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On the eigenvalue problem for the Hardy-Sobolev
operator with indefinite weights *

K. Sreenadh

Abstract

In this paper we study the eigenvalue problem
—Apu — a(@)|u)’Pu = MulP2u, u e WyP(Q),

where 1 < p < N, Q is a bounded domain containing 0 in RY, A, is the
p-Laplacean, and a(z) is a function related to Hardy-Sobolev inequality.
The weight function V(z) € L°(Q2) may change sign and has nontrivial
positive part. We study the simplicity, isolatedness of the first eigen-
value, nodal domain properties. Furthermore we show the existence of a
nontrivial curve in the Fucik spectrum.

1 Introduction

Let ©Q be a bounded domain containing 0 in RY. Then the Hardy-Sobolev
inequality for 1 < p < N states that

N —p\? [ |u]?
VulPdz > ——dx 1.1
J vz (F02)" [ (L)

for all u € Wy?(Q). Tt is known that (%)p is the best constant in (1.1). In
a recent work Adimurthi, Choudhuri and Ramaswamy [2] improved the above
inequality. In particular, when p = N their inequality reads

N —1\N ||V 1,N
VulNdz > / dz, Yue WM (Q), 1.2
f1vueez (577)" g e Ve Wt 02

where R > €%V supg, |z|. Subsequently it was shown in [4] that (22)V is
the best constant in (1.2). In view of the above two inequalities we define the
Hardy-Sobolev Operator L, on W, (Q) as

L= —Apu — pa(z)|uP~?u
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where
() 1/]x|P l1<p<N
alx) =
1(lelog )Y p=N

and 0 < p < (%2)P or (1) depends on the value of p. Here Aju =
div(|Vul[P~2Vu) denotes the p-Laplacean. In the present work we consider the
following eigenvalue problem:

Lyu = AV (2)|uP?u in Q
wu = AV (@)u (13
u=0 on .
We assume that V € L1 (Q), V* =V, + V5 2 0 with Vi € L» () and V; is
such that
lim Q|x—y|pV2(x) =0 VyeQ for p<N

T—Y, TE

lim Q|gc—y|p(log )PVo(x) =0 VyeQ for p=N. (1.4)

T—Y, TE

where V1 (z) = max{V(z),0}. We also assume

|z —y

(H) There exists 7 > & and a closed subset S of measure zero in RY such that
O\ S is connected and V € LT (Q\S).

loc

We define the functional J,, on W,*(Q) as

T = [ [vup = [ at@)uru

Then J, is C* on WO1 P(Q). Our goal here is to study the eigenvalue problem
and some main properties (simplicity, isolatedness) of

A1 = inf {Ju(u);u € Wol’p(Q) and / VulPdx = 1}
Q

We use the following results in Section 2.

Proposition 1.1 ([5]) Let & C R™ is bounded domain and suppose (u,) €
WP (Q) such that u, — u weakly in WP (Q)satisfies

—Apuy = fn + gn inD'(Q)
where f, — f in WLt and gn 15 a bounded sequence of Radon measures, i.e.,

{gns &) < Ck [|19]lo0

for all ¢ in C°(Q) with support in K. Then there exists a subsequence (uy) of
(un) such that Vuy(x) — Vu(z) a.e. in Q.
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Proposition 1.2 ((Brezis-Lieb[6])) Suppose f, — f a.e. and || fn]l, < C <
oo for all n and for some 0 < p < co. Then

i {[1fally = ILfn = FIBY = ILF115.

In section 2 we study the eigenvalue problem for L, and show that the first
eigenvalue is simple and the eigenfunctions corresponding to other eigenvalues
changes sign. In section 3 we study the existence of nontrivial curve in the
Fucik spectrum of L,. Finally in the last section we study some nodal domain
properties of L, with a stronger assumption on V that V' € L"(2) for some
r>

V\I/)'e now provide a brief account of what is known about the problems of
type (1.3). In case of u = 0, the above properties are well known when V is
bounded(see[1]). For indefinite weights with different integrability conditions
see[3] and [14]. In [14] the problem of simplicity and sign changing nature of
other eigen functions are left open. In Theorem 2.1 below we prove the above
properties. In a recent work Cuesta [7] proved above properties with stronger
assumption that V' € L*(2) for some s > %. When p # 0 and V' =1 the above
properties are studied in [11],[12].

2 Eigenvalue Problem

In this section we show that the first eigenvalue is simple and the eigenfunc-
tions corresponding to other eigenvalues changes sign. We prove the following
theorem.

Theorem 2.1 The first eigenvalue, A1, is simple and the eigenfunctions corre-
sponding to the other eigenvalues changes sign.

The next theorem is proven with the help of a deformation lemma for C*
manifolds.

Theorem 2.2 There exists a sequence {\,} of eigenvalues of L, such that
A, — 00.

Let us define the operators

P u P ur! p—2
L(u,v) :=|VulP — (p— l)v—p|VU\ P Vu|Vo|P~“Vu
- u?
R(u,v) := |Vul? — |Vu? QVU.V(Up_l)

Then R(u,v) = L(u,v) > 0 for all u,v € C1(Q\{0})NW1P(Q) withu > 0,v > 0
and equal to 0 if and only if u = kv for some constant k [3, Theorem 1.1]. We
need following lemmas to prove our results.

Lemma 2.3 The mapping uw — [, VT |u|Pdzx is weakly continuous.



4 Hardy-Sobolev operator with indefinite weights EJDE-2002/33

Proof: In case the 1 < p < N, the proof follows as in [14]. Here we give the
proof when p = N. Clearly u — [, Vi|ul? is weakly continuous. Since  is
compact, there is a finite covering of Q by closed balls B(z;,r;) such that, for
1<i<k,

¥ (log ———)"1a(2) <. (2.1)

|z —z| <ri = |z—u;
|z — 4]

log

There exists 7 > 0 such that, for 1 <i <k,

|z — x| <r = |z —x;]V (log W Va(z) < ¢/k.

|x — ;]
Define A := U?ZlB(xj, r). Then by inequality (1.2)
/ Valtn|Ndz < ecV, / ValuNdz < ec (2.2)

A A

where ¢ = & sup,, [|uy||. It follows from (2.1) that Vo € L*(Q\A) so that

Valun|Ndz — / ValulNdz (2.3)
o\A o\A
Now the conclusion follows from (2.2) and (2.3). O

Define M := {u € WoP(Q); [, VIuP = 1}
Lemma 2.4 The eigenvalue \1 is attained.

Proof: Let u, be a sequence in M such that J,(u,) — Ai. Since W, *(9) is
reflexive, there exists a subsequence {u,} of {u,} such that w,, — u weakly in
WOLP and a.e. in Q. Now for n € N choose u,, such that J,(u,) < infas J, + #
Now by The Ekeland Variational Principle, there exists a sequence {v,} such
that

JN(U") < Ju(u )

3

SRS

[un — vnll <
1
Juln) < Ju(u) + e — ] Vue M
Now standard calculations from above three equations, as in [10], gives
/ p—2 1
’JH(UH)’UJ—J“(’U”) QV\vn| vnw’ < CE”“’H (2.4)

By Proposition 1.1, there exists a subsequence of {v,}, which we still denote
by {v,} such that v, — v weakly in W, "”(Q2) and Vv, — Vo a.e. in . Since
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|V, |P~2Vv,, is bounded in (LP (Q))N,1/p+1/p' =1, and Vv, — Vv ae. in
Q, we have

|V, P2V, — |[Vu[P~2Vo  ae. in Q

V0, [P~2Vv, — |[Vo|P"2Vu  weakly in (L” ()N
which allows us to pass the limit as n — oo in (2.4), obtaining

~Apv —a(2)|v|P 20 — A\ uP 20 =0 in D'(Q).

Observe that

/V7|vn|pda:=/V+|Un|pdx—l—>/V+|v|pdx—l
Q o o

as n — 0o. Now using Fatau’s lemma we can conclude that v 2 0. O

Lemma 2.5 The eigenvalue \1 is simple.

Proof: This is an adaptation from a proof in [3]. Let {t,} be a sequence
of functions such that ¢, € C°(Q),v, > 0,¢, — ¢1 in WP ae. in Q and
Vi, — V@1 a.e. in ). Then we have

0= [ (9611~ (ualz) + V) do
@ (2.5)
= lim [ ([V¢n|” = (pa(z) + VA1)Yp) da.
n—oo Q
Consider the function wy := ¢%/(us + L)P~1. Then w; € Wy*(Q). So testing
the equation satisfied by us with w; we get,

p (] p—1 u p—2 u '(/Jg
[V + e () = [ vup Vi) 29)

U2+n

Now from (2.5) and (2.6) we obtain

. _ (04
0=1 Vibn|P — |Vug|P 2V V(—2——
”I—’H;O/Q <| val” = Vo] " ((U2+%)p1)>

— lim [ L, us) > / L(dr,uz) > 0

by Fatau’s lemma. Now by assumption (H), ¢1,us are in C1(Q\SU{0}) [9, 15].
Therefore ¢; = kuy for some constant k. O

Proof of Theorem 2.1, completed: Let ¢1,u be the eigenfunctions corre-
sponding to A\; and A\ respectively. Then ¢, u satisfies

—Ap61 — pa@)e] = MV (@)ef T in D'(9), (27)
—Apu — pa(z)|uP"2u = AV (z)[ul’u in D'(Q) (2.8)
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respectively. Suppose u does not change sign. We may assume u > 0 in €. Let
{tn} be a sequence in C2° such that ¢, — ¢ as n — oo. Now consider the

test functions wy; = ¢1,wy = % Then wi,ws € Wg’p(Q). Testing (2.7)

with wy and (2.8) with ws we get
/ VP — / MV (@) + pa(z)) ¢ dz = 0 (2.9)

Q Q
/ |Vu|p_2Vu.V(L)d:c—/()\V(x) 4 pa(@)d? (— ) e = 0
0 (u+ )Pt Q ut g
Since R(u,v) > 0, we get
u \P~1
/ Vb P da — / WV (@) + pae)t ()" e > 0. (2.10)
Q Q U+ n

Subtracting (2.9) from (2.10) and taking the limit as n — co we get,

(=) [ Vi)t <o
Q
This is a contradiction to the fact that A > ;. O

Proof of Theorem 2.2: Let j# be the restriction of J, to the set M. Define

A = inf sup J,(u
e=dak, sup Ju(w)

where A is a closed subset of M such that A = —A, and v(A) is the Kras-
nosel’skii genus of A. Now we show that J,, satisfies (P.S.) condition at level
k. Let {u,} be a sequence in M such that J,(u,) — Ax and

(Ju(un), @) — Ju(un)/ [un P~ 2u, ¢V de = o(1). (2.11)
Q
Since uy, is bounded, there exists a subsequence {u,, },u such that w,, — u weakly

in Wy?(Q). Since Ay > 0 we may assume that Ju(un) > 0. Using Lemma 2.3
and (2.11), we get

(Ju(un) =T (u), up —u)+J, (uy) /Q [|un|p72un — \u|p72u] (up,—u)V " dx = o(1).

But
/ [|un|p*2un - |u\p*2u] [u, —u]V™ >0.
Q

By Propositions 1.1 and 1.2, we have

[un = ull1,p = llunll1,p — [lull1p + o(1)
Uy — U U U
||n|T lo.p = ||ﬁ”07p - ”m| 0,p +o(1)
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Therefore
0(1) :<J,u(un) - Jlt(u)7 (un - u))
+ Ju(un) / [t [P~ 20 — [u|P~2u)(uy — w)V ™~ dz

Q
2/ |Vu, — VulP — / pa(x)|uy, — ul? + o(1)
Q Q
>Cllup = ull1p + o(1).

Now by the classical critical point theory for C! manifolds [13], it follows that
Ar’s are critical points of J, on M. Since A\, > ¢}, where A} are eigenvalues
of Ly, we have A\ — oo. O

3 Fucik Spectrum

In this section we study the existence of a non-trivial curve in the Fucik spectrum
> pu of L. The Fucik spectrum of L, is defined as the set of (o, ) € R? such
that

Lyu=aV@)P + V(™ )Pt in Q,
uw=0 on 09,

has a nontrivial solution u € VVO1 "P(Q). The variational approach that we follow
here is same as that of [8, 12]. We prove the following statement.

Theorem 3.1 There exists a nontrivial curve C in 3_ .

Let us consider the functional

sy = [ 19up = [ a@pup = s [ vat”

Js is a C'functional on VVO1 P(Q). We are interested in the critical points of
the restriction J, of J, to M. By Lagrange multiplier rule, u € M is a critical
point of J, if and only if there exist ¢ € R such that J/(u) = t.I'(u), i.e., for all
v € WP we have

[ v vuve = [ a0 —s [ v o=t [ Viggtu @)
Q Q Q Q
(3.1)
This implies that
—Apu — pa(@)|uP2u = (s + )V (z)(uT)P~ —tV(2)(u" )P~ in Q
u=0 on 0N

holds in the weak sense. i.e., (s+t,t) € ° , taking v =wuin (3.1), we get ¢ as
a critical value of .J;. Thus the points in >_p,u on the parallel to the diagonal
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passing through (s,0) are exactly of the form (s + Js(w), Js(u)) with u a critical
point of J,. R
A first critical point of Jg comes from global minimization . Indeed

Tz [l s [ w2
Q Q

for all u € M, and js(u) = A1 — s for u = ¢;.

Proposition 3.2 The function ¢1 is a global minimum of J, with jS(gbl) =
A1 — s, the corresponding point in Zp’# is (A1, A1 — s) which lies on the vertical
line through (A1, \1).

Lemma 3.3 Let 0# v, € W(}’p satisfy v, > 0 a.e and |v, > 0] — 0, then
fQHan|p - ua(az)|vn|p]dx/ fQ Vlvn|p — +00.

Proof: Let w, = vy,/||vn|lv,, and assume by contradiction that [, [Vw,|? —
Jo pa(x)|wy, [P has a bounded subsequence. By (1.1) or (1.2), we get w,, bounded

in W_P(Q). Then for a further subsequence, w, — w in LP(Q,V'). Now
observe that

/ V™ (2)|lw’ < lim / V7 |wy|? = lim / VT w,|P —1= / VHwP — 1.
Then w > 0 and [, V' (z)w? > 1. So for some € > 0,6 = |w > €| > 0, we deduce
that |w, > €/2| > § for n sufficiently large, which contradicts the assumption
v > 0] — 0. ] O

A second critical point of Jg comes next.
Proposition 3.4 —¢, is a strict local minimum of J, and js(—¢1) = A1, the
corresponding point in Ep is (A1 +8,A1).

Proof: We follow the ideas in [8, Prop. 2.3]. Assume by contradiction that
there exist a sequence u, € M with u, # —¢1, u, — —¢;1 in Wol’p(Q) and

Js (Un) § )\1.
Claim: u,, changes sign for n sufficiently large. Since u,, — —¢1, u,, it must
follow that u,, < 0 some where. If u,, <0 a.e., in €2, then

i@%)=lJVw#“:éuM@WMp>h

since u, # *+¢1, and this contradicts js(un) < A1. This completes the proof of
claim. Let r,, = [ [, |V} P — [, pa(z)|wtP]/ [ Vui?, we have

wa=4WﬁPﬁ4W%P—AWWMW’

- [ nalu s [ viegy

Q Q

z(rn—s)/Vu:p—i—)\l/Vu;p
Q Q
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on the other hand

Jo(un) < Ay = )\1/ VS’ +/ V"
Q Q

combining the two inequalities, we get r, < A\ + s. Now since, u, — —¢1
in L?(Q), |u, > 0] — 0. The Lemma 3.3 then implies r, — 400 , which
contradicts 7, < A\; + s. O

Now as in the proof of Theorem 2.2, one can show that J, satisfies the P.S.
condition at any positive level.

Lemma 3.5 Let ¢g > 0 be such that
Jo(u) > Jy(—¢1) Yu € B(—¢1,e0) N M (3.2)
with uw # —¢1, B C Wy, Then for any 0 < € < €
inf{J,(u);u € M and |u— (—¢1)|1p =€} > Jo(—¢1). (3.3)

The proof of this lemma follows from the Ekeland variational principle.
Therefore, we omit it. For details we refer the reader to [8]. Let

I={yeC(-1L1M):1(=1) = =d1,7(1) = ¢} # 2

and the geometric assumptions of Mountain-pass Lemma are satisfied by previ-
ous Lemma. Therefore, there exists u € W,* such that J’(u) = 0 and J,(u) = ¢,
where c is given by
c(s) = irllf sup Js(u). (3.4)
¥

Proceeding in this manner for each s > 0 we get a non-trivial curve C: s €
R* — (s+c(s),c(s)) € R? in > Which completes the proof of Theorem 3.1.

4 Nodal Domain Properties

In this section we show that \A; is isolated in the spectrum under the assumption
on V that V € L*(Q) for some s > %. By the regularity results in [15, 9] the

solutions of (1.3) are C*(Q\{0}). In [11] it is shown that the positive solutions
of (1.3) when V =1 tends to +oo as |z| — 0. We prove the following theorem.

Theorem 4.1 The eigenvalue A1 s isolated in the spectrum provided that V &
L5(Q) for some s > %. Moreover, for v an eigenfunction corresponding to an
eigenvalue A # A1 and O be a nodal domain of v, then

0] = (CA[V][s)™” (4.1)

where vy = s;iVN

and C' is a constant depending only on N and p.

Lemma 4.2 Let u € C( Q\ﬂ ﬂ Wy (Q) and let O be a component of {x €
Q;u(z) > 0}. Then do € Wy P(
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Proof: case (i): 1 <p < N.
Let u, € Ce(Q) N WyP(Q) such that u, — u in Wy?(Q). Then u} — ut in
WP (). Let v, = min(u,,u) and let ¥, € C(€) be a cutoff function such that

() = {0 if |z < r/2

1 if|z|>r

and [V, (z)| < € for some constant C. Now consider the sequence wy, () =
Yrvn(z)o. Since v, € C(Q), we have w,, € C(O) and vanishes on the
boundary 90. Indeed for 2 € 0O and = = 0 then 9, = 0 and so w, , = 0. If
x € 00N Q and z # 0 then u(z) = 0(since u is continuous except at 0) and so
vp(x) = 0. If € 9Q then u,(x) = 0 and hence v, (x) = 0. So in all the cases
Wy, (z) = 0 for x € 0. Therefore w,, , € Wol’p(O) and

/ IV (wn) — V)P = / ((V42)0m + Vo — (Vb )u — 2 VulPde
Q O

SHV@/JMJ” - vd’?‘“”ip(o) + ||¢ern - 7/)rvu||ip(o)

which approaches 0 as n — oo. i.e., wy, — ¢ru|o in Wol’p(O). Now

/ Voo + ¢, Vu — ulP < / [, Vu — VulP + / Vb, [Pu
o 0 o

n{r/2<|z|<r}

which approaches 0 as 7 — 0 (by (1.1). Therefore, ulp € W,**(O).
case(ii): p = N. In this case we use the following cut-off function which are
introduced in [11]

0 if |z| <7
(1) = < 2log (ﬁ)/log(r) if r < |z| < rl/2
1 if || > r1/2.
and we can proceed as in the previous case. O

Proof of Theorem 4.1: The proof follows as in [1, 7]. Let p, be a sequence
of eigenvalues such that p, > A; and p,, — A;. Let the corresponding eigen-
functions u, converge to ¢;. such that |[u,|[L-(vy = 1. i.e., u, satisfies

—Apuy, — /m(x)|un|p_2un = )\nV(:r)|un|p_2un. (4.2)

Testing (4.2) with w,, and applying weighted Hardy-Sobolev inequallity we get
uy, to be bounded. Therefore by Proposition 1.1, there exists a subsequence (uy,)
of (uy,) such that u,, — u weakly in Wy (), strongly in L?(Q) and Vu, — Vu
a.e in . Taking limit n — oo in (4.2) we get

—Apu — pa(z)|uP"2u =\ V(z)ulPu in D'(Q).
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Therefore u = +¢1. By Theorem 2.1, u,, changes sign. Without loss of gener-
ality, we can assume that u = +¢1, then

[{x;u, <0} — 0. (4.3)

Testing (4.2) with u,,, we get

/ Vs P / palehs’ = / MV (@)
Q Q Q

By Hardy-Sobolev and Sobolev inequalities, we get

pe [0 |7 < CllunlF 12, [V L5,

Cillunlly < C | V@l < CIV

for some positive v > 0. This implies that
;| >C, Q) ={xeQu, <0}

This contradicts (4.3).

Next we prove the estimate (4.1). Assume that v > 0 in O, the case v < 0
being treated similarly. We observe by Lemma 4.2, that vlp € W, (0). Hence
the function defined as w(z) = v(z) if z € O and w(x) =0 if z € Q\O belongs
to VVO1 P(Q). Using w as test function in the equation satisfied by v, we find

p*—s
Tp*

p*,O|O

/ \Vv|pdx—/,ua(x)|v|pdx:)\/ Viv|Pde < A||V||s]|v
o) Q 6)

by Holder inequality. On the other hand by Sobolev and Hardy-Sobolev in-
equalities we have that [, [Vo[Pdz > C|lv b« o for some constant C'= C(N, p).
Hence

p*

C < \|V|l,Jo] 7

Corollary 4.3 Fach eigenfunction has a finite number of nodal domains.

Proof: Let O; be a nodal domain of an eigenfunction associated to some
positive eigenvalue A. It follows from (4.1) that

1 =) 101 = (CAIV]s) 77 1
j i

and the proof follows.

References

[1] A. Anane, Etude des valeurs propres et de la resonnance pour l’operateur
p-laplacian, C.R. Ac. Sc. Paris, Vol. 305, 725-728, 1987.



12

2]

[3]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Hardy-Sobolev operator with indefinite weights EJDE-2002/33

Adimurthi, Nirmalendu Choudhuri, Mythily Ramaswamy, Improved Hardy-
Sobolev inequality and its applications, Proc. AMS, to appear.

W. Allegretto and Y.X. Hang, A picone identity for the p-Laplacian and
applications, Nonlinear Analysis TMA, Vol. 32, 819-830, 1998.

Adimurthi and K. Sandeep, Existence and Non-existence of first eigenvalue
of perturbed Hardy-Sobolev Operator, Proc. Royal. Soc. Edinberg, to appear.

L. Boccardo and F. Murat, Almost convergence of gradients of solutions
to elliptic and parabolic equations, Nonlinear Analysis TMA Vol. 19, no.
6581-597, 1992.

H. Brezis and E. Lieb, A Relation between Point Convergence of Functions
and Convergence of Functionals, Proc. AMS, vol. 88, 486-490, 1983.

M. Cuesta, Figenvalue problems for the p-Laplacian with indefinite weights,
Electronic J. of Diff. Equations, Vol. 2001 No. 33, 1-9, 2001.

M. Cuesta, D. Defigueredo and J.P. Gossez, The beginning of Fucik spec-
trum for p-Laplacean, Journal of Differential Equations, Vol. 2001, No. 33,
1-9, 2001.

E. Dibendetto, C1® local regularity of weak solutionsof degenerate elliptic
equations, Nonlinear Analysis TMA Vol. 7, 827-850, 1983.

D. DeFigueredo, Lectures on the Ekeland variational principle with appli-
cations and Detours, TATA Institute, Springer-Verlog, New york 1989.

K. Sandeep, On the first Figenfunction of perturbed Hardy-Sobolev Opera-
tor, Preprint.

K. Sreenadh, On the Fucik spectrum of Hardy-Sobolev Operator, Nonlinear
Analysis TMA, to appear.

A. Szulkin, Ljusternik-Schnirelmann theory on C'-manifolds, Ann. Inst. H.
Poincare Anal. Non Lineaire vol. 5, 119-139, 1988.

A. Szulkin and M. Wilem, Figenvalue problems with indefinite weights,
Stud. Math, Vol. 135, No. 2, 199-201, 1999.

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equa-
tions, Journal of Differential equations, Vol. 51, 126-150, 1984.

KONIJETI SREENADH
Department of Mathematics
Indian Institute of Technology
Kanpur 208016, India.

e-mail: snadh@iitk.ac.in



