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GLOBAL SOLUTIONS TO A ONE-DIMENSIONAL NONLINEAR
WAVE EQUATION DERIVABLE FROM A VARIATIONAL

PRINCIPLE

YANBO HU, GUODONG WANG

Abstract. This article focuses on a one-dimensional nonlinear wave equa-
tion which is the Euler-Lagrange equation of a variational principle whose

Lagrangian density involves linear terms and zero term as well as quadratic

terms in derivatives of the field. We establish the global existence of weak so-
lutions to its Cauchy problem by the method of energy-dependent coordinates

which allows us to rewrite the equation as a semilinear system and resolve all
singularities by introducing a new set of variables related to the energy.

1. Introduction

The variational principle whose action is a quadratic function of the derivatives
of the field with coefficients depending on the field and the independent variables
takes the form [1, 19, 20]

δ

∫
Aijµν(x,u)

∂uµ

∂xi

∂uν

∂xj
dx = 0, (1.1)

where the summation convention is employed. Here, x ∈ Rd+1 are the space-
time independent variables and u : Rd+1 → Rn are the dependent variables. The
coefficients Aijµν : Rd+1 × Rn → R are smooth functions.

A particular motivation for studying (1.1) comes from the theory of nematic
liquid crystals. In the regime in which inertia effects dominate viscosity, Saxton
[23] modelled the propagation of the orientation waves in the director field of a
nematic liquid crystal by the least action principle

δ

∫ (1
2
∂tn · ∂tn−Wn(n,∇n)

)
dxdt = 0, n · n = 1, (1.2)

where n(x, t) is the director field and Wn(n,∇n) is the well-known Oseen-Franck
potential energy density,

Wn(n,∇n) =
1
2
k1(∇ · n)2 +

1
2
k2(n · ∇ × n)2 +

1
2
k3|n× (∇× n)|2,
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which is a quadratic function of ∇n with coefficients depending on n. Here k1, k2

and k3 are the splay, twist and bend elastic constants of the liquid crystal, respec-
tively.

The hyperbolic systems of nonlinear wave equations derivable from the varia-
tional principle (1.2) have been widely explored since they were introduced. Hunter
and Saxton [19] considered the planar deformations of the director field n that
depend only on a single space variable x with n = (cosu(t, x), sinu(t, x), 0) and
derived the Euler-Lagrange equation of (1.2) given by

utt − c(u)[c(u)ux]x = 0 (1.3)

with c2(u) = k1 sin2 u + k3 cos2 u. For another important application, equation
(1.3) describes the motion of long waves on a neutral dipole chain in the continuum
limit [31]. A basic feature of (1.3) is that, even for smooth initial data, cusp-type
singularities can form in finite time, see [13, 14]. In a series of papers [25, 26, 27, 28],
Zhang and Zheng have studied carefully the global existence of dissipative weak
solutions to the initial value problems for (1.3) and its asymptotic models. Bressan
and Huang [6] proposed another way to construct a global dissipative solution to
(1.3). The global existence and uniqueness of conservative weak solutions to its
Cauchy problem for initial data of finite energy were established, respectively, by
Bressan and Zheng [8] and Bressan, Chen and Zhang [5]. Holden and Raynaud [15]
carried out a detailed construction of a global semigroup for its conservative weak
solutions. A Lipschitz continuous metric of conservative weak solutions to (1.3)
has been constructed recently by Bressan and Chen [4]. The generic properties
of conservative solutions was studied in [3]. In [17], the first author investigated
a more general nonlinear wave equation than (1.3) arising from the variational
principle (1.1) and constructed a global energy-conservative weak solution to its
initial value problem.

For the three-dimensional deformations depending on a single space variable x
and the director field n taking the form

n = (cosu(x, t), sinu(x, t) cos v(x, t), sinu(x, t) sin v(x, t)),

the Euler-Lagrange equations of (1.2) are

utt − (c21(u)ux)x = −c1(u)∂uc1(u)u2
x + a(u)∂ua(u)[v2

t − c22(u)v2
x]

− a2(u)c2(u, x)∂uc2(u)v2
x,

(a2(u)vt)t − [a2(u)c22(u)vx]x = 0

(1.4)

where c21(u) = k1 sin2 u+ k3 cos2 u, c22(u) = k2 sin2 u+ k3 cos2 u and a2(u) = sin2 u.
System (1.4) was first derived by Ali and Hunter [2] to describe the propagation of
splay and twist waves in nematic liquid crystals. They also analyzed some properties
for the asymptotic equations of (1.4) in [2]. Recently, Zhang and Zheng [29, 30]
demonstrated the global existence of conservative weak solutions to the Cauchy
problem of (1.4) under some assumptions. The relevant results about the related
nonlinear wave system derived from the variational principle of (1.1) was provided
by the author [16]. We also refer the reader to [9] by Chen, Zhang and Zheng for
the discussion of the nonlinear wave system obtained from (1.2) by considering the
director field n in its natural three-component form, also see Chen and Zheng [10]
for the analysis of the corresponding viscous system.
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In a recent paper [18], we studied a nonlinear wave system coming from the
theory of cholesteric liquid crystals, in which the Oseen-Franck potential energy
density is expressed as the sum of an elastic and a chiral contribution (neglecting
a constant factor)

Wc(n,∇n) =
1
2
k1(∇·n)2 +

1
2
k2(n ·∇×n)2 +

1
2
k3|n× (∇×n)|2 +λn ·∇×n, (1.5)

where λ is a pseudoscalar material parameter that represents molecular chirality, see
e.g. [11, 12]. Compared with the nematic, linear terms in derivatives of the director
field n must be considered in cholesteric liquid crystals. For detailed information
regarding cholesteric liquid crystals, see, for example, [12, 21, 22, 24]. Considering
the three-dimensional deformations and replacing Wn(n,∇n) by Wc(n,∇n), the
variational principle (1.2) gives rise to the associated Euler-Lagrange equations

utt − (c21(u)ux)x = −c1(u)∂uc1(u)u2
x + a(u)∂ua(u)[v2

t − c22(u)v2
x]

− a2(u)c2(u, x)∂uc2(u)v2
x + 2λa(u)∂ua(u)vx,

(a2(u)vt)t − [a2(u)c22(u)vx − λa2(u)]x = 0.

(1.6)

In contrast to equations (1.4), the linear terms in (1.5) cause the total energy of
solution for system (1.6) to be not conservative. The global existence of weak
solutions to its Cauchy problem was established in [18] by using the method of
energy-dependent coordinates and the Young measure theory.

Motivated by (1.5), we are interested in the variational principle whose La-
grangian density includes linear terms and zero term as well as quadratic terms in
derivatives of the field

δ

∫ {
Aijµν(x,u)

∂uµ

∂xi

∂uν

∂xj
+Biµ(x,u)

∂uµ

∂xi
+ F (x,u)

}
dx = 0, (1.7)

where x, u and Aijµν are as in (1.1), Biµ and F are smooth functions. The term F
can be regarded as the contribution from the external electrical or magnetic field.
Consider n = 1 and d = 1, then the Euler-Lagrange equation for (1.7) reads that

(2A11ut + (A12 +A21)ux +B1)t + ((A12 +A21)ut + 2A22ux +B2)x

=
∂A11

∂u
u2
t +

∂(A12 +A21)
∂u

utux +
∂A22

∂u
u2
x +

∂B1

∂u
ut +

∂B2

∂u
ux +

∂F

∂u
.

(1.8)

In this article, we consider the initial value problem for equation (1.8) with

(Aij)2×2 =
1
2

(
α2 β1

β2 −γ2

)
(x, u), (1.9)

and B1 = κ(x, u), B2 = λ(x, u), F = F (x, u), where α, γ, κ, λ, F and β1 + β2 := 2β
are smooth functions, independent of t, satisfying

0 < α1 ≤ α(z) ≤ α2, |β(z)|+ |κ(z)|+ |λ(z)|+ |F (z)| ≤ Λ,

0 < γ1 ≤ γ(z) ≤ γ2,

sup
z
{|∇α(z)|, |∇β(z)|, |∇γ(z)|, |∇κ(z)|, |∇λ(z)|, |∇F (z)|} ≤ Λ, ∀z ∈ R2

(1.10)

for positive numbers α1, α2, γ1, γ2 and Λ. Under the above assumptions, (1.8)
reduces to

(α2ut + βux + κ)t + (βut − γ2ux + λ)x

= ααuu
2
t + βuutux − γγuu2

x + κuut + λuux + Fu,
(1.11)
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which is strictly hyperbolic with two eigenvalues

λ+ =

√
β2 + α2γ2 + β

α2
> 0, λ− = −

√
β2 + α2γ2 − β

α2
< 0. (1.12)

Equation (1.11) is a second order quasilinear hyperbolic equation whose main dif-
ficulty arises from the possible cusp-type singularities of solutions in finite time.

The purpose of this article is to establish the global existence of weak solutions
to the initial value problem (1.11) with the initial data

u(0, x) = u0(x) ∈ H1, ut(0, x) = u1(x) ∈ L2 (1.13)

under the assumption (1.10). The approach we used here follows the method of
energy-dependent coordinates proposed by Bressan, Zhang and Zheng [7, 8] to deal
with (1.3) and its related asymptotic model. However, in contrast to equation (1.3),
the energy of solution for (1.11), denoted by

E(t) :=
1
2

∫ {
α2(x, u)u2

t + γ2(x, u)u2
x

}
dx,

is not conservative. In spite of this, we can still establish a priori estimates of
solutions for the equivalent semilinear system in the energy-dependent coordinates.
By returning the solution in terms of the original variables, we thus recover a global
weak solution to (1.11).

Before stating the main results, let us first give the definition of weak solutions
to problem (1.11) (1.13).

Definition 1.1 (Weak solution). A function u(t, x) with (t, x) ∈ R+ ×R is a weak
solution to the Cauchy problem (1.11) (1.13) if the following hold:
(i) In the t-x plane, the function u is locally Hölder continuous with exponent 1/2.
The function t 7→ u(t, ·) is continuously differentiable as a map with values in Lθloc

for all 1 ≤ θ < 2. Moreover, for any T > 0, it satisfies the Lipschitz continuity
property

‖u(t, ·)− u(s, ·)‖L2
loc
≤ L|t− s|, ∀t, s ∈ (0, T ] (1.14)

for some constant L depending on T with L = O(
√
T ).

(ii) The function u(t, x) takes on the initial condition in (1.13) pointwise, while its
temporal derivative holds in Lθloc for θ ∈ [1, 2).
(iii) Equation (1.11) is satisfied in the distributional sense, that is∫∫

R+×R

{
ϕt(α2ut + βux + κ) + ϕx(βut − γ2ux + λ)

+ ϕ
(
ααuu

2
t + βuutux − γγuu2

x + κuut + λuux + Fu

)}
dxdt = 0

(1.15)

for all test functions ϕ ∈ C1
c (R+ × R).

The conclusions of this paper are as follows.

Theorem 1.2 (Existence). Let condition (1.10) be satisfied. Then the Cauchy
problem (1.11) (1.13) admits a global weak solution defined for all (t, x) ∈ R+ ×R.

The continuous dependence of the solution upon the initial data follows directly
from the constructive procedure.
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Theorem 1.3 (Continuous dependence). Suppose the assumptions in Theorem
1.2 hold. For the Cauchy problem (1.11) (1.13), let a sequence of initial conditions
satisfy

‖(uν0)x − (u0)x‖L2 → 0, ‖uν1 − u1‖L2 → 0,

and uν0 → u0 uniformly on compact sets, as ν →∞. Then one has the convergence
of the corresponding solutions uν → u, uniformly on bounded subsets of the (t, x)-
plane with t > 0.

The article is organized as follows. In Section 2, we introduce a new set of
dependent and independent variables, and derive an equivalent semilinear system
of (1.11) for smooth solutions. Section 3 presents the existence and continuous
dependence results for solutions to the equivalent semilinear system. We show the
Hölder continuity of solutions (u, v) in terms of the original independent variables
t, x, and verify that the integral equation (1.15) is satisfied in Section 4. Finally, in
Section 5, we establish the Lipschitz continuity property (1.14) and the continuity
of the maps t 7→ ut(t, ·), t 7→ ux(t, ·) as functions with values in Lθloc(1 ≤ θ < 2),
which complete the proof of Theorems 1.2.

2. New formulation in energy-dependent coordinates

In this section, we derive an equivalent system of (1.11) for smooth solutions by
introducing a new set of variables to replace the original variables u, t, x.

2.1. Energy-dependent coordinates. Denote c1 := αλ− < 0 and c2 := αλ+ >
0, and

R := αut + c2ux, S := αut + c1ux. (2.1)
Then (1.11) can be rewritten as

α(x, u)Rt + c1(x, u)Rx = a1R
2 − (a1 + a2)RS + a2S

2 + c2bS − d1R− λx + Fu,

α(x, u)St + c2(x, u)Sx = −a1R
2 + (a1 + a2)RS − a2S

2 + c1bR− d2S − λx + Fu,

α(x, u)ut + c1(x, u)ux = S,

(2.2)
where

ai =
ci∂uα− α∂uci

2α(c2 − c1)
, b =

α∂x(c1 − c2) + (c1 − c2)∂xα
2α(c2 − c1)

di =
c2∂xc1 − c1∂xc2

2(c2 − c1)
+
α∂xci − ci∂xα

2α
, (i = 1, 2)

(2.3)

and ∂x and ∂u denote, respectively, partial derivatives with respect to the arguments
x and u. System (2.2) is equivalent to equation (1.6) for smooth solutions if we
supplement it with initial restriction at t = 0,

ux =
R− S

c2(x, u)− c1(x, u)
. (2.4)

For convenience to deal with possibly unbounded values of R and S, we introduce
a new set of dependent variables

` :=
R

1 +R2
, h :=

1
1 +R2

, m :=
S

1 + S2
, g :=

1
1 + S2

, (2.5)

from which one easily checks that

`2 + h2 = h, m2 + g2 = g. (2.6)
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Define the forward and backward characteristics as follows:

d
ds
x±(s; t, x) = λ±(x±(s; t, x), u(s;x±(s; t, x))),

x±|s=t = x,
(2.7)

where λ± are given in (1.12). Now we define the coordinate transformation (t, x)→
(X,Y ) where

X :=
∫ x−(0;t,x)

0

(
1 +R2(0, ξ)

)
dξ, Y :=

∫ 0

x+(0;t,x)

(
1 + S2(0, ξ)

)
dξ, (2.8)

which indicates that

α(x, u)Xt + c1(x, u)Xx = 0, α(x, u)Yt + c2(x, u)Yx = 0, (2.9)

from which, it turns out that

ft = −c1
α
XxfX −

c2
α
YxfY , fx = XxfX + YxfY (2.10)

for any smooth function f(t, x). Moreover, we introduce the new variables

p :=
1 +R2

Xx
, q :=

1 + S2

−Yx
. (2.11)

Then we can obtain a semilinear hyperbolic system with smooth coefficients for
the variables g, h, `,m, p, q, u, x in (X,Y ) coordinates as follows:

`Y =
q(2h− 1)
c2 − c1

{
a1g + a2h− (a1 + a2)(gh+m`) + c2bhm

− d1g`+ (Fu − λx)gh
}
,

mX =
p(2g − 1)
c2 − c1

{
− a1g − a2h+ (a1 + a2)(gh+m`) + c1bg`

− d2hm+ (Fu − λx)gh
}
,

uX =
1

c2 − c1
p`

(
or uY =

1
c2 − c1

qm
)
,

xX =
c2

c2 − c1
ph

(
or xY =

c1
c2 − c1

qg
)
,

(2.12)

hY = − 2q`
c2 − c1

{
a1g + a2h− (a1 + a2)(gh+m`) + c2bhm

− d1g`+ (Fu − λx)gh
}
,

gX = − 2pm
c2 − c1

{
− a1g − a2h+ (a1 + a2)(gh+m`) + c1bg`

− d2hm+ (Fu − λx)gh
}
,

(2.13)
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and

pY =
2pq

c2 − c1

{
a2(`−m) + (a1 + a2)(hm− g`) + c2bm`+ d1gh

+
c1∂xc2 − c2∂xc1

2(c2 − c1)
g + (Fu − λx)g`

}
,

qX =
2pq

c2 − c1

{
a1(`−m) + (a1 + a2)(hm− g`) + c1bm`+ d2gh

+
c1∂xc2 − c2∂xc1

2(c2 − c1)
h+ (Fu − λx)mh

}
.

(2.14)

We here point out that( qm

c2 − c1

)
X

=
( p`

c2 − c1

)
Y
,
( c1qg

c2 − c1

)
X

=
( c2ph

c2 − c1

)
Y
, (2.15)

which imply that uXY = uY X and xXY = xY X , so we may use either uX , xX or
uY , xY in (2.12).

2.2. Initial data conversion. We now consider the boundary conditions of system
(2.12)-(2.14) in the energy-dependent coordinates (X,Y ), corresponding to (1.13)
in the original coordinates (t, x).

It is easily known by (1.10) and (1.13) that

R(0, x) = α(x, u0(x))u1(x) + c2(x, u0(x))u′0(x) ∈ L2,

S(0, x) = α(x, u0(x))u1(x) + c1(x, u0(x))u′0(x) ∈ L2.

The initial line t = 0 in the (t, x) plane is transformed to a curve Γ0 : Y = φ(X)
defined through a parametric x ∈ R

X =
∫ x

0

[1 +R2(0, ξ)]dξ, Y =
∫ 0

x

[1 + S2(0, ξ)]dξ, (2.16)

which, clearly, is non-characteristic. We see by (1.10) and (1.12) that the two func-
tions X = X(x), Y = Y (x) are well defined and absolutely continuous. Moreover,
X is strictly increasing while Y is strictly decreasing. Hence the map X 7→ φ(X)
is continuous and strictly decreasing. In addition, applying (1.10) and (1.12) again
arrives at

1
M

:=
α2

1γ
2
1

2(Λ2 + α2
2γ

2
2 + Λ

√
Λ2 + α2

2γ
2
2)

≤
∣∣ ci
c2 − c1

∣∣
≤ Λ +

√
Λ2 + α2

2γ
2
2

2α1γ1
:= M

(2.17)

for i = 1, 2. Therefore, the map X 7→ φ(X) satisfies

|X + φ(X)| ≤
∫

R

(
R2(0, ξ) + S2(0, ξ)

)
dξ

= M

∫
R

(
α2(ξ, u0(ξ))u2

1(ξ) + γ2(ξ, u0(ξ))(u′0(ξ))2
)

dξ

=: 2ME0,

(2.18)
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which is a finite number. The coordinate transformation maps the domain [0,∞)×R
in the (t, x) plane into the set

Ω+ := {(X,Y );Y ≥ φ(X)} (2.19)

in the (X,Y ) plane. Along the curve Γ0 parameterized by x 7→ (X(x), Y (x)), we
can thus assign the boundary data (h̄, ḡ, ¯̀, m̄, p̄, q̄, ū) ∈ L∞ defined by

h̄ =
1

1 +R2(0, x)
, ḡ =

1
1 + S2(0, x)

,

¯̀= R(0, x)h̄, m̄ = S(0, x)ḡ,
p̄ = 1, q̄ = 1,

ū = u0(x), x̄ = x.

(2.20)

It is easily checked that h2 + `2 − h = 0 and g2 +m2 − g = 0 on Γ0.

3. Solutions to the equivalent system

This section is devoted to establishing the existence of a unique global solution
for system (2.12)-(2.14) with boundary data (2.20) in the energy coordinates (X,Y ).
The method follows from Bressan and Zheng [8], and also see Zhang and Zheng
[29] and Hu [17].

We first derive several identities from system (2.12)-(2.14), which are useful to
derive the desired a priori estimates for the solutions.

(i) Consistency:

∂Y (h2 + `2 − h) = 0, ∂X(g2 +m2 − g) = 0. (3.1)

Proof. The proof is directly from (2.12) and (2.13). �

Thanks to (3.1) and the boundary conditions (2.20), we find that

h2 + `2 = h, g2 +m2 = g, ∀ (X,Y ) ∈ Ω+. (3.2)

(ii) An identity:(c2q(1− g)
2(c2 − c1)

+
λqm

c2 − c1
+
c1Fqg

c2 − c1

)
X
−
(c1p(1− h)

2(c2 − c1)
+

λp`

c2 − c1
+
c2Fph

c2 − c1

)
Y

= 0. (3.3)

Proof. It first follows from (2.15) that( λqm

c2 − c1

)
X
−
( λp`

c2 − c1

)
Y

=
−λxpq

(c2 − c1)2
(c1g`− c2mh),( c1Fqg

c2 − c1

)
X
−
( c2Fph
c2 − c1

)
Y

=
Fupq

(c2 − c1)2
(c1g`− c2mh),

from which one deduces( λqm

c2 − c1
+
c1Fqg

c2 − c1

)
X
−
( λp`

c2 − c1
+
c2Fph

c2 − c1

)
Y

=
pq

(c2 − c1)2
(Fu − λx)(c1g`− c2mh).

(3.4)

On the other hand, by (2.10) and (2.5) we compute( c2
c2 − c1

)
X

=
p

(c2 − c1)2

{c2∂uc1 − c1∂uc2
c2 − c1

`+
c2(c2∂xc1 − c1∂xc2)

c2 − c1
h
}
. (3.5)
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According to (2.13) and (2.14) and employing (3.2) yields(
q(1− g)

)
X

=
2pq

c2 − c1

{
a1(`−m− g`+ hm) + c1bm`

+
c1∂xc2 − c2∂xc1

2(c2 − c1)
(1− g)h+ (Fu − λx)mh

}
.

(3.6)

We combine (3.5) and (3.6) and use (2.3) to deduce(c2q(1− g)
2(c2 − c1)

)
X

=
pq

(c2 − c1)2

{
c1a2(1− g)`− c2a1(1− h)m

+ c1c2bm`+ (Fu − λx)c2mh
}
.

(3.7)

Similarly, one finds(c1p(1− h)
2(c2 − c1)

)
Y

=
pq

(c2 − c1)2

{
c1a2(1− g)`− c2a1(1− h)m

+ c1c2bm`+ (Fu − λx)c1g`
}
.

(3.8)

Combining (3.7) and (3.8) leads to(c2q(1− g)
2(c2 − c1)

)
X
−
(c1p(1− h)

2(c2 − c1)

)
Y

=
pq

(c2 − c1)2
(Fu − λx)(c2mh− c1g`),

which together with (3.4) gives (3.3). �

We now establish a priori estimates for solutions to the semilinear hyperbolic
system (2.12)-(2.14) in Ω+. Obviously, it turns out by (3.2) that

0 ≤ h ≤ 1, 0 ≤ g ≤ 1, |`| ≤ 1
2
, |m| ≤ 1

2
. (3.9)

Based on (3.3) and (2.14), We next estimate the functions p and q. It is easy to
see from (2.14) and the initial condition p̄ = q̄ = 1 that p and q are positive in Ω+.
In view of (2.15) the differential form

c2ph

c2 − c1
dX +

c1qg

c2 − c1
dY (3.10)

has zero integral along every closed curve contained in Ω+. Then, for every (X,Y ) ∈
Ω+, we construct the closed curve S composed of the following three parts: the
vertical segment with the endpoints (X,φ(X)) and (X,Y ), the horizontal segment
with the endpoints (X,Y ) and (φ−1(Y ), Y ), and the boundary curve Γ with the
endpoints (φ−1(Y ), Y ) and (X,φ(X)). Here φ−1 denotes the inverse of φ. We
integrate (3.10) along the closed curve S and use (2.17) and the boundary data
(2.20) to obtain∫ X

φ−1(Y )

c2
c2 − c1

ph(X ′, Y )dX ′ +
∫ Y

φ(X)

−c1
c2 − c1

qg(X,Y ′)dY ′

=
∫ X

φ−1(Y )

c2h̄

c2 − c1
(X ′, φ(X ′))dX ′ +

∫ Y

φ(X)

−c1ḡ
c2 − c1

(φ−1(Y ′), Y ′)dY ′

≤M
(
X − φ−1(Y ) + Y − φ(X)

)
≤ 2M(|X|+ |Y |+ 2ME0),

(3.11)
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from which, we employ (2.17) again to arrive at∫ X

φ−1(Y )

ph(X ′, Y )dX ′ +
∫ Y

φ(X)

qg(X,Y ′)dY ′ ≤ 2MM(|X|+ |Y |+ 2ME0). (3.12)

On the other hand, making use of (1.10), (2.17) and the boundary data (2.20) yields∫ X

φ−1(Y )

[ −c1
2(c2 − c1)

p(1− h)− λ

c2 − c1
p`− c2F

c2 − c1
ph
]
(X ′, φ(X ′))dX ′

+
∫ Y

φ(X)

[ c2
2(c2 − c1)

q(1− g) +
λ

c2 − c1
qm+

c1F

c2 − c1
qg
]
(φ−1(Y ′), Y ′)dY ′

≤
(1

2
M +

Λ
4γ1

+ ΛM
)
·
(
X − φ−1(Y ) + Y − φ(X)

)
≤
(
M +

Λ
2γ1

+ 2ΛM
)

(|X|+ |Y |+ 2ME0).

Then, integrating (3.3) along the closed curve S obtains∫ X

φ−1(Y )

−c1
2(c2 − c1)

p(X ′, Y )dX ′ +
∫ Y

φ(X)

c2
2(c2 − c1)

q(X,Y ′)dY ′

≤
∫ X

φ−1(Y )

c1 + 2c2F
2(c2 − c1)

ph(X ′, Y )dX ′ +
∫ Y

φ(X)

−c2 − 2c1F
2(c2 − c1)

qg(X,Y ′)dY ′

+
∫ X

φ−1(Y )

λ

c2 − c1
p`(X ′, Y )dX ′ +

∫ Y

φ(X)

−λ
2(c2 − c1)

qm(X,Y ′)dY ′

+
(
M +

Λ
2γ1

+ 2ΛM
)

(|X|+ |Y |+ 2ME0),

from which and the following inequalities∣∣ λp`

c2 − c1
∣∣ ≤ −c1

4(c2 − c1)
p+

MΛ2

γ2
1

ph,
∣∣ λqm
c2 − c1

∣∣ ≤ c2
4(c2 − c1)

q +
MΛ2

γ2
1

qg,

one has∫ X

φ−1(Y )

−c1
4(c2 − c1)

p(X ′, Y )dX ′ +
∫ Y

φ(X)

c2
4(c2 − c1)

q(X,Y ′)dY ′

≤M
(1

2
+ Λ +

Λ2

γ2
1

){∫ X

φ−1(Y )

ph(X ′, Y )dX ′ +
∫ Y

φ(X)

qg(X,Y ′)dY ′
}

+
(
M +

Λ
2γ1

+ 2ΛM
)

(|X|+ |Y |+ 2ME0),

which combined with (3.12) and (2.17) concludes∫ X

φ−1(Y )

p(X ′, Y )dX ′ +
∫ Y

φ(X)

q(X,Y ′)dY ′

≤ 4M
[
MM

2
(

1 + 2Λ +
2Λ2

γ2
1

)
+M +

Λ
2γ1

+ 2ΛM
]
(|X|+ |Y |+ 2ME0).

(3.13)

For any (X,Y ) ∈ Ω+, we now integrate the first equation of (2.14) vertically and
apply (3.13) to have

exp
{
− C̃(|X|+ |Y |+ 2ME0)

}
≤ p(X,Y ) ≤ exp

{
C̃(|X|+ |Y |+ 2ME0)

}
(3.14)
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for some constant C̃ depending only on Λ, α1, α2, γ1 and γ2. A similar inequality
also holds for q. To estimate the function u, we integrate the equation for u in
(2.12) horizontally and use (3.13) to obtain

|u(X,Y )| ≤ |u0|+
1

4γ1

∫ X

ϕ−1(Y )

p(X ′, Y )dX ′

≤ |u0|+
M

γ1

[
MM

2
(

1 + 2Λ +
2Λ2

γ2
1

)
+M

+
Λ

2γ1
+ 2ΛM

]
(|X|+ |Y |+ 2ME0).

(3.15)

Integrating the equation for x in (2.12) horizontally, it suggests by (3.11) that

|x(X,Y )| ≤ |x(ϕ−1(Y ), Y )|+
∫ X

ϕ−1(Y )

c2
c2 − c1

ph(X ′, Y )dX ′

≤ |x(ϕ−1(Y ), Y )|+ 2M(|X|+ |Y |+ 2ME0)

≤ (2M + 1)(|X|+ |Y |+ 2ME0).

(3.16)

Since all right-hand side functions in system (2.12)-(2.14) are locally Lipschitz
continuous, then the local existence of solutions follows straightforward from the
fixed point method. from the a priori estimates (3.9), (3.14)-(3.15) and (3.16), we
can extend this local solution to the entire domain Ω+ by using the technique in
Bressan and Zheng [8]. Thus we have the global existence theorem.

Theorem 3.1. Let (1.10) and (1.13) be satisfied. Then problem (2.12)-(2.14) with
boundary data (2.20) has a unique global solution defined for all (X,Y ) ∈ Ω+.

The above construction leads directly to a useful consequence.

Corollary 3.2. Suppose that (1.10) holds. If the initial data (u0, u1) are smooth,
then the solution of (2.12)-(2.14) (2.20) is a smooth function of the variables (X,Y ).
Moreover, assume that a sequence of smooth functions (uν0 , u

ν
1)ν≥1 satisfies

uν0 → u0, (uν0)x → (u0)x, uν1 → u1,

uniformly on compact subsets of R. Then it has the following convergence proper-
ties:

(uν , hν , gν , `ν ,mν , pν , qν)→ (u, h, g, `,m, p, q),
uniformly on bounded subsets of the X-Y plane.

4. Solutions in the original variables

This section is devoted to returning the solution in the X-Y plane to the original
variables (t, x). The Hölder continuous of solution and the integral equation (1.15)
are also verified in this section.

We first examine the regularity of the solution constructed in the previous sec-
tion. Since the initial data (u0)x and u1 are assumed only to be in L2, we see that,
on bounded subsets of the X-Y plane,
– The functions h, ` and p are Lipschitz continuous with respect to Y , measurable
with respect to X,
– The functions g,m and q are Lipschitz continuous with respect to X, measurable
with respect to Y ,
– The functions u and x are Lipschitz continuous with respect to both X and Y .
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To return the solution u to the original variables (t, x), we need the inverse
functions X = X(t, x), Y = Y (t, x). The function x = x(X,Y ) can be obtained
by solving problem (2.12)-(2.14) (2.20), so it suffices to construct the function
t = t(X,Y ). Owning to (2.10), it gives

tX =
αph

c2 − c1
, tY =

αqg

c2 − c1
. (4.1)

It is not difficult to show that tXY = tY X , which indicates that we may integrate
one of the equations in (4.1) to obtain the function t = t(X,Y ). Note that the map
(X,Y ) 7→ (t, x) may not be one-to-one mapping, which, however, does not cause
any real difficulty due to the following assertion: for any fixed (t, x), the values
of u do not depend on the choice of (X,Y ). We omit the proof of this assertion
since it is completely analogous to Bressan and Zheng[8]. Then, for each given
point (t∗, x∗), we can choose an arbitrary point (X∗, Y ∗) satisfying t(X∗, Y ∗) = t∗,
x(X∗, Y ∗) = x∗, and define u(t∗, x∗) := u(X∗, Y ∗).

We now show that the function u(t, x), obtained as above, is Hölder continuous
on bounded sets. In fact, integrating along any forward characteristic t 7→ x+(t)
and noting Y = const. on this kind of characteristics achieves∫ τ

0

[α(x, u)ut + c2(x, u)ux]2dt =
∫ Xτ

X0

[(c2 − c1)uXXx]2tXdX

=
∫ Xτ

X0

α(1− h)p
c2 − c1

dX ≤ Cτ
(4.2)

for some constant Cτ depending only on τ . Analogously, one has∫ τ

0

[α(x, u)ut + c1(x, u)ux]2dt ≤ Cτ , (4.3)

which together with (4.2) and (1.10) means that the function u = u(t, x) is Hölder
continuous with exponent 1/2. Moreover, it leads by (2.7) to the fact that all
characteristic curves are C1 with Hölder continuous derivative. In addition, by
(4.2) and (4.3), the functions R and S at (2.1) are square integrable on bounded
subsets of the t-x plane. From the identity

α(x, u)ut + c2(x, u)ux = (c2 − c1)uXXx =
`

h
= R,

the function R is indeed the same as recovered from (2.5). It is also true for S.
We next demonstrate that the function u = u(t, x) satisfies (1.11) in the dis-

tributional sense. For any test function ϕ ∈ C1
c (R+ × R), it suggests by (2.10)

that
ϕt(α2ut + βux + κ) + ϕx(βut − γ2ux + λ)

=
( c2
αqg

ϕY −
c1
αph

ϕX

)
·
[α(c2S − c1R)

c2 − c1
+
β(R− S)
c2 − c1

+ κ
]

+
(
− 1
qg
ϕY +

1
ph
ϕX

)
·
[β(c2S − c1R)
α(c2 − c1)

− γ2(R− S)
c2 − c1

+ λ
]

=
1
qg

{c2 − c1
2

R+
c2
α
κ− λ

}
ϕY +

1
ph

{c2 − c1
2

S − c1
α
κ+ λ

}
ϕX

=
1
qgh

{c2 − c1
2

`+
(c2
α
κ− λ

)
h
}
ϕY +

1
pgh

{c2 − c1
2

m−
(c1
α
κ− λ

)
g
}
ϕX ,

(4.4)
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which combined with the Jacobian
∂(x, t)
∂(X,Y )

=
αpqgh

c2 − c1
, (4.5)

ensures∫∫
R+×R

{ϕt(α2ut + βux + κ) + ϕx(βut − γ2ux + λ)}dxdt

=
∫∫

(X,Y )∈Ω+

{[α
2
qm+

αλ− c1κ
c2 − c1

qg
]
ϕX +

[α
2
p`− αλ− c2κ

c2 − c1
ph
]
ϕY

}
dXdY

= −
∫∫

(X,Y )∈Ω+
ϕ
{[α

2
qm+

αλ− c1κ
c2 − c1

qg
]
X

+
[α

2
p`− αλ− c2κ

c2 − c1
ph
]
Y

}
dXdY.

(4.6)
A straightforward computation yields(α

2
qm
)
X

+
(α

2
p`
)
Y

=
αpqgh

c2 − c1

{
a2

1− g
g
− a1

1− h
h

+
(
a1 − a2 +

αu
α

)m`
gh

+ (Fu − λx)
}
,

(4.7)

and {αλ− c1κ
c2 − c1

qg
}
X
−
{αλ− c2κ
c2 − c1

ph
}
Y

=
αpqgh

c2 − c1

{ λu
c2 − c1

· g`−mh
gh

+
κu

α(c2 − c1)
· c2mh− c1g`

gh
+ λx

}
.

(4.8)

Inserting (4.7) and (4.8) into (4.6) and using the Jacobian (4.5) again leads to∫∫
R+×R

{ϕt(α2ut + βux + κ) + ϕx(βut − γ2ux + λ)}dxdt

= −
∫∫

R+×R
ϕ
{
a2

1− g
g
− a1

1− h
h

+
(
a1 − a2 +

αu
α

)m`
gh

+ Fu

+
λu

c2 − c1
g`−mh
gh

+
κu

α(c2 − c1)
c2mh− c1g`

gh

}
dxdt

= −
∫∫

R+×R
ϕ
{
a2S

2 − a1R
2 +

(
a1 − a2 +

αu
α

)
RS + Fu

+
λu

c2 − c1
(R− S) +

κu
α(c2 − c1)

(c2S − c1R)
}

dxdt

= −
∫∫

R+×R
ϕ
{
ααuu

2
t + βuutux − γγuu2

x + κuut + λuux + Fu

}
dxdt,

which finishes the proof of (1.15).

5. Regularity of trajectories

In this section, we complete the proof of Theorem 1.2. For M > 0, denote

EM (t) =
1
2

∫ M

−M

{
α2(x, u)u2

t + γ2(x, u)u2
x

}
dx.

We first show the following lemma
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Lemma 5.1. For any M > 0 and t > 0, the solution constructed in previous
section satisfies

EM (t) ≤ Ĉ(E0 +M + t) (5.1)

for some positive constant Ĉ independent of M and t. Here E0 is defined as in
(2.18).

Proof. Fix any τ > 0, we denote Γτ := {(X,Y ) : t(X,Y ) = τ}. Let A1 and A2 on
Γτ be any two corresponding points of the points (τ,−M) and (τ,M) in t-x plane,
respectively. Then we draw the horizontal and vertical lines from A1 and A2 up to
Γ0 at points A4 and A3, respectively. Consider the region D bounded by Γ0, Γτ ,
A1A4 and A2A3, see Figure 1.

0

0 X

A

Y

D

4

A

A3

A

1

Γ

Γ

.A5

2

τ

Figure 1. Region D.

We integrate (3.3) along the boundary of D to obtain∫
A1A2

−c1p(1− h)
2(c2 − c1)

dX − c2q(1− g)
2(c2 − c1)

dY

=
∫
A4A3

−c1p(1− h)
2(c2 − c1)

dX − c2q(1− g)
2(c2 − c1)

dY + I1 + I2 + I3 + I4,

(5.2)

where

I1 =
∫
A4A3

( −λp`
c2 − c1

+
−c2Fph
c2 − c1

)
dX −

( λqm

c2 − c1
+
c1Fqg

c2 − c1

)
dY,

I2 =
∫
A1A2

( λp`

c2 − c1
+
c2Fph

c2 − c1

)
dX +

( λqm

c2 − c1
+
c1Fqg

c2 − c1

)
dY,

I3 = −
∫
A3A2

{c2q(1− g)
2(c2 − c1)

+
λqm

c2 − c1
+
c1Fqg

c2 − c1

}
dY,

I4 = −
∫
A4A1

{−c1p(1− h)
2(c2 − c1)

− λp`

c2 − c1
− c2Fph

c2 − c1

}
dX.
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Notice that the length of the segment corresponding to A4A3 in the initial line t = 0
is less or equal to 2(M + max{|λ±|}τ), then we have

|I1| ≤
∫
A4A3

( Λ
2(c2 − c1)

+
c2Λ

c2 − c1

)
dX −

( Λ
2(c2 − c1)

+
−c1Λ
c2 − c1

)
dY

≤ Λ
( 1
γ1

+ 4M
)(
M + max{|λ±|}τ

)
≤ Λ

( 1
γ1

+ 4M
)(
M +

2γ1M

α1
τ
)
.

(5.3)

From the inequalities∣∣ λp`

c2 − c1
∣∣ ≤ Λ2ph

−c1(c2 − c1)
+
−c1p(1− h)
4(c2 − c1)

,
∣∣ λqm
c2 − c1

∣∣ ≤ Λ2qg

c2(c2 − c1)
+
c2q(1− g)
4(c2 − c1)

,

one gets

|I2| ≤
1
2

∫
A1A2

−c1p(1− h)
2(c2 − c1)

dX +
c2q(1− g)
2(c2 − c1)

dY

+
(4Λ2M

γ2
1

+ ΛM
)∫

A1A2

phdX − qgdY.
(5.4)

Using the above inequalities yields

|I3| ≤
∫
A3A2

{−c2q(1− g)
4(c2 − c1)

+
( Λ2

c2(c2 − c1)
+ ΛM

)
qg
}

dY,

≤
(4Λ2M

γ2
1

+ ΛM
)∫

A3A2

qgdY,
(5.5)

and

|I4| ≤
∫
A4A1

{c1q(1− g)
4(c2 − c1)

+
( Λ2

−c1(c2 − c1)
+ ΛM

)
ph
}

dX,

≤
(4Λ2M

γ2
1

+ ΛM
)∫

A4A1

phdX.
(5.6)

Putting (5.3)–(5.6) in (5.2) gives∫
A1A2

−c1p(1− h)
2(c2 − c1)

dX − c2q(1− g)
2(c2 − c1)

dY

≤ 2E0 + 2Λ
( 1
γ1

+ 4M
)(
M +

2γ1M

α1
τ
)

+
(8Λ2M

γ2
1

+ 2ΛM
)

×
{∫

A1A2

phdX − qgdY +
∫
A4A1

phdX +
∫
A3A2

qgdY
}
,

(5.7)

where we used the fact that the variables h, g never assume the value zero at the
initial time. Moreover, integrating (3.10) along the boundary of D arrives at∫

A1A2

c2ph

c2 − c1
dX − −c1qg

c2 − c1
dY

=
∫
A4A3

c2ph

c2 − c1
dX − −c1qg

c2 − c1
dY −

∫
A4A1

c2ph

c2 − c1
dX −

∫
A3A2

−c1qg
c2 − c1

dY

≤ 4M
(
M +

2γ1M

α1
τ
)
,
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which along with (2.17) leads to∫
A1A2

phdX − qgdY ≤ 4MM
(
M +

2γ1M

α1
τ
)
. (5.8)

To estimate the last two terms in (5.7), we extend the segments A4A1 and A3A2

such that they intersect a point A5 and integrate (3.10) along the closed curve
composed of A4A5, A5A3 and A3A4 to find∫

A4A5

c2ph

c2 − c1
dX +

∫
A3A5

−c1qg
c2 − c1

dY =
∫
A4A3

c2ph

c2 − c1
dX − −c1qg

c2 − c1
dY

≤ 4M
(
M +

2γ1M

α1
τ
)
,

from which, one has∫
A4A1

phdX +
∫
A3A2

qgdY ≤M
{∫

A4A5

c2ph

c2 − c1
dX +

∫
A3A5

−c1qg
c2 − c1

dY
}

≤ 4MM
(
M +

2γ1M

α1
τ
)
.

(5.9)

Inserting (5.8) and (5.9) into (5.7), we conclude that∫
A1A2

−c1p(1− h)
2(c2 − c1)

dX − c2q(1− g)
2(c2 − c1)

dY

≤ 2E0 + 2Λ
{ 1
γ1

+ 4M + 8MM
2
(4Λ
γ2

1

+ 1
)}(

M +
2γ1M

α1
τ
)

≤ Ĉ(E0 +M + τ)

(5.10)

for some constant Ĉ independent of M and τ . On the other hand, it follows that∫ M

−M

1
2

{
α2(x, u(τ, x))u2

t (τ, x) + γ2(x, u(τ, x))u2
x(τ, x)

}
dx

=
∫
A1A2∩{h6=0}

−c1p(1− h)
2(c2 − c1)

dX −
∫
A1A2∩{g 6=0}

c2q(1− g)
2(c2 − c1)

dY,

which together with (5.10) concludes (5.1). �

We now use (5.1) to prove (1.14). For any t, s ∈ R+, we see that

‖u(t, x)− u(s, x)‖L2([−M,M ]) ≤ |t− s|
∫ 1

0

‖ut(s+ ξ(t− s), ·)‖L2([−M,M ])dξ

≤
√
Ĉ(E0 +M + t+ s)|t− s|

(5.11)

for any M > 0, where the constant Ĉ is independent of t, s and M . This proves
(1.14).

We next prove that, for any M > 0, the functions t 7→ ut(t, ·) and t 7→ ux(t, ·)
are continuous with values in Lθ([−M,M ]) (1 ≤ θ < 2), which will complete the
proof of Theorem 1.2. Let us first consider the arguments for smooth initial data
with compact support, in which, the solution u = u(X,Y ) remains smooth on the
entire region Ω+. For a fixed time τ and any fixed M > 0, we assert that,

d
dt
u(t, ·)|t=τ = ut(τ, ·) (5.12)
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in interval [−M,M ], where

ut(τ, x) := uXXt + uY Yt =
−c1

α(c2 − c1)
· `
h

+
c2

α(c2 − c1)
· m
g
, (5.13)

which defines the value of ut(τ, ·) at almost every point x ∈ [−M,M ] by (5.1).
To verify the assertion (5.12), we consider the curve segment A1A2 as before.

For any θ ∈ [1, 2), let σ := 2/(2− θ) be the conjugate exponent of 2/θ and denote
M̃ := Ĉ(E0 + M + 2τ). Given any ε > 0, it is clear that there exist finitely many
disjoint intervals [ai, bi] ⊂ [−M,M ], i = 1, 2, . . . , N , such that

min{h(P ), g(P )} < 2ε

(M̃ + 1)σ
(5.14)

for every point P = (X(xP , τ), Y (xP , τ)) and

h(Q) >
ε

(M̃ + 1)σ
, g(Q) >

ε

(M̃ + 1)σ
(5.15)

for every point Q = (X(xQ, τ), Y (xQ, τ)), where xP ∈ J := ∪Ni=1[ai, bi] and xQ ∈
J ′ := [−M,M ]\J . Obviously, the function u = u(t, x) is smooth in a neighborhood
of the set {τ}×J ′ by the construction of J ′. By employing Minkowski’s inequality,
we find that

lim
ρ→0

1
ρ

[ ∫ M

−M
|u(τ + ρ, x)− u(τ, x)− ρut(τ, x)|θdx

]1/θ
≤ lim
ρ→0

1
ρ

[ ∫
J

|u(τ + ρ, x)− u(τ, x)|θdx
]1/θ

+
[ ∫

J

|ut(τ, x)|θdx
]1/θ

.

(5.16)

We use (5.14) and (5.10) to estimate the measure of the ”bad” set J ,

meas(J) =
∫
J

dx =
N∑
i=1

∫ (Xbi ,Ybi )

(Xai ,Yai )

c2ph

c2 − c1
dX +

c1qg

c2 − c1
dY

≤MM

N∑
i=1

∫ (Xbi ,Ybi )

(Xai ,Yai )

−c1ph
c2 − c1

dX − c2qg

c2 − c1
dY

≤
MM 4ε

(fM+1)σ

1− 2ε

(fM+1)σ

N∑
i=1

∫ (Xbi ,Ybi )

(Xai ,Yai )

−c1p(1− h)
2(c2 − c1)

dX − c2q(1− g)
2(c2 − c1)

dY

≤ 4MMε

(1− 2ε)(M̃ + 1)σ

∫
A1A2

−c1p(1− h)
2(c2 − c1)

dX − c2q(1− g)
2(c2 − c1)

dY

≤ 4MMM̃ε

(1− 2ε)(M̃ + 1)σ
,

(5.17)

where (Xai , Yai) = (X(ai, τ), Y (ai, τ)) and (Xbi , Ybi) = (X(bi, τ), Y (bi, τ)). Apply-
ing Hölder’s inequality and recalling (5.11) yields∫

J

|u(τ + ρ, x)− u(τ, x)|θdx

≤ meas(J)1/σ
(∫

J

|u(τ + ρ, x)− u(τ, x)|2dx
)θ/2
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≤
( 4MMM̃ε

(1− 2ε)(M̃ + 1)σ

)1/σ

‖u(τ + ρ, ·)− u(τ, ·)‖θL2([−M,M ])

≤
( 4MMM̃ε

(1− 2ε)(M̃ + 1)σ

)1/σ

(M̃ + Ĉρ)θ/2ρθ,

from which, we have

lim sup
ρ→0

1
ρ

(∫
J

|u(τ + ρ, x)− u(τ, x)|θdx
)1/θ

≤
√
M̃
( 4MMM̃ε

(1− 2ε)(M̃ + 1)σ

) 1
σθ

≤
(4MMε

1− 2ε

) 1
σθ

.

(5.18)

Analogously, one has(∫
J

|ut(τ, x)|θdx
)1/θ

≤ meas(J)
1
σθ

(∫
J

|ut(τ, x)|2dx
)1/2

≤
( 4MMM̃ε

(1− 2ε)(M̃ + 1)σ

) 1
σθ ‖ut(τ, ·)‖L2([−M,M ])

≤
√

2M̃
( 4MMM̃ε

(1− 2ε)(M̃ + 1)σ

) 1
σθ

≤
√

2
(4MMε

1− 2ε

) 1
σθ

.

(5.19)

Combining with (5.16), (5.18) and (5.19), it follows by the arbitrariness of ε > 0
that

lim
ρ→0

1
ρ

(∫ M

−M
|u(τ + ρ, x)− u(τ, x)− ρut(τ, x)|θdx

)1/σ

= 0. (5.20)

Based on the same method, we can establish the continuity of the function t 7→
ut(t, ·).

To extend the result to general initial data (u0), u1 ∈ L2, we let {(uν0)x}, {uν1} ∈
C∞c be a sequence of smooth initial data such that uν0 → u0 uniformly, (uν0)x →
(u0)x almost everywhere and in L2, uν1 → u1 almost everywhere and in L2. The
proof is concluded by Corollary 3.2. The continuity of the function t → ux(t, ·) as
a map with values in Lθ([−M,M ]), 1 ≤ θ < 2 can be verified in an entirely similar
way, so we omit it here.
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