
EFFICIENT VERTEX-CENTRIC GRAPH COLORING

by

Isaac Willem van Til

HONORS THESIS

Submitted to Texas State University
in partial fulfillment

of the requirements for
graduation in the Honors College

May 2020

Thesis Supervisor:

Dr. Martin Burtscher

TABLE OF CONTENTS

Page

ABSTRACT………………………………………………………………………………ii

CHAPTER

I. INTRODUCTION………………………………………………………………1

II. BACKGROUND……………………………………………………………….3

2.1 Graph Coloring
2.2 Parallel Computing

III. ALGORITHM DESIGN………………………………………………………6

IV. RELATED WORK……………………………………………………………8

V. METHODOLOGY……………………………………………………………..9

VI. RESULTS……………………………………………………………………10

6.1 Serial Results
6.2 Parallel Results

VII. CONCLUSION & FUTURE WORK………………………………………14

REFERENCES…………………………………………………………………………..15

i

 ABSTRACT

Graph coloring is a way of labeling (with labels traditionally referred to as

“colors”) the vertices of a graph with the constraint that no two adjacent vertices have the

same color and that as few colors should be used as possible. In addition to many

theoretical problems, graph coloring lends itself to efficiently solving a variety of

practical applications (e.g., schedule generation, resource allocation, networking, and

solving Sudoku). The problem with graph coloring is that finding a solution with the

minimal number of colors is NP-hard, i.e., no known polynomial time algorithm can

solve it optimally (so computing the solution cannot be done quickly). We have written a

series of algorithms that take advantage of high amounts of parallelization to produce

acceptable colorings. An analysis of the colorings and runtimes of each approach

compared to other solutions from the literature shows that acceptable colorings are

produced in a reasonable time.

ii

I. INTRODUCTION

A graph is a mathematical structure that indicates relationships among pairs of

objects. More formally, a graph is a pair G = (V, E) where V is a nonempty set of vertices

and E is a set of edges. Coloring a graph generally involves labeling elements of the

graph given specific parameters. For the purposes of this paper, we focus solely on the

assignment of colors to the vertices of a graph such that (a) no two adjacent vertices share

a color, and (b) the number of colors used is minimized. Although this appears useful

enough on its own, graph coloring is actually a fundamental integrant in a variety of

problems both theoretical and applied.

Take, for example, schedule / timetable generation. If a university wants to create

a final exam schedule, they should realize that several students are in more than one class

during the current semester. How can the university ensure that no two final exams for

classes that share a student are scheduled at the same time? This problem can be

represented by a graph with each vertex representing a class and each edge between two

vertices indicating a shared student. A correct coloring of this graph produces a schedule

that will not have any students miss an exam, and will show the minimum number of

timeslots required to administer exams. The wide assortment of other applications where

graph coloring is useful includes but is not limited to: schedule generation [12], register

allocation [4], networking, data mining, map coloring, and solving Sudoku.

The issue with graph coloring is that it is relatively time consuming to do well.

The trivial solution can be calculated immediately- a graph of n vertices can obviously be

colored with n colors, but this is rarely valuable information. To produce a useful

coloring with exactly the minimum number of colors requires an algorithm that exists

1

Figure 1: A colored Sudoku graph

outside the realm of polynomial-time execution. One possible way of approaching this

problem is to compute the colors for different sections of a graph simultaneously, taking

advantage of the parallel capabilities of multi-core and many-core processors. This, of

course, spawns a whole slew of other issues- the color of a vertex is dependent on the

colors of the vertices adjacent to it, so asynchronous computation requires a more

thoughtful plan of attack.

Instead of guaranteeing an optimal solution, we can employ a heuristic approach

2

which will yield a solution that is good enough for practical purposes. A variety of

sequential heuristics exist and have been studied extensively (e.g. the sequential greedy

coloring algorithm [2]). In contrast, parallel approaches have not been studied quite as

extensively. Some more well-known parallel approaches (Luby [11], Jones & Plassmann

[10]) take advantage of independent set creation. Our approach uses large amounts of

parallelism to color graphs very quickly with a number of colors reasonably close to the

exact minimum. The remainder of this paper is an in depth exploration of the graph

coloring problem, parallel computing, and our technique for rectifying the resulting

dissonance.

II. BACKGROUND

2.1 Graph Coloring

Formally, a vertex coloring of an undirected graph G = (V, E) is a mapping C

from vertices to colors such that C(i) ≠ C(j) for every edge (i, j) E. The smallest ∈

number of colors needed to color a graph G is its chromatic number, χ(G). As calculating

χ(G) is NP-hard, there are no known polynomial-time algorithms that can produce the

correct chromatic number. One common heuristic for generating a coloring is the greedy

coloring algorithm, which visits each vertex and assigns the best possible color available

to that vertex at the time. The quality of coloring depends on the order in which vertices

are processed; in the best case scenario, χ(G) colors will be produced.

3

For all future examples, the following order of colors will be used:

Whenever possible, the first color (blue) must be used- if that is not possible, the

next highest color (yellow) must be used, and so on.

Figure 2: The sequential greedy algorithm

4

Figure 2 details the steps taken to perform the greedy coloring algorithm. In

Figure 2a, no vertices have a color. Starting with vertex number 1, we check its neighbors

and give it the best available color (blue) in Figure 2b. To get to Figure 2c we assign

vertex 2 the color yellow, as yellow is the best available color not being used by any

neighbors of vertex 2. In Figure 2d we perform the same check on the neighbors of vertex

3, giving vertex 3 the color blue as it is the best possible color not used by its neighbors,

and so on.

2.2 Parallel Computing

With modern computer hardware (i.e. multi-core CPUs), it is possible to process

multiple elements of a problem simultaneously in an attempt to arrive at a solution much

faster than traditional sequential computation. Large problems can be divided into smaller

chunks, each independently computed by different computational units to produce a

correct solution to the overall problem. One relevant restriction to the amount of

parallelism that can be achieved (and therefore the amount of potential speedup) is the

dependency that an iteration of computation has on previous iterations. If a calculation

relies on the result of a previous calculation, it has to wait for that previous calculation to

finish before it can produce an output. This has obvious friction with the graph coloring

problem, as the color of each vertex depends on the color of the vertices around it.

In the context of this paper, the idea would be to partition a graph so that the color

of each vertex could be computed at the same time as the colors of the other vertices.

This removes a need for waiting on previous colors to be decided, and allows large

sections of a graph to be colored simultaneously and quickly.

5

III. ALGORITHM DESIGN

Given the problems with the complexity of traditional graph coloring algorithms

and their relative lack of portability to parallel systems, we have written a series of

algorithms that utilize high amounts of parallelism to calculate acceptable colorings

efficiently. The general approach is to (1) color all vertices of a graph with some initial

color, then (2) change the color of a vertex based on the colors of its higher priority

neighbors. Higher priority is dictated by a higher degree; in the case of a tie, priority is

dictated by random hash values and then the index of the vertex.

Our first approach begins with assigning every vertex in a graph with the color 0.

Then we visit each vertex and check its higher priority neighbors to see if they share a

color with the current vertex- if so, the color of the current vertex is incremented. This is

repeated until there is no more work needed, i.e. no vertices need to change color.

The second approach is similar in execution to the first approach, however, the

initial coloring is more intelligent. We start each vertex with a color that is a function of

its degree, and increment from there. The functions used were log base 10, natural log,

square root, and random number between 0 and the square root of the degree.

Finally, the third approach includes the ability to decrement a color. This allows

the algorithm to improve the coloring of a graph if the colors of its vertices were

initialized or incremented beyond an optimal color with the second approach. This

approach begins with some initial coloring, exactly the same as the previous two

algorithms. Then, at each vertex, the algorithm determines all of the colors used by the

higher priority neighbors and gives the current vertex the lowest unused color. Again, this

is repeated until no more vertices need to change a color.

6

The real power of these approaches is that they have the capacity to assign colors

to the vertices of a graph in any order or simultaneously. At the end of each iteration, the

updated colors are copied into an array of read-only colors- the algorithm only checks

neighboring vertices’ colors in the read-only list, ensuring consistent results across

parallel executions and serial executions. Furthermore, work done in each iteration is

limited only to vertices that could possibly change colors- after the first iteration, only

vertices that were lower priority neighbors of vertices that changed colors in the previous

iteration are considered for change in the current iteration.

Figure 3: Steps in the third approach

7

Figure 3a illustrates the initialization step, here all of the vertices are initialized

using color 0 (blue). At this point, the algorithm determines all of the colors used by

higher priority neighbors of each vertex (in any order). Vertex 1 (in Figure 3a), for

example, has higher priority neighbors 2 and 5, both colored blue. According to the

coloring scheme outlined previously, vertex 1 should be updated to the color yellow, as

that is the lowest color not used by its higher priority neighbors. The colors are all

updated, yielding the coloring in Figure 3b. The vertices of the graph in Figure 3b each

determine the colors used by their higher priority neighbors, and so on.

IV. RELATED WORK

Previous parallel graph coloring algorithms take advantage of the fact that an

independent set of vertices in a graph can be colored in parallel. An independent set is a

set of vertices in a graph, no two of which are adjacent. As none of the vertices in an

independent set are neighbors, it is possible to give the entire independent set a single

color. A variety of algorithms utilize this idea, differing slightly in how the independent

sets are determined and how colors are assigned to that set. Luby [11] provides a parallel

algorithm for determining the maximal independent set, and Jones and Plassmann [10]

take this a step further to color graphs in parallel by finding independent sets. Alabandi et

al. provide several shortcuts that increase the amount of parallelism by using shortcutting

techniques to color vertices out of order [1]. A variety of other creative heuristics exist,

they will generally improve coloring quality at the cost of performance or improve

performance at the cost of coloring quality.

8

V. METHODOLOGY

Table 1 details the input graphs used for gathering results. The graphs come from

a variety of sources, including the Center for Discrete Mathematics and Theoretical

Computer Science at the University of Rome (Dimacs) [7], the Galois framework

(Galois) [8], the Stanford Network Analysis Platform (SNAP) [13], and the SuiteSparse

Matrix Collection (SMC) [14]. Table 1 includes the name, type, origin, number of

vertices, number of edges, average degree, and maximum degree of each graph.

Graph name Type Origin Vertices Edges davg dmax

2d-2e20.sym grid Galois 1,048,576 4,190,208 4 4

amazon0601 co-purchases SNAP 403,394 4,886,816 12.1 2,752

as-skitter Internet topo. SNAP 1,696,415 22,190,596 13.1 35,455

citationCiteseer
publication
citations

SMC 268,495 2,313,294 8.6 1,318

cit-Patents patent cites SMC 3,774,768 33,037,894 8.8 793

coPapersDBLP
publication

citations
SMC 540,486 30,491,458 56.4 3,299

delaunay_n24 triangulation SMC 16,777,216 100,663,202 6 26

europe_osm road map SMC 50,912,018 108,109,320 2.1 13

in-2004 web links SMC 1,382,908 27,182,946 19.7 21,869

internet Internet topo. SMC 124,651 387,240 3.1 151

kron_g500-logn21 Kronecker SMC 2,097,152 182,081,864 86.8 213,904

r4-2e23.sym random Galois 8,388,608 67,108,846 8 26

rmat16.sym RMAT Galois 65,536 967,866 14.8 569

rmat22.sym RMAT Galois 4,194,304 65,660,814 15.7 3,687

soc-LiveJournal1 community SNAP 4,847,571 85,702,474 17.7 20,333

uk-2002 web links SMC 18,520,486 523,574,516 28.3 194,955

USA-road-d.NY road map Dimacs 264,346 730,100 2.8 8

USA-road-d.USA road map Dimacs 23,947,347 57,708,624 2.4 9

Table 1: Input graphs

9

The system used for our experiments has two 3.1GHz Intel Xeon E5-2687W

CPUs with 10 cores each. Hyperthreading is enabled, so the 20 cores can run 40 thread

simultaneously. The main memory has a 128GB capacity, and the system was running

the Fedora 27 operating system with Linux kernel version 4.18.19 and GCC version

7.3.1. The code was compiled with g++ using the “-O3 -march=native” optimizations.

VI. RESULTS

This section is an overview of the results obtained using the final approach

detailed in section 3 with an initial coloring of uniform zeros and input graphs from Table

1. This approach produced the exact same final coloring no matter which initial coloring

was used, so uniform zero initial coloring was used for simplicity. Parallel results were

verified by comparing to serial results, the colorings produced for each graph was the

same in parallel as it was in serial.

6.1 Serial Results

Figure 4 compares the number of colors used by our approach, JP-D1 [6], FirstFit

[5], and Boost [3]. Figure 5 indicates the throughput of each algorithm in millions of

vertices processed per second. We ran each experiment three times for all eighteen graphs

listed in Table 1 and recorded the best measured runtime.

The colorings of our approach are, on average, better than other serial approaches

from the literature. Our runtimes, on average, are slower than other serial approaches

from the literature. The slower timings are to be expected, as the serial version of our

approach has no special property that would allow it to execute very fast. In fact, running

our approach in serial is almost equivalent to the greedy algorithm from section 2.1.

10

Figure 4: Number of colors used, serial CPU

Figure 5: Throughput in millions of vertices processed per second, serial CPU

11

6.2 Parallel Results

Figure 6 indicates the speedup (i.e. the ratio of serial execution time to parallel

execution time) of our approach on 40 threads for each graph. Figure 7 compares the

number of colors used by our approach, GMMP-NT [6], FirstFit [5], and Grappolo [9].

Figure 8 indicates the throughput of each algorithm in millions of vertices processed per

second. We ran each experiment three times for all eighteen graphs listed in Table 1 and

recorded the best measured runtime.

The colorings of our approach are, on average, better than other parallel

approaches from the literature. Our runtimes, on average, are slower than other parallel

approaches from the literature.

Figure 6: Speedup on 40 threads

12

Figure 7: Number of colors used, parallel CPU

Figure 8: Throughput in millions of vertices processed per second, parallel CPU

13

VII. CONCLUSION & FUTURE WORK

This paper presents a heuristic for graph coloring that takes advantage of

parallelism, producing very good colorings on average. The approach used removes the

dependence that is present in many serial graph coloring heuristics, allowing for vertices

in a graph to have their color computed simultaneously or in any order. Of the three

approaches specified in this paper, the third approach yielded the best coloring quality. In

general, our approach is relatively slow compared to other algorithms from the literature.

Our approach does produce high quality colorings, on-par with or surpassing other

algorithms from the literature.

Future work for this project could include porting the code to a Graphics

Processing Unit (GPU), which utilizes very high amounts of parallelism (much higher

than 40 concurrent threads). This could potentially speed up the timing in our approach

when taking full advantage of the vast parallelism available.

14

REFERENCES

 [1] Alabandi, G., E. Powers, and M. Burtscher. "Increasing the Parallelism of Graph
Coloring via Shortcutting." Proceedings of the 2020 ACM Conference on
Principles and Practice of Parallel Programming. February 2020.

 [2] Allwright, J. R., R. Bordawekar, P. D. Coddington, K. Dincer, and C. L. Martin.
A comparison of parallel graph coloring algorithms. Technical report, SCCS-666,
Northeast Parallel Architectures Center at Syracuse University, 1995.

 [3] Boost, https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/
index.html, last accessed on 12/28/2019.

 [4] Chaitin, G. J. (1982), "Register allocation & spilling via graph colouring", Proc.
1982 SIGPLAN Symposium on Compiler Construction (1982): 98–105.

 [5] Chen, Xuhao, Pingfan Li, Jianbin Fang, Tao Tang, Zhiying Wang, and
CanqunYang. “Efficient and high‐quality sparse graph coloring on GPUs.”
Concurrency and Computation: Practice and Experience 29, no. 10 (2017):
e4064.

 [6] ColPack, Combinatorial Scientific Computing and Petascale Simulations,
https://github.com/CSCsw/ColPack, last accessed on 12/28/2019.

 [7] DIMACS, Center for Discrete Mathematics and Theoretical Computer Science,
http://www.dis.uniroma1.it/challenge9/download.shtml, last accessed on
12/28/2019.

 [8] Galois, ISS -The University of Texas at Austin, https://iss.oden.utexas.edu/?
p=projects/galois, last accessed on 12/28/2019.

 [9] Grappolo, the Grappolo graph toolkit,
https://github.com/luhowardmark/GrappoloTK, last accessed on 12/28/2019.

 [10] Jones, Mark T., and Paul E. Plassmann. “A parallel graph coloring heuristic.”
SIAM Journal on Scientific Computing 14, no. 3 (1993): 654-669.

15

 [11] Luby, Michael. “A simple parallel algorithm for the maximal independent set
problem.” SIAM journal on computing 15, no. 4 (1986): 1036-1053.

 [12] Marx, Dániel, "Graph colouring problems and their applications in scheduling",
Periodica Polytechnica, Electrical Engineering 48 (2004): 11–16.

 [13] SNAP, Stanford Large Network Dataset Collection,
https://snap.stanford.edu/data/, last accessed on 12/28/2019.

 [14] SuiteSparse Matrix Collection, https://sparse.tamu.edu/, last accessed on
12/28/2019.

16

