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ABSTRACT
This study considers the quality and compressibility of bi-level images produced 

by checkerboard-based halftoning algorithms. The specific halftone methods of this 

study are those described by R.M. Case. The bi-level images are created using C/C++ 

implementations of these algorithms (Villarreal, 2001). Image quality is assessed using 

human surveys and statistical objective metrics. Correlations (or lack of) between the 

subjective and objective data are also observed. Image compressibility is studied via the 

C/C++ implementation of two new and original run length encoding (RLE) methods 

(Villarreal, 2001). These RLE methods are used to remove the positional redundancy 

from the pixels composing the bi-level images. Other methods are subsequently used to 

remove statistical redundancies form the resulting files. Mock image file formats based 

on Case’s halftoning methods and the above compressions are compared to other popular 

image formats to assess the potential of this technology.
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CHAPTER 1
INTRODUCT ION

This research considers the implementation, quality, and compressibility of 

various images produced by Case’s checkerboard-based halftoning algorithms (1993, 
2001). Other than the patents issued and pending for these methods, they are relatively 

absent from technical literature. This study is an exercise in digital halftoning, image 

processing and software development.

The remainder of this document is organized into two sections: an image 

processing background and a research analysis. The image processing background is 

subsequently divided into the following chapters:

•  The Human Visual System— This chapter discusses the physics and psychophysics 
issues related to digital halftoning

• Digital Image Representation— This chapter describes the issues regarding the 
acquiring and processing of digital imagery.

•  Dithering— This chapter surveys several digital halftoning methods from 
technical literature.

•  Compression— This chapter surveys the previously documented methods of 
compression used on digital imagery.

The research analysis portion of this document is divided as follows:

1
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•  New Methods— This chapter describes Case’s new halftoning methods and the 
new compression methods researched in this study.

• Project Management—This chapter explains the organizational methods used in 
the management of this study.

• Research Methods—This chapter describes the methods used to acquire data for 
this study.

• Data Analysis— This chapter analyzes the properties of the studied methods along 
with data taken from the methods of the previous chapter.



CHAPTER 2
HUMAN VISUAL SYSTEM

The human visual system (HVS) is the basis of computer graphics and digital 
imaging. It is the complex standard by which all methods and models are judged. Its 
study reveals how strengths and limitations can be exploited to produce many sensory 

effects. Interestingly, the properties of the HVS can be viewed from several perspectives 

each of which contributing a unique piece to our understanding of vision. The following 

sections briefly outline some perspectives of the HVS as a backdrop to this study.

Physics of Visual Signals

Visible light can be considered as signals from our surroundings. From this 

perspective, the HVS is decomposed into a series of simple processes that interact in 

order to produce our sense of vision. Several authors in the literature model the HVS 

with this approach (Higgins, 1977; Daly, 1997; Girod, 1997; Lubin, 1997; Taylor, 
Allenbach, and Pizlo, 1998; Zhang & Wandell, 2000).

3
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Electromagnetic Radiation

Vision begins with light. Visible light is electromagnetic radiation (EMR) with 

wavelengths ranging between 4,000 and 7,000 Angstroms (10'10 m). EMR interacts with 

matter in many ways. Two ways of particular interest include the reflection and emission 

of EMR.

EMR Reflection

Matter reflects light in two ways: specular reflection and diffuse reflection. 
Figure 2.1 illustrates these methods of reflection.

xxxxxx/
Figure 2.1— Specular and Diffuse Reflection

Specular reflection of light occurs on smooth surfaces such as the face of a mirror. 
Light reflects off such surfaces according to the law of reflection. Figure 2.2 illustrates
this law.
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N

Figure 2 2— The Law of Reflection

In this diagram, I is the incident light ray and R is the reflected ray. N is the surface 

normal. This law states that N is a bisector for the angle made by R and I. In other 

words, 0i and 0r are equal. In specular reflection, nearly all o f the incident photons (light 
particles) striking a surface “bounce” (Watt, 1998) off without interacting with the 

molecules of the surface.

Diffuse reflection occurs on “rough” surfaces. As its name implies, diffuse 

reflection uniformly scatters the incident light in all directions. Unlike specular 

reflection, an interaction occurs between the molecules of the surface and the incident 
photons. Figure 2.3 uses the Bohr model o f  the atom to illustrate this interaction.

photon

Figure 2.3— Interaction between Electrons and Photons during 
Diffuse Reflection



The figure shows that most photons induce extra vibrations in the atom that are 

subsequently dissipated as heat energy. However, if an incident photon has an energy 

equal to some “resonance” energy, then the photon is absorbed by an electron in the 

atom. This absorption causes the electron to “jump” to a higher energy level. The energy 

of this “jump” is equal resonance energy of the atom. For the atom to return to a state of 

equilibrium, the excited electron must emit a photon with an energy equal to the 

resonance energy. The direction of this emitted photon is nondeterministic; thus, the 

incident light is effectively scattered (“reflected”) by this absorption and subsequent 
emission.

As an example of EMR reflection, imagine an image printed on glossy paper 

(perhaps a photograph). The reflections caused by the glossy coating are a specular while 

the “reflection” caused by the pigments that make up the image are diffuse.

EMR Emission

EMR emission is a process similar to diffuse reflection. EMR emission processes 

begin when electrons are driven into excited (higher energy) atomic states. In diffuse 
reflection, incident (visible light) photons are the instigators of these excited electrons; 
however, such photons are not the only way to produce non-equilibrium states in atoms.

The various image output devices considered in this study emit EMR in different 
ways. Cathode ray tubes (CRTs) use high voltages to accelerate electrons from an 

emitter into phosphors that coat the screen. The energy from these accelerated electrons 

excite the phosphor atoms which return to equilibrium by releasing photons that the 

human eye collective detects as an image. Thin film transistor monitors (TFTs) emit

6
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light in a very different manner. This technology uses voltage sensitive liquid crystals as 

polarizers to control how a backlighting (the photon emitting source) is visible to a user.

Eye Optics

Most of the light in the environment is either reflected or emitted. However, once 

light reaches the eye, the laws of refraction take over to focus images on to the retina. 
Refraction governs the way that light travels through different transparent media.

Simple Refraction

Figure 2.4 illustrates the law of refraction.

approach»!i* ray

In these figure, a ray of light travels through a medium. If n, the index of refraction, is 

greater in the second medium, then the light will “bend” towards the normal as illustrated
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by the approaching ray. The opposite happens for 112 less than ni as illustrated by the 

escaping ray.

Snell’s Law determines the angles that the incident and refracted light rays make 

with the surface normal. This law is stated as:

nt sin(6() = nr sin(6r)
Equation 2 1— Snell’s Law

Application of Snell’s Law can describe the nature of light passing through a lens (or 

system of lenses).

The Cornea and Lens

The eye’s cornea and the lens represent it means of refracting light to form images 

on the retina. This lens system refracts light similar to a doubly convex lens. Figure 2.5 

shows how a doubly convex lens focuses light from an object to a point.

The point at which the rays intersect is the image location (note that it is upside-down).
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The ideal situation of the previous paragraph describes perfectly focused images. 
In actuality, the eye (and any real lens system) suffers from imperfections. These 

imperfections cause a phenomenon known as aberration. Aberration blurs images. As a 

result, a point source of light focuses on the retina as a “spread” of light. Figure 2.6 gives 

a formal representation of this spread known as a point spread function.

The success of image dithering methods can be partly contributed to the point spread 

functions in the eye.

The eye’s lens system has two interesting properties. Firstly, the cornea refracts 

light 80% more than any other part of the eye (Wandel, 1995). This property may seem 

counterintuitive. However, the change in the index of refraction at the air-cornea 

interface is much greater than any other interface in the eye. Secondly, muscles 

connected to the eye’s lens can change its shape; thus, changing the refractive properties 

of the lens. These adjustments occur so that light rays converge to stimulate the

Intensity

Figure 2 6— Point Spread Function



photoreceptors of the retina which always lay a fixed distance from the comea-lens 

system. This ability is known as accommodation.

The Retina

The retina represents another interface in the eye. At this interface, the eye’s 

photoreceptors convert electromagnetic signals (light) into electrochemical signals that 
travel through the optic nerve to the brain. Light reacts with pigments inside of the 

photoreceptors to produce these electrochemical signals.

Two kinds of photoreceptors exist: rods and cones. Rods are particularly 

sensitive to light intensity and are generally located around the peripheral of the retina. 
They provide coarse and colorless vision. Cones only respond to relatively bright light; 
however, they allow the eye to detect detail and color. Most of the retina’s cones are 

concentrated directly behind the lens in an area known as the fovea. As a result, the 

fovea primarily determines the eye’s sensitivity to spatial frequencies in images.

Human Perception of Imagery

The optics of the eye determines the way in which images are formed on the 

retina; however, optics alone does not describe how humans perceive their surroundings.

Visual Acuity

Visual acuity measures the spatial resolution that the eye can discern.
Qualitatively, it describes the eye’s ability to see fine detail. The common Snellen eye

10
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metric (e.g. “20/20”) refers to visual acuity. This metric implies the minimum angle of 

resolution (MAR) that the eye can resolve. Normal visual acuity, 20/20 vision, is defined 

as the ability for a person to perceive a spatial pattern separated by an angle 1/60° from a 

viewing distance of 20 feet. Figure 2.7 illustrates how visual acuity is measured.

detail separation. 1/60°

viewing distance 20 feet

Figure 2 7— Normal Visual Acuity

In this figure, the strokes of the “E” are purposely designed with a width of 1/60°.

As previously stated, the optics of the eye are not perfect; thus, they limit human 

visual acuity. Raleigh’s criterion describes these limitations. Recall that spherical 
aberration in the eye causes point sources of light to focus on the retina as a point spread 

functions. Raleigh’s criterion states that resolution of two objects occurs only if the 
objects are separated by the width of their point spread functions (Scharwtz, 1999). 
Figure 2.8 illustrates Raleigh’s Criterion in terms of point spread functions.



Stimulus PSFs 
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Figure 2.8- Raleigh's Criterion 

The closely spaced stimuli in the top half of Figure 2.8 cannot be resolved as two 

individual stimuli. The closely spaced dots of image halftoning methods use Raleigh's 

criterion to produce the illusion of image continuity. 

Spatial Integration 
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Spatial integration occurs past the limits of human visual acuity. It describes the 

eye's ability to collectively interpret stimuli smaller than the eye's acuity threshold. This 

collective interpretation arises from the physiology of the retina. 

The eye's photoreceptors perform "signal transductions" that convert an EMR 

signal into a neural signal (Scharwtz, 1999). These neural signals are transmitted via 

ganglion cells to the brain. Spatial integration occurs because signals from several 

photoreceptors converge on to each ganglion cell (Wandel, 1995). These signals 



effectively combine to form one transmitted signal. Figure 2.9 illustrates this 

phenomenon using a pattern of alternating colors. 

Figure 2.9-Spatial Integration 
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In this figure, the block on the right is not actually purple; instead, it is composed of lines 

of red and blue that alternate frequently. Similarly, frequently alternating pixels of white 

and black will produce grays. Dithering methods exploit this property to produce images 

with a wider range of perceptible intensities. 



CHAPTER 3
DIGITAL IMAGE  

R E P R E S E N T A T I O N
Several issues are involved in the digital representation of images. Digitization is 

a process that approximates the continuous signals that exist in the macroscopic world. 
The quality of this approximation depends on the amount of resources dedicated to 

representing the signal. The infinite amount of information lost through digitization is 

compensated by the improved ability to process the discrete version of the image. This 

chapter reviews the quality and processability issues that related to this study.

Pixels

For many, the term “pixel” means “little square”; however, a pixel actually 

represents a discrete sample of the continuous world. This sampling is necessary because 

computers can operate using only discrete structures. Thus, a digital image is merely the 

combination of thousands of these samples to produce an acceptable estimate of the 

continuous image.

14
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In fact, digital image quality is directly affected by the rate at which the 

continuous scene is sampled. Fourier analysis allows a continuous image to be viewed as 

a two-dimensional signal made up of many frequencies and the Nyquist Theorem 

imposes a lower bound on an accurate sampling rate for this signal. According to 

Nyquist, a continuous signal can be accurately reconstructed only if the signal is sampled 

at a frequency greater than two times its highest frequency component. 

Equation 3.1-Nyquist Frequency 

Figure 3.1 illustrates this idea (note the placement of the dots). 

i ll 

Figure 3.1-Nyquist Theorem 

In this figure, the red line represents the sampling frequency. Figure 3.l(a) depicts an­

undersampled signal. Undersampling causes high frequencies in the original signal to 
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appear as low frequencies in the reconstructed signal. Figure 3.1(b) shows an adequately 

sampled signal. The case in which f Nyquiil = 2  f h (not shown) is special because the

accuracy of the reconstruction depends on the phase of the sampler.

However, despite the Nyquist Theorem aliasing artifacts appear in digital images. 
Simply put, aliasing in digital images refers to noticeable errors such as “j aggies.” These 

errors occur mainly because pixels are discrete samples and always estimates of 

continuous signals.

Another limitation imposed by the discrete nature of pixels is a discrete color and 

intensity spectrum. The number of bits used to store each pixel determines the depth of 

these spectra. Grayscale images are typically composed of 1-, 2-, 4-, or 8-bit pixels. 
Color images are more complex and require 8-, 24-, or 32-bits. Raster graphics are 

simply HxW  matrices of n-bit pixels stored as bitmaps.

This study considers grayscale images stored at 8-bits per pixel or less. Most of 

these images are converted 24-bit RGB color images. The 24-bit RGB format allocates 

one byte to the red, green, and blue intensities of the pixel. Conversion from this format 
to grayscale intensity occurs according to the following equation.

I  grayscale ~ ^ - ^ K e d  +  green ^  blue

Equation 3.2— Color Intensity to Grayscale Intensity

The color sensitivities implied above arise from the concentration and distribution of 

cones cells in the human eye.



Resolution 

Resolution is a rough gauge of image fidelity. It specifies how well the discrete 

domain samples the original continuous image. Specifically, resolution identifies the 

number of pixels contained by an image. It also describes precision; thus, as resolution 

increases, digital images become clearer. 

For computer screens, resolution is often denoted in pixels per inch (ppi). For 

print displays, it is communicated in dots per inch (dpi). Dot and pixels typically 

represent the device's smallest displayable unit. 
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The limitations of discrete samples often appear in images as aliasing artifacts 

with high frequencies. However, increased resolution does not remove these artifacts. 

Instead, it limits the degree to which they are noticeable because the artifacts occur at 

even higher (less perceivable) frequencies. Figure 3.2 depicts a classic illustration of this 

phenomena using and infinite checkerboard (Watt, 1997, 1998; Foley, 1990). 

Figure 3.2-Infinite Checkerboard 



Image Metrics 

Digital images have many properties other than resolution and sampling 

frequencies. Often these properties are measured or described via numerical metrics. 

The following sections explain a few of these metrics that are relevant to this study. 

Histograms 
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Image histograms are statistical distributions of the intensity (or color) values 

present in an image. For an 8-bit grayscale image, histograms illustrate how many pixels 

of each 8-bit intensity are present. Figure 3.3 shows an example of such an image and its 

histogram. 

Count: 442368 
Mean: 111 .881 
StdDev: 44 .91 7 

Figure 3.3-An Image an its Histogram 

'IJ1in : 2 
'v1mc: 255 
'IJ1odE: 13E (141278) 

The shaded area under the histogram curve represents the total number of pixels present 

in the image. Qualitatively, histograms convey an image's overall contrast. As such, 

they can be used to enhance images will poor contrast. Many algorithms exist for 

histogram manipulation and Figure 3.5 of the next sections gives an example. 
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Quality Metrics

Many different types of image quality metrics exist. Some metrics are based on 

an image’s statistical or spectral (Fourier) properties while others gauge quality by 

modeling the human visual system. Avcybas and Sankur (1999) give a nice overview of 

many of them.
Each type of metric focuses on a set of attributes that contribute to the image’s 

quality. Many of these metrics attempt to condense the idea of subjective quality (as 

determined by a human) into a single machine friendly number. Such methods are easy 

to compute and offer significant information about an image. However, due to this ease 

of computation, such metrics do not always correlate well to the human determination of 

quality.

This study considers the correlation of two statistical quality metrics to human 

survey data. According to Johnson (1984), correlation coefficients empirically determine 

the likelihood of a relationship between a pair of data sets. A correlation coefficient near 

1 or -1  implies that the data sets are highly correlated (directly and inversely, 
respectively) and are likely related. However, since correlation is a statistical concept, 
there is no guaranteed relationship, only a highly probable one. The following table 
briefly describes these metrics.
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Metric Summary
R M S Error T he RM S metric is the root mean squared error betw een an original 

im age and a distorted im age. T his number can be derived by the 
fo llow ing equation:

RMS = T77 J X  X  !/(*’ j )  ~ A ?iV y j - q  /=o

Universal Quality Index Z hou’s and B o v ik ’s (2000 ) Universal Q uality Index is a statistically  
based im age quality metric that is defined by the fo llow in g  equation:

Oxy 2 x y  2 a x°y
a xa y (x)2 + ( y )2 < r \+ a )

T he first term measures the degree o f  linear correlation betw een the 
original im age p ixels, x , and the distorted im age p ixels, y. T he second  
term measures the mean lum inance with respect to the p ixels sets. 
Finally, the third term m easures the sim ilarity o f  the im ages’ contrast.

Table 3.1— The Statistical Quality Metrics Used in this Study

Image Transforms

Image transforms are used to enhance and impair images and to accentuate 

specific properties of an image. Each transform operates in a unique way, but different 
transforms can produce similar results. The following sections describe some of the 

image transformation algorithms considered in this study.

Pixel Manipulation

The simplest image transforms manipulate individual pixels. In particular, they 

modify pixel intensities or positions without any information pertaining to neighboring 

pixels. They are used for image enhancement and are often computationally simple.



Homogeneous pixel transformations have no dependence on pixel position while 

inhomogeneous transformations do. 
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Thresholding is possibly the simplest of pixel manipulation processes. This 

process maps pixels greater than some threshold value to 1 (white) and those less than the 

threshold to O (black). Figure 3.4 illustrates thresholding. 

Figure 3.4--Pixel Thresholding 

Thresholding can be combined with more other processes in order to produce transforms 

that are more complex. 

Image subtraction is a homogeneous process that finds the differences between 

pixels of two images. If A and B are both MxN pixel matrices, then image subtraction 

can be represented as: 

bin (a-b)ll A 

M= M 0 

bmn (a-b)ml A 

Equation 3.3-Image Subtraction 

(a-b)ln 

M 

(a-b)mn 
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Figure 3.5 shows an example of image subtraction. 

Figure 3.5-lmage Subtraction Example 

This study uses image subtraction to help assess image fidelity between an original image 

and a processed image. 

Contrast stretching is a homogeneous pixel manipulation which enhances images 

that have low contrast. Low contrast images use only a small part of their intensity 

spectrums and often appear to be "too dark" or "too bright." Contrast stretching simply 

maps intensity inputs to other intensities in the spectrum using a piecewise linear 

function. Figure 3.6 illustrates contrast stretching. 

Figure 3.6---Contrast Stretching 

This study uses contrast stretching to illustrate how images produced by Case's dithers 

appear to "grow" out of a 50% gray checkerboard. 



23 

Rotation of pixels is an inhomogeneous process that displaces pixels by a 

specified angle. It is a good example of a process that can be implemented in a two-pass 

manner. Two-pass transforms apply one transform along one orientation of the image 

and another along another orthogonal orientation. In effect, they build a more complex 

transform from simpler operations. For rotation , these transforms occur along the 

horizontal and vertical axes of the image. In this study, rotation is used to animate 

images in order to check for moires. 

Fourier Transforms 

Since digital images can be viewed as spatial signals, Fourier analysis can be 

applied to them. Fourier transforms map the two-dimensional image signals onto the 

spatial frequency domain. These transforms are simply different representations of the 

original data and are completely invertible; thus, no information is loss by converting 

between the two domains. Figure 3.7 shows an image with its Fourier transform 

■■■■■■■■ 
■■■■■■■■ 
■■■■■■■■ 
■■■■■■■■ 
■■■■■■■■ 
■■■■■■■■ 
■■■■■■■■ 
■■■-■■■■ 

Figure 3.7-lmage and its Fourier Transform 

In the Fourier image, the circumference of a circle centered on the origin, 

specifies a set of spatial frequencies of equal rates of undulation. This property can be 
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used to filter out unwanted frequencies before reconstructing the image with the inverse

with the same effect applied in the image domain despite the overhead involved in 

applying and inverting the Fourier transform.

Fourier transformations also have the ability to “separate” information that is 

“spread” throughout the image domain (Watt, 1998). Closer inspection of the Fourier 

image in Figure 3.7 makes this quality apparent. The texture of the image produces 

coherences in the Fourier domain. These coherences are the diagonal bands that 
crisscross at the origin.

In many disciplines, Fourier transforms are performed on continuous functions; 
however, digital imaging requires the use of a special form of the transform known as the 

Discrete Fourier Transform (DFT). Equation 3.4 shows how to compute the DFT of an 

image function I(x, y) and how reconstruct the image from its Fourier transform F(u, v).

transform. Computationally, filtering in the Fourier domain often outperforms transforms

l Y l "1 J N  ~~1 (

i(x ,y )  = ^ ^ F ( u ,v )  e
M-lN-l (i2n (—+—)) M N
jc=0 y=0

Equation 3.4— The Discrete Founer Transform and Its Inverse
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Note how the DFT is a complex quantity. Thus, images such as Figure 3.7 are often 

derived using the square modulus of the Fourier transform1. Such images are called 

power spectra.

Image Filtering

An important property exists between the image and Fourier domains: 
convolution. Convolution is an image domain operation that replaces a pixel value with 

the weighted average of neighboring pixels values. The number of neighbors involved in 

the operation depends on the size of the convolution kernel. For symmetry, the kernel is 

generally odd sized so that it has a center pixel.

This operation applies directly on the image; however, the convolution theorem 

states that convolution in the image domain is simply a multiplication in the Fourier 

domain. Thus, convolution filters use this fact to modify images based on frequency 

considerations without converting the image to its Fourier representation. Often these 

filters can be viewed as empirical versions of applying a frequency mask in the Fourier 

transform. These filters are often used in smoothing and edging operations. Figure 3.8 

depicts the kernels used in such operations

The square modulus of a complex number is the real number product of a complex number with its 
complex conjugate.



26 

Smootlling Sharpening 

-1 -1 -1 

-1 8 . 1 

1 -1 -1 . ( 

Figure 3.8-Smoothing (left) and Edging (right) Filters 

The edge filter will extract edges from the image. For sharpening images, this extracted 

information is reapplied to the original image. Median filters are a non-linear class of 

filters that replace a pixel with the median value of its neighbors. Figure 3.9 illustrates 

this operation. 

Celle 

C C C 
~ . i . 2 1.3 

C med(c. .) C 
2 i 2.3 

I J 

C C C 
3 i 3 2 3.3 

Figure 3.9-Median Filter 

Median filters are often used to remove various forms of noise from images. This study 

considers how post-processing with these filters affects subjective image quality. 

Interpolation 

Interpolation methods are used to predict data where only limited data exists. In 

this study, interpolation is. used to produce non-standard zooms of dithered images. The 



images studied here are stored at resolutions greater than 72 ppi. However, after 

dithering the images, the high resolution pixels are averaged together to produce a 72 ppi 
“zoom” of the image. This lower resolution zoom is subsequently compared to the 

original image to image objectively and subjectively.

Some zooms (called standard zooms in this document) are easily derived from the 

higher resolution dithered images. For instance, a 1:1 zoom of the original image can be 

derived by averaging 36 pixels (a 6x6 cell) of a 432 ppi image to produce a single 72 ppi 

pixel.
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However, non-standard zooms require more effort to derive. These zooms are 

identified by non-integer cell sizes. To compute such a zoom, divide the original 
resolution by the intended resolution (i.e. 432 ppi/ 72 ppi). This division gives the 1:1 

zoom cell size (432/72 —> 6x6 cell). Now, to find cell size for the zoom, divide the 1:1 

cell size by the desired zoom ratio. Continuing the previous example, for a 255% zoom, 
compute 6/2.55=2.3529411. To circumvent the decimal portion of this cell size, the cell 
is enlarged by a factor k using interpolatiqn and averaged down using a kNxkN sized cell
similar to the standard zooms.



CHAPTER 4
DIGITAL H AL FTO NING

Halftoning algorithms use spatial resolution to compensate for insufficient color 

depth in digital imagery. For example, most newspaper images display only two colors: 
black and white. To simulate regions of gray in such images, black and white dots can be 

alternated frequently. At high enough frequencies, the human eye cannot detect this 

alternation and, instead, perceives a shade of gray between the two intensities (see 

“Spatial Summation” from Chapter 2). The number of simulated grays depends directly 

on the amount of spatial resolution (i.e. details) sacrificed for dithering. Dithering images 

for binary displays is often called halftoning. This study focuses on such bi-level dither 

algorithms. The sections that follow describe the previously documented dithering 

methods of interest in this study.

Thresholding

Thresholding similar to that described in Chapter 3 can be used to dither images. 
This method of halftoning is a pixel processthat simply compares the values of the image 

pixels against those of a threshold pattern. Mathematically, this process can be 

represented by Equation 4.1.

28



{
I if l(x,y) >T(x,y) 

Pixel(I(x, y),T(x, y))= 
0 if l(x,y) < T(x,y) 

Equation 4.1-Pixel Thresholding 

The threshold pattern, T(x,y ), is a function in the image domain. Figure 4.1 illustrates 

three threshold patterns along side the resulting dithered image. 

!iliiililililililiiiiililllililililililililililllilllililllllll 

illlllllllllilllllllilllllllllilililiiliilllilliilllilllllillll 
:::::::::::::::::::::::::::::::::::::::::!::::::::::::::::::::: 

Figure 4. 1-Threshold patterns 

Figure 4. la represents a threshold of constant intensity (1=127). In Figure 4. lb, the 

threshold intensity varies sinusoidally along both axis. Figure 4. lc illustrates a random 

threshold pattern. Dithering with a random threshold pattern is also known as a white 

noise dither (Ulichney, 1987). 

Ordered Dithers 
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Ordered dithers work similar to threshold patterns. Both are pixel processes; 

however, instead of thresholding against a function, ordered dithers use dither matrices to 

represent intensities. Figure 4.2 illustrates a 2x2 dither matrix and its intensity patterns. 
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1 4 

3 2 

Figure 4.2-2x2 Dither Matrix 

As shown, this 2x2 group of pixels can simulate 5 (=22 + 1) intensities. In general, 

intensity, N, is displayed by activating the pixels in the dither matrix with order less than 

N. The ordering of the dither matrix determines the nature of the dither. 

Clustered-dot ordered dithers use dither matrices ordered to produce adjoining 

pixels for each intensity level. Often, these dither matrices grow in a spiral from the 

center of the matrix similar to the growth of a classical halftone dot. Figure 4.3 illustrates 

this point with an example of a 3x3 clustered-dot ordered dither matrix. 

! ! 
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Figure 4.3-Clustered-dot Ordered Dither Matrix 

For this type of dither, care must be taken to produce dither matrices which do not 

introduce moire effects for regions of certain intensities. Figure 4.4 displays a pattern 

that will produce offending vertical artifacts in image regions of 33% gray. 
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Figure 4 4—  Moiré Inducing Dithering Pattern

Clustered dithers are widely used in printing because many printing devices cannot 
accurately display “stray” pixels produced by dispersed-dot ordered dithers.

Dispersed-dot ordered dithers use dither matrices with more isolated pixels to 

represent increasing intensities. Bayer (1973) devised a method for generating dispersed- 
dot dither matrices of even size. Equation 4.2 gives Bayer’s recursive relation.

Given D2 = 1
4

3
2 andU n

1 A 
M O  
1 A

1
A, then
1

4 £ ) n /2  + U n/2 4 D n / 2 + 3 £ / « / 2
4 D n / 2 + 4 V n / 2  ^ D nl 2 +  2 U n/2

Equation 4.2— Bayer Disperse-dot Dither Recurrence Relation

Figure 4.5 shows four intensities of a 4x4 disperse-dot dither.
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Figure 4.5-Dispersed-dot Dither Patterns 

Dispersed-dot dithers are preferred over clustered-dot dithers because they produce better 

images if no limitations exist in the display hardware. Many printers do not handle 

dispersed dot dithers well. 

Error Diffusion 

Floyd and Steinberg first presented the idea of error diffusion in 1975 (Ulichney, 

1987). Error diffusion resembles dithering in that both methods produce images that 

sacrifice spatial resolution to simulate extra intensity levels; however, the rational for 

error diffusion is quite different. Error diffusion methods are neighborhood processes 

that distribute errors due to intensity dept~ reductions to surrounding pixels. These errors 

are the difference between the exact pixel value and the approximated value actually 

displayed (Ulichney, 1987). The distribution of these errors helps to retain image details 

by preserving image information. 

Floyd-Steinberg error diffusion is the simplest of these algorithms and distributes 

errors downward and to the right of the pixel in question. Figure 4.6 illustrate how the 

algorithm passes error compensations on to future pixels. 
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Figure 4.6---Floyd-Steinberg Distribution of Error 

The above representation of the error distribution is known as the error filter. As can be 

seen in Figure 4.7, Floyd-Steinberg error diffusion produces desirable results. 

Figure 4.7-Floyd-Steinberg Error Diffusion 

However, Ulichney (1987) argues that error diffusion methods typically .. suffer from 

"correlated artifacts" in gray level patterns and "transient behavior" along image edges. 



CHAPTER 5
DATA COMPRESSIO N

In its rawest form, image information typically occupies a large space in a 

computer’s primary or secondary memory. However, this information usually exhibits 

redundancies of some kind. Data compression involves the removal of these 

redundancies. The following summarizes Storer’s (1988) ideas on data compression:

Data compression is the process of encoding a body of data D into a 
smaller body of data AD so that it is possible for AD to be decoded back to 
D or to an acceptable approximation of D.

This definition alludes to the two primary types of data compression: lossless and lossy. 
Lossless data compression is characterized by the fact that no data is lost in the decoding 
process. However, lossy data compression only produces an acceptable approximation of 

the source data during the decoding process. Similarly, image compression methods 

transform image information into a form that reduces redundancies in pixel information 

without losing the ability to accurately reconstruct the image.

34
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Theory

An alphabet is a set of symbols, A = {a{,a 2, K ,an}, that can be combined to

convey something meaningful (information). An information source is defined by an 

alphabet and the probabilities with which the symbols in the alphabet occur in the source. 
The alphabet and the probabilities of an information source must satisfy the following:

^  P{a, ) = 1 where 0 < P(at ) <1 V/i=i

Equation 5 1— Probability Condition for an Information Source

A zero-memory information source satisfies the added condition that adjacent symbols in 

the source are statistically independent. In other words, a symbol emitted from the source 

cannot be predicted using the symbols that precede (or follow) the symbol.

Entropy is a measure of information content (Shannon, 1948). Specifically, it 
describes the average number of bits actually needed to convey the information of an 

original source. Informally, low entropy implies that some state occurs often in a system. 
In other words, the state is redundant and contributes less overall information to the 

system. Most of the time, a viable estimate of this quantity is not available. However, 
for the grayscale images of this study, entropy can be approximated using graylevel 
histograms. For an image of HxW  pixels, the probability of a graylevel, g, is given by:

P(g)= Kg)
MN

Equation 5.2— Probability o f a Graylevel Occurrence m an Image
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In this equation, v(g) is the frequency with which a graylevel occurs. This value is 

readily available from the image histogram. Using Equation 5.2, image entropy, He< can 

be approximated for an n-bit per pixel image as:

2” - l
= £ / ’(#) l°g:

8=  0 P(g) J

Equation 5 3— Image Entropy

This equation assumes that no correlations exist between the graylevels of the image or 

between the pixels that compose the image (Gonzales, 1987).

Compression ratios (Ruth and Kreutzer, 1972) are common image compression 

metrics based on entropy. Compression ratios compare an n-bit image’s original size to 

its compressed counterpart. Formally, this quantity is defined as:

Equation 5 A— Theoretical Compression Ratio

This quantity describes the theoretical limit that a compression method can achieve. 
Empirically, it can be determined by dividing an image’s original size by its compressed 

size.

This discussion of entropy relies on the assumption of the zero-memory 

information model. However, this model is a generic view applicable to all information 

sources. Images (especially binary images) naturally exhibit repetitions of individual 
symbols and groups of symbols. Thus, the zero-memory model constrains them. Image



encoding methods can achieve higher compression ratios if they account for such 

repetitions before considering the statistical distribution of symbols. The following 

sections describe previously documented methods of compression. The sections are 

ordered on how much they relax the condition of complete statistical independence for 

image pixels.

Statistical Encoders

Huffman codes (Huffman, 1952) are a lossless statistical encoding technique that 
can achieve compression rates between 20% and 90% (Cormen, Leiserson, Rivest, 1990). 
The mapping of source symbols to a Huffman code is based solely on the frequency of 

symbol occurrences in the source. In other words, it directly assumes the zero-memory 

condition. The method assigns shorter codes to high frequency characters and longer 

codes to low frequency characters. In fact, Huffman codes represent the source with the 

minimum possible average number of bits.

Binary trees can be used to represent Huffman codes (Held, 1987; Cormen, et al., 
1990). Figure 5.1 gives an example of such a representation. In this figure, the leaves of 

the tree are marked with a character and the probability of its occurrence. The labels on 

the inner nodes of the tree denote the sum of the character (leaf) probabilities in their 

respective sub-trees.

37
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Figure 5.1— Example o f a Huffman Tree

Run-Length Encoding

Run-length encoders (RLE) are a class of lossless compression algorithms that 
replace runs of repeated (individual) symbols with codes describing the run more 

concisely. As a simple example, consider the string “aaaaabbbbccccccde”. A very basic 

RLE method could replace this string with a codeword such as “a4b3c5d0e0”. In this 

code, the numbers imply copies of the previous letter. This example exhibits a 

compression ratio of 1.7 (=17/10).

Bi-level images benefit greatly from RLE compression since they often contain 
large runs of “on” and “o f f ’ pixels. In fact, fax machines use similar methods to decrease 

the amount of information transmitted over telephone lines (Russ, 1999). However, the 

above example also exhibits an important weakness of many RLE methods: data 

expansion. Notice that each run of one doubles in size after encoding. The checkerboard 

dithering algorithms of this study naturally contain many runs of one; thus, such a simple
method would be detrimental.
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When compared to other classes of compression, RLE methods often perform the 

weakest in terms of compression ratios. However, they are only meant to account for 

symbol repetition redundancies. As a result, RLE methods are often used as a precursor 

to another compression, usually a statistical method like a Huffman code. Run length 

encoders do have a significant advantage over other methods: localized decoding. RLE 

decoders can translate codewords individually and independent of the system’s other 

codewords. Other image compression schemes cannot achieve this ability without 
considerable drops in performance, if at all. As a result, image processing applications 

can exploit this RLE property to reduce the footprint of image information in primary 

memory at relatively low computational costs.

Dictionary Encoding

Dictionary compression algorithms use look up tables (called dictionaries) to map 

input strings to indices codes. These look up tables store more information than the 

individual symbol runs of RLE methods since they track symbol groups from the start of 

the encoding process. However, like RLE methods, these algorithms are lossless. Figure 

5.2 illustrates how such a method could process data from a bi-level image.
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Typical string of bi-level image data
010101000111010X11010 
01  2 3 0  2 1 1  3 7 8 8

Encoded data

Look up table
Siring Code String Code
0 c on 6
i i i i 7
01 2 1 0 8
0 1 0 3 0 1 0 1 9
0 1 0 0 4 1 1 1 1 0
0 0 5 .101 11

Figure 5.2— Dictionary Compression Example

In this figure, the codes are represented as decimal numbers; however, a realistic 

implementation would use some form of binary representation. For this simple example, 
a four bit binary code would suffice. The codes are generated by first initializing the 

LUT with codes for the characters of the source alphabet. Subsequent iterations of the 

encoding loop generate new codes for source substrings previously unencountered. An 

unencountered substring is the largest substring with a LUT entry plus the following 

source character.

Dictionary compressors build their codes adaptively and do not store the 

dictionaries in the compressed data. This occurs in both the encoding and decoding 

processes. As a result, dictionary compression methods cannot perform localized 

decoding in the fashion of RLE methods. Despite this fact, these algorithms perform well 
on computer generated images. The GIF file format uses Limpel-Ziv dictionary encoding 

to achieve average compression ratios of 4 to 1 (Russ, 1999). Limpel and Ziv



popularized dictionary methods with papers in 1977 and 19782. Welsh (1984) later 

created an improved implementation of these methods.

Frequency Transform Compressors

Frequency transform compression (FTC) methods rely heavily on the properties 

of the human visual system (HVS) and Fourier analysis. Discrete versions of Fourier 

analysis allow complex waveforms (i.e. image signals) to be represented as a truncated 

(infinite) series of simpler signals via the discrete Fourier transform (DFT) or the discrete 

cosine transform (DCT). Compression is achieved by omitting “irrelevant” information 

from the coefficients of such transforms (Dougherty, 1994). This activity results in a low 

pass filtering of the image data (Jahne, .1993). Unlike the previous methods, FTC 

algorithms sacrifice information to achieve compression. In general, FTC methods rely 

on studies of the HVS to determine expendable or “irrelevant” information.

FTC algorithms operate well on photographic images and achieve very high 

compression ratios relative to the previously discussed methods. However, blocking 
artifacts often accompany this compression since many FTC algorithms process 

information in increments of 8x8 or 16x16 cells to reduce computation time (Jahne, 

1993). JPEG images use FTC methods (via the DCT) as their primary source of 

compression.
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2 Entitled:
"A Universal Algorithm for Sequential Data Compression,"

IEEE Transactions on Information Theory, V23, No.3, pp.337-343, May 1977. 
"Compression of Individual Sequences via Variable-Rate Coding,"

IEEE Transactions on Information Theory, V24, No.5, pp.530-536, Sep. 1978.



42



CHAPTER 6
NEW METHODS

This chapter describes the methods that are the subject of this study. The 

Checkerboard Bank Sort and Reverse Diffusion halftoning algorithms are the patented 

intellectual property of Robert Maxwell Case (1993, 2002). The NOTA compression 

method also belongs to Case (2002). They are summarized here with his permission and 

consent. The RBE compression method is an original product of this research. It was 

developed through the study of Case’s methods and that of digital halftoning in general.

Case Halftoning Methods

Classical (analog) halftoning uses primitives known as cells and dots. Cells 
determine the spatial resolution displayed by an image and range in size from 1/85 to 

1/150 of an inch (Case, 1998). Classical halftone dots grow from the center of cells and 

coincide with an image’s intensity resolution. A cell’s graylevel is simply the area of the 

dot divided by the area of the cell. Since the dots can grow continuously, the intensity 

resolution in classical halftoning is only limited by the device used to display the image.

Unfortunately, similar growth of digital halftone dots using discrete pixels leads 

to unwanted artifacts. Several methods existing methods attempt such growth to no avail
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(Bowers & Bowers, 1990; Crinion, 1987; Kotera, 1985; Tada & Kaoru, 1988). These 

methods fail because groups of digital pixels are more akin to classical halftone cells than 

they are to classical dots (Case, 1998).

Case’s methods exploit this property using bi-level digital checkerboard cells. In 

their initial states, these checkerboard patterns represent 50% gray. To represent more 

intense grays, white pixels in the checkerboard are simply turned black. Likewise, lighter 

grays are produced when black pixels are turned white. This pixel placement process 

corresponds to the growth of the classical halftone dot in a cell. Figure 6.1 illustrates this 

idea using four 8x8 cells. The upper right cell is one shade of gray darker that the upper 

left and lower right cells and the lower left is one shade lighter.

Figure 6 1— Graylevels for Checkerboard Cells

Case’s methods differ only in the manner used to turn pixels on and off in the 

checkerboard. The significance of the 50% checkerboard can be seen in the many 

existing dithers that artificially attempt to produce such patterns (Bayer, 1978; Bowers & 

Bowers, 1990; Crinion, 1987; Kotera, 1985; Tada & Kaoru, 1988). By using these 

checkerboards as their natural base, Case’s dithers can achieve “smoothness” not present
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in other methods. This smoothness can be attributed to edges being nearly undetectable 
on checkerboard cells.

Figure 6.2 generalizes the cells operations of Case’s methods.

Deep Pixel 
Bitmap Gather NxN 

Pixel Cells ► Determine Graylevels 
of NxN Cells Convert NxN Cells

1-bit Pixel 
Bitmap

Figure 6 2— General Processes on Cells

In this figure, the term “deep pixel bitmap” refers to a bitmap that uses k bits to store each 

pixels, where k is typically eight or greater. In addition, N  is some power of two, since a 

2x2 cell is the smallest cell that can represent a checkerboard. Extracting pixels from 

bitmaps to form cells is an operation that is implementation specific; however, it is the 

same for each of Case’s methods. These cell operations differ from the previously 

mentioned pixel and neighborhood processes in that they operate on groups of pixels 

rather than single pixels. The following sections describe Case’s algorithms in a 

systematic fashion.

Checkerboard Bank Sorting

The Checkerboard Bank Sorting (BS) algorithm uses a sorting rrfechanism to 

manipulate pixels in the checkerboard cells. The sort occurs on one of the two sets of 

pixels present in the bi-level 50% gray checkerboard: the white bank and the black bank. 
Similar to other dithering methods, the BS algorithm produces a set of distinct dither 

patterns. However, unlike Bayer’s dispersed dither (1978) or the clustered dither 

described by Ulichney (1987), an ordered dither matrix is not used.
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Instead, the algorithm begins by determining the graylevel o f a cell extracted from 

the deep pixel bitmap, Cdeep- If Cdeep is an ¿>x£matrix, then the total number of graylevels 

that it can display, Tgrayieveis is:

Equation 6.1— Total Number o f Graylevels for Cdeep

In this equation, <5is a power of two and m is the pixel depth of the bitmap. The 

percentage of gray for the cell, Gceu, is simply the sum of the cell’s individual pixel 
graylevels divided by Tgrayieve[S:

SS«._  ,=1 j = l  'JrCell r p
1 graylevels

Equation 6.2— Deep Bitmap Cell Graylevel

Gceii is now converted into the total number of pixels that will be “on” in the bi-level cell,

P ^ O ^ S 1

Equation 6.3— Number o f “on” Pixels m Bi-level Cell

Pon is rounded to the nearest whole pixel. This rounding introduces an error of at most 
half a pixel to the process. Figure 6.3 depicts this process with a section of an 8-bit 
bitmap.
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Figure 6.3-Illustration of Cell Graylevel Determination 

The conversion of the extracted cell to a bi-level cell begins with an 8x8 

checkerboard, Chi-Level• This bi-level checkerboard cell already has half of its pixels on; 

thus, to determine how many more pixels to turn on or off another number, P changed is 

derived: 

Equation 6.4-Number of Checkerboard Pixels to Change 
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If P changed > 0, then Bwhire is sorted in order of descending deep pixel graylevel and Pchanged 

pixels are changed to black. If Pchanged < 0, then Bbtack is sorted in order of ascending deep 

pixel graylevel and Pcha11ged pixels are changed to white. If Pchanged = 0, then cbi-level 

remains unchanged. Figure 6.4 illustrates the conversion by continuing the previous 

example. 
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Figure 6.4-Conversion to Bi-level Cell 

In this example P changed = 3 so the pixels with graylevels 225, 221, and 213 are turned on. 

This process continues for each 8x8 cell until all cells are converted. 

Reverse Diffusion 

Reverse diffusion (RD) is a technique that in many ways combines aspects of 

dithering and error diffusion. Like the previous method, this algorithm acts on cells of 

pixels extracted from a deep pixel bitmap. However, unlike the BS algorithm, these cells 

do not result in a distinct set of 8x8 dither patterns. Instead, RD works with an NxN 

neighborhood of 8x8 cells to improve the performance of a typical dither by 

compensating for the information lost when considering the 8><8 cells individually. The 

following paragraphs describe how RD can be wrapped around an ordered dispersed-dot 

dither for better performance. 

RD operates by pushing partial pixel errors down recursively to subcells. These 

partial pixels are the remainders generated by integer di vision operations present in this 



scheme. The recursion stops when subcells reach the size of an ordered dither matrix.
The dither matrix determines the order in which pixels are filled and is patterned after a 

checkerboard. The predictability of this ordered dither is used to facilitate subsequent 
compression steps. As previously stated, it may be replaced by similar methods 

including the aforementioned BS algorithm.

Before describing this algorithm, the following notation is developed. Let 

Ciog,(Ai),o be an NxN matrix of pixel graylevels where N is a power of two (the subscripts

are described shortly). Define Q( Cr 0)r) as an operation that quarters Cr a>r into an 

ordered matrix of subcells (also matrices) as follows:
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G « W =
c cr-l,tyr_j+3 W -l,û>r_,
C  CW-l,<yr_,+l '“"r-l,tyr_j+2 , where co r_l =4cor

Equation 6 5— Cell Quartering Operation

In this notation, r describes the number of times that Q can be applied to Crfit before

reaching a matrix of l x l  subcells (the graylevel values themselves). The (Or subscript 

represents the order imposed on these subcells by Q.

Now, let D§be a SxSdither matrix where S < N  is also a power of two. Since the

smallest possible checkerboard is D2 4 1 
2 3 (filling pixels in white to black order), Ds

can be recursively defined by:
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f (  ^4 Dn - u n +3 U„ 4 D n - U n_
2 2< 2 > 2 2<

4 Dn - U n +iU i 4 D  - Un n + 2 U „

_ 2 2J 2 l  7 2) 2 _

Equation 6.6— Recursive Definition o f a White to Black 
Checkerboard Dither Matrix

This matrix is equivalent to the transpose of the matrix given by Bayer (1978). Note that 

R = log2 (AO _ log 2 (¿) is the number of times that Q must be applied to Cr (0r so that

Crja is divided into subcells o f size S.

The RD algorithm begins by gathering and storing the graylevel sums of the 

entire NxN cell and R levels of subcells. In general, these sums are denoted as S and

defined as follows:

4(<ur+ l)—1
Sr,<or = X Cr~a <4'°g2(W,' r and (Or e  V

k = 4 c o r

Equation 6.7— Definition o f Subcell Sums

With this notation, the sums of interest are all those with an r subscript ranging from 

log2(N) to log2(S).

Once the subcell sums are gathered, the cell conversion process begins by 

determining the value of a whole pixel (versus a partial pixel), B:

B = 2b - 1

Equation 6.8— A “Whole” Pixel
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In this equation, b is the pixel depth of the deep pixel bitmap. Now, to find the number of 

whole pixels, W, which will be “on” in the bi-level cell, Sloĝ (N) 0 is divided by B.

Remember, Slog, (AOi0 is the sum of all of the graylevels in the cell (e.g. Ciog2(N) 0). W is

rounded to the nearest whole pixel since this first division of the RD process is a floating 

point division. Similar to the BS algorithm, this rounding introduces at most a half pixel 

error. W specifies the number of “on” pixels in Clog?(/V) 0 ’s corresponding bi-level cell,

but not which pixels.

Therefore, another set of divisions is performed on the four ordered subcells 

produced by Q(C loĝ iNX0). However, these are integer divisions and both the quotients

(whole pixels), W , and remainders (partial pixels), P  , are stored:

c
° l°g i<A 0 .0

B

Equation 6.9— Number o f Whole Bi-level Pixels for a Deep Pixel
Cell

mod(5)

mod(B)

Equation 6.10— Subcell Whole and Partial Pixels

Taken together, W and P represent the number of “on” pixels as a floating pointing 

number. However, it is not possible to fill a pixel partially. Thus, these integer divisions



generate a discrepancy between the number of “on” pixels determined by the two 
recursion levels. This discrepancy is termed a shortfall and is defined by:
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a r ,C O ,

4(^+1 H
I X i , *

k - 4 c o ,

Equation 6.11— Definition o f an RD Shortfall

To remedy this error, one whole bi-level pixel is added to a  subcells in order of

decreasing Pr-i>(0r_t . Thus, <7of the Wr a>r values are incremented by one. The partial

pixels amounts, P, determine which of the subcells is most deserving of an extra shortfall 
pixel.

This process is carried out recursively in the order of (Or for each ¿-bit graylevel 

subcell of Clo&>(A0 0 until level R is reached. At this level, the subcell size equals 8  and its

corresponding bi-level cell is filled with W]0Ŝ N)_R01r pixels according to D§(the

checkerboard dither matrix). At this point, the question of “which pixels” is answered. A 

deep pixel cell is converted when all of it's 8x8  sized subcells have been dithered.

The above generalization of reverse diffusion in terms of sets and matrices greatly 

facilitates the implementation of the algorithm in a programming language; however, it 
does little to clarify its nature. Thus, the following example is given to illustrate how RD 

can be applied over an ordered dither. Suppose C?,o is the 8x8 cell of 8-bit pixels in

Figure 6.5.
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RD begins by determining the graylevel sums of the entire cell and two levels of subcells. 

These sums are then translated into the number of whole and partial pixels they represent. 

In Figure 6.6, the Ps actually represent the numerator of the fraction p where B = 255 
B 

(a whole pixel in this case). This fact illustrates the meaning of "partial" in the term 

"partial pixel errors". 
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RD begins by determining the graylevel sums of the entire cell and two levels of subcells. 
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s 
3.0 

'v\1=36 

s 
2.0 3 

s 
10 15 

566 544 

I 
~-- - .. ··-··• ·· 
i 626 626 

---

502 601 

b34 52b 

'----

'./\1=9 \/\J'=9 
f->=6B µ=226 

'N=2 V•/=2 
P=58 P=34 

W=2 W=2 

\j\/=8 \/•J-=8 P=116 P=116 

P=223 P=97 
'vV=1 V\/=2 

P=247 P=91 

V•/=2 W=2 
f->=124 P=16 

Figure 6.6-Subcell Sums, Whole and Partial Pixels 

54 

643 501 
: 

' 

i 

626 I 651 
: 
? 

650 501 
l 

386 600 

j 

VV=2 W=1 ' 
P=133 j P=246 ; 

' ; 

W=2 : W=2 l 
P=116 I P=141 I 

i 

W=2 W=1 
P=140 P=246 

W=1 W=2 I 
P=131 I P=90 I 

At the end of the RD process, C3,0 must contain 36 total pixels. However, some of these 

pixels become "lost" in the integer divisions used to compute the Wr,w, of each subcell. 

Thus, shortfalls are determined for each ( Cr.w, , Q( Cr.w, )) tuple and are used to "replace" 

the lost pixels. For Figure 6.6, 

<I3,0 = 36 - (9 + 8 + 8 + 9) = 36 - 34 = 2 

As a result, a pixel is added to the C2.o and C2,1• It is important to note that a shortfall is 

applied before the RD process proceeds to the next subcell level (if this were not true, the 

pixels would stay "lost"). Figure 6.7 depicts this new situation. 
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Figure 6.7-After First Shortfall Increment 

Now, the process continues to recursively descend into C3,0 until subcell level 1 is 

reached. Figure 6.8 illustrates how this process occurs. Notice that a tie in Ps occurs on 

the last increment of Figure 6.8. This tie is resolved using the ordering imposed by the 

quartering operation. 

Now that the lost partial pixels have been recovered, W1 w bi-level pixels are 
'I 

activated in each of the 2x2 C1.w1 
subcells according to the corresponding 2x2 dither 

matrix. This activation of pixels is the final step to convert the deep pixel input cell to a 

bi-level RD output cell. 
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New Compression Methods 
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The previously discussed compression methods (Chapter 5) are well documented 

in the literature of information theory and image encoding. The following sections 

introduce two new image encoding schemes. The first of them is-a form of run length 



encoding. The other is an attempt to produce a two-dimensional version of run length 
encoding for digitally halftoned images. Both methods produce codes that can be 

subsequently compressed using other methods.

Case’s NOTA Encoding

NOTA (“None of the above”) compression is a proprietary method suggested by 

Case (2002). It improves on other RLE methods by considering the nature of bi-level 
images and uses variable length codes to represent runs of pixels. Since bi-level pixels 

only have two states (0 or 1), pixel runs can be represented by sequences of zeros where 

the size of the sequence describes the run as a power of two. Ones in the sequence are 

used as delimiters specifying the end of a run.

The length of a variable NOTA code depends on the range in which a run of 

pixels exists. These ranges are represented by subcodes with lengths, a„ defined in the 

following manner:
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Given a0 =1, ax = 2 , a2 = 5,

Vrc > 3 an = S(n -  2)

Equation 6.12— NOTA Subcode Lengths

Table 6.1 shows the code lengths for runs ranging from 1 bit to 16,777,216 bits in terms 

of the subcode lengths.
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Variable 
Code Length

Subcodes
Lengths

Run Range
1 [ l ,D

3 1 + [2,5)
d o +

8 1+2+ [5, 32)
¿Z$+#/ +

16 1+2+5+ [32,256)
Clo+Cli+Cl2~^

32 1+2+5+8+ [255, 65536)
a o + a  ¡+ U 2+CI3+

56 1+2+5+8+16+ [65535,
#0+& 1+&2+&3+&4+ 16777216)

Table 6 1— NOTA Variable Code Lengths

As Equation 6.12 implies, subsequent code lengths grow by the next multiple of eight.

NOTA encodes a run by comparing the run’s length to the maximum length 

allowed for each variable sized code. If a j  is the last term of a set of subcodes lengths 

(highlighted in red in Table 6.1), then this maximum run length is highest number that 
can be represented by ar bits minus one. The subcode produced by a j  copies of “0” is 

used to signal that a run cannot be encoded by the current variable size code; thus, this 
subcode signals that the encoder must continue to the next variable size code length. 

However, before trying the next variable size code, the encoder first subtracts 2 3t - 1  

from the run’s length and outputs a j  copies of “0.” This decremented run value is used in 

the next comparison (which is similar to the one just described). The encoding procedure 

continues until a run’s length is less than the maximum length allowed by the 

corresponding variable sized code. At this point, the run value (after being decremented



by each 2“T - 1 )  is encoded as a binary number with a-r bits, the ar bits are output, and 
the processes begins again for a new run.
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Figure 6.10 illustrates how a typical run is encoded via NOTA.

R u n  Length: 3021
Compare

Value
Comparisons Code

3021 3021 > 1 (2A1 - 1) 
output "0"

0

3020 3020 > 3 (2A2 - 1) 
output "00"

000

3017 3017 > 31 (2A5 - 1) 
output "00000"

00000000

2986 2986 > 255 (2A8 - 1) 
output "00000000"

00000000
00000000

2731 2731 < 65535 (2A16 - 1) 
output 2731 as 16-bit 
binary "0000101010101011"

00000000
00000000
00001010
10101011

Figure 6.10— NOTA Encoding Procedure

NOTA’s decoding procedure reads the series of variable length subcodes from a 

bit stream until a “1” is encountered. If st is subcode containing the first “1,” then 

subcodes s o . . . s t - j  contain a, copies of “0” (where i = 1...T-1). To decode a bit stream, the 

NOTA decoder initializes the run length, L, to the following sum:

= X 2'
1=1

- 1

Equation 6.13— Decoder Run Length Initialization
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The remaining length of a run is specified by adding the number represented in binary by 

st to Lq. Figure 6.11 offers an example of the NOTA decoding process for clarification.

C o d e : o  oo ooooo oooooooo 0000101010101011
s. s s 4
Process Run Length

L = O 0

sO = "0"/ increment L by 2AaO - 1 ( 1 )  1

si = "00", increment L toy 2Aal - 1 (3) 4

s2 = "00000", increment L toy 2Aa2 - 1 (31) 35

s3 = "00000000", increment L toy 2Aa3 - 1 (255) 290

s4 = "0000101010101011", add integer(s4) to L 3021

Figure 6.11— NOTA Decoding Procedure

Recursive Block Encoding

Recursive Block Encoding (RBE) is an original product of this study that achieves 

compression by considering the properties of halftoned images. It is so named because 

the process recursively identifies blocks of homogenous SxS dither patterns used to 

convert a deep pixel image to a binary bitmap.

Generally, an arbitrary SxS cell of binary pixels can exist in one of 2 states. 

However, all practical dithering methods use less than this maximum set. For instance, 
Bayer’s ordered dither (OD) (1978) and the clustered dither (CD) described by Ulichney
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(1988) only use 6 2 +1 states. Case’s BS dither produces 2 2 - 1  states. If M Ps

denotes the number of states produced by dither method M, then the three aforementioned 

dithers can be described by ODPs , CDPS, and am  Ps , respectively.

Since dither methods use less than the maximum number of SxSstates, each 

possible SxS dither cell can be mapped to a fixed length code of f  log2(P5) ”| bits. As a

result, these cells can be represented by less than the $  bits originally needed to describe 

the individual pixels of the cell. In fact, for the 2x2 case the OD and BS methods 

produce 5 and 7 patterns respectively. Since three bits will encode each of these 

numbers, a 25% savings is produced. Savings for the 4x4 case are more dramatic at 68% 

and 43% respectively. This mapping of SxS patterns to (~ log2(Ptf) *] bit codes removes a

first order redundancy in which SxS cells are represented with more bits than is 

necessary. Further compression cannot be practically achieved in this manner because 

dither cells larger than 4x4 pixels sacrifice too much of the deep pixel bitmap’s 

resolution.

For normal images, neighboring pixels tend to be similar. However, dither matrix 

halftoning methods produce binary images where SxS sized cells are similar. Thus, 

further compression can occur if blocks of these SxS cells are considered.

For N equal to some power of two, an NxN block of pixels will contain N_̂ 2

8x8 sized subcells. As previously mentioned, each 8x8 subcell exists as one of M Ps



patterns; thus, each NxN block has (M Po j 1 J' possible states. By recursively parsing 

through the NxN block, a unique variable length code can be produced to encode the 

block's state. This variable length code is built from the fixed length codes used to 

encode each 8x8 pattern. 

Before describing the recursive block codes created for this study, the following 

precondition is set: 
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• For any sequence of m-bit fixed pattern codes, the code of m copies of the binary 
digit" l" is reserved for use as a recursion delimiter. 

Figure 6.12, Figure 6.13, and Figure 6.14 illustrate the RBE scheme for four different 

64x64 pixel cells with 8=2. Figure 6.12 shows the 5 patterns of ordered dither along with 

the fixed length code assigned to them. Figure 6.13 shows the bit streams used to encode 

the blocks in Figure 6.14. The "Os", "ls", "2s", "3s", and "4s" of Figure 6.14 correspond 

to the fixed length codes of the ordered dither. The encoding procedure is now described. 

000 001 010 

011 100 

Figure 6.12-Fixed length codes for 2x2 ordered dither 
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a) 000
001

001 
001 

b) oci 000 
010

001
001

C) 1 1 1  0 0 1  0 0 0  0 0 1  0 0 0  
010
111 010 010 001 001

010
001
111 111 001 111 000 001 001 000 000 001 001 
010 
000 
001 
O i l  
010 d) ooi 
000 
001 
001 
Oil 
001 
000 
001 
010

Figure 6.13— Variable length block codes (arranged vertically by 
chunks)
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a)

b)

1  ;

F

1

0 ! 2
1
[

1___________________

Figure 6.14 a & b— 64x64 Pixel Block Example
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Figure 6.5 c & d— 64x64 Pixel Block Example (Continued)

The codes of Figure 6.13 are arranged vertically for readability, but, in reality, they 

would exist as a stream of bits in a file. Each code is composed of a prefix and several 

chunks. The prefix is simply an integer represented by m bits (where m = flog2 (Ps )”| ).

In Figure 6.13 a-d, the prefixes are the first three bits at the top of each code. Following 

each prefix are 4prefU chunks. A chunk is a variable length subcode used to represent a
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2 (iog2(N)-prefix) x  2 dog2(N)-preHx) ^ . b i o ^  Qf  NxN block. Qualitatively, a prefix code

describes the “granularity” of an NxN block by specifying the size of the largest 2k sub­

block of homogenous 8x8 cells where k = log 2 (AO -  prefix . The chunks, on the other 

hand, identify the characteristics of each individual “grain” in the N xN  block while 

specifying them in “English reading order.”

Prefix codes are determined by identifying the largest block of homogeneous 8x8 

cells. The chunks of an NxN block are output according to the following recursive 

procedure:

1. If the 2cx2c sub-block is homogeneous in terms of the 8x8 cells that compose it, 
then the fixed length code for the 8x8 cell is output as the chunk’s value.

2. Else if 2C = 8, then the code corresponding to the 8x8 cell is output.
3. However, if the 2cx2c sub-block is a heterogeneous mixture of 8x8 cell, then the 

recursion delimiter is output and the 2cx2c sub-block is quartered. The process 
(1 ,2 , and 3) is then recursively applied to each of the quartered sub-blocks of size 
2c~Ix2c'1. The recursion continues until a sub-block of homogenous 8x8 cells is 
found or until the 8x8 level is reached.y

In this procedure, sections 1 and 2 are the recursive escape conditions while section 3 

makes recursive calls. Figure 6.14 can now be described.

In Figure 6.14a, each of the 2x2’s composing the block are the same. Thus,

“000” is output as the prefix because there is no need to descend into the sub-blocks and 

“001” is output as the required chunk
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Figure 6.14b is similar; however, each of the first level of sub-blocks (size 32x32) 
is homogeneous (instead of the entire block). Thus, “001” is the prefix since one level of 

recursion is needed to reach the largest homogenous structure and four (41) non-delimited 

chunks describe the four homogeneous sub-blocks.

Figure 6 .14c illustrate a situation in which two 32x32 sub-blocks are the largest 

homogenous structures of the entire block. As a result, “001” is output and the 32x32 

homogeneous chunks are output similar to Figure 6.14b. However, homogeneity in the 

remaining blocks does not occur until the 16x16 level is reached. Thus, for each of these 

chunks, the recursion delimiter is output to signify a drop to the next recursive level and 

four codes are output for each of the homogenous 16x16 sub-blocks.

Figure 6.14d depicts a more “average case” in which homogeneity until the third 

level of recursion (16x16 sized sub-blocks). For this case, “010” is outputted followed 

by 16 (4 ) chunks. This example show how several recursion delimiters can be nested 

inside of a chunk.

The decoding of the RBE bitstream is simpler than the encoding process. The 

code is unambiguous because the 5x6 cell codes are fixed in size and the prefix and 

recursion delimiters determine exactly the number of fixed codes are present in a string. 
To decode an RBE string, first, read the prefix code to determine the “starting sub-block 

size.” Once the prefix code is read, fill the NxN block (where N is the same as used in 

the encoding step) according to each of the 4prefix chunks. When no recursion delimiter is
2log2 ( N ) - p r e f i x

present, the sub-block that the chunk represents is filled w ith ---------------- copies of the
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8x8 cell specified by the chunk. When recursion delimiters are present, the sub-block is 

filled in the same manner; however, the sub-block size decreases by half as does the 

number of necessary copies for each encountered recursion delimiter. The chunks are 

mapped back to the N xN block in normal “English reading order.”

The variable length codes of this particular implementation of the RBE idea 

remove a first order redundancy in which excessive bits are used to identify a 8x8 dither 

cell and a second order redundancy in which neighboring 8x8 cells are often similar. 

However, it is also designed to promote further compression using a statistical encoding 

method. Note how only eight possible 3-bit symbols can occur in each code. A Huffman 

coder that uses these eight symbols as its alphabet can provide this extra compression. 
Discussion of this idea is deferred until Chapter 9 where its analysis is actually carried 

out.



CHAPTER 7
PROJECT MANAGEMENT

The management and organization of this study is influenced by Davis’s and 

Sitaram’s concurrent software development model. This model decomposes the entire 

process of software development into a set of “major technical activities...and their 

associated states” (Pressman, 1997). It can be readily applied to research because, like 

software development, research can be modeled as a set of related autonomous activities. 
Application of a concurrent management system also provides an understandable, yet 
“fine grain” view of a project’s monthly status.

The concurrent management scheme used in this study is not formalized in any 

way. However, its description is offered because it has been a useful tool. In particular, 
its development and application has allowed for topics from several different fields to be 

researched and considered simultaneously. The following sections describe this study in 

terms of general activities, specific tasks, and milestones.

Activities

In this chapter, the term “activity” will imply a generic, abstract process (to be 

applied). Thus, activities are similar to the idea of a class in object-oriented
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methodologies. The term “task”, on the other hand, will imply a specific instantiation of 

an activity. Thus, every task has a specific state and can trigger state transitions in itself 
or other tasks.

Figure 7.1 illustrates the generic activities occurring during this study. Each 

activity contains several internal nodes that describe the possible states of the activities.
In this model, relations between activities are denoted when an internal node references 

another activity. For example, the <IP> activity contains one state which reference the 

<LR> activity and another state which references the <C> activity. Note how some 

activities contain a state called “other.” This state adds flexibility to the specification of 

activities that are less linear or less predictable.

Figure 7.2 is a rough chronological mapping of the specific tasks that have 

occurred during the months of this study. It illustrates the concurrent nature of this 

project. Table 7.1 defines the milestones listed on the right side of the figure. Table 7.2 

details the monthly (as of the First day of the month) status of this study in terms of active
tasks.
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Implement Prototypes 
of Algorithms <IP>

(<LR> Algo 'C> Regarding] 
Algp

Identify 
Pnmatives and- 
Flow ofCntl

 ̂ Write in 
Pseudocode

Write m fes t&y  alldate 
Pr Lang

^ T ^ ^ isca rd &  Redon

D e sign Ex penm ent <DE>

<BS> On 
Useful ■ 
Data

D etemune 
Method 

to Produce 
Data

Figure 7.1— General Thesis Activities
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Figure 7.2— Specific Thesis Tasks
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Description Date Achieved
Identify the “shape and direction” of the study. Aug. 6,2001
Understand and implement Case’s Dithers. Aug. 3,2001
Understand other dithers. Aug. 29,2001
Understand compression methods. Sept. 14,2001
Understand Fourier analysis as it applies to image processing. Sept. 29,2001
Write most of defense background information. Oct. 25. 2001
Formalize the RD algorithm. Nov 2,2001
Implement QP and NOTA algorithms. Oct. 16,2001
Conception and Implementation of RBE. Nov. 14,2001
Develop a convenient method of surveying people. Nov. 19,2001
Complete development of the experiments. Nov. 21,2001
Complete gathering of compression data. Dec. 3, 2001
Complete gathering quality survey data. Dec. 5,2001
Complete analysis. Dec. 22,2001
Complete “research” section of defense. Dec. 27,2001
Complete written thesis defense. Jan. 2,2001
Complete oral thesis defense Jan. 7,2001

Table 7.1— Thesis Milestones
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Month Task (State)
June <LR>Im age F ile Formats (D one), <LR > B S A lgo. (D one), <C > C ase on B S  (Rebutting 

R eplies), <ET> Com puting Environm ent (D one)

July <IP> PB M /B M P U tils. (T est and V alidate), <IP> B S  A lg o  (W rite in P seudocode), <C > Case  
on R D  (Rebutting R eplies), <L R > Palm O S (R eading B ook s), <E T > PO SE  and Palm  D ev. 
(<L R > T ool Docum entation)

Aug. <IP>PB M /B M P U tils (D one), <IP> B S A lgo (D one), <L R > Palm O S (Other, no longer 
relevant), <ET> PO SE and Palm  D ev. (D iscard), <C > C ase on RD  (D one), <EP> R D  A lgo  
(W rite in Pr. Lang.), <LR> Soft Eng. M odels (R eading B ook s), <L R > Proj M anagem ent 
M odels (Reading B ook s), < B S >  H ow  to analyze? (<L R > to Im prove)

Sept. <LR > Com pression M ethods (Read B ook s), <C > C ase on N O T  A  (Rebutting R eplies), <LR>  
Other Dither M ethods (Read B ook s), <LR > Im age Q uality M etrics (Search ‘N et), <IP> B it 
Streamer (W rite in P seudocode), <E T > Im age Proc T ools (D one), <G D > Create T est Im ages 
(D one)

Oct. <IP> N O T A  Algorithm  (W rite in P seudocode), < W > H V S Background (R evising Draft), 
<W > Digital Im age Background (R evising Draft), <W > Dith. M eth. Background (Acquire  
R elevant Information), <G D > Other Dithers (D one), <L R > Stat Obj Qual (Read Journals), 
<LR > Subj Qual (Read B ooks), <LR> Psychophysical Qual M etrics (Read Journals), <D E >  
Survey M ethods (D one)

N ov. <L R > N ew  Cmprs A lgo (other— <B S> ideas, <C > D avis on com pression), <W > Dither 
M ethod Background (Com m it T o T hesis), <D E > Cmprs Com pare (Determ ine M ethod to 
Produce Data), <D E > Dither Com parison (Determ ine M ethod to Produce Data), <D E >  
A cceptable R esolution (Determ ine M ethod to Produce D ata), <D E > D iff. Perception  
(Determ ine M ethod to Produce Data)

D ec. <IP> R B E  (D one), <G D > Cmprs Data (D one), <G D > Qual Survey (D one), <W > N ew  
M ethods (Com m it to T hesis), <W > Cmprs Background (R evising Draft), <W > Proj 
M anagem ent (R evising Draft), <W > A lgo  Properties A nalysis (Acquire Relevant Info)

Jan. < A > Cmprs A nalysis (D one), <A >  Qual Data (D one), <W >  C om plete Written D efen se  
(other— B ein g  R eview ed by C om m ittee), <W > C om plete Oral D efen se (other— Pending)

Feb <W > Com plete Written D efen se (D one), <W > C om plete Oral D efen se  (D one)

Table 7.2— Monthly Thesis Timeline
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Task Elaboration

The following sections elaborate on certain tasks from Figure 7.2 which require 

special consideration. The description of these tasks reveals relevant information about 
this study that cannot be directly considered in Chapter 8 on Research Methods

<ET> Computing Environment

Two computing environments were used in this study: a dual boot 
(Linux/Windows) desktop computer (PC) and a Sony Vaio laptop (LTC). Most of the 

work of this study occurred on the PC. Specifically, it is used for implementing 

algorithms, processing images, and authoring this document. The LTC is used in the 

same manner as the PC while traveling; however, it also serves as one of the displays 

used in the subjective quality assessment of Case’s dithers.

Other devices used in this study include a Hewlett Packard 6300C ScanJet 
scanner (capable of scan resolutions up to 1,200 dpi) and a Hewlett Packard 4500N Color 

LaserJet printer (capable of output resolutions up to 600 dpi).

<ET> Image Processing Tools

Many existing image processing tools have been evaluated for use in this study. 
Table 7.3 is a list describing each of the packages that are actually used.
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Tool Description
GIM P GIM P is the acronym for Gnu Im age M anipulation Program. 

GIM P is used in this study to produce all o f  the enhanced im ages 
used to assess the quality o f  C ase’s dithers. It a lso generated the 
“Sinus” test im age used m this study.

ImageJ ImageJ is an im age manipulation program written in Java. It is 
used to produce certain im age manipulations that GIM P d oes not 
provide.

O ctave O ctave is an open source M ATLAB clone. M A T LA B  is a very 
high level programming language used for matrix processing. It 
is used in this study to produce som e im age m anipulations and to 
calculate statistical im age quality metrics.

M oray M oray is a 3-D  m odeling application. It produced the “B ow l” 
im age o f  this study.

N etP B M N etP B M  is a set o f  command line utilities that can be used to 
manipulate im ages. T hese utilities were used for im age file  
format conversions, im age scaling, and im age enhancem ents.

Table 7.3— Thesis Image Processing Tools

<IP> PBM/BMP, BS, RD, Bit Streamer, NOTA, RBE

The PBM and BMP utilities were created in order to read and write to the PBM 

and BMP image formats. They were implemented in a Linux environment (Mandrake 

7.2) using the GCC compiler and the EMACS text editor. These prototype libraries 

include Linux specific I/O function calls; however, they should be potable to a Microsoft 
environment by replacing the Linux specific code with ANSI C.

The BS and RD implementations (also prototypes) use the PBM and BMP 

libraries for reading and writing image information. As such, they too run only in a 

Linux environment.

The Bit Streamer utility is used for extracting and depositing individual bits to 

and from files. It is written as a C++ class using Microsoft Visual Studio 5.0. It



complies with ANSI C++ standards and operates in both Linux and Microsoft 
environments. It serves as the implementation basis for the NOTA and RBE compression 
algorithms.

<C> Case on BS, RD, NOTA

Case’s methods are relatively undocumented. As a result, they were explained by 

Case using detailed examples. This communication process resembled the gathering of 

user requirements in a software engineering model. This communication directly led to 

the design of the prototypes used to implement the algorithms.

<BS> Formalize RD Algorithm

As mentioned, Case’s RD algorithm was not documented at the start of this study 

(although a patent was submitted before the publishing of this document). Thus, as part 
of this study, the RD algorithm was formalized in terms of a more precise matrix 

notation. This notation is also used (partially) in the description of the RBE method and 

as part of the basis of the object-oriented redesign of the prototypes.

<DE> Survey Methods

The initial attempts of surveying people for subjective quality data failed. The 

survey was too long and test subjects were not willing or able to finish it. Thus, the 

survey was streamlined (with parts of it completely sacrificed) until a group of simple,
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yet informative survey questions were developed. Two groups of questions failed (in 

terms of convenience and subject cooperation), before finding an acceptable survey.



CHAPTER 8
RESEARCH METHODS

This chapter describes the methods used to analyze the dither and compression 

algorithms of this study. The data generated by these methods is presented and analyzed 

in Chapter 9.

Test Images

Figure 8.1-Figure 8.4 are the four main test images used throughout this study. 
All of the images originally existed as 24-bit color BMP files; however, they were 

converted to 8-bit grayscale with GIMP for the purposes of this study. The images are 

also scaled down to a width of approximately five inches so that they can be displayed 
conveniently in this document.
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Figure 8.1-"'Bowl" Test Image 

Figure 8.1 is a vector image produced by Moray (subsequently called "Bowl"). 

Characteristic features of this image include: the depth that exists between the bowling 

ball and the pins; the repeating parallel patterns of the wooden floor texture; and the 

texture detail of the bowling balling. 
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Figure 8.2-"Cats" Test Image 

Figure 8.2 is a natural image originally taken with a 35mm camera (subsequently called 

"Cats"). The image was digitally scanned at 600 dpi using the scanner mentioned on 

page 76. The scanner's sharpening option was left at the default setting of "medium." 

Interesting features of this image include: repeating light and dark patterns in the carpet 

and on cushions of the couch; a spectral reflection of light from the black cat's fur; and 

the fine details in the face of the other cat. 
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Figure 8.3-"Sinus" Test Image 

Figure 8.3 is another image (subsequently called "Sinus") generated via computer with 

the rendering tools of GIMP. This image features soft edges on which intensities change 

gradually as opposed to sharply and non-uniform repetition of alternating intensity levels. 
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Figure 8.4-"Building" Test Image 

Figure 8.4 is another natural image taken via 35mm camera (subsequently called 

"Building"). The scan parameters for this image are the same as the "Cats" image. This 

image contains many hard edges where intensities change sharply and repetition of 

structures in the windows of the building. This image is that of a building built upside­

down. 

These images have been chosen for two reasons. One, they represent "average 

case" images on which no preprocessing is done. Two, they display cha_yacteristics which 

can be observed both before and after processing. 

Dither Aitalysis 

This study analyzes Case's BS and RD algorithms in two ways. First, the general 

properties of these algorithms are determined along with the properties of the images that 



they produce. This analysis is followed by a subjective and objective assessment of 

quality for images produced by the dithers. The following sections describe the data, 
tests, and experiments used in this assessment.

Objective Quality Metrics

The UQI (Zhou & Bovik, 2000) and RMS objective image quality metrics were 

gathered using MATLAB. The UQI data was gathered with Zhou’s implementation 

(Zhou, 2000). The RMS data, on the other hand, was retrieved with an original 
implementation built from MATLAB’s core components. This data is used along with 

the image survey data to determine if any correlations exist.

Image Quality Survey

This experiment is a four-part human survey that was given to two sets of people. 
Gonzales (1987) suggests that 20 test people be surveyed in any subjective assessment of 

image quality. In excess of this suggestion, a total of 25 people were surveyed using two 

different display methods.

Seven subjects viewed the images using the LCD screen of the Vaio laptop (page 

76) as the output device. Due to the space restraints of the 12-inch LCD screen, these 

subjects viewed the images in a round robin fashion (comparing only two at a time). The 

viewing distance ranged between three and four feet. The LCD surveys required the 

viewing of 288 image sets and typically took 50-60 minutes to complete. This length 

prevented the gathering of more LCD data.
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Eighteen subjects viewed the images in print form using pages output from the 

HP 4500N Color LaserJet printer (page 76). All of the images were printed on 20 lb 

white paper. Free from space constraints, these subjects viewed all o f the images 

simultaneously and typically completed the survey in 30 minutes. Again, the viewing 

distance ranged between three and four feet. In addition, most of the test subjects viewed 

the image under the light of a 100 Watt white bulb placed roughly six to seven feet 
directly above the subjects. The following sections describe the details of each section of 

the survey. The actual forms used in the survey can be found in the appendix. As 

previously stated, the images related to these surveys are displayed at a width of roughly 

five inches for this document. Test subjects actually viewed eight-inch versions of the 

images.

Threshold Resolution

For this test, the BS (using 2x2 cells) and RD (using 8x8 cells over an ordered 

dither) algorithms were applied to 144 ppi, 288 ppi, and 432 ppi versions of the input 
images. The bi-level pixels of the resulting images were then averaged together to form 

1:1 zooms of the image at 72 ppi. In other words, for the 144 ppi bi-level image, every 

2x2 cell of pixels was averaged into one 72 ppi pixel. The 288 ppi and 432 ppi images 

were averaged using 4x4 and 6x6 cells, respectively. The resulting 72 ppi zoom images 

were shown to subjects. Figure 8.5— Figure 8.10 shows the six versions of the “Bowl” 

image used in the experiment.
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The LCD subjects viewed 60 two image HTML pages (15 per test image) and 

were asked to pick which of the two images looked better. The results were subsequently 

tallied and images are ranked in order of which received the most votes. 

The print subjects compared the images six at a time and ranked them on "visual 

appeal." Visual appeal is defined by the survey to be the subject's opinion of which 

image looked best. For the ranking scale, "6" denoted the best image and" 1" marked the 

worst. The subjects used a 72 ppi version of the original image as a reference. In 

addition to ranking the images, these subjects were also asked to specify the zoom images 

that were acceptable (again in their own opinion) reproductions of the original images. 

Figure 8.5-1: I Zoom of 144 ppi 2x2 BS "Bowl" Image 
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Figure 8.~ l: l Zoom of 288 ppi 2x2 BS "Bowl" Image 

Figure 8.7-1: l Zoom of 432 ppi 2x2 BS "Bowl" Image 



Figure 8.8-1: l Zoom of 144 ppi 8x8 RD ( on ordered dither) 
"Bowl" Image 

Figure 8.9-1: l Zoom of 288 ppi 8x8 RD "Bowl" Image 
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Figure 8.10-1: 1 Zoom of 432 ppi 8x8 RD "Bowl" Image 

Dither Comparison 

For this test, Case's BS and RD dithers are compared to halftoned images 

produced via white noise (random) dither, clustered dither, ordered dispersed dither, and 

Floyd-Steinberg error diffusion. Using t~e precedent set by Ulichney (1987), these 

images are compared at 72 ppi. The LCD and print subjects were surveyed in a manner 

similar to the previous test. 

Figure 8.11-Figure 8.16 display the "Cats" test image as an example of what the 

test subjects viewed. 
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Figure 8. l l-2x2 BS "Cats" Image at 72 ppi 

Figure 8.12-8x8 RD (on ordered dither) "Cats" Image at 72 ppi 
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Figure 8. 13-Clustered Dither "Cats" Image at 72 ppi 

Figure 8.14-0rdered Dither "Cats" Image at 72 ppi 
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Figure 8.15-Floyd-Steinberg "Cats" Image at 72 ppi 

Figure 8.16-White Noise "Cats" Image at 72 ppi 

Figure 8.17-Figure 8.22 display the same images at 432 ppi: 
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Figure 8.17- BS ··cats" Image at 432 ppi 

Figure 8.18-RD "Cats" Image at 432 ppi 
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Figure 8.19-Clustered Dither ··cats" Image at 432 ppi 

Figure 8.20-0rdered Dither "Cats" Image at 432 ppi 
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Figure 8.21-Floyd-Steinberg "Cats" Image at 432 ppi 

Figure 8.22-White Noise ''Cats" Image at 432 ppi 
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BS Image Enhancements

According to Ulichney (1987), an image enhancement is any process that when 

applied to an image that produces a new image with better quality (as determined by 

some criteria). For this test, BS algorithm was applied to 432 ppi versions of the test 
images. The bi-level pixels of the resulting images were then averaged down to form a 

1:1 zoom of the image at 72 ppi (similar to those of the “Threshold Resolution” test). 
Four image transforms were then applied to each of these zoom images in an attempt to 

produce image enhancements. These image transforms include selective Gaussian blur, 
median filtering, low pass Fourier filtering, and histogram equalization. In addition, an 

image sharpened before halftoning is included in the survey.

These modified images were then shown along with the original image to the 

LCD and print subjects in a manner similar to the previous tests. However, for this 

experiment, the subjects had no knowledge as to which image was the original. Figure 

8.23— Figure 8.28 shows the six transforms applied to the 1:1 zoom “Sinus” image.
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Figure 8.23- I: I BS zoom "Sinus" Image (at 72 ppi) 

Figure 8.24- Guassian Blur Applied to the "Sinus" BS zoom 
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Figure 8.25- Fourier Low Pass Filtering of "Sinus" BS zoom 

Figure 8.26-Median Filtering Applied to the "Sinus" BS Zoom 



Figure 8.27- Post-Sharpening Applied to the "Sinus" BS Zoom 

Figure 8.28- Histogram Equalization Applied to the "Sinus" BS 
Zoom 
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RD Image Enhancements 

This test is the same as the "BS Image Enhancements" test where the RD 

algorithm is applied in place of BS. Figure 8.29-Figure 8.34 

Figure 8.29- Applied to the RD zoom "Building" Image (at 72 
ppi) 
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Figure 8.30- Applied to the RD zoom "Building" Image (at 72 
ppi ) 

Figure 8.31- Applied to the RD zoom "Building" Image (at 72 
ppi) 
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Figure 8.32- Applied to the RD zoom "Building" Image (at 72 
ppi) 

Figure 8.33- Applied to the RD zoom "Building" Image (at 72 
ppi) 
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Text Survey 

Figure 8.34- Applied to the RD zoom "Building" Image (at 72 
ppi) 
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This survey gathers data on pure text images. The same 25 subjects of the image 

survey also participated in this survey. For this test, subjects looked at the text images 

composed of completely random lines of serif and sans serif fonts shown with and 

without antialiasing. The following fonts., sizes were displayed: 72, 48, 36, 28, 24, 16, 14, 

12, 10, and 8. Both the dithered and 1: 1 zoom forms of the images were presented. For 

each of these images, the test subjects were asked to write out the characters of each line 

of text. The readability of the text is determined by noting the number of correctly 

identified characters for each line. The data is presented in charts plotting the readability 

percentage versus the font size. 
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Difference Perception

This experiment is inspired by the work of Daly (1997), Taylor, et al (1998,
1998), Lubin (1997), and other scientists who have used psychophysical theories to 

develop objective models for predicting the human ability to perceive differences 

between an original image and a processed counterpart. These models have been 

developed in response to the poor performance of statistically based quality/fidelity 

metrics.

Daly’s method presents its predictions in the form of “difference maps” (1997) 
that highlight where a person with normal vision will perceive differences. This 

experiment attempts to generate an imitation of these difference maps subjectively. Eight 
human subjects with normal or corrected vision looked at printed versions of one of the 

original test images and its corresponding BS and RD 1:1 zooms (from 432 ppi bi-level 
to 72 ppi deep-level). These subjects were then asked to highlight where they could 

perceive differences using a gold pen. A 4x4 grid covered both the original image and 

the zoomed images to facilitate the comparisons. The fidelity of the processed images is 
assessed by approximating the highlight percentage of each grid cell. It is predicted that 
this data will be highly correlated to the subjective ratings of the surveys.. Thus, these 

percentages are plotted against the subjective ratings. Figure 8.35 and Figure 8.36 are 

examples of the highlighted images produced by the test subjects.



Figure 8.35-Highlighted BS Zoom of "Bowl" Image 

Figure 8.36-Highlighted RD (on Ordered Dither) Zoom of 
"Bowl" Image 
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Compression Analysis

Case’s NOTA algorithm and the RBE algorithm of this study are analyzed in two 

ways. First, the general properties of these algorithms are determined. This analysis is 

followed by an assessment of the compressibility achieved for halftoned vector, natural, 
and pure text images. The following sections describe the data, tests, and experiments 

used in this assessment.

Image RLE Comparison

For this experiment, nine different sized versions of the test images were 

produced. The BS and RD algorithms were then applied to each of the resulting images 

producing 18 bi-level dithered images.

Data for this test was generated by applying the implementations of NOTA and 

RBE to the aforementioned input images. For the sake of comparison, two other RLE 

compression methods were also applied: Packbits and SimpleRLE (Nelson, 1998). This 

data is presented in Chapter 9 with charts plotting empirical compression ratios versus the 

size of the input data (in units of bytes).

Secondary Image Compressions

The NOTA and RBE files produced by the previous experiment are used as the 

inputs of this experiment. To each of these files, a second compression technique is 

applied. These secondary compressions include: Huffman coding (8-bit alphabet for



NOTA, 3-bit alphabet for RBE), dictionary encoder (gzip) (Nelson, 1998), and an 
arithmetic encoder (Nelson, 1998). Again, this data is presented in Chapter 9 with charts 

plotting empirical compression ratios versus the size of the input data (in units of bytes).

Image Format Comparison

In this test, the synergy of RD with NOTA and RBE is compared to other popular 

image formats (BMP, GIF, JPG, PNM, PNG). In order to compare against images of 

similar quality, the RD images are stored at 432 ppi and the other formats are stored at 72 

ppi. The RD images would subsequently be averaged down to 72 ppi to produce images 

similar to the other formats. The data is presented in Chapter 9 with charts plotting file 

sizes versus the number of image pixels. This test along with the subjective quality data 

is meant to show the viability of such combinations for use as actual image formats.

Text Compression

The three above tests are also carried out on six different sized versions of a text 
image. The format comparison is slightly different, however. The RD-NOTA and RD- 
RBE text images are compared to the postscript and PDF formats, rather than the typical 
image formats.
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CHAPTER 9
DATA ANALYSIS

This chapter presents the data gathered by the methods of Chapter 8. Since the 

smallest details of an experiment or test often offer the most information, this chapter 

describes, lists, and analyzes the data on a section-by-section basis. The collective 

interpretation of the entire data set is deferred until Chapter 10 (“Conclusions”).

Halftone Analysis

As stated in Chapter 8, this study analyzes Case’s BS and RD algorithms in two 

ways. First, the general properties of these algorithms are determined along with the 

properties of the images that they produce. This analysis is followed by a subjective and 

objective assessment of quality for images produced by the dithers.

Properties

The following six facets of Case’s halftoning algorithms are subsequently 

explored:

•  Dither Patterns
•  Moirés
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• Boundary Pixels 

• Time and Space Complexity 

Dither Patterns 

As previously mentioned, the BS algorithm produces a distinct set of dither 

t52 
-+I 

patterns. A given input cell size, 8, will produce 2 2 -1 different patterns. Equation 

9.1 shows that the number of graylevel intensities simulated by BS depends directly on 

the size of 8. 

number of graylevels = 8 2 + 1 

Equation 9.1-Relation Between Simulated Graylevels and Dither 
Pattern Size 

Figure 9.1 shows the patterns and intensities produced by BS with 8= 2. 

2 off black 1 off black 
bank bank 

O on or off 1 off white 
bank 

Figure 9. l-2x2 BS Patterns and Intensities 

2 off white 
bank 
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For practical applications, <?has an upper bound. This bound is imposed by the 

amount of resolution lost for each size of S. For normal images, the pixels composing the 

image are the primitive display units. However, for dithered images, these primitives 

correspond to the dither cells used to halftone the deep pixel input. Figure 9.2 illustrates 

this loss of resolution using four BS images where £ equal 2 ,4 , 8, and 16. Note that as S 

increases, so does the amount of lost detail in the image.
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Figure 9.2-Resolution Loss and 8 
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RD is a method for halftoning deep pixel images, but, strictly speaking, it is not a 

dithering method. As described in Chapter 6, RD seeks to improve the performance of 

existing dithering methods by considering neighborhoods of 8x8 cells. As a result, the 

patterns produced by RD are dictated by the dither method on which it is applied. 

For most of this study, RD operates on an ordered dispersed-dot dither. Patterns 

for these dithers can be derived from dither matrices. Equation 6.6 provides a means for 

recursively specifying a dither matrix for a given 8. Figure 9.3 illustrates the five 

patterns and grayscale intensities produced by the ordered dither used in this study. 

1 4 

3 2 

Figure 9.3-Five Patterns of 2x2 Ordered Dither 

In general, a given &produces <5 2 + 1 distinct patterns and <5 2 + 1 simulated graylevels. 

Similar to the BS algorithm, 8 is bound from above for practical purposes due to lost 

resolution. 

Observations made during the course of this study support the notion that 8 s 

greater than four produce unacceptable bi-level images for both the BS and ordered 

dithers. 
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Moires 

The moires produced by Case's halftoning methods are assessed by observing the 

moires of gradient images, the test images of this study, and the animation of simple 

geometric shapes. Figure 9.4-Figure 9.6 show grayscale gradients halftoned with the 2x2 

invocation of the BS algorithm, 8x8 RD applied over 2x2 ordered dither, and 8x8 RD 

applied over 2x2 BS. 

Figure 9.4-Moires in BS Grayscale Gradients (at 144 ppi) 

!'1-PH+H+H❖H l•:+1 H !-:+I l•:+:•: •I 

i:1:miifaiiii i:i ~!~ dii 
i:1:i:1:wi-i:~ i:i ~l~ d{! 

=~;=Uti~!! 
3.:,:EF.13:,:ra.l•l:ifl 1:1 E:r.l /1:::::, 

Figure 9.5-Moires in Grayscale Gradients RD on Ordered Dither 
(at 144 ppi) 
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Figure 9.<r-Moires in Grayscale Gradients RD on BS (at 144 ppi) 

These figures show two things. Firstly, notice how the 2x2 BS algorithm only 

reproduces five intensities in the grayscale image. The 8x8 RD algorithms reproduces 64 

intensities. An important property of the RD images is that these 64 colors can be 

reproduced without losing an excessive amount of resolution. Refer to the third image of 

Figure 9.2 for a demonstration of how an application of 8x8 BS sacrifices detail in the 

image. Secondly, these images show the periodic vertical and horizontal artifacts present 

because of these schemes. 

Figure 9.7-Figure 9.9 are 72 ppi versions of the "Bowl" image halftoned with the 

same methods as the gradients. 



................... 
::mmt 

Figure 9.7-2x2 BS "Bowl" Image for Moire Observation (at 72 
ppl) 

Figure 9.8-8x8 RO on Ordered Dither "Bowl" Image for Moire 
Observation (at 72 ppi) 
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Figure 9.9-8x8 RD on BS "Bowl" Image for Moire Observation 
(at 72 ppi ) 
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These images illustrate the moires that these methods produce on the "Bowl" image. 

Moires in the BS image are not very apparent; however, as previously stated, this image 

does not reproduce many intensities. The RD images, on the other hand, reproduce 

several graylevels, but also contain several vertical and horizontal moires (at 72 ppi). 

These moires are most apparent in the sky portion of the image. Closer inspection of the 

RD images reveals that the moires in the ordered dither image are more frequent and 

larger than those of the BS image. This fact can be observed by looking at the top-left 

and bottom-right comers of the images. The RD on BS tends to breakup and reorient the 

vertical and horizontal artifacts present in the RD on ordered dither image. 

Animation of dithered images also can produce undesirable moire artifacts. This 

section uses animated GIFs to observe the moire effects produced when rotating the 
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dithered images of simple geometric figures. Figure 9.10 shows five triangles with 

different grayscale intensities. Figure 9.11 and Figure 9.12 show non-antialiased and 

antialiased version of lines joined at a common center in a circular fashion. Each of these 

images was rotated through 360 degrees in one degree increments. Each of these 

increments became a one-tenth second frame in the subsequent animation. 

··················•·····•·········· ................................. .............................. ............................. ............................ ........................... ..................... 

Figure 9.10-Triangle at 12.5% gray, 25% gray, 50% gray, 62.5% 
gray, 75% gray (Dithered at 72 ppi) 
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Figure 9.11-Non-antialiased Lines (Dithered at 72 ppi) 

Figure 9.12-Antialiased Lines (Dithered at 72 ppi) 
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Rotation of each triangle in Figure 9.10 produced moirés that resembled the spinning of 

pinwheels. These artifacts became most apparent as the triangles rotated through angles 

that are multiples of 45°. The rotations of Figure 9.11 and Figure 9.12 produced artifacts 

in which waves seemed to radiate from the center of the lines. These lines are less 

visually disturbing than the moirés of the triangles only because of the smaller area 

occupied by the individual lines. Again, the artifacts became most apparent as the images 

rotated through angles that are multiples of 45°.

Boundary Pixels

The current realizations of the BS and RD algorithms convert images on a cell- 
by-cell basis while scanning cells in normal English reading order (left to right, top to 

bottom). They implicitly assume that an image contains an integer number of NxN or 

SxScells. In general, this is not the case. As a result, problems arise when the width 

and/or height of the image is not evenly divisible by the cell size of the method.

Truncation of along the edges of the image could serve as a simple solution for 

the problematic pixels. However, a significant amount of information would be lost. A  

simple test was run with five test subjects to determine the noticeability of these truncated 

pixels. The subjects were shown an original image along with six additional images with 

2 ,4 , 8 ,1 6 ,3 2 , and 64 pixels truncated. The subjects were then asked to pick the images 

with noticeable truncations. Four of the five subjects chose the truncation of 16 pixels as 

the noticeability threshold.



Since truncation leads to degradation of the original image, a better solution 

would be to halftone the “partial” cells along the edges of the image with smaller and
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smaller cells until an entire row has been halftoned. If the width and height of the cell are
(cell size)even then this method can convert all of the cell using cell sizes of ------------- where m is

some integer less than log2(ce/Z size). When the width or height is odd, then this method 

can convert all o f the pixels except those of the final row or column. These remaining 

pixels can be halftoned using pixel thresholding. Since a smaller scale of the same 

scheme is used to convert these boundary pixels, it is predicted that this method will 
produce images without artifacts specific to the edges of the bi-level image.

Time and Space Complexity

According to Rosen (1995) and Cormen, et al (2000), iffi(x) and f-^x) are 0(gj(x)) 
and 0(g2(x)), respectively, then (fi(x)+f2)(x) is 0(max(gi(x), g2(x)). Thus, the time and 

space complexity of the BS and RD algorithms is analyzed by first decomposing the 

processes into a set of primitive linearly ordered subprocedures. The average case 

complexities of the algorithms are then taken to be the same as those of the most complex 
(also average case) subprocedure.

Table 9 .land Table 9.2 summarize the time complexity analysis for the BS and
RD algorithms.
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Subprocedure Average Time 
Complexity

Justification
a. Read a S x S cell of 

deep pixel graylevels
0 ( g ) One assignment statement is required for each 

element of the <5x<5cell.
b. Calculate the sum of 

the SxS  graylevels.
0(8■ ) Each element of the SxS  cell must be added to a 

running total before the sum is calculated.
c. Determine the

number of bi-level 
pixels, i, to turn “on” 
or “o ff’ from the 
checkerboard.

0(1) This subprocedure is realized by a few scalar integer 
operations.

d. Sort the proper bi­
level bank of pixels 
on their deep pixel 
graylevels and 
change i of them.

0(8lg(8)) Several existing sorting routines run with this 
average time complexity. The implementation in 
the appendix uses a heap sort.

Table 9 1— BS Time Complexity Analysis
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Subprocedure Average Time 
Complexity

Justification
a. Read a NxN  cell of 

deep pixel graylevels
0(N 2) One assignment statement is required for each 

element of the NxN  cell.
b. Calculate all of the 

subcell graylevels 
sums.

0(N 2lg(N)) Each element of the NxN  cell is an input to lg(N) 
addition operations for calculating each sum.

c. Calculate the number 
of “on” pixels for the 
NxN  cell, W3i0-

0(1) This subprocedure is realized by a few scalar integer 
operations.

d. Calculate all of the 
subcell whole and 
partial pixels, Wrt0} 
and Prt(m respectively.

0(N 2lg(N)) At most, N2 operations are performed through lg(N) 
levels of recursion.

e. Adjust for shortfalls, 
a

0(N 2lg(N)) At most, N2 operations are performed through lg(N) 
levels of recursion.

f. Turn on Wlt(0+alt(0 
pixels for each 
adjusted subcell.

0(N 2) For the entire cell, N2 pixels are turned “on” at most.

Table 9.2— RD Time Complexity Analysis

In Table 9.1, steps a and b require the most time. Thus, since an arbitrary image contains 

a constant number of ¿kÆcélls, the BS algorithm can halftone the image in O (ê)  time. 

Similarly, steps b, d, and e require the most time in Table 9.2. Thus, an arbitrary image 
can be halftoned with RD in 0(N2lg(N)) time.

Table 9.3 and Table 9.4 summarize the space complexity analysis for the BS and
RD algorithms.
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Subprocedure Average Space 
Complexity (in bytes)

Justification
a. Read a SxS  cell of 

deep pixel graylevels
0 ( 8 ) At least one byte is required to store each 

element of the SxS  cell.
b. Calculate the sum of 

the SxS  graylevels.
0(1) A single integer variable can be used to both 

store the running total and the final summation 
of the SxS  graylevels.

c. Determine the 
number of bi-level 
pixels, i, to turn “on” 
or “o ff’ from the 
checkerboard.

0(1) This subprocedure is realized by a few scalar 
integer operations each requiring a constant 
number of integer variables.

d. Sort the proper bi­
level bank of pixels 
on their deep pixel 
graylevels and 
change i of them.

0 (8 ) While this depends on the sorting mechanism 
used, it takes at least the bytes needed to 
store the bi-level pixels. The implementation in 
the appendix uses a heap sort. As such, it adds 
no additional space complexity. Using 
quicksort (as the first implementation did) 
requires much more space due to the recursive 
function calls that it places on the program 
stack.

Table 9.3— BS Space Complexity Analysis
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Subprocedure Average Time 
Complexity

Justification
a. Read a NxN  cell of 

deep pixel graylevels
0(N 2) At least one byte of storage is required for each 

element of the NxN  cell.
b. Calculate ail of the 

subcell graylevels 
sums.

0(N 2lg(N)) N 2At most, storage elements are required at each4
of the lg(N) recursion levels.

c. Calculate the number 
of “on” pixels for the 
NxN  cell, W3t0.

0(1) A constant number of storage elements are need to 
calculate and store this value.

d. Calculate all of the 
subcell whole and 
partial pixels, Wr>Qy 
and respectively.

0(N 2lg(N)) N 2At most, 2* storage elements are required at4
each of the lg(N) recursion levels.

e. Adjust for shortfalls, 
a

0(1) The storage elements of d  are updated by a. No 
extra storage is need for this computation.

f. Turn on W/i£y+<7;iiy bi­
level pixels for each 
adjusted subcell.

0(N 2) For the entire cell, N2 pixels are turned “on” at most.

Table 9.4— RD Space Complexity Analysis

In Table 9.3, steps a and d require the most space. Again, since image generally contains 

a constant number of Sx.Scells, the BS algorithm can halftone the image with 0 ($ )  bytes 

of memory. Similarly, for Table 9.4, steps b and d  require the most space. Thus, RD can 

halftone an arbitrary image with 0(N2lg(N)) bytes.

Image Quality Analysis

For this section, the results of the image survey data are presented first. The 

correlation between this data and the objective metric data (where available) is 

subsequently presented to ascertain the validity of these objective metrics.



Threshold Resolution 

Chart 9.1-Chart 9.4 summarize the results for this portion of the image survey. 

Resolution Survey Scores for "Bowl" 
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Chart 9. 1-Resolution Survey Results for "Bowl" 
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Res:>lution Survey Scores for "Sinus'' 
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Chart 9.3-Resolution Survey Results for "Sinus" 
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This data shows that test subjects overwhelmingly chose the images produced by RD on 

ordered dither. The acceptability scores of these images show a resolution threshold for 

of 288 ppi. Interestingly, the RD 288 ppi zooms rank slightly ahead of their 432 ppi 

counterparts. In other words, the subjects chose a 4-bit grayscale image (the 288 ppi 

zoom) over an image with more intensities (36 for the 432 ppi zoom). 
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As previously mentioned, the ordered dither RD zooms of vector images contain a 
periodic box-like moiré that are noticeable when scale factors are not equal to some 

power of two . These moirés are very apparent in the 432 ppi “Bowl” zooms. In 

addition, these moiré are not noticeable in the digitized natural images (see Figure 8.10). 
These results suggest that the moiré may be caused by the scaling methods used by 

NetPBM and GIMP. However, more importantly, it suggests that this particular moiré is 

more significant to test subjects than the number of image graylevels when gauging the 

quality of these images.

Halftone Comparison

Chart 9.5— Chart 9.8 and Table 9.5— Table 9.6 summarize the results for this 

portion of the image survey.

3 The scale factor is the factor by which the height and width o f the bi-level image is divided to produce the 
72 ppi zoom.
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72 ppi Halftone Comparison Survey Data (per Image) 
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Image Halftone
Method

Average
Subjective
Ranking

Universal
Quality
Index

Root
Mean

Square
Bowl Fs 4.06 0.017104 118.14

Cd 3.29 0.014913 119.43
Bs 2.88 0.018996 117.17
Od 2.24 0.152370 118.47
Rd 2.00 0.016587 118.20
Wn 0.53 0.018186 115.33

Cats Fs 4.82 0.043414 99.41
Cd 3.12 0.041127 104.12
Od 2.88 0.042429 100.36
Rd 1.76 0.042950 99.74
Wn 1.24 0.049028 89.92
Bs 1.18 0.054653 96.86

Sinus Fs 4.00 0.042834 119.51
Bs 3.29 0.649618 119.15
Rd 3.18 0.044099 119.23
Od 2.88 0.042423 119.55
Cd 1.24 0.043129 118.32
Wn 0.41 0.063387 113.27

Building Fs 4.53 0.032911 112.14
Cd 3.41 0.079807 112.11
Od 2.94 0.031204 122.53
Rd 1.88 0.030021 112.52
Bs 1.59 0.077669 112.17
Wn 0.65 0.050843 106.13

Table 9.5— Subjective and Objective Quality Data for Halftoning 
Method Comparison

Image R between Survey Data 
and UQI

R between Survey 
Data and RMS

Bowl -0.115 0.710
Cats -0.642 0.551
Sinus 0.260 0.839

Building -0.186 0.416

Table 9.6— Correlation Coefficients Between Subjective and 
Objective Data per Image



C) 
C: 
:i: 
C: 
cu 
0:: 
>i 
Q) 

c= 
::s en 
Q) 
C) 
cu 
'-
Q) 
> 
<( 

0) 
C: 
:i: 
C: 
(a 

0:: 
>i 
Cl) 

~ 
::, 

en 
Cl) 
0) 
cu 
'-
Cl) 

> 
<C 

Correlation Between Survey Rankings and UQI 

0.120000 

0.100000 

0.080000 

0.060000 

0.040000 

0.020000 

0.000000 

0.00 1.00 2.00 3.00 
UQI Rating 

R= -0.0693 

Chart 9.7-Correlation Between SubJective Rankings and 
Universal Quality Index for All Halftone Comparison Data 

4.00 

Correlation Between Survey Rankings and RMS 

125.00 
120.00 
115.00 
110.00 
105.00 
100.00 

95.00 
90.00 
85.00 
80.00 

5.00 

0.00 1.00 2.00 3.00 4.00 5.00 6.00 

RMS 
R = 0.2085 

Chart 9.8-Correlation Between Subjective Rankings and RMS 
for All Halftone Comparison Data 

131 



Chart 9.5 and Chart 9.6 pertain to the subjective assessment o f the halftoning 

methods at 72 ppi. These charts show that at 72 ppi, test subjects prefer Floyd-Steinberg 

error diffusion (FS) by nearly 2:1 on average. White noise thresholding performed the 

worst in this survey as expected. The other methods performed relatively similar on 

average. However, inspection of the individual image data shows that Case’s method 

slightly out ranked the ordered dithers (clustered and dispersed) for vector images. 
Conversely, the ordered dithers out performed Case’s images for natural images, but with 

a wider gap.

Typically, the ordered dithers produced images with noticeable vertical and 

horizontal patterns that emerge periodically across the image. Case’s halftoning methods 

contain similar patterns; however, their frequencies of emergence are more random. FS 

error diffusion contains what many researchers call “serpentine” moirés (Ulichney, 1987; 
Jahne, 1993). These moirés emerge at diagonal orientations and with little periodicity. 
According to Floyd & Steinberg (1975), Jarvis (1976), Ulichney (1987), and Jahne 

(1993) these diagonal patterns are less perceivable by the human visual system; hence, 
the high average rating of FS.

These results suggest that at 72 ppi (a very low resolution for bi-level images), the 

orientation and periodicity of a moiré contributes most to the determination of quality.
For the diagonally oriented serpentines of FS error diffusion, periodicity seems to matter 

little. However, when patterns appear along vertical or horizontal orientations, test 
subjects prefer the more homogeneous moirés of the ordered dithers to the more sporadic 

patterns of Case’s methods. In addition, the fact that the clustered dither outperforms
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Case’s methods suggests that the number of simulated graylevels produced by a dither is 

less significant to the perceived quality of the image at 72 ppi.

Table 9.5— Table 9.6 and Chart 9.7— Chart 9.8 present the subjective ratings of 

the halftoned images along side the respective objective data. Particularly, attention is 

focused on the correlations (or lack of) between these data sets. The discussion of 

statistical image quality metrics on page 19 describes the relevance of the correlation 

between data sets.

Table 9.5 is an exhaustive display of all subjective and objective image quality 

data. Table 9.6 shows the individual correlations between the survey data and Zhou’s 

and Bovik’s UQI metric and the RMS error metric. This table seems to indicate that a 

relation may exist between the subjective rankings and the RMS value for the halftoned 

vector images. Admittedly, more data needs to be taken before this conclusion can be 

made especially because of the information shown by Chart 9.7 and Chart 9.8. These 

charts indicate that no general correlation exists between the subjective data and 

objective data for the halftoned images.

BS Image Enhancements

Chart 9.9-Chart 9.12 and Table 9.7-Table 9.8 summarize the results for this BS 

portion of the image enhancements survey.
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BS Enhancement Survey Data 
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Image Enhance
Method

Average
Subjective
Ranking

Universal
Quality
Index

Root
Mean

Square
Bowl Orig 5.24 1.000000 0.00

Sharp 3.47 - 0.323150 22.06
sel gb 3.35 0.356710 19.25
Zoom 3 12 0.344440 20.34

med filter 2.65 0.356520 19.66
low pass 1 94 0.156060 27 28
hist equ 1.24 0.319060 40.12

Cats Orig 5.35 1.000000 0.00
sel gb 3.65 0.466850 15.76
sharp 3.53 0.278590 24.43
zoom 2.47 0.354690 19.34

low pass 2.18 0.443840 17.11
med filter 2.12 0.426120 16.83
hist equ 1.71 0.286270 41.36

Sinus orig 4.59 1.000000 0.00
sel gb 3.94 -0.007825 56.31
sharp 3.29 -0.007328 59.76

med filter 2.88 -0.008046 57.09
zoom 2.29 0.540780 20.49

hist equ 2.24 -0.007099 72.67
low pass 1.76 -0.009164 58.29

Building orig 5.53 1.000000 0.00
sel gb 3.35 0.315230 23.65
sharp 2.71 0.207040 29.53
Zoom 2.71 0.256420 25.91

low pass . 2.65 0.254890 28.39
hist equ 2.12 0.234480 32.17

med filter 1.94 0.280320 24.37

Table 9.7— Subjective and Objective Quality Data for BS 1:1 
Zoom Enhancements

Image R between Survey 
Data and UQI

R between Survey Data 
and RMS

Bowl 0.824 -0.957
Cats 0.799 -0.743
Sinus 0.498 -0.497

Building 0.935 -0.928

Table 9.8— Correlation Coefficients Between Subjective and 
Objective Quality Data
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As expected, Chart 9 .10 shows that the original 72 ppi image scored the highest 

subjective ratin_g. 
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Two images scored higher than the zoom image: the pre-sharpened image and the 

post-selective Gaussian blur image. The positive effect of pre-sharpening supports the 

commonly held notion that halftoning leads to some degree of blurring. Strangely, the 

data also shows that blurring (in a controlled manner) can lead to visually pleasing 

images. The selective Gaussian blur process is a “smart” blurring process (van Os, 1998) 
that adds the following restriction to normal Gaussian blur: pixels neighboring the current 
pixel with a value outside some delta are not blurred. This restriction allows the blur to 

correct the halftone-caused moirés previously described without losing an excessive 

amount of the image’s original detail.

Three enhancement methods ranked lower that the 1:1 432 ppi zoom image: the 

median filtered image, the low-pass Fourier filtered image, and the histogram equalized 

image. Median filtering of an image is preformed in order to remove “specks” from an 

image. The term speck refers to any relatively small and random discontinuity in an 

image. Despite lacking color depth, the BS zooms had little to no specks; thus, the 

enhancement produced no visual improvement.

Low-pass Fourier filtering modifies an image by operating in the image frequency 

(Fourier transform) domain. A low-pass filter generally attempts to preserve an image’s 
overall content while blurring unnoticeable details. These details often translate into the 

high frequency section of the image’s Fourier transform. However, moirés exist in the 

low frequency section of the transform; thus, they pass through such filters. Hence, the 

transform received a lower subjective rating. A band-pass filter tuned the observed
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moirés would probably rate better; however, producing such a filter is itself a process of 

experimentation.

Histogram equalization is a contrast enhancement technique that produces a 

uniform histogram for a low contrast image. The method actually fails on the BS zooms 

because the BS algorithm does not produce enough depth in the available image 

intensities for the process to work correctly.

Similar to the last section, the objective quality data is compared to the subjective 

data. Table 9.8 indicates that the subjective data for three of the BS zooms images 

correlate highly with both objective metrics. The data for the “Sinus” image does not 
correlate as well. This fact supports the notion generally shared by the subjects that the 

“Sinus” images are difficult to judge.

Chart 9.11 and Chart 9.12 show that the general correlation for the all of the data 

pairs is better than for the “Halftone Comparison” section. However, the correlation may 

be stronger than these charts indicate since the “Sinus” image is causing a detrimental 
skew.

RD Image Enhancements

Chart 9.13-Chart 9.16 and Table 9.9-Table 9.10 summarize the results for the RD 

portion of the image enhancement survey.
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RD Enhancement Survey Data 
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Image Enhance
Method

Average
Subjective
Ranking

Universal
Quality
Index

Root
Mean

Square
Bowl Orig 4.18 1.000000 0.00

Sharp 3.94 0.173040 16.05
low pass 3.00 0.431970 15.60
sel gb 2.71 0.735660 9.98

hist equ 2.65 0.197790 38.49
med filter 2.65 0.391350 10.38

Zoom 1.88 0.255390 12.38

Cats Orig 4.59 1.000000 0.00
med filter 3.35 0.659620 9.29

Zoom 3.18 0.490090 12.54
sel gb 3.00 0.731530 9.22
Sharp 2.82 0.368700 17.95

hist equ 2.41 0.384430 38.82
low pass 1.59 0.664640 11.48

Sinus Zoom 4.24 -0.002408 56.48
Orig 4.18 1.000000 0.00

med filter 3.88 -0.002185 55.58
low pass 3.24 -0.003234 55.92
sel gb 2.53 -0.000903 54.02
Sharp 2.00 -0.003252 57.53

hist equ 0.94 0.000336 80.86

Building Orig 4.12 1.000000 0.00
sharp 3.47 0.265590 23.43

low pass 3.24 0.451750 24.05
hist equ 2.94 0.326630 24.40
med filter 2.88 0.492580 17.80

Zoom 2.71 0.358540 19.80
sel gb 1.65 0.624900 17.31

Table 9.9— Subjective and Objective Quality Data for RD 1:1 
Zoom Enhancements

Image R between Survey Data 
and UQI

R between Survey Data and 
RMS

Bowl 0.426 -0.334
Cats 0.585 -0.538
Sinus 0.417 -0.644

Building 0.282 -0.415

Table 9.10— Correlation Coefficients Between Subject and 
Objective Data
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The subjective ratings for the enhanced RD images are nearly the same as those for the 
BS with one notable exception: the median filter. As has been established, the RD zooms 

of this study suffer from periodic box-like moirés. The improved performance (over the 

BS data) of the median filter for the RD zooms is attributed to its ability to help nullify 

these moirés.

Another interesting observation can be made by considering the individual image 

data. For the “Sinus” image, the 1:1 zoom slightly outranks the original image. Test 
subjects generally spent more time on all of the “Sinus” images than on any of the other 

images in this survey. Several of the subjects even commented verbally (and frequently) 
that the image was difficult to judge. These observations of the test subjects may help 

explain the nature of this result.

Chart 9.15-Chart 9.16 and Table 9.9-Table 9.10 show the correlation data for the 

subjective and objective quality metrics. Unlike the previous section, the correlation 

between the data sets is not as strong. This result makes the result of the “BS Image 

Enhancements” section appear suspect. Thus, it is concluded that more research is 

necessary to determine if a relation truly exists between the subjective rankings of both 

sets of enhanced zoom images and the objective data.

Difference Perception

All measurements of the highlights in the images are rounded to the nearest eighth 

of an inch. Table 9.11 summarizes this information in terms o f percentages.
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Image Percent
Highlighted

BS “Bowl” 24.2%
BS “Cats” 15.6%
BS “Sinus” 14.1%
BS “Building” 28.9%
RD “Bowl” 3.1%
RD “Cats” 2.3%
RD “Sinus” 0.0%
RD “Building” 10.9%

Table 9 11— Highlighted Percentages per Image

These percentages show that test subjects do perceive the differences caused by 

insufficient graylevels in the BS zooms. Chart 9.17 plots these percentages against the 

image survey data and shows that a relatively strong inverse correlation exists between 

this data and that of the image survey. This result gives a preliminary indication that this 

method may be a usable way to gather quality data; however, the method needs to be 

tested on more subjects to verify the validity of this apparent relation.
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Chart 9.18-Chart 9.21 display the results of the image text survey. These charts 

plot the readability percentage of a line of text against the font size of the text. The 

readability percentage of a line is the percentage of characters correctly identified by a 

test subject for a line of text. The abbreviations in the chart legends are as follows: "D" 

implies the dithered version of the image/'Z" implies the zoom; "A" corresponds to 

antialiased text, while "NA" is non-antialiased text; "S" is a serif font ("Times New 

Roman") and "SS" is a sans serif font ("Arial"). 
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RD Text Survey Data (Dithered) 
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Chart 9.19 and Chart 9.21 show that practically every character of the zoom  

images is readable by the subjects. Chart 9.18 and Chart 9.20 convey the data for 

halftoned text images at 72 ppi. They are actually truncated to fonts sizes less than 35 

points since, for both charts, all of the fonts greater than 35 have readability percentages 

of 100%. These charts show that text readability drops greatly once the font size is less 

than 15 points.

Closer inspection of the dithered non-antialiased fonts shows a slight anomaly 

between the readability of the 14 and 16 point fonts. The data shows a slight readability 

increase for the 14 point fonts. This result is explained by the nature of the characters 

that composed these lines. The 14 point line of text predominantly contained 

alphanumeric characters. The 16 point line, on the other hand, contained many 

punctuation characters dispersed throughout the alphanumeric characters. Evidently, this 

data indicates that such characters are more difficult to read in the 72 ppi dithered images 

than alphanumeric characters. This interpretation coincides with the fact that punctuation 

marks typically have few identifying cues due to their size and simplicity.

Compression Analysis

The NOTA and RBE compression methods are analyzed by first studying the 

properties of the algorithms. Data is then presented on vector images, natural images, 
and pure text images.
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Properties

The properties of the NOTA and RBE algorithms are assessed in four ways. First 
the time and space complexity of the methods are analyzed. Then the best, worst, and 

average cases for code size are presented. The effects of pixel rearrangements on NOTA 

are shown. Finally, the importance of image homogeneity to the RBE method is 

illustrated.

Time and Space Complexities

Similar to the “Halftone Analysis,” the time and space complexity of the NOTA 

and RBE algorithms is analyzed by first decomposing the processes into a set of primitive 

linearly ordered subprocedures. The average case complexities of the algorithms are then 

taken to be the same as those of the most complex (also average case) subprocedure.

Table 9.12 and Table 9.13 describe the time complexities of the NOTA and RBE 

compression schemes.

Subprocedure Average Time Justification
Complexity

a. Count Run O(MxN) At most, a run could be the length of all of 
the image’s pixels. Counting this 
maximum run would require MxN 
operations. The average case actually 
requires a fraction of this time.

b. Encode Run 0(lg(MxN)) Encoding a run requires Ig(MxN) 
comparison operations for the maximum 
possible run size.

Table 9.12— Time Complexity Analysis o f NOTA Algorithm



149

Subprocedure Average Time 
Complexity

Justification
a. Get nxn Cell 0(n2)
b. Encode the Cell 0(n2 lg(n)) For each of the lg(n) levels of recursion, at 

most n2 operations are necessary.
c. Output the Code 0(n2) At worst, some constant number of prefix 

bits are output along side no more that 75% 
of the original number of pixel bits 
(specific for this implementation).

Table 9 13— Time Complexity Analysis o f RBE Algorithm

For the NOTA algorithm the counting of a run requires the most time; thus, the NOTA 

algorithm is O(MxN). Most of the RBE method time is spent encoding a cell; thus, its 

time complexity is 0(n2 lg(n)).

Subprocedure Average Time 
Complexity

Justification
a. Count Run 0(1) Only one integer variable is required to

determine the size of a run.
b. Encode Run 0(lg(MxN)) Encoding a run requires Ig(MxN) bits at

most for the largest possible run size.

Table 9.14— Space Complexity Analysis o f NOTA Algorithm



150

Subprocedure Average Time 
Complexity

Justification
a. Get nxn Cell 0(nl) Getting a cell requires nl  bits to store the 

pixels of the cell.
b. Encode the Cell 0(n2 lg(n)) For each of the lg(n) levels of recursion, at 

most ft2 bytes of storage are placed on the 
program stack

c. Output the Code 0(n2) At worst, some constant number of prefix 
bits are output along side no more that 75% 
of the original number of pixel bits 
(specific for this implementation).

Table 9.15— Space Complexity Analysis o f RBE Algorithm

The space complexity of the NOTA algorithm is only Ig(MxN) bytes since the encoding 

step requires the most space. Similar to its time complexity, the RBE algorithm requires 

0(n2 lg(n)) space for its encoding step.

Case Analysis

The NOTA algorithm can compress large runs with relatively few bits. Its best 
case compression is limited only by the manner of its implementation and the amount of 
memory contained in a computer. For instance, the GNU C compiler limits long integers 

to a size of maximum value of 232. Suppose a bi-level image contained this number of 

black pixels. The NOTA algorithm can compress these 232 bits to 88 bits for a 

compression ratio of over 48 million to 1.

The average number of NOTA bits per pixel run has been empirically determined 

by dividing the total number of encoding bits by the number of distinct runs on a per file 

basis. Without any rearrangement of the input pixels, the average number of bits per run
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is 2.05. This number implies that runs of one, two, three, and four pixels are prevalent in 

such images. For this case, file sizes are typically shrunk by 25%-30%. Using Case’s 

quad parse rearrangement of pixels (subsequently discussed) increases the length of the 

runs and increases the number of bits per pixel run to 11.94 on average. This number 

implies that the runs have grown to an average size of approximately 4,000 (~ 2 1194) bits.

At first glance, it may seem that an image composed entirely a bi-level 
checkerboard are the worst case for the NOTA algorithm. However, this seemingly 

worst case produces a bit stream of all “Is” and a second application of NOTA on this bit 
stream quickly produces the best case NOTA compression.

Worst than the checkerboard case is the case in which an image is composed of 

nothing but runs of two, five, six, or seven. Each of these pixels runs causes data 
expansion. Data expansions represent scenarios in which the number of bits used to 

encode a run is more than that required to represent the run originally. All runs of two 

require three encoding bits. This remaining expansion runs require eight encoding bits. 
These expansion run can cause image files to grow up to 1.5 times the original size. A 

second application of NOTA to an expanded file is likely to cause addition expansion 

since the codes for the expansion runs contain many runs of two themselves.

RBE best case is limited by the size of the cell used for encoding. This best case 

occurs when an NxN cell of pixels is completely composed of a single dither pattern. For 

this situation, an RBE code can represent the original N  bits by the number of prefix bits 

plus the size of the one fixed length code used to represent the dither pattern. For a
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32x32 encoding cell parsing through 7 patterns using a 3 bit prefix code, the maximum 

compression is 171 bits to 1.

The average case size of an RBE code is represented by codes containing at least 
two levels of nested recursion delimiters. Using the same 32x32 cell example, the 

compression for this average case ranges between 101 bits to 1 and 16 bits to 1.

The RBE has no data expansion cases. Its worst case occurs when a cell of NxN 

pixels contains no equal and adjacent dither patterns. The above 32x32 cell example 

produces a worst case compression of 1.32 bits to 1. Compression for this worst case 

RBE scenario is attributed to its use of fixed length dither cell codes.

Pixel Rearrangements

NOTA can densely compress large runs of pixels and pixel rearrangements can be 

used to increase the runs present in a bi-level image without affecting the accuracy of the 

information. One particular method of rearrangement uses the pixels of the bi-level 
dither patterns to produce <¥ smaller versions of the image. FIG shows an example of 

this idea using an image composed of 2x2 ordered dither patterns.
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Figure 9.13-Pixel Rearrangements 

For this image, four quarter sized subimages are derived from the original bi-level image. 

The runs for each of the subimages are larger that those of the original. These quarter 

image run lengths correspond to the probability with which a 2x2 order dither cell pixel 

is likely to be filled. According to Case 0998), the upper left and upper right pixels of 

the 2x2 are black and white 80% of the time, respectively. The lower left and lower right 

pixels are black and white 60% of the time, respectively. 

Case calls this method of producing large run quarter images quad parsing. Chart 

9.22 illustrates the effects that this pixel rearrangement has on the NOTA compression 

ratios. This chart plots the average observed compression ratios against the file size. 

Nine different sizes of the four test images contributed to the averages below. 
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25.0 

As the chart illustrates, the NOTA-QP compression ratios grow at a faster rate 

than the non QP files. In fact, the slope of the NOT A-QP linear trend line is seven times 

that of the NOTA linear trend line. The saw tooth shape of both of the curves is due to 

the variable sized nature of NOT A's codes. Each local maximum occurs as the average 

run lengths approach the maximum size that can be represented by the current (average) 

variable sized NOT A code. The local minima correspond to the point at which the run 

lengths cause the encoder to begin using the next variable sized NOT A code ( on 

average). Because of the improved performance of NOT A due to quad parsing, all 

subsequent NOTA data has been taken after quad parsing. As such, the term "NOT A" 

will subsequently imply "NOTA+QP." 
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Cell Homogeneity

Case’s halftoning methods strive for smoothness by relying on checkerboards as 
their basis. These methods produce bi-level images that can potentially contain large 

areas of homogeneous dither patterns. The RBE method thrives on such homogeneity.

Halftoning a deep pixel image with a 2x2 BS dither produces a bi-level image 

with much homogeneity. However, the small size of the dither cells prevents the method 

from simulating enough graylevels to be practical. A similar situation occurs when using 

a 2x2 ordered dither matrix to halftone an image.

Applying the RD algorithm over these dithers alleviates this graylevel problem 

while removing much of this homogeneity m the bi-level image. Figure 9.14 is a 

qualitative demonstration of this idea. These images are 8x8 cells o f pixels extracted 

from the exact same position in the “Bowl” image.

Bank Sort Rev. Dl£f. on 
Bank Sort

Rev. Di£f. on 
Ordered Dith.

Figure 9.14—Homogeneity Demonstration

The image on the left is very homogeneous in terms of the 2x2 dither patters that 

compose it. Compared to the other images, this image contains less overall information 

and can be represented in as little as 3 bits with the RBE method. As shown, the RD



algorithm removes much of this homogeneity while improving the placement of the 

pixels. This process helps to retain positional and intensity details of the original image. 
However, as will be shown in the next sections, RBE does not currently perform well in 

these situations.

Comparisons

The following sections present and analyze the compression data taken for this 

study. The first section primarily illustrates how NOTA and RBE perform against each 

other. The next section shows how NOTA and RBE files respond to secondary 

compressions. The next section compares how mock image formats based on NOTA and 

RBE perform against other image formats. The final section applies the above test to text 
images.

Image RLE Comparison

Chart 9.23-Chart 9.30 present how NOTA and RBE perform against each other, 
the Packbits compressor, and the SimpleRLE compressor.
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RLE Methods on RD "Bowl" 
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RLE Methods on RD "Sinus" 
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Firstly, these charts show that Packbits and SimpleRLE are the same algorithms 

implemented by two different individuals. In every chart, their respective graphs overlap 

each other. 
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For the BS charts, RBE generally achieves higher compression ratios than NOT A. 

For the "Bowl" image, it achieves a compression ratio of 9.12 for a file containing about 

1.5 MB of pixels. This is the highest compression achieved for all of the RLE image 

data. The data also shows that the RBE algorithm performs better on vector images than 

on natural images. This result for RBE supports the fact that the 2x2 invocation of the 

BS algorithm produces images with a high degree of homogeneity. 

For the RD charts, NOT A overwhelms RBE. In fact, for the RD images RBE 

consistently performs near its worst case. NOT A, on the other hand, seems to gain some 

added compression due to its use of the ordered dither. Apparently, the two extra 2x2 

patterns output by the BS dither have a slightly negative effect on the bi-level runs in the 

quad parsed images. Further inspection of the quad parsed images shows that this indeed 

is the case. Figure 9.15 shows the upper left quarter image of two quad parsed images. 

The left image is that of RD applied over ordered dither. The right image is an image 

halftoned using RD over BS. 

Figure 9 .15-The Upper Left Quarter Image of an RD-OD and 
RD-BS image 
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Note how the black runs of the BS image are more frequently interrupted by white pixels 

than those of the ordered dither image. 

Secondary Image Compressions 

Chart 9 .31-Chart 9 .3 8 summarize the secondary compression methods applied 

over the NOT A and RBE files. The abbreviations for the charts are as follows: "A" 

implies the use of the arithmetic encoder; "D" implies the use of the dictionary encoder, 

and "H" implies that the Huffman encoder is used. 
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Secondary Methods on BS "Cats" 
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Secondary Methods on BS "Building" 
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Generally, these secondary compressions show an increased compression of 

ranging from a factor of two to a factor of four. For the most part, the trends of the 

previous section continue to hold for this data. Namely, the post-RBE performed better 

on the BS data while the RD files compressed better with the post-NOT A methods. 

On the NOT A files, all of the secondary compressions performed about the same; 

however, gzip ("D") does slightly outperform the others. Gzip played a much more 

important role on the RBE files. Notice that for three of the four RD charts, the RBE+D 

data rises sharply once it passes a threshold file size. On the "Sinus" image, this sharp 

increase causes the RBE method to perform as well as NOT A. 

In fact, for all of the input images, gzip applied over RBE produced better 

secondary compressions than it did on the NOT A files. This result seems to indicate that 

the 3-bit dither codes used by this implementation of RBE are more predictable than their 

NOTA counterparts are. Thus, RBE's codes must appear with a large amount of 
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periodicity in practice. This result seems counterintuitive and was not previously 

predicted especially because of the long strings of “Os” that NOTA provides in its larger 

codes.

This data also shows that NOTA’s expansion runs cause less trouble than 

previously expected. This is attributed to the quad parse rearrangement of pixels. In the 

quarter sized QP images, runs of 2, 5, 6, or 7 are extremely rare.

Image Format Comparisons

Chart 9.39-Chart 9.42 summarize how a mock file format based on NOTA and 

RBE compares to other popular image formats.

Image Format Comparison for "Bowl"
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- * - jp g
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Chart 9.39— Comparison o f NOTA and RBE with Other Image 
Formats for “Bowl"



168

Image Format Comparison for "Cats"

— pnm
bmp w/rle
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— rd-rbe-huff

Chart 9.40— Comparison of NOTA and RBE with Other Image 
Formats for “Cats"

Image Format Comparison for "Sinus"
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Chart 9.41— Comparison of NOTA and RBE with Other Image 
Formats for “Sinus"
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Chart 9 42— Comparison of NOTA and RBE with Other Image 
Formats for “Building"

As expected, the JPEG files achieve the highest degree of compression. The 

JPEG data especially shows the power of frequency domain image compressions. 
However, JPEG typically is best suited for storage of digitized natural images. The RBE 

mock format generally performs worst. This result coincides with the rest of the data 

taken for RBE run on an RD image. The rest of the formats perform at nearly the same 

level.

The mock NOTA format performs at the same level as GIF using a Huffman 

encoder as its secondary compression. The data from the previous sections indicates that 
the NOTA format could gain a slight edge over GIF if a dictionary method is used. GIF 

itself uses a form of Limpel-Ziv dictionary coding as its primary form of compression.
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Text Image Compression 

Chart 9.43-Chart 9.45 summarize the data taken for the compression of pure text 

images. 

0 
.:; 
CV 

a:: 
C: 
0 

·en 
en 
G,) ... 
a. 
E 
0 
0 

12.00 

10.00 

8.00 

6.00 

4.00 

2.00 

0.00 
10.00 

16.00 
0 14.00 .:; 
CV 12.00 a:: 
C: 10.00 0 

"in 8.00 en 
G,) 6.00 ... 
a. 

4.00 E 
0 2.00 0 

0.00 

Text RLE Compression 

12.00 14.00 16.00 18.00 20.00 22.00 

log (Orig File Size) 

Chart 9 .43-Comparison of NOT A and RBE on RD and BS Text 

Secondary Methods on Text 

-+-NOTA+A 

--- NOTA+D 

NOTA+H 

~RBE+A 
,· 

____._RBE+D 

___.._RBE+H 

10.00 12.00 14.00 16.00 18.00 20.00 22.00 

log2 (Orig File Size) 

Chart 9.44-Secondary Compressions Applied to NOTA and 
RBE on RD Text 



171

Text Format Comparison
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Chart 9.45— Comparison o f NOTA and RBE with Other Text 
Formats

Chart 9.43 shows that these compression methods can achieve higher 

compression ratios on pure text images as opposed to the vector and natural image of the 

last section. This is due to the frequent long runs of white pixels in the text images. The 

RLE methods studied here (like all RLE methods) thrive on these long runs.

Overall, RBE applied to a BS image works best. Unlike for images, the five 

intensities that can be stored by 2x2 invocation of BS are enough to represent pure text 
images accurately. This fact is supported by the text survey given in the quality analysis 

section. However, the five intensities of this scheme cannot support antialiasing. For 

antialiasing, one of two things can be done. One, NOTA applied on an RD image can be 

used. Two, a separate antialiasing operation can be applied after the decoding of the 

image.

Chart 9.44, like the previous image data, shows that RBE responds well to a 

secondary dictionary compression. The trend for the NOTA data is also the same.



Typically, these secondary compressions achieve additional compression ranging from 

120% to 140%.

Chart 9.45 shows that Postscript and Adobe PDF perform much better than the 

mock file formats of this study. The mock formats are raster style image formats, 
meaning they store information on every pixel in the image. Postscript and PDF are 

vector formats that can store data about the placement, size, and orientation of the text in 

the images. These formats do not store information on every pixel; instead, they derive 

an image from the rules they that store. Generally, vector formats can store images with 

less data than their raster counterparts can. This data supports this notion.
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CHAPTER 10
CONCLUSIONS

This chapter summarizes the overall findings of this study. It is a collective 

interpretation of the data described in the previous chapter. The implications of the data 

are presented along with suggestions for additional issues to be researched.

Summarized Findings

This study considered the image quality of Case’s halftoning methods using 

subjective assessments, objective metrics, and difference perception test. The findings of 

this portion of the study can be collectively summarized as follows:

• Survey subjects perceived image quality the same regardless of the devise used to 
display the images.

•  No obvious correlation exists between the objective metrics and the subjective 
survey rankings.

• The frequency, orientation, and periodicity of moirés are significant factors 
affecting the subjective assessment of image quality.

•  Moirés oriented at 0° and 90° are more significant to survey subjects than 
displayed intensities when assessing image quality.

• 8x8 RD applied to a dispersed-dot ordered dither produces superior zoom images 
when compared to those created via 2x2 BS.
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•  The moirés o f 8x8 RD applied to BS are less disturbing than those produced when 
8x8 RD is applied to a dispersed-dot ordered dither.

•  Details are retained better in zoom images when RD is a applied to BS as opposed 
to when RD is applied to ordered dither.

•  Pre-sharpening and post-selective Gaussian blur produce visually pleasing 
enhancements to the BS and RD zoom images.

•  Case’s halftoning methods preserve the readability of text as small as 8 points 
(and possibly smaller).

•  2x2 BS applied to pure text images produces superior results when compared to 
other halftoned images.

This study considers the compressibility of images produce by Case’s halftoning 

methods in terms of the positional and statistical redundancies present in the pixels 

composing these images. The compressibility findings of this study can be summarized 

as follows:

•  NOTA is simpler than RBE in terms of time and space complexity.
•  NOTA performs better when pixels are rearranged in a manner that produces 

larger runs.
• NOTA works better on images produced via ordered dither as opposed to those 

produce by BS.
•  Arithmetic, Huffman, and dictionary compressors produce similar secondary 

compressions when applied over a NOTA encoded file.
• The synergy of RD, NOTA, and Huffman coding produces a mock image storage 

format that rivals the GIF, BMP, PNG, and PNM formats in terms of file size.
•  RBE works well for 2x2 dispersed-dot ordered dither and 2x2 BS; however, the 

added heterogeneity provided by 8x8 RD is detrimental.
• Due to RBE’s dependence on homogeneity, it can possibly be used as a 

smoothness metric for dithered images.
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•  The small fixed length pattern codes of RBE respond very well to dictionary
compression.

Future Work

These findings support the notion that Case’s halftoning methods can be 

combined with the studied compression methods to produce an image storage format that 
rivals many of the already existing formats. However, more work would be necessary to 

produce such a format. This section outlines some of the unresolved issues currently 

inhibiting the development of such a format.

In order to become a viable image format, this technology needs to be adapted to 

handle color images. This can be achieved with relative ease by directly applying Case’s 

methods to each of the RGB (red, green, blue) channels often used to store such images.

Neither the NOTA nor the RBE compression methods are perfect and both can 

benefit from improvements. Particularly, NOTA needs its expansion runs removed or 

nullified. This need may be realized indirectly through the study of alternative pixel 
rearrangements or directly through changes to the NOTA algorithm. Alternative pixel 
rearrangements may also help improve NOTA’s performance when applied to BS 

images. RBE must be adapted to better handle the less homogeneous cells produced by 

the RD algorithm. These adaptations are likely to occur on the recursion delimiters used 

by the method.

The accuracy of the correlation charts of Chapter 9 can be improved by devising a 

subjective ranking system that promotes equality of the differences between the ranks. In
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other words, such a method would ensure that the difference between ranks “1” and “2” 
is the same as the difference between “5” and “6”. Statistics theory relies on this 

property; thus, the current correlation data can only serve as a decent approximation.

Finally, the programs developed for this study are merely prototypes. At the 

moment, they run slow and some of them contain small bugs. Once the other issues are 

resolved, these prototypes will be discarded and “production grade” implementations 

developed from scratch will replace them. These programs can benefit from threaded 

implementations since none of the algorithms prohibits parallel processing.
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