to have a period of 

€ 

2π  by an appropriate substitution of variables as was done 

for [III.1] and is everywhere differentiable by [II.15]. All that remains is to prove our 

Main Theorem.  

 We shall follow Tolstov's outline of proof, but rearranging, subtracting, and 

adding material as we think is best for our application, which does not require all the 
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machinery he develops (Tolstov 1976, 66-82). Our strategy will be to find an integral 

expression for the first 

€ 

k  terms of a Fourier series, denoted by 

€ 

Sk x( ) , and then to use this 

expression to prove that equality holds in [III.1] for a smooth function 

€ 

f x( ) . We will 

next demonstrate the absolute and uniform convergence of the Fourier series, and this 

will complete our proof.   

Formula for the Sum of Cosines 

 We begin by proving a lemma and noting a corollary. 

 

Lemma 1: 

  

€ 

1
2

+ cos x + cos2x ++ cosnx =
sin x n +

1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2sin x
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

.  

 Proof: Let 
  

€ 

S =
1
2

+ cos x + cos2x ++ cosnx . It follows that 

  

€ 

2S sin x
2

= sin x
2

+ 2cos x sin x
2

+ 2cos2x sin x
2

++ 2cosnx sin x
2
. [III.10] 

Applying the trigonometric identity 

€ 

2cosα sinβ = sin α + β( ) − sin α − β( ) , the right hand 

side of [III.10] becomes  

  

€ 

sin x
2

+ sin 3x
2
− sin x

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + sin 5x

2
− sin 3x

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

+ sin x n +
1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ − sin x n − 1

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= sin x n +
1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

  [III.11] 

Dividing both sides of [III.10] by 

€ 

2sin x
2

, we obtain our desired identity. � 
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Corollary 2: The following identity holds, 

€ 

1
π

sin x n +
1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2sin x
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 0

2π

∫ dx =1. 

 Proof: From Lemma 1, we have 

  

€ 

1
π

sin x n +
1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2sin x
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 0

2π

∫ dx =
1
π

1
2

+ cos x + cos2x ++ cosnx
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

2π

∫ dx

=
1
π

1
2
dx

0

2π

∫ ++
1
π

cosnxdx
0

2π

∫

=
1
π

1
2
dx

0

2π

∫ =1.

 [III.12] 

Note that the integral of 

€ 

cosnx  over 

€ 

0,2π[ ]  vanishes for any nonzero integer 

€ 

n  because 

we are working with a function of even symmetry on the interval. � 

 

Partial Sum of a Fourier Series 

 Suppose we take only the first 

€ 

k  terms of a Fourier series, 

€ 

Sk x( ) =
a0
2

+ an cosnx + bn sinnx( )
n=1

k

∑ .     [III.13] 

Substituting the expressions for our Fourier coefficients from [III.7] and [III.8], we obtain 

€ 

Sk x( ) =
1
2π

f t( )dt
0

2π

∫ +

1
π

f t( )cosntdt
0

2π

∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ cosnx + f t( )sinntdt

0

2π

∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ sinnx

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

n=1

k

∑

=
1
π

f t( )
0

2π

∫ 1
2

+ cosnt cosnx + sinnt sinnx( )
n=1

k

∑
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dt

=
1
π

f t( )
0

2π

∫ 1
2

+ cos
n=1

k

∑ n t − x( )[ ]
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
dt.

 [III.14] 
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Lemma 1 then allows us to write 

€ 

Sk x( ) =
1
π

f t( )
0

2π

∫ 1
2

+ cos
n=1

k

∑ n t − x( )[ ]
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
dt

=
1
π

f t( )
0

2π

∫
sin t − x( ) k +

1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2sin t − x
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

dt.

    [III.15] 

To simplify our notation, we set 

€ 

u = t − x  and notice that both 

€ 

f t( ) = f x + u( )  and 

€ 

sin u k +
1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2sin u
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

 have a period of 

€ 

2π , whence their product also has a period of 

€ 

2π . This 

means that 

€ 

Sk x( )  will have a fixed value for fixed 

€ 

k  as long as our integral is taken over 

an interval of length 

€ 

2π . Therefore, 

€ 

Sk x( ) =
1
π

f x + u( )
sin u k +

1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2sin u
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

du
0

2π

∫ .    [III.16] 

We call [III.16] the integral formula for the partial sum of a Fourier series. Expression 

[III.16] will assist in proving that 

€ 

lim
k→∞

Sk x( ) = f x( ). 

Pointwise and Uniform Convergence of a Fourier Series 

 We are now in a position to prove that 

€ 

f x( )  can be approximated on 

€ 

0,2π( )  by 

taking the first 

€ 

k  terms of its Fourier series. We will show the pointwise convergence of 

the series and then prove uniform and absolute convergence, which will allow us to say 

with certainty that for all 

€ 

ε > 0 , there exists a positive 

€ 

k  such that 

€ 

Sk x( ) − f x( ) < ε  on 

the appropriate interval. We start with some lemmas. 
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Lemma 2: Let 

€ 

f x( )  be continuous on 

€ 

a,b[ ] . Then, for all 

€ 

ε > 0 , there exists a 

continuous, piecewise smooth function 

€ 

g x( )  such that 

€ 

f x( ) − g x( ) < ε , 

€ 

x ∈ a,b[ ] . 

 Proof: Let 

€ 

ε > 0 . Because 

€ 

a,b[ ]  is closed and bounded, 

€ 

f x( )  is uniformly 

continuous on the interval. Thus, there exists 

€ 

δ > 0  such that 

€ 

x − y < δ  implies 

€ 

f x( ) − f y( ) <
ε
2

. Choose a partition 

€ 

xi{ }
0

n
 of 

€ 

a,b[ ]  such that 

€ 

xi+1 − xi < δ . Define a 

function 

€ 

g x( )  on 

€ 

a,b[ ]  such that 

€ 

g x( ) =
f xi+1( ) − f xi( )

xi+1 − xi
x − xi( ) + f xi( ) on each 

subinterval 

€ 

xi,xi+1[ ]. We note that 

€ 

g x( )  is a continuous, piecewise smooth function. 

Moreover, 

€ 

f x( ) − g x( ) = f x( ) −
f xi+1( ) − f xi( )

xi+1 − xi
x − xi( ) + f xi( )

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

≤ f x( ) − f xi( ) + −
f xi+1( ) − f xi( )

xi+1 − xi
x − xi( )

<
ε
2

+
ε /2
δ
⋅ δ = ε.

  [III.17] 

This completes the proof. � 

 

Lemma 3: Let 

€ 

f x( )  be continuous on 

€ 

a,b[ ] . Then, for all 

€ 

ε > 0 , there exists a 

continuous, piecewise smooth function 

€ 

g x( )  such that 

€ 

f x( ) − g x( )
a

b

∫ dx < ε . 

 Proof: From Lemma 2, we know there exists a continuous, piecewise smooth 

function 

€ 

g x( )  such that 

€ 

f x( ) − g x( ) <
ε

b − a
. It follows that 

€ 

f x( ) − g x( )
a

b

∫ dx <
ε

b − aa

b

∫ dx = ε . � 
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Lemma 4: Let 

€ 

f x( )  be continuous on 

€ 

a,b[ ] . Then, 

€ 

lim
p→∞

f x( )sin pxdx
a

b

∫ = 0 . 

 Proof: Let 

€ 

ε > 0 . According to Lemma 3, there exists a continuous, piecewise 

smooth function 

€ 

g x( )  such that 

€ 

f x( ) − g x( )
a

b

∫ dx <
ε
2

. We observe 

€ 

f x( )sin pxdx
a

b

∫ = f x( ) − g x( ) + g x( )[ ]sin pxdx
a

b

∫

≤ f x( ) − g x( ) dx + g x( )sin pxdx
a

b

∫ .
a

b

∫
  [III.18] 

Note that 

€ 

g x( )sin pxdx
a

b

∫ = −
1
p
g x( )cos px[ ]a

b
−
1
p

g' x( )sin pxdx
a

b

∫ . Thus, for sufficiently 

large 

€ 

p , 

€ 

g' x( )sin pxdx
a

b

∫ <
ε
2

. This means that 

€ 

f x( )sin pxdx
a

b

∫ < ε , or in other words, 

€ 

lim
p→∞

f x( )sin pxdx
a

b

∫ = 0
 
is true. � 

 

Theorem 1: Let 

€ 

f x( )  be a smooth function on 

€ 

0,2π[ ] . Then, 

€ 

lim
k→∞

Sk x( ) = f x( ) is true for 

all 

€ 

x ∈ 0,2π[ ] . 

 Proof: We want to show that 

€ 

lim
k→∞

1
π

f x + u( )
sin u k +

1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2sin u
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

du
0

2π

∫ = f x( ). The 

identity established in Corollary 2 gives 

€ 

f x( ) =
1
π

f x( )
sin u k +

1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2sin u
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

du
0

2π

∫ , which 

reduces our proof to verifying that 
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€ 

lim
k→∞

1
π

f x + u( ) − f x( )[ ]
sin u k +

1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2sin u
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

du
0

2π

∫ = 0.   [III.19] 

First, define 

€ 

Φ u( ) =
f x + u( ) − f x( )

2sin u
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

=
f x + u( ) − f x( )

u
⋅

u

2sin u
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

 and set 

€ 

Φ 0( ) = lim
u→ 0

Φ u( ) . 

We know that 

€ 

lim
u→ 0

f x + u( ) − f x( )
u

 exists because 

€ 

f x( )  is smooth on 

€ 

0,2π[ ] . Also, 

€ 

lim
u→ 0

u
2sinu

=
1
2

. It follows that 

€ 

Φ u( )  continuous. According to Lemma 4, we have that

€ 

lim
k→∞

1
π

Φ u( )sin u k +
1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ du

0

2π

∫ = 0 , which verifies [III.19].  � 

 

 Now that we have demonstrated pointwise convergence, we proceed with 

establishing absolute and uniform convergence. Suppose we are given a smooth function 

€ 

f x( )  on 

€ 

0,2π[ ]  that has a Fourier series expansion of the form [III.2]. We consider the 

following lemmas. 

 

Lemma 5: The series 

€ 

an
2 + bn

2( )
n=1

∞

∑  converges, where 

€ 

an,bn  are the Fourier coefficients as 

defined in [III.8]. 

 Proof: Switching to the complex representation of the Fourier series in [III.3] and 

keeping in mind the orthogonality of exponential functions as shown in Corollary 1, we 

observe 
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€ 

0 ≤ f x( ) − cne
inx

n=−∞

∞

∑
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2

dx
0

2π

∫

= f 2 x( )dx
0

2π

∫ − 2 cn
n=−∞

∞

∑ f x( )einxdx
0

2π

∫ + cn
2

n=−∞

∞

∑ e2inxdx
0

2π

∫

= f 2 x( )dx
0

2π

∫ − 2 cn
n=−∞

∞

∑ f x( )einxdx
0

2π

∫

≤ f 2 x( )dx
0

2π

∫ − cn
2

n=−∞

∞

∑ .

  [III.20] 

This implies 

€ 

f 2 x( )dx
−π

π

∫ ≥
a0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+ an
2 + bn

2( )
n=1

∞

∑ , whence 

€ 

an
2 + bn

2( )
n=1

∞

∑  converges.  � 

 

Lemma 6: The series 

€ 

an + bn( )
n=1

∞

∑  converges, where 

€ 

an,bn  are the Fourier coefficients as 

defined in [III.8]. 

 Proof: Using integration by parts, we have 

€ 

an = f x( )cosnxdx
0

2π

∫

=
1
πn

f x( )sinnx[ ]0
2π
−
1
πn

f ' x( )sinnxdx
0

2π

∫

= −
1
πn

f ' x( )sinnxdx
0

2π

∫ = −
b'n
n
,

bn = f x( )sinnxdx
0

2π

∫

= −
1
πn

f x( )cosnx[ ]0
2π

+
1
πn

f ' x( )cosnxdx
0

2π

∫

=
1
πn

f ' x( )cosnxdx
0

2π

∫ =
a'n
n
,

   [III.21] 

where 

€ 

a'n ,b'n  are the Fourier coefficients for 

€ 

f ' x( ) . Note that 
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€ 

a'n −
1
n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

= a'n
2 −
2 a'n
n

+
1
n2

≥ 0,

b'n −
1
n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

= b'n
2 −
2b'n
n

+
1
n2

≥ 0.
     [III.22] 

Algebraic manipulation of [III.22] gives 

€ 

a'n
n

+
b'n
n

≤
1
2
a'n
2 +b'n

2( ) +
1
n2

. The series 

€ 

a'n
2 +b'n

2( )
n=1

∞

∑  converges by Lemma 5. 

€ 

1
n2n=1

∞

∑  converges as well because it is a geometric 

series. It follows that 

€ 

a'n
n

+
b'n
n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n=1

∞

∑  converges. Substituting [III.21] gives that 

€ 

an + bn( )
n=1

∞

∑  converges, which completes the proof. � 

 

Theorem 2: Let 

€ 

f x( )  be a continuous, smooth function on 

€ 

0,2π[ ] . Then, the Fourier 

series of 

€ 

f x( )  converges absolutely and uniformly. 

 Proof: It suffices to show that the series 

€ 

an cosnx + bn sinnx( )
n=1

∞

∑  converges. 

Noting that the trigonometric functions are bounded below by 

€ 

−1 and above by 

€ 

1, we 

observe 

€ 

an cosnx + bn sinnx ≤ an + bn . Therefore, our result follows from Lemma 6. � 

 

Main Theorem: The Fourier series of a smooth function 

€ 

f x( )  that is continuous on 

€ 

0,2π[ ]  converges absolutely and uniformly to 

€ 

f x( )  for all values of 

€ 

x ∈ 0,2π( ) .  

 Proof: Our Main Theorem is an immediate consequence of Theorems 1 and 2. � 
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DFT and the Cooley-Tukey FFT Algorithm 

 We will not discuss the theory behind discrete Fourier transforms (DFTs) with the 

same rigor as we discussed the convergence of Fourier series, seeing as how they are 

approximations thereof. Instead, we will focus on their applications and properties, 

particularly those that are directly relevant to ascertaining the periodicity 

€ 

ρ  of our 

reflectance spectrum. We rely primarily on Sauer and Vogel, but have made alterations 

and clarifications to their presentations (Sauer 2006, 475-477; Vogel 2002, 64-68). 

Discrete Fourier Transform 

 Suppose that we can only sample a smooth function 

€ 

f x( )  at a finite sequence of 

points 

€ 

x j{ }
0

n−1
 on 

€ 

0,2π[ ]  satisfying 

€ 

x j = j 2π
n

, where 

€ 

n  is even. In this case, our 

discretization of 

€ 

f x( )  in vector notation is 

  

€ 

f =

f0
f1

fn−1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

, f j = f x j( ).      [III.23] 

 Because we only have 

€ 

n  data points, we cannot find a unique, infinite Fourier 

series to fit our data. In fact, infinitely many distinct infinite Fourier series will fit our 

sampling. To see why, add to 

€ 

f x( )  another continuous, smooth function 

€ 

g x( )  that is not 

everywhere zero but is zero at each 

€ 

x j . The Fourier series expansions for 

€ 

f x( ) , 

€ 

g x( ) , 

and 

€ 

f x( ) + g x( )  are obviously distinct, but each fits the sequence of points 

€ 

f x j( ){ }
0

n−1

. 

This phenomenon is known as aliasing. 

 Instead, we seek an approximate, finite Fourier series of the form  
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€ 

f j = cke
ikx j

k=0

n−1

∑ ,         [III.24] 

where the 

€ 

ck 's are constants yet to be determined. Taking advantage of the equidistant 

spacing of our 

€ 

x j 's, we can rewrite [III.24] as 

€ 

f j = cke
2πikj / n

k=0

n−1

∑ .       [III.25] 

To simplify our notation further, let 

€ 

ω =ω n = e2πi / n  and 

€ 

ωm = e2πi /m  for any nonzero 

integer 

€ 

m . Expression [III.25] becomes 

€ 

f j = ckω
jk

k=0

n−1

∑ .
        

[III.26] 

Equation [III.26] is known as the discrete Fourier transform (DFT) of 

€ 

f x( )  on 

€ 

n  points.  

 To see how our transform can give the periodicity of the original function, it is 

helpful to write [III.26] in matrix notation. 

  

€ 

F c f
1 1 1  1
1 ω ω 2  ω n−1

1 ω 2 ω 4  ω 2 n−1( )

    
1 ω n−1 ω 2 n−1( )  ω n−1( )2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

c0
c1
c2

cn−1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=

f0
f1
f2

fn−1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

.  [III.27] 

 The matrix 

€ 

F  is referred to as the Fourier matrix of order 

€ 

n . Observe that the 

€ 

k th 

column of 

€ 

F , called a Fourier basis vector, is merely the discretization of the function 

€ 

ω k  

over the interval 

€ 

0,n[ ]. The periodicity of 

€ 

ω k is 

€ 

n /k . We are expressing 

€ 

f  as a linear 

superposition of the Fourier basis vectors with weights 

€ 

ck . Therefore, the periodicity of 

€ 

f  

can be approximated from that of the basis vector with the greatest weight by multiplying 

the periodicity of said vector by 

€ 

2π
n

 to return to the original domain over which 

€ 

f x( )  



 

 

34 

was sampled. Note that 

€ 

ck  might take on complex values, so we must consider 

€ 

ck  to 

determine the greatest weight. 

 So far, we have assumed that 

€ 

f x( )  has been sampled on the interval 

€ 

0,2π[ ] . We 

can, in fact, perform a DFT to find the periodicity of 

€ 

f x( )  sampled on any generic 

interval 

€ 

a,b[ ] . We simply treat the function as having been sampled on 

€ 

0,2π[ ] , and then 

after determining the vector with the greatest weight, multiply the periodicity of said 

vector by 

€ 

b − a
n

. 

Inverse Discrete Fourier Transform 

 We now turn our discussion to how to calculate the weights, 

€ 

ck . To calculate 

€ 

ck , 

we use the inverse discrete Fourier transform (IDFT),  

€ 

ck =
1
n

f jω
−kj

j=0

n−1

∑ .       [III.28] 

 Equation [III.28] follows from a very convenient property of exponential 

functions. In Corollary 1, we proved orthogonality for exponential functions over the 

interval 

€ 

0,2π[ ] . It can be shown that exponential functions are also orthogonal over a 

finite series of points 

€ 

x j{ }
0

n−1
 on 

€ 

0,2π[ ]  satisfying 

€ 

x j = j 2π
n

, where 

€ 

n  is even; we 

simply replace the integral with a sum (Arfken 914).  

 Consider the matrix 

€ 

F*F , where 

€ 

F*  is the matrix whose elements are the complex 

conjugate of those of 

€ 

F* . Denote the element in the 

€ 

j th row and 

€ 

k th column by 

€ 

F*F( ) jk . 

We observe that 
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€ 

F*F( ) jk = ω− jhω kh

h=0

n−1

∑

= e2πih k− j( ) / n

h=0

n−1

∑

= nδ jk,

      [III.29] 

whence 

€ 

F*F = nI, where 

€ 

I denotes the 

€ 

n × n  identity matrix. Thus, we have that 

€ 

F −1 =
1
n
F *, which allows us to rewrite [III.27] as 

€ 

c =
1
n
F*f  or [III.28]. 

 Because we are interested only in comparing 

€ 

ck  for our application, we may omit 

multiplication by 

€ 

1
n

 from [III.28] and treat our IDFT as 

€ 

ck = f jω
−kj

j=0

n−1

∑ .       [III.30] 

Our expression in [III.30] has the advantage of eliminating some unnecessary floating-

point operations in computer implementations of the IDFT.  

Fast Fourier Transform Algorithm of Cooley-Tukey 

 If 

€ 

n , the number of points sampled, is a power of 2, we can reduce the number of 

multiplications required to calculate [III.27] from 

€ 

n2 to 

€ 

n log2 n  by exploiting the 

symmetry of the Fourier matrix, 

€ 

F . 

 Returning to [III.28], let 

€ 

m =
n
2

 and observe that  

€ 

f j = ckω n
jk

k=0

n−1

∑ = c2kω n
2 jk + c2k+1ω n

2 j+1( )k( )
k=0

m−1

∑

= c2kωm
jk

k=0

m−1

∑ +ωm
k c2k+1ωm

jk

k=0

m−1

∑ .     
[III.31] 
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 Define 

€ 

˜ f j
even = c2kωm

jk

k =0

m−1

∑  and 

€ 

˜ f j
odd = c2k +1ωm

jk

j =0

m−1

∑ . We can repeat the procedure in 

[III.31] on each of 

€ 

˜ f j
even  and 

€ 

˜ f j
odd , and continue on recursively until we can no longer do 

so. At the bottom level, we will have 

€ 

n  single-point DFTs, the solutions to which can be 

back-substituted until we reach the top. 

 At each level of our recursive procedure, notice that 

€ 

ωm
km = e2πi =1, 

€ 

k ∈Ζ . This 

leads to the following relationships, where 

€ 

0 ≤ ˜ j < m . 

€ 

˜ f m + ˜ j 
even = c2k ωm

km( )ωm
˜ j k = ˜ f ̃  j 

even

k =0

m−1

∑ ,

˜ f m + ˜ j 
odd = c2k ωm

km( )ωm
˜ j k = ˜ f ̃  j 

odd

k =0

m−1

∑ .
     [III.32] 

Note that 

€ 

ω n
m = eπi = −1 implies 

€ 

ω n
m + ˜ j = −ω n

˜ j . Therefore, [III.31] and [III.32] lead to 

€ 

f ˜ j = ˜ f ̃  j 
even +ω n

˜ j ˜ f ̃  j 
odd ,

fm + ˜ j = ˜ f ̃  j 
even −ω n

˜ j ˜ f ̃  j 
odd .

      [III.33] 

 We now have all the essential elements of the fast Fourier transform (FFT) 

algorithm of Cooley-Tukey. A pseudocode implementation of the algorithm will assist 

comprehension of the abstract mathematical description just given, and so we will 

conclude the chapter with such an implementation. 

Pseudocode for the FFT Algorithm 

 FFT(data[

€ 

n], trans[

€ 

n]) provides a recursive version of the Cooley-Tukey fast 

Fourier transform algorithm. The vector of sampled values of 

€ 

f x( )  is denoted by data[] 

and is assumed to have length 

€ 

n , where 

€ 

n  is a power of 2. Results are stored in the 

transform vector, trans[]. To refer to the 

€ 

j th element of data[], we write data[

€ 

j ]. Value 

assignment will be denoted by 

€ 

:=, such that 

€ 

x := 4  means 

€ 

x  now has the value 4. To 
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declare a new vector of length 

€ 

m , we write vectorname[

€ 

m ]. The construction of our 

conditional statements and loops follow common conventions. 

 

  FFT(data[], trans[]) 
   if (

€ 

n =1), let trans[0] 

€ 

:= data[0]; 
   else, do the following 

    

€ 

ω n := e
2πi / n; 

    evenIndices[n/2]; 
    evenTrans[n/2]; 
    oddIndices[n/2]; 
    oddTrans[n/2]; 

    for (

€ 

j := 0; j <
n
2
; j + +)  

     evenIndices[

€ 

j] 

€ 

:= data[

€ 

2 j];  
     oddIndices[

€ 

j] 

€ 

:= data[

€ 

2 j +1];  
    FFT(evenIndices[], evenTrans[]); 
    FFT(oddIndices[], oddTrans[

€ 

n]); 

   for (

€ 

j := 0; j <
n
2
; j + +) 

    trans[

€ 

j] 

€ 

:= evenTrans[

€ 

j] + 

€ 

ω n
j oddTrans[

€ 

j]; 

    trans[

€ 

j +
n
2
] 

€ 

:= evenTrans[

€ 

j] - 

€ 

ω n
j oddTrans[

€ 

j];
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CHAPTER IV  
 
 

PROOF OF CONCEPT AND FURTHER RESEARCH 
 
 

Plan of the Chapter 

 We will use data generated by Scientific Computing International's Film 

Wizard™ software to test the Cooley-Tukey FFT algorithm developed in the prior 

chapter. Film Wizard™ is a software package that can be used to calculate the reflection 

spectrum of a thin film or multilayer system. The software uses a database of previous 

professional measurements and the Fresnel reflection equations to generate spectra. 

Because the Film Wizard™ spectra do not contain noise, various degrees of white noise 

were added to the calculated spectra using Wolfram Mathematica 7 to emulate the noise 

we might expect from our apparatus. We define white noise as a noise parameter 

independent of wavelength and with identical amplitude across the reflectance spectrum.  

 The optical properties of Shipley S1813 photoresist for light above 

€ 

500 nm are 

well approximated by those of SiO2. We will use Al for our substrate in all trials unless 

otherwise noted. As Figure 8 demonstrates, using different substrates does not affect the 

periodicity of the reflectance spectrum provided that the substrates in question exhibit 

negligible dispersion of light; therefore, our choice of substrate is irrelevant for the 

purposes of testing our FFT algorithm as long as this criterion is met.
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 Our simulated reflectance spectra will consist of values taken at 

€ 

n = 256 

equidistant points in the domain, which starts at photon energy 

€ 

1.2398 eV  (

€ 

1000 nm) and 

ends at 

€ 

2.4796 eV (

€ 

500 nm). We have chosen 

€ 

n = 256 due to the fact that this number 

will meet our accuracy and time constraints for the FFT algorithm execution, as 

mentioned in the introduction, and also give the best trade-off between accuracy. The 

Ocean Optics HR2000+ES Spectrometer of our exposure tool in fact provides 1138 

equidistant data points over the domain, spaced at 

€ 

0.439 nm, on which we can perform a 

moving average to reduce noise and compress our total number of data points, using 

spline interpolations if necessary, to conform to the simulated model given by Film 

Wizard™. For a discussion of spline interpolations, refer to Schatzman. Table 1 

illustrates how 

€ 

n ≥ 512 violates our time constraint of 1 ms and how 

€ 

n ≤128  does not 

give optimum accuracy. Recall that 

€ 

n  must always be a power of 2 for the FFT algorithm 

Figure 8. Substrates and Reflectance. Although the amplitude and constant component of the 
reflectance spectra are affected by changing the substrate, the spacing of extrema remains unaltered. 
Hence, the above spectra exhibit the same periodicity and predict the same thickness for our photoresist. 
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given in Chapter III. For the trials below, film thickness was set at 

€ 

12000 nm and the 

angle of incident light was set at 

€ 

30°. 100 trials were taken for each value of 

€ 

n . 

Table 1. Finding an Optimal Number of Data Points. 
 

Number of  
Data Points (

€ 

n) 
Average Execution 

Time (μs) 
Measured Thickness 

(nm) 
Percent Error 

(%) 

64 78.82 10963.10 8.64 

128 191.36 12424.90 3.54 

256 468.45 12059.40 0.495 

512 1128.40 12059.40 0.495 

 
 Concerning the method of our data analysis, reflectance data will be inputted to a 

C++ implementation of the aforementioned FFT algorithm via a single-column plain text 

file, a snippet of which is shown in Figure 9.  

 

 

  

  

Figure 9. Sample Data File. The single-
column text file RefData.txt stores 
reflectance spectrum percentage values. 
The domain is implied by the way in 
which we sample these values and so is 
not explicitly stated in the file. 
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 As mentioned in Chapter I, during our data analysis we will vary the thickness of 

the thin film, the angle of incident light, and the intensity of white noise. The first section 

in this present chapter will state and explain the annotated C++ code used for the data 

analysis, while the analysis itself will occupy the second section alongside relevant 

discussions of certain optical components in our apparatus and suggested areas of further 

research. We will also provide some critiques of the utility of our simulations and 

preliminary measurements obtained by our exposure tool. 

 
Implementation of an FFT algorithm in C++ 

 For the sake of saving space, we omit portions of our source code that record 

calculation time and that facilitate file processing for data analysis, giving only those 

parts necessary to compute thin film thickness from a single input file. Many of our 

variables are hardcoded, so for the following C++ source, we have set the angle of 

incident light to 0 radians and the number of data points 

€ 

n  to 256; these values must be 

changed manually based on the data contained in RefData.txt. The reader, however, may 

choose to handle file input/output differently should he or she adapt the code. 

 
#include <iostream> 
#include <cstdio> 
#include <complex> 
#include <cmath> 
#include <fstream> 
#define PI 3.14159 
using namespace std; 
typedef complex<double> dcomp; 
 
/* FFT implements a recursive version of the Cooley-Tukey fast Fourier 
transform algorithm. The array of original values, data[], should not 
be modified. Results are stored in the transform array, trans[]. The 
integer value n refers to the size of both arrays, which must always be 
a power of 2. */ 
 
void FFT(const dcomp data[], dcomp trans[], int n); 
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/* FindMax is rather self-explanatory, except it works with the norms 
of complex values. Also, because we are analyzing a Fourier spectrum, 
the second half will be a repeat of the first half of the array, so we 
needn't worry about it. We only go up to n/2. The first entry of the 
array is the DC component of the frequency, which tells us nothing 
about the dominant periodicity, so we ignore it. */ 
 
int FindMax(dcomp array[], int n); 
 
int main() 
{ 
 ifstream refData("RefData.txt"); 
 int datumNum = 256;    // Datum in above file. 
 dcomp data[datumNum];   // Holds data. 
 dcomp trans[datumNum];   // Holds Fourier transform. 
 double angle = asin(sin(0)/1.45691); // Angle of refracted light   
 
 /* Read data in from an appropriate text file. */ 
 if(refData.good()) 
 { 
  int k = 0; 
  while(!refData.eof() && k < datumNum) 
  { 
   refData >> data[k]; 
   k++; 
  } 
 } 
 refData.close(); 
    
 /* Perform FFT. */ 
 FFT(data, trans, datumNum); 
 int maxpos = FindMax(trans, datumNum); 
 
 /* Compute Thin Film Thickness with [I.17] */ 
 double thickness =  (1.98645 / pow(10., 25.)) / (1.45691 *   
     cos(angle) * datumNum / maxpos * 1.2398 /  
     datumNum * (1.602 / pow(10., 19.))) * 1 / 2; 
    
 cout << "Thin Film Thickness: " << thickness * pow(10.,9) << endl; 
} 
void FFT(const dcomp data[], dcomp trans[], int n)  
{ 
 if(n == 1) 
 { 
  trans[0] = data[0]; // The FFT of a single point is itself. 
 } 
 else 
 { 
  dcomp Wn = dcomp(cos(2 * PI / n), sin(2 * PI / n));  
   
  /* Split data by even and odd indices, then FFT both parts. */ 
  dcomp evenIndices[n/2]; 
  dcomp evenTrans[n/2]; 
  dcomp oddIndices[n/2]; 
  dcomp oddTrans[n/2]; 
   
 



 

 

43 

  for(int i = 0; i < n/2; i++) 
  { 
   evenIndices[i] = data[2*i]; 
   oddIndices[i] = data[2*i + 1]; 
  } 
   
  FFT(evenIndices, evenTrans, n/2); 
  FFT(oddIndices, oddTrans, n/2); 
  /* Construct the transform, using a recursive relationship. */ 
  for(int i = 0; i < n/2; i++) 
  { 
   trans[i] = evenTrans[i] + pow(Wn, i) * oddTrans[i]; 
   trans[i+n/2] = evenTrans[i] - pow(Wn, i) * oddTrans[i]; 
  }   
 } 
} 
 
int FindMax(dcomp array[], int n) 
{ 
 int max = 1; 
 double maxNorm = norm(array[1]); 
 for(int i = 1; i < n/2; i++)  
 { 
  if(maxNorm < norm(array[i + 1])) 
  { 
   max = i + 1; 
   maxNorm = norm(array[max]); 
  } 
 } 
 return max; 
} 

 
Analysis of Simulated Data 

Differing Film Thicknesses and Angles of Incident Light 

 We tested our algorithm with light incident at 

€ 

θa = 0,15°,30°  for thin film 

thicknesses 3000 nm, 6000 nm, 12000 nm. Our reason for choosing these angles is that 

they are good representatives for the angular spread in the focused light beam emitted by 

our exposure tool. Our chosen thicknesses represent a range we might expect from 

Shipley S1813 photoresist deposited on a non-flat substrate material. No white noise was 

included in these trials, since we wished to focus only on the effects of varying 

€ 

θa . Table 

2 displays our results. 
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Table 2. Differing Film Thicknesses and Angles of Incident Light. 

Angle 

€ 

θa = 0°  

€ 

θa =15°  

€ 

θa = 30° 

 
   

Calculated Thickness  
(Actual: 3000 nm) 

€ 

3089.18 nm 

€ 

3139.11nm 

€ 

2932.5 nm  

Percent Error 

€ 

2.97% 

€ 

4.64%  

€ 

2.25% 

    

Calculated Thickness  
(Actual: 6000 nm) 

€ 

6178.36 nm  

€ 

5929.43 nm 

€ 

6212.43 nm 

Percent Error 

€ 

2.97% 

€ 

1.18% 

€ 

3.54%  

    

Calculated Thickness  
(Actual: 12000 nm) 

€ 

12356.7 nm 

€ 

12207.7 nm 

€ 

12059.4 nm 

Percent Error 

€ 

2.97% 

€ 

1.73% 

€ 

0.495% 

 

 Our percent error in each trial is significantly less than the established goal of 6%.  

Accounting for a Conical Spread in Incident Light 

 To analyze the data collected by our exposure tool, we must consider the nature of 

our focused light beam. As illustrated by Figure 10, changing the angle of incidence 

appears to alter the periodicity of the reflectance spectrum as well as create a horizontal 

shift, which is not entirely compensated for by [II.18] due to the discrete nature of our 

FFT algorithm. 

 



 

 

45 

  

 The numerical aperture, 

€ 

NA, of the Mitutoyo 50x M Plan Apo Objective in our 

exposure tool is related to the maximum angle of incident light by the equation, 

€ 

NA = na sinθmax .         [III.1] 

We are given that 

€ 

NA = 0.55. Our ambient is air, so 

€ 

na =1 and 

€ 

θmax ≈ 33°. Thus, light 

will be conically incident upon the sample over an angular spread of 

€ 

33°.  

 One hypothetical approach to account for the conical distribution of incident light 

would be to take a discrete, weighted average over the cone to construct an appropriate 

reflectance spectrum. For example, suppose we discretize the cone into two partitions 

according to angle. The average angle of incident light for a 

€ 

33° cone is about 

€ 

23°, i.e., 

50% of the light is incident at less than the average angle. We could thus construct the 

reflectance spectrum by treating half of the emitted light at each photon energy or 

wavelength as incident at 

€ 

23° and the other half as incident at 

€ 

33°. In fact, we could 

construct two separate spectra, one for each angle of incidence, find the film thicknesses 
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Figure 10. Angle of Incidence and Reflectance The reflectance spectrum for 2100 nm layer of 
photoresist is shown for differing angles of incident light. Note that there is a horizontal shift in the 
reflectance in addition to a change in periodicity. 
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suggested by the spectra with our FFT algorithm, and then average the two values. Going 

a step further, we could split the cone into as many partitions according to angle as signal 

strength will permit, and extend this same procedure for calculating thickness. 

 Figure 10 presents a significant challenge to this hypothetical approach. It is not 

clear how, without knowing the reflectance percentage at a specified angle of incidence, 

we could construct an appropriate reflectance spectrum from the measured data. 

Consider, for instance, 

€ 

700 nm light incident on 2100 nm of photoresist on SiN. Looking 

at Figure 10, about 12% of incident light is reflected at 

€ 

11° and 

€ 

22°, 17% of incident 

light is reflected at 

€ 

0°, and 32% is incident at 

€ 

33°. Imagine an apparatus that emits light 

at only these four angles as follows: 40% is emitted at 

€ 

33°, 30% is emitted at 

€ 

22°, 20% 

is emitted at 

€ 

11°, and 10% is emitted at 

€ 

0°. Using the reflectance percentages given by 

Figure 10, we can predict that about 20.5% of the total light will be reflected. However, 

assume that we have no knowledge of the information contained in Figure 10; given only 

that 20.5% of the total light will be reflected, how are we then to deduce that 17% of our 

reflected light was originally incident at 

€ 

0°? Without knowing the reflectance 

percentages of light received at each of the four angles, such a calculation seems 

impossible. Our exposure tool does not preserve this vital information. 

  A suggested line of future research would be to approximate all light in the 

focused beam as incident at the average angle, 

€ 

23°. If our accuracy goal of less than 6% 

error in thickness calculations is still met, there will be no need to further investigate how 

to account for the conical spread of incident light. On the other hand, if our accuracy goal 

is not met, modifications to our apparatus may need to be considered. 
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 Also of concern is the loss of light inside the "Beam Shaping and Beam Steering" 

components of Figure 1, a more detailed view of which is displayed below in Figure 11. 

 
Figure 11. Beam Shaping and Beam Steering. The reflectance spectrum of the beam emitted by the 
halogen lamp is used to calculate film thickness, whereas the laser beam delivers an appropriate 
exposure dosage. The symbol D refers to the diameter of a lens, f to focal length, and s' to image 
distance. 
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 Subsequent research should study how light intensity at each wavelength or 

photon energy is diminished by the transmission coefficients of the various lenses and 

mirrors in our exposure tool. We may need to modify our apparatus to maximize the light 

throughput of our system. 

Noise Simulation 

 To simulate the noise expected in measurements obtained by our exposure tool, 

we originally planned to add white noise according to the following formula, 

€ 

noisy value = original 1+
rand %[ ]
original

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,    [IV.1] 

where 

€ 

rand %[ ]  generates a random value ranging from -% to +% and % refers to the 

specified percentage of white noise.  However, testing with 1000 trials indicated no effect 

on the accuracy of our FFT algorithm's thickness calculations even for noise percentages 

exceeding 350%. Therefore, we amended our noise model [IV.1] to 

€ 

noisy value = original 1+ rand %[ ]( ).     [IV.2] 

The advantage of [IV.2] is that it represents a hybrid model between shot noise and other 

sources of noise such as dark current and read noise. Dark current refers to the small 

electric current present in a photosensitive device in the absence of photonic stimulation. 

CCD read noise is the result of on-chip imperfections and features. Shot noise is directly 

proportional to the square root of the flux of our halogen lamp and is dependent on 

wavelength. Dark current and read noise, however, are independent of wavelength.  

 We fixed our film thickness at 6000 nm and our angle of incidence at 

€ 

15°, taking 

1000 trials at steps of 25% white noise. Figure 12 shows the probability of obtaining a 

thickness measurement within 6% of the actual value for a given intensity of noise. 
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 We demand that each measurement taken by our exposure tool has as close to a 

100% probability of acceptability as possible. Our white noise threshold is thus 

approximately 150%. Methods that use multiple measurements might be able to extend 

this threshold. It is, however, an open question as to whether noise levels will ever exceed 

150% and a possible subject of future research. 

Preliminary Data and Conclusion 

 Our proof of concept for our FFT algorithm holds for exposure tools capable of 

preserving information about the angle at which reflected light is received in relation to 

the photoresist. Accuracy and time constraints have been met for simulated systems that 

emit light at a single angle of incidence. Moreover, the FFT algorithm has proven robust 

enough to handle up to 150% white noise.  

 It remains to apply our results to assess the feasibility of using the FFT algorithm 

with our non-standard exposure tool. Modifications to the apparatus, and to the 

Figure 12. Probability of an Acceptable Measurement. The 
threshold of tolerable white noise intensity appears to be somewhere 
around 150%, however, we can extend this threshold by using previous 
measurements to assess the reasonableness of gathered data. 
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algorithm, may be necessary and are currently still a question of ongoing research. A 

preliminary reflectance spectrum obtained by our exposure device is shown in Figure 13. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The preliminary results show what appears to be an approximately uniform white 

noise distribution over the range 500 nm to 800 nm. For longer wavelengths, the noise 

levels increase significantly due to the lower halogen lamp intensity. Extrema are very 

clear from 500 nm to 800 nm. The next logical step in continuing research would be to 

format measurements for analysis by our FFT algorithm. Depending on the results from 

that study, other investigations, in particular the ones discussed during our data analysis, 

should be pursued.

Figure 13. Preliminary Data. Our preliminary spectrum was constructed from 
measured reflectance data using a moving average filter of 5 data points. The thickness 
of Shipley S1813 sampled here is unknown. 
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APPENDIX A 
 
 

PHOTORESIST DATA 
 
 

 The following pamphlet describes the properties of MICROPOSIT S1800 

SERIES PHOTO RESISTS used for our research.
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MICROPOSIT®

S1800® SERIES
PHOTO RESISTS

MICROPOSIT S1800 SERIES PHOTO RESISTS are positive
photoresist systems engineered to satisfy the microelectronics
industry's requirements for advanced IC device fabrication. The
system has been engineered using a toxicologically safer alter-
native casting solvent to the ethylene glycol derived ether
acetates. The dyed photoresist versions are recommended to
minimize notching and maintain linewidth control when process-
ing on highly reflective substrates.

MICROPOSIT S1800 SERIES PHOTO RESISTS
FEATURE:

Product Assurance
! Lot-to-lot consistency through state-of-the-art physical,

chemical and functional testing
! Filtered to 0.2 µm absolute

Coating Properties
! 1Cellosolve® Acetate and xylene free
! Striation-free coatings
! Excellent adhesion
! Excellent coating uniformity
! A variety of standard viscosities are available for

single-layer processing
Exposure Properties
! Optimized for G-Line exposure
! Effective for broad-band exposure
! Reflective notch and linewidth control using dyed versions

Develop Properties
! Optimized for use with the MICROPOSIT® MF®-319

Metal-lon-Free DEVELOPER family
! Compatible with Metal-lon-Bearing MICROPOSIT

DEVELOPERS

Removal Property
! Residue-free photoresist removal using standard

MICROPOSIT REMOVERS
High Resolution Process Parameters

(Refer to Figure 1)
Substrate: Polysilicon
Photoresist: MICROPOSIT®S1813® PHOTO RESIST
Coat: 12,300Å
Softbake: 115°C/60 sec. Hotplate
Exposure: Nikon 1505 G6E, G-Line (0.54 NA), 150 mJ/cm2

Develop: MICROPOSIT® MF®-321 DEVELOPER
15 + 50 sec. Double Spray Puddle (DSP) @ 21°C

1Registered trademark of Union Carbide Corporation

0.80 µm Lines/Spaces

0.70 µm Lines/Spaces

0.60 µm Lines/Spaces

0.50 µm Lines/Spaces

0.48 µm Lines/Spaces

Masking Linearity SEMS
Figure 1.

MPR S1800
1093
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Page 2

Substrate Preparation

MICROPOSIT S1800 SERIES PHOTO RESISTS
work well with the hexamethyldisilazane
based MICROPOSIT PRIMERS. Concentrated
MICROPOSIT PRIMER is recommended when
vacuum vapor priming. Diluted PRIMER is recom-
mended for liquid phase priming applications.

Coat
MICROPOSIT S1800 SERIES PHOTO RESISTS
provide uniform defect-free coatings over a wide
range of film thicknesses. The film thickness versus
spin speed plots displayed in Figures 1 and 2 provide
the information required to properly select
a MICROPOSIT S1800 PHOTO RESIST version to
meet process dependent thickness specifications.
Maximum coating uniformity is typically attained be-
tween the spin speeds of 3500 rpm and 5500 rpm.

MICROPOSIT S1800 PHOTO RESIST DYED SERIES
Figure 2. Spin Speed Curves

MICROPOSIT® S1813® PHOTO RESIST
Figure 3. Dispersion Curve

The dispersion curve and Cauchy equation displayed
in Figure 3 describe how the refractive index of the
photoresist film varies as a function of the wavelength
of light incident upon the film. This information is
required to program ellipsometric and other optically
based photoresist measuring equipment.

MICROPOSIT S1800 PHOTO RESIST UNDYED SERIES
Figure 1. Spin Speed Curves

Process Parameters
(Refer to Figure 3)

Substrate Silicon
Coat 13,675Å
Softbake 115°C/60 seconds Hotplate
Measure Prometrix SM300

Process Parameters
(Refer to Figures 1 and 2)

Substrate Silicon .
Coat SVG 81
Softbake 115°C/60 seconds Hotplate
Measure Nanometrics 210

Instructions for Use
The following instructions cover the use of
MICROPOSIT S1800 SERIES PHOTO RESISTS for
all levels of microelectronic device fabrication. Exact
process parameters are application and equipment
dependent.
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Exposure
Proper film thickness selection is critical in order to
reduce photospeed and critical dimension variability.
The interference curves displayed in Figure 4 illus-
trate the photospeed variability as a function of film
thickness. Dyed versions suppress the interference
effects which are more pronounced when exposing
with monochromatic light sources and when using
reflective substrates.

Process Parameters
(Refer to Figure 4)

Substrate Silicon
Coat GCA 1006 2WAFERTRAC®

Softbake 115°C/60 seconds Hotplate
Expose GCA 8500 G-Line (0.35 NA)
Developer MF-321 /10 + 30 DSP @ 21°C

MICROPOSIT S1800 SERIES PHOTO RESISTS
can be exposed with light sources in the spectral
output range of 350 nm -450 nm. The exposure
properties have been optimized for use at 436 nm.
Figures 5 and 6 show the absorbance spectrums for
MICROPOSIT S1813 and S1813 J2® PHOTO
RESISTS.

Process Parameters
(Refer to Figures 5 and 6)

Substrate Quartz
Coat 12,300Å
Softbake 115°C/60 seconds Hotplate
Expose Oriel Scanning Wedge
Measure Hewlett Packard 8450A

Spectrophotometer

Table 1 summarizes the Dill parameters for each
MICROPOSIT S1800 SERIES PHOTO RESIST ver-
sion. Dill parameters are used in optical exposure
models such as SAMPLE and PROLITH.

MICROPOSIT S1800 SERIES PHOTO RESISTS
Table 1. Dill Parameters

365 nm 436 nm

Photoresist A B A B
(µm-1) (µm-1) (µm-1) (µm-1)

S1813 1.07 0.31 0.61 0.08
S1813 D1 1.05 0.34 0.58 0.26
S1811 J2 1.07 0.49 0.59 0.61
S1818 J1 1.06 0.42 0.57 0.37

2 Registered Trademark of GCA, a unit of General Signal

MICROPOSIT S1813 and S1813 J2 PHOTO RESISTS
Figure 4. Interference Curves

MICROPOSIT S1813 PHOTO RESIST
Figure 5. Absorbance Spectrum

MICROPOSIT S1813 J2 PHOTO RESIST
Figure 6. Absorbance Spectrum

Page 3
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Figure 7 displays a contrast curve for MICROPOSIT
S1813 PHOTO RESIST developed with
MICROPOSIT® MF®-321 DEVELOPER. In general,
high contrast values correlate to higher angle wall
profiles.

Process Parameters
(Refer to Figure 7)

Substrate Silicon
Coat 12,300Å
Softbake 115°C/60 seconds Hotplate
Expose GCA 8500 G-Line (0.35 NA)
Develop MF-321 /10 + 30 DSP @ 21°C

DEVELOP
MICROPOSIT S1800 SERIES PHOTO RESISTS are
compatible with both Metal-lon-Free (MIF) and Metal-
Ion-Bearing (MIB) developers. A photoresist and
developer system is dependent upon specific applica-
tion requirements. Contact your local Shipley Tech-
nical Sales Representative for additional product in-
formation.

Figures 8 thru 10 illustrate the lithographic function-
ality of MICROPOSIT S1813 PHOTO RESIST using
process parameters designed to maximize resolution
while maintaining excellent exposure and focus lati-
tude (refer to SEM photographs in Figure 1). The
functional lithographic responses are summarized in
Table 2.

Process Parameters
(Refer to Figures 8 thru 10)

Substrate Silicon
Coat 12,300Å
Softbake 115°C/60 seconds Hotplate
Expose Nikon 1505 G6E G-Line (0.54 NA)
Develop MF-321 /15 + 50 DSP @ 21°C

MICROPOSIT S1813 PHOTO RESIST
with MICROPOSIT MF-321 DEVELOPER

Table 2. Functional Lithographic Summary Data

 Sizing Energy 150 mJ/cm2 (1.3 E0)

 Resolution 0.48 µm

 Masking Linearity (±10% CD) 0.50 µm
1.0µm L/S 0.60 µm L/S

 Exposure Latitude (±10% CD) 65% 45%
 Focus Latitude (±10% CD) 2.25 µm 1.25 µm
 ! 85° Wall Angle

Page 4

MICROPOSIT S1813 PHOTO RESIST
Figure 7. Contrast Curve

MICROPOSIT S1813 PHOTO RESIST
Figure 8. Masking Linearity Plot

MICROPOSIT S1813 PHOTO RESIST
Figure 9. Exposure Latitude Plot

! Nominal 1.0 µm L/S y = 1.4057 – 3.1627e-3x + 3.2557e-6x^2 + 1.2772e-9x^3  R^2 = 0.977

• Nominal 0.6 µm L/S y = 2.6861 – 3.5844e-2x + 2.0497e-4x^2 – 4.0182e-7x^3  R^2 = 0.984
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MICROPOSIT S1813 PHOTO RESIST
Figure 10. Focus Latitude Plot

Handling Precautions
WARNING: MICROPOSIT S1800 SERIES PHOTO
RESISTS are combustible mixtures containing pro-
pylene glycol monomethyl ether acetate. Contact
with eyes, skin and mucous membranes causes irri-
tation. Handle with care. Do not get in eyes, on skin
or on clothing. Avoid breathing vapors or mists. Use
with adequate ventilation. Wash thoroughly after
handling.

Wear chemical goggles, chemical gloves and suitable
protective clothing when handling MICROPOSIT
S1800 SERIES PHOTO RESISTS.

In case of eye or skin contact, flush affected areas with
plenty of water for at least 15 minutes. Then contact
a physician at once.

Consult product Material Safety Data Sheet before
using.

Toxicological and Health Advantages
The solvent used in MICROPOSIT S1800 SERIES
PHOTO RESISTS is propylene glycol monomethyl
ether acetate. Toxicological studies reported that
propylene glycol derivatives contained in
MICROPOSIT S1800 SERIES PHOTO RESISTS do
not demonstrate the adverse blood effects and repro-
ductive effects that ethylene glycol derived ether
acetates demonstrate (NIOSH Current Intelligence
Bulletin 9 -5/2/83).

Storage
Store MICROPOSIT S1800 PHOTO RESISTS only in
upright, original containers in a dry area at 50°-70°F
(10°-21°C). Store away from light, oxidants, heat, and
sources of ignition. Do not store in sunlight. Keep
container sealed when not in use.

Equipment
MICROPOSIT S1800 SERIES PHOTO RESISTS are
compatible with most commercially available photo-
resist processing equipment. Compatible materials
include stainless steel, glass, ceramic, unfilled polypro-
pylene, high density polyethylene, polytetrafluoroeth-
ylene, or equivalent materials.

Technical Literature
Please contact your Shipley Technical Sales Repre-
sentative for information on the use and performance
of Shipley products.
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Worldwide Operations
Shipley Company
455 Forest Street
Marlborough, MA 01752-3001
TEL: (508) 481-7950
FAX: (508) 485-9113

European Operations
Shipley Europe Ltd.
Herald Way
Coventry CV3 2RQ
United Kingdom
TELEX:851311316
TEL: 441 203 457 203

Far East Operations
Shipley Far East Ltd.
Nishidai-NC Bldg.
1-83-1, Takashimadaira
Itabashi-ku, Tokyo 175
Japan
TELEX: 781 28875
TEL: 81 35 920 5300

Domestic Sales Offices
Marlborough, MA
(508) 481-7950
(800) 832-6200

Carrollton, TX
(214) 446-2400
(800) 527-3730

Tempe, AZ
(602) 894-5499
(800) 262-6377

Santa Clara, CA
(408) 988-3600
(800) 423-9937

International Sales Offices
Evry, France
33 1 60 86 81 82

Milano, Italy
39 2 938 1586

Geldrop, The Netherlands
31 40 853 335

Norrkoeping, Sweden
46 11 108170

Jona, Switzerland
41 55 284 646/647

Esslingen, Germany
49 711-931 32-0

Kowloon, Hong Kong
852 6 940 661

Singapore
65-862-1888

International Distributors
Australia, China, India, Israel, Mexico, Singapore, South Africa, South Korea, Spain, Taiwan, Western Canada.

Manufacturing Locations
Marlborough, MA; Coventry, United Kingdom; Sasagami, Japan. SHIPLEY®

For Industrial Use Only This information is based on our experience and is, to the best of our knowledge, true and accurate. However, since the
conditions for use and handling of products are beyond our control, we make no guarantee or warranty, expressed or implied, regarding the informa-
tion, the use, handling, storage or possession of the products, or the application of any process described herein or the results sought to be obtained.
Nothing herein shall be construed as a recommendation to use any product in violation of any patent rights.
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