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A NONLINEAR MATHEMATICAL MODEL FOR
TWO-PHASE FLOW IN NANOPOROUS MEDIA

IMANE MELZI, YOUCEF ATIK

ABSTRACT. We propose a mathematical model for the two-phase flow nano-
porous media. Unlike classical models, our model suppose that the rock per-
meability depends on the gradient of pressure. Using usual laws of flows in
porous media, we obtain a system of two nonlinear partial differential equa-
tions: the first is elliptic and the second is parabolic degenerate. We study a
regularized version of our model, obtained by adding a “vanishing” term to the
coefficient causing the degeneracy. We prove the existence of a weak solution
of the regularized model. Our approach consists essentially to use the Rothe’s
method coupled with Galerkin’s method.

1. INTRODUCTION

Modeling flow (of shale gas for instance) in nanoporous rocks is becoming an in-
teresting and challenging point for many researchers. A nanoporous media is char-
acterized by an extremely low permeability on the order of a nanodarcy (=~ 10~2!
m?) or less. During the exploitation of those kind of porous medium (rocks), there
appears very large pressure gradient at the boundaries of pores causing their ex-
tension or completely their destruction, this phenomena generates a big increase of
the rock permeability. In 2012, Barenblatt et al. [I3] proposed a one dimensional
mathematical model describing fluid and gas flow in nanoporous media using a new
formulation of permeability of the rock supposing that it depends on the pressure
gradient (see also [4]). Inspired by the previous work, we propose a three dimen-
sional mathematical model for two-phase flow in nanoporous media. Supposing the
rock permeability depending on the gradient of pressure, using mass conservation,
Darcy’s law, capillary pressure, introducing the concept of global pressure, some
functional coefficients (mobilities, fractional fluxes) and using total velocity u of the
phases; we obtain the following system describing the flow of two incompressible,
immiscible fluids in nanoporous media:

—div (A\(s) K (Vp)Vp) = g,

0Os ) , (1.1)
¢p— — div (A () K (Vp)Vp + A(s)p,.(s) K (Vp)Vs) = qu,
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where s, the saturation of the wetting phase, and p, the global pressure, are the
unknowns. This system is degenerate because the coefficient A(s) vanishes for s = 0
and s = 1.

In this article, we prove the existence of weak solution for a regularized version
of the above system to which we associate boundary and initial conditions.

This work is organized as follows: In this section, we complete this Introduction
by presenting the derivation of our model. In Sections [ and [3] we precise the
hypotheses on the data, regularize the system by adding a term guarantying the
coerciveness of the parabolic equation, extend outside [0, 1] the functional coeffi-
cient depending on s and give the definition of a weak solution of the regularized
system. In Section[d we discretize in time our system and give the Definition of its
weak discrete time solution. In Section [5] we give Galerkin’s approximations of this
weak solution and prove its existence using a monotonicity method for the pressure
and Brouwder Fixed Point Theorem for the saturation. Section [f is devoted to
uniform estimates that allow us to pass to the limit on Galerkin’s approximations
in Section [7} We give in Section [§] different uniform estimates on discrete time
solutions which permit us to prove their compactness in Section [ and to pass to
the limit in Section making the step time goes to zero to obtain our main re-
sult, Theorem This work finishes by Section proving a maximum principle
showing that the solution s obtained is a “true” saturation.

1.1. Flow equations. The mass balance equation for each of the fluid phases is

O(pasa .
gb(x)% +div(paus) = pala, «=w,n, (1.2)

where @ = w denotes the wetting phase (e.g. water), « = n indicates the non
wetting phase (e.g. oil or air), ¢ is the porosity of the medium  which depends
only on z; pa,Sa,Us and ¢, are respectively the density, (reduced) saturation,
volumetric velocity and external volumetric flow of the o phase.

The Darcy-Muskat’s law is

(e’

u, = K (Vpa — pag), a=uw,n, (1.3)

Ho
where K is the absolute permeability (of the nanoporous medium), py, fio and K,
are the pressure, the viscosity and relative permeability of the o phase, respectively.

Several discussions with petroleum engineers and porous media specialists show
us that assuming the absolute permeability a function of pressure gradient seems
to be a good choice.

In this work, we suppose that the absolute permeability is a function of the
pressure gradient (of the wetting phase p,,), more precisely, in order to control
that dependency (to control the deformation at the edge of pores), we adopt the
following new formulation of the rock permeability

|Vpu|

K(Vpy) =ki—————
( p) 511+77‘va‘

+ Ko (14)
with k1 > 0, ko > 0, n > 0 three constants. Here 7 is a positive control constant.

The constant ko ensures the coerciveness of our model. Concerning the choice of
K, see the Remark at the end of this paper.
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In addition to the above equations, we suppose the customary property of satu-
rations

Sw 4 sn =1, (1.5)

and introduce the capillary pressure function

Pn — Pw = Pec- (16)

To separate the pressure and saturation equations, we introduce the phase mo-
bility functions
Kio(x,s
)\Q(QT,SQ): Ma o =w,n,
Ho
and the total mobility

Az, 8w) = A (X, Su) + An (2, Sup)-

The fractional flow functions are defined by

o )\a (l’, Sw)
fa(fasw)*ma w, 1
finally, we define the total velocity
u=u, +u,. (1.7

In what follows, we re-write the equations in term of primary variables, the
total velocity u, the pressure of wetting phase p,, and the saturation of the wetting
phase s,,. Under the assumptions that fluids are incompressible (p, is constant),
summing up equations for a = w, n, we obtain

0
¢§(sw + Sn) + diV(uw + un) = quw + qn,

using (1.5)) and (1.7, we obtain
divu=¢q = qu + qn- (1.8)
Also, concerning the total velocity, we have

u=uy, +u,
= —K(Vpuw)Auw(50)(Vpw — pwg) — Kuw(VD)An(50)(VPr — pn8)

= —K(Vpu)A(sw) [AA“J((;“;) (VPw = pug) + Xl(iiw)) (Voo — png)},
since pe = pn — Pu, we have Vp, = Vp, + Vp, and
u=—K(Vpu)A(sw) [A/{“”(iw)) (Vpw — pug) + A;(iiw)) (Vpn — png)}
=K (TpAon) [ T = ) + 5 T+~ )]

= —K(VPu)A(30) [VPu + fu(0) Ve = 8L fuls0)pu + falsu)on}].

as a result, we have the equation

W= — K (Vpu)A(su) [T + fulsu)Voe = glFulswlpu + fulsw)oa}]. (19)
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Remark 1.1. We can obtain expressions

uy = —K(Vpu)Aw(sw)(Vpw — pus), (1.10)
u, = —K(Vpuw)An(sw)(VPw + Vpe — png). (1.11)
So finally, we obtain the system of equations
divu = gy + ¢n = g,
u=—K(Vpu)A(sw) [pr + fru(5w) Ve — 8{ fu(sw)pw + fn(sw)Pn}]a (1.12)

08w ..
Guw = ¢% —div (K(va))\w(sw)(va - ng))’

where the primary unknowns are p,,, s, and u. Taking g = 0, the system is written
as

—div (Msu) K (Vpu)Vpu ) = div (fu(s0)\s50) K (V) Vi) =

s (1.13)
6% = div (N5 K (VPu) VPu ) = u-
We introduce as in []], the global pressure
_ * (. Ope
p=p= [ (R5E) @O (114)

with s = s,,. Making use of the definition of global and capillary pressure, and the
concept of the Differentiation of Integrals (see for example [I8, page 213]) we can
write

Vp = Vpn—V/O (fw

with

pe
0s

)(@,€) dg = Voo~ Vs(z)(fu %p;) (2, 5(x) —m (@, 5(x)),

_[7 0 Ope
) = [ 5 (1) w6 de.
Now, we have

s b .
Vi = Von = Voo = VoV [ FaO 556 d - V.

= Vp+ fu(s)Vpe(s) + 1i(z,s) — Vpe
= Vp+ (fu(s) = 1)Vpe(s) + n(z,s)
= VP - fn(S)Vpc(S) + 71(337 5)7
SO
K(Vp.) = K (Vp = fa(s)Vpe(s) + 1(x,5)) = K(Vp,5,Vs).
This leads to the system

—div (A(S)F(Vp, 5, Vs)(Vp + 7 (z, 5))) =q
(b% —div ()\w (s)K(Vp,s,Vs)Vp— K(Vp,s,Vs)A(s)p.(s)Vs

+ M) K V9,5, Vs)1a(s)) = g,

where A(s) = A (8)An(8).A(s). From a theoretical point of view, and in order to
simplify the model, we are going to neglect the term v; and assume that

K(Vp,s,Vs) ~ K(Vp).
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Consequently, we obtain the system

~div (A(s)K(Vp)Vp) = a.

d% — div (Au(5) K (VP)Vp + A()pL() K (VD) Vs ) = g,

to which we must add initial and boundary conditions. Therefore, we consider the
system:
Find (p, s) solving the equations

~div ()\(S)K(Vp)Vp) —¢ inQp = Qx]I], (1.15)

¢% —div ()\w(s)K(Vp)Vp + A(s)p'C(S)K(Vp)Vs) ¢, inQp,  (L16)
p(z,t) =0 et s(z,t)=0 on 0§ x [I], (1.17)

s(x,0) = so(z) in £, (1.18)

where Q C R? represents the nanoporous medium, supposed to be bounded, con-
nected and Lipschitz domain, I =]0,T[ is the time interval, and with the following
expression of the absolute permeability given in page

Vo
1+n|Vp|
and ¢ = q(x,t), guw = quw(x,t), so = so(x) three given functions.

In all that follows, we will denote by (S) the system of equations and
, with boundary conditions and the initial condition .

1.2. Functional setting. We denote by V the Sobolev space H}(f2), equipped
with the inner product (u,v)y = [, Vu - Vudz and the gradient norm [ully =

[fQ |Vu|2dx]l/2, its dual is indicated by V*. For 1 < p < co and B a Banach
space, we denote LP(I; B) the Bochner space (of classes with respect to equiva-

K(Vp) = k1 + ko, with k1 >0, ko >0, n > 0 three constants,

lence a.e.) of Bochner integrable functions v : I — B satisfying fOT lu(®)|’y dt <

+00. This space is a Banach space if endowed with the norm ||ul|zs( 07,5y =
T 1 . .

(o Nlu@)]% dt) P For p = 0o, this norm is ||u||pe(r,p) = esssup,c; ||u(t)| B

Following [16], we denote W (0,T"), the Sobolev-Bochner space

du
Wmﬂvzwﬂ%QﬂMVﬂz{ueﬁmjwqmu:EeL%QﬂVﬂ}

Equipped by the norm |ju||w = (HUHQLQ(I;V) + Hu’\@g(l;v*))lﬂ, W(0,T) is a Hilbert

space which is continuously embedded in C([0, T]; L?(2)), equipped with the norm
of uniform convergence. Proofs of the above facts can be found in [I0} 14, [T6].

2. HYPOTHESES

(H1) The porosity ¢ belongs to W1+°°(Q), and for two constants, ¢, and ¢* we
have
0< s <(x) < 9" <400, ae. x€. (2.1)
(H2) Aa(z,8), @ = n,w are measurable in x € Q and continuous in s € [0, 1],
and satisfies A, (x,1) =0, A\p(z,8) > 0 for s < 1, Ay(x,0) =0, Ay(x,s) >0
for s > 0; and there exist two constants A, A\* such that

0 <A <A(zy8) <N <400, €9, se]0,1], (2.2)
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where A(s) = Ay (s) + An(s).
(H3) p. € W([0,1]) and p. is a continuous function, also there exits two
constants p’.,, and p’; such that

0 < pl, <pl(s) <pa< +oo.
(H4) The initial saturation sy is in L%(f2), the functions ¢ and ¢, are positive
functions in L?(Q7).
In what follows, we put

Ac(z,8) = Az, 8) +¢  with Az, S)ZW

Remark 2.1. Hypothesis (H1) permits us, among other things, to put (¢0;s, v) :=
(Oys, pv) for v € V = H}(Q) to give sense to ¢pdys knowing that ;s € V*. This
because ¢ € W°(€) implies that ¢v € V, for all v € V. Also, we should note
that, during the entire work, inequality is used to obtain different estimations
on the equation of saturation.

and € > 0.

3. REGULARIZATION: SYSTEM (S;)

We extend the coefficients of identities (1.15]), (1.16)) outside [0, 1] as continuous
functions in s by putting

Aw(x,8), x€,se€]0,1], An(zy8), x€Q,5€]0,1],
Awx(2,8) =S Ap(x, 1), 2€Q,8>1,  Apul(,8) = A(2,1), 2€Q,8>1,
Aw(z,0), z€0,5<0, An(2,0), z€Q,s5<0.

The capillary pressure p, is extended outside [0, 1] in the same way. Also, we put
A (T, 8) Ans (2, 8)

Aws (T, 8) + Ans (2, 8)

Ac(z,s) = A(z,8) +¢, €>0.

Substituting these functions in the system (5) (equations (1.15)—(1.18))), we obtain
the system (S;).

Ay 8) = A (T, 8) + Anwc(,8),  As(z,8) =

3.1. Weak solution of system (S;).

Definition 3.1. A weak solution of system (S.) is a couple (p, s) such that
(p,s) € L*(I; V) x L*(I; V), 0y € L*(I; V*), (3.1)

/ M ($)K(Vp)Vp-Vodr = (q,p), Vo€V, ae tel, (3.2)
Q
T
/ <¢—68,w> dt+ | Nox(s)K(Vp)Vp - Vi da dt
0 3t Qr

+/ Ac(s)pl(s)K(Vp)Vs - Vipdx dt (3.3)
Qrp

:/T(qw,w dt, Vi € L*(I;V),
0
s(z,0) = so(z). (3.4)

Theorem 3.2. Under the hypothesis (H1)-(H4), Problem (S;) has at least one
weak solution in the sense of Definition [3.1].
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For simplicity, we omit subindex *, standing for extension of A, A,, and A,
outside [0, 1].
4. TIME DISCRETIZATION OF SYSTEM (S;)

To show the existence of a weak solution of the system (S.) in the sense of
definition we use the method of Rothe (semi-discretization in time) coupled
with Galerkin’s method. To do this, for each positive integer n, we divide the

interval I =)0, into N = 2" subintervals and we set « = & = 27"T and put
t; = jo and I; = (t;—1,t;] for any integer j, j = 1,..., N. We approach the time
derivative % by the time difference operator
t — s(a,t
ofs(x,t) = s@t+a) = s(@ )
a
If w = w(x,t) is a function, the average in time over I; is
1
we(z,t) = 7/ w(z,7)dr, telj. (4.1)
@ Jr

:
The value of wq(-) on the interval I; is denoted by wq;(-). Also, for any linear
space H, we define

(*(I;H) ={v e L>*(I; H) : v is constant in time on each subinterval I; C I}.

The value of a function v®(-) from the space £*(I; H) on the interval I; is constant
and it is equal to v*(¢;)(-) which will be denoted by v7*(-), i.e.

N N
v (x,t) = Z”a(f”vtj)X}t]_l,tj}(t) = Zvja(x)X]tj_l,tj](t)'
= =

We define also the function v* by

5a(x’t) _ {Ua(xvtj)_va(x’tj—l)

«

M-

(t —tj—1) + vz, tj—l)} X[ty _1.t51(1)
j=1

[Uj“(x) —ol=De(g)

] =

(t — tjfl) + U(j_l)a(x)} X[tj_l,tj[(t)v
j=1

where we put v°%(z) = v(x,0) = vo(z), a given function supposed hereafter to play
the role of the initial condition.

Remark 4.1. Performing simple calculations, one can easily see that

N
[wallFzir = @Y lwaglFay  wallz2@r) < llwllz2@r),
j=1
N N
”va”QL?(I;V) = 0‘2 ||VU]Q||%2(Q)a ||5a||2L2(1;v) < 50‘2 ||VUM||%2(Q)’
j=1 j=1

N
~ (0% . -
o =0 = 3 2 107 = o700
j=1

ov” N pie _ yli=Da

o =2l o Nt
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H ot HL?(IV Z”Um_v(j_l)an%/-

Definition 4.2. A discrete time solution is a couple of functions
(p,s%) € L2(L; V) x £2(1; V)

which satisfies

/ AUV (VY )Vp - Vo dr = (4, ¢),
Q

(4.2)
YoeV,tel;, j=1,...,N,
T
/ (0, *s,4) dt —i—/ Aw(sY)K(VpY)Vp® - Vipda dt
0 Qr
+ Ac(s)pl(s*)K(Vp*)Vs® - Vip dx dt (4.3)

QT
T
- /() (qwom 7/}) dtv V¢ €L (I’ V)

Regarding the first term in (£.3)), we have fo (O “s*, 1) dt = fo %, 1) dt this
because 0; *s* = %;:. In fact,

at—asoc(x’t): S (xvt)fs (xatfa)

@]
SN (5 (@, ) — 5% (@t — @)Xty (1)
o [0
SN (57 (@) — sUD (@) X,y (1)
o [0
(‘38
y —(z,t).

Let us re-write the integral identity in an equivalent form. By taking the
test function in the form x, (£)(x), where x;, is the characteristic function of the
interval I; = [t;_1,t;[= [(j — Da, ja[= [, jof, and ¢ is a function in the space
V', we then obtain

/1 <¢s“(t) - Za(t_ a),go) dt+/ (M (5%) K (Vp™)Vp®, Vip) dt

j L

[ (ALK (V) P4, V)
I

J

:/ (QUM,@) dt.
I.

J
Since s*(-,t) is constant with respect to t on the interval I; and it is equal to
5%(-,t;), the same thing is true for p®(-,t), so, we obtain the following integral
identity

(657, 0) + a()\w(sj")K(ijo‘)ija, w)
—&—a(Ae(sj“) (590K (Vpi© )Vsj“,ch) (4.4)

= (¢57°,¢) + a(quaj, ¢), Vo V.
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5. GALERKIN’S APPROXIMATIONS OF DISCRETE TIME SOLUTIONS

To use the Galerkin procedure in determining the solution at the level ¢; = «,
we choose an orthonormal basis {e;}5°, in V. Therefore the subspaces Hy =
(e1,-+- ,eq), d € N, spanned by these functions are denses in V, and then we look
for functions, written as

d
p¥() €V and s)*(x) = Zaile,;(m),
i=1

where {c}}L ; are unknowns real coefficients, and satisfying, for all ¢ € V,

| M) K099 - T de = (qur, ). (5.1)
and, for all ¢ € Hy,
(¢557,0) + (N5l K (Vp') Vp', )
+ s (A PL(sH") K (V) Vs, V1) (5:2)
= (¢s0,¥) + a(quwa1, V).
To be brief, instead of (s1*), we denote (sg4).

5.1. Existence of Galerkin’s approximations. Before giving the proof of exis-
tence, we give the following statement.

Remark 5.1. The finite dimensional space H, is equipped with the three equivalent
norms defined, for v = 22:1 arer € Hy, by

oo = [3002] " ol = [ [ 1P a] " polly = [ [ woad]

d
k=1

Let us explain the first step of the existence of Galerkin’s approximation. In the
beginning, we have to find p'® solution of

[Vp'| 1 / 1
Aso)—L L gpla.yud A(s0) VP - Vo da = (gur, ),
1 [ Moo otV - Vet [ Mso) Vo Vi de = (g01.9)

for all ¢ € V, which is equivalent to

/ A(50)K12(Vp'®) - Vo dz = (gor, @), Vo €V,
Q

with Kio(2z) = K1(x) + Ko (x) where (] - | stands for the Euclidean norm)

||z 3 3 3
R, R’3>z+— Ko(z) = kox € R”. 5.3
Tl 2(z) = Ko (5.3)

Consider now the operator A from V = H{ () into its dual V* = H~1(Q), given
by

R? 5z — Ki(x) = Ky

(A(p),v) = /Q)\(S())Ku(vp) -Vodx, YveV.

Notice that in fact A(p) € L?(Q2), for allp € V.
We have the following results:
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¢ {AD).p)
pllv

This because, K127 - & > ko|z|?, for all z € R3, and therefore

(A(p),p) _ Jo A(s0)K12(Vp) - Vpdx < Ko [ V|72
2|l IVpllL2 ) — IVpll2e)

(1) Operator A is coercive in the sense tha — +oo when ||p|ly = +oo.

= kA« |pllv-

(2) Operator A is monotone, i.e., for all p,q € V: (A(p) — A(q),p — ¢) > 0. In fact,
for p, ¢ € V, we have

(A(p) — A(q);p —q)
= (A(p),p —q) — (A(@),p — @)

- /Q Mso)[K12(VD) — K15(Va)] - V(o — g) da

- / A(s0) (K1 (Vp) — Ky(Va)) - V(p — q) do + iy / A(so)|V(p — )P de.
Q Q

It is easy to see that

(K1(Vp) — K1(Vq)) - V(p— q)  (Cauchy-Schwarz)

|Vp|[Vp [Vq|Vq
= _— . v J—
“1{1+n|vp| 1+77|Vq|} (p—a)
- m{ Vpl?  |VpPIVy| Vgl* |Vp||VQ|2}
— T U4q/Vvpl  1+49Vpl  1+9|Vel  1+n|Vq|
[Vp|? [Vg|?
= Vp| - |V — .
w(lVel = | Q|){1+77|Vpl 1+71|Vq|}
Let us now consider the real function Ry 3 £ — f(&) = % € R.. We have
26 +n¢?
"(€) = >0, V&>0.
(&) TEEE 3

Putting £ = |Vp| and o = |Vq|, we see, by using the Mean Value Theorem, that
[Vp|? Va|® ,
- =f(§) —flo)=(§—0o)f(c
where c¢,, is a point between ¢ and 7. We conclude that
(K1(Vp) = Ki(Va) - V(p — q) 2 61(IVp| = [Va|)*f'(cey) 20, Vp,ge V.
This implies that
(Alp) — A(q).p— @) > r2Xellp—dlly. Yp.g eV,
showing that A is in fact strongly monotone, see, for instance [12] or [14].

(3) Ais bounded. Let p € V with ||p||y < M, we have [|A(p)||y~ < M’. In fact, if
p € V with ||plly < M, we have

(A(p),p) = A A(s0)K12(Vp) - Vpdzx

K1 * 2
< (5 +m2) N IVPlEo

(5 m)X Il < (5 +ma) A0 =,
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and

[A®)llv+ = sup [(A(p),q)]
H(?\ﬁ/vil

sup (ﬂ—i-/iQ) / )\(80)|Vp| |Vq|dx
EA 2

(K
< sup 3" (5 + 2 ) 19200 1Vl 2y

IN

<A () VPl < A7 (T4 ) M = M

Operator A is hemicontinuous. Let p, ¢, 7 € V be three functions. Let us prove
that the application defined from R into R by 6 — (A(p+ 0q), ) is continuous. To
see that, we consider a real sequence (6, ), converging to #. First, because of the
continuity of the function z — Kj5(z), we have

K12(Vp+0,Vq)-Vr —GQ> K12(Vp+0Vq) - Vr.

Second, since the sequence (6,,),, is convergent, there exists a constant M > 0 such
that |6,] < M, Vn € N. Then, we obtain

K12(Vp+60,Vq) - VT‘ < (% + FL2) |Vp+6,Vq||Vr|

K
< (5 +2) (1991 + M1Vq]) [97] € 1} (9).
Using the Lebesgue’s Dominated Convergence Theorem, we see that

/ A(s0)K12(Vp 4+ 0,Vq) - Vrde —— | X(so)K12(Vp +60Vq) - Vrdz.
Q

n—-+oo Q

This means (A(p + 0,q), ) P (A(p + 0q),r), which is the hemicontinuity of A.

As a result, the operator A is bounded, hemicontinuous, monotone and coercive. Con-
sequently, for go1 € L?(Q), there exists p*® solution of (5.1]), see [12] or [I4].

Now, to prove the existence of s4(= s4*) solution to (5.2)), we use a variant of Brouwer’s
Fixed Point Theorem which asserts that a continuous mapping P from R? into itself
satisfying, for some p > 0, P(c) -0 > 0, for all o, |o| = p, has at least a zero gp € R?
with |oo| < p, see, for instance, [I2] page 53].

Let us therefore consider the operator R? 3 ¢ + P(c) = 8 € R where 8 = (b1, .., B4),
defined, for k =1,...,d, by

B = / o2 ; %0 e da +/ Ao (s9) K (Vp'®*)Vp'® - Vey, da
Q Q

+/ A (s9)p(s3) K (Vp'®)VsG - Ver dr — (quat, ek).
Q

Here s§ = 27:1 orey, for o = (01,...,04).

The operator P has the following properties:
(1) P is continuous. Let {o™}5_; = {(o7",...,05")}3_; a sequence in R? converging
in this space to 0 = (01,...,04). We have to prove that the sequence {P(c™)}s=1 is

converging to P(c). We do have the following convergences

d d
sq (z) = Zalmel (x) == N “gre(z) = s5(x),
=1

m— 00
=1
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d d
Vsq (z) = Za{"vel (x) %) ZJlVel(a:) = Vsg(x).
=1 =1

Using the continuity of the concerned functions

A(sq (1) =2 (s (@), Aelsd (2) =2 Ae(s5 (),

m—o0
p(ss” () =25 gl (55 ().
Which implies that (we omit the variable x)
(3 VK(Vp'*)Vp'™ - Ver =2 Aoy (s7) K(Vp'*)Vp'® - Vex,
Ac(sf ™ pi(sT VK (T V" - Vew 25 AL (sT)pl s K (Vp*)Vs§ - Ve,
We have also the estimate
A (s)l + [Ac(s)] + [pe(s)] + [0 [ra < M, Vs €R, ¥m € N.

The constant M depends, among other things, on A«, \*, p'%, and €. Also

Mu(sg VK (VP ) Tp! Vel < (T4 ma) MIVP'® - Vel
< (B 4 2 ) M|V [Ver| € L}(9),
n
and

[A=(s5 " )pl 53V (VP! ) Vs - Ver] < (1 w2 ) M7 53" Ve|

d
K1 3 1
< [ —=
< (n +,¢2)M ?—1 IVer| [Ver| € LY (),

By the Lebesgue Dominated Convergence Theorem, lim, o P(c™) = P(o), which proves
the continuity of P.

(2) There exists p > 0 such that P(c) - > 0 for all 0 € R* with |o| = p. Here the
central dot stands for the classical dot (scalar) product in R*. We have

P(o) o= Zak(/gqbsd ;Soek d:B—}—/Q/\w(sZ)K(VpM)VpM Ve dz

k=1

—+ / Ag(sg)p;(sg)K(Vpla)ng - Ve dz — (quai, ek))
Q

d

and
P(o)-o
o d d
= /qu%(;akek) dx + /Q )\w(sg)K(me)Vpla . (;ngek) dx
d d
+/ Ac(s)pe(s7) K (Vp'*)Vsg - (ZUkvek) dx — (qwah (Z%%)),
Q k=1 k=1

which is equivalent to

s — So

Plo) -0 =
(0)-0= [ o™

sg dr + / () K (Vp'*)Vp'® - Vs] dx
Q

+ / As(sg)p'c(sg)K(Vpla)ng - Vsgdr — (qual, $7)-
Q
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Let us estimate each one of the four terms of the above equality. Concerning the first and
second terms, we have the estimates

g J—
¢Sd Gl sgdx = 9(33)2 dr — [ Tsosqdx
Q a o« o«
> 2 151220 — L lisoll 2oy G l2con
e () [e%
> % o2 70 7* v o
Z ||3d||L2(Q) L2 HSOHLQ(Q) l SdHL2(Q)7

«

where C), is Poincaré’s constant, and

| [ Al ()9 - o] <375 40 1991 0 195 200
For the third term, we have the estimate
[ ADAGDR TP IV > erhma |95 0
Concerning the fourth term,
‘/qumsg’ < ||Qwoc1HL2(Q) ||83||L2(n) < Cp”QwoclHL?(Q) HVSEHLZ(Q)-
Collecting the previous estimates, we see that
P(o)-o > %Hsgui?(m dx — Cp%*HSOHLQ(Q) IVsallLz(a)
=X (5 421V Lz IVl @) + epbural Vs lizc)
- CPqua1||L2(Q) HVSZHL?(Q)
= HVSZHLQ(Q) (Ep/c*K/ZHVS;HLZ(Q) - Cp%*”SOHLZ(Q)
=" (% + “2) ||Vp1aHL2(Q) - Cp“Qwa1||L2(sz)) + %HSZWH(Q)'
Thus P(o) -0 >0 if
19520 > [0 2 oz + X () VP 2
+ Collgialliz o | {epiora} ™ = po-

Let us recall here that {e;}{2; being an orthonormal basis in V, implies that, if s7 =

Zle ore;, one has |o|ga = ||s5||v. Therefore, P(c)-o > 0 for all ¢ € R? with |o| = p for
all p > po.

We are now in a position to apply the variant of Brouwer’s Fixed Point Theorem
mentioned above: there exists oo = (001, . ..,004) € R%, with |oo| < p, such that P(a¢) =

0. Tt is now easy to see that s;* = s7° = 2| ogie; is a solution of (5.2).

6. UNIFORM ESTIMATES ON (GALERKIN’S APPROXIMATIONS

Proposition 6.1. Let (p'®,s5%) a solution to the system (5.1)-(5.2) at the time level
t1 = a. For the functions (s3*)a>1 the following estimate holds,

lsi®llv <C, Vd>1, (6.1)

where C' is a positive constant independent of d.
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Proof. By writing (5.2) with e; as the test function, then multiplying by o} and summing
i from 1 to d, we have

/¢ sdder/Q)\w(sd)K(Vpla)me~Vsddx
(6.2)

—|—/ As(sd)p;(sd)K(Vpla)\Vsd|2 dz = (quwa1, Sd),
Q

concerning the first term, we have

— dr = 2d _ d
/Q¢(Sd S0)sq dx /Q¢>(5d) T /Q¢so><sd T

/ d(sa)” dz > ¢. / (sa)” dz = ¢.|sall72(0)
Q Q
and by Young’s Inequality, for § > 0, we obtain

* 1 *
| [ os0sada| < 6 Cylsolliaey + ¢ Co 51 Vsl
Q

with

For the second term of (6.2), using Young’s Inequality, with 81 > 0, we obtain

‘/ Aw(5a)K(Vp'*)Vp'® - Vs da:’
o

« (K1 «a
<7 (5 4 52 IVP ez [V sall iz,

1/ a[k1 2 o la)2 B1 2
<= (V2 +rl) v 2w :
< 55, (V[ + ] ) I9P e + 5 19 sallEze)

Concerning the third term of (6.2, we have
/ A (50)P (50) K (V') Vsal? dit > ephuia | Vsall22 e,
Q

and finally for the last term and using again Young’s Inequality, for S2 > 0, we have

| [ worsade] < lguonlsaco Isalz2co)
Q

< Cp”‘]woclHL?(Q) Hvsdulﬂ(n)

1 B2
< %(Cpllqiallmm)g + 7”V5d||2L2(sz)~
By taking into account all the previous estimates, we have
2 2
aEP;*’i2||V5d||L2(Q) + <15*||3d||L2(Q>
« [ K1 2 La 2
< ¢ Cyggllsolitae + 4 Co g IVsalltacay + o5 (A [+ 2] ) 199" oy

aﬂl 2
HVSdHL2(Q)+ 282 ( p||Qwa1||L2(Q))2+T||V5d||2LZ(Q)7

which 1mphes that
(aEPsz —¢" Cp* - - )HVSdHL?(Q)

< ¢ Coggllsoliam + 35 (A*[;w]) 199" 2@ + 55 (Collgualo2)*

Taking
QEDL K2

2C,¢* '

/
EPcx K2

B = B1= P2 = 5

we obtain

1
Zaép/c*mnvsd”i%m
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" 1 « « [K1 2 - «
<¢ Cp%HSoHQm + ﬁ(A [7 + ffz}) [vp' H2L2(Q) + %C;”qwallﬁﬂ(ﬂp

then estimate (6.1]) holds. d

7. PASSING TO THE LIMIT (WITH RESPECT OF d) IN GALERKIN’S APPROXIMATIONS

We proved previously that
|Vsi®ll2y < C, Vd>1.

Since the sequence {s}*}32; is bounded in V' (associated with the norm of gradient) we
can extract a subsequence (denoted in the same symbol) such that

s — s weakly in V. and si* — s'® ae. in Q, (7.1)

more precisely, by the Rellich-Kondrachov theorem s}* — s' strongly in L?(£2) and by the
inverse of the Dominated Convergence theorem of Lebesgue, we can extract a subsequence
which converge almost everywhere. Let do a positive integer, since the sequence of linear
spaces Hy are nested, we have

(6s0”¥) + a(Au(sa™) K (Vp')Vp'*, Vi)
+a(Ac(sa®)pe(sa™) K (VP ) Vsi®, Vib) (7.2)
= (d)so,?/)) + a(Qwalaw)FNa Vi € Hq,, Vd > do.

Let us fix 9 in Hg,. Using the convergences and taking into account that the
functions A\, Ac and p., are bounded and continuous, by making d goes to infinity in the
equation of saturation and using the Dominated Convergence Theorem of Lebesgue,
one obtains

(@5 9) + a(Au(s' K (V') VP, Vi)

+ a(AE(sla)p;(sla)K(Vpla)Vsm,Vl/}) (7.3)

= (¢807’(/)) +a(qwo¢17’(/))FN, Vw S Hdo.
Now, using the density of Ug2; Hq in V', we see that the previous integral identity is satisfied

for all ) € V. This makes an end to the proof of existence of the couple (p'®, s'*) solution
of the system (S). at the time level t; = a.

Note that the same reasoning permits us to prove inductively the existence of the
discrete time solution (p?*, s7®) at each time level t; = ja for j = 2,...,N.

Knowing the functions p’®, s/ at levels j = 1,..., N, we construct the Rothe’s func-
tions p® and s* which are in £%(I, V), see the beginning of Section [4f We construct also

5* as explained there, with 5°*(0) = so, the initial condition.

8. UNIFORM ESTIMATES FOR DISCRETE TIME SOLUTIONS

Lemma 8.1. Let (p%, s*) be a time discrete solution of (S:) in the sense of Deﬁnition.
Then, there exists a positive constant C' (independent of o) such that

lp*lr2v) £ C,  VYa >0, (8.1)
HSQHLQ(I;V) <C, Va>0, (8.2)
||§ﬂ“L2(I;V) <C, Va>0, (8.3)
N
S5 = ()liage < C. (8.4)
j=1

Proof. Let us begin by the equation of pressure. Testing Equation (#.2)) with ¢ = p’®, for
j=1,...,N, we obtain

/ A" VK (V') V'™ - V'™ dae = (g, p'®),t € I,
Q
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which implies that
)\*”2”ij&”%2(9) < anjHL2(Q) ||PjaHL2(Q) < Cp”']a]‘“ﬂ(ﬂ) ||ijaHL2(Q)~
Using Young inequality, we obtain
. 1 8 .
2 2 2 2
A*“2||ija||L2(Q) < %CpH‘ZajHL?(Q) + §|ija||L2(Q)7 B >0,

and choosing 8 = A.k2, we obtain

)\KQ

@ 2
||VP] HL2(Q) C ”anHLQ(Q)a

- 2)\
this shows that

N
K2
CVZHVP] ||L2(Q) = 2)\ CYZ”%J”N(Q):
j=1

it results that C. 2
(2 2
I 2 < (575 ) el iz

Remark 8.2. If ¢ € L>°(I; L*(Q)), then p™ € L*°(I; V) with

(|2 C 2 2
1P| Zoe (1) < ()\*ZJ llallzoe (1;22(02))-

Concerning the equation of saturation, we test Equation (£.4) with ¢ = s, for j =
1,..., N, and obtain

(qﬁ(sja — sjla), sja) + a()\w(sja)K(ija)ija, Vsj“)
+ oz(Ag(sja)p'c(sj“)K(ija)Vsja, Vsj“)
= a(qwaj7sja)'

For the first term, using the identity a(a — b) = 1[a® — b® + (a — b)*], we obtain

/ B(s7%(z) — 7' (2)) 5" (z) dw = / $=[(7(2))? — (7 (2))? + (7% (2) — &7 *(2))?] da.
Q

Consequently
N . ./ .
P(s" () — s’ “(2))s"" (x) dx
>,

=3 [ o5l @ - @ + @) - @)

3 [ o6 @1 [ ol@)an z/¢| (@) = 7 (@)

Concerning the second term, summing j from 1 to N, we have
N
a j o jou « (K j o j o
!Za( K(Vp*)Vp'®, Vs )| < A (;1 +12) 3@l VP 2o 1V 2.
j=1
Using Holder’s Inequality, we obtain

N
« (K1 j j
A (; + 52) ZO‘HVPWHLZ(Q) V8" 2o
=1
N

« (K1 ja 2 1/2 il ja2 1/2
<A (5 ) (el Ve e ) (2o elVs e

j=1 j=1
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(K1 a o
= (?4_&2)”17 HL2(1’;V) lls HL2(I;V)7

then applying Young’s Inequality, for 8 > 0, we obtain

| Z VK (V' *)Vp', V')

« [ K1 21 2 B a2
< (5 )] gl + 3 4
< " + ka2 25”? 2200y + 2 ls“ 22 (v
Summlng the third term from j = 1 to N, we obtain

N N
Za(AE(sja)plc(sja)K(ija)Vsja,Vsjo‘) > 5/12;)'5*2(1/ |Vs?*|? da
j=1 =1 Q2

N
= crople D al| V5|72 (0

j=1
/ @2
= €K2Pcx||S ||L2(I;V)'

Finally, for the second member and using Holder’s Inequality, we obtain

N N
‘Za(qwajysja)' < Za||qwaj”L2(Q) [E (PR
j=1

=1
N .
<G Z a||quwaj HLQ(Q) HVSJQHLQ(Q)

j=1

N , N - 1/2
< Co( Y allgwatlize) (D elVslaw)

j=1 j=1

1/2

= CP||qut”L2(I;L2(Q)) H5a||L2(I;V)-

Then, using that ||quwa|lr2(r;12(0)) < ‘|quL2(1;L2<Q>> and Young’s Inequality, for 81 > 0,

’Za(‘hujw ‘ < 25 ||QwHL2(1 L2(Q)) + ||5 HL2(1 vy
i=1

Taking into account all the previous estimates, after reorganizing terms, we obtain
Na a '/a 2 a2
5 [ o @) g Z / (s’ () ? d -+ emapt | 220,

« (K1 a @
< [)\ (?JF”@)] %HP Hi2(1;v)+§\|3 ||i2<1;v)
CQ

P 2 61 2 1 0 2
+ gl Earaan + 1 e + 5 [ 26" do.

As a result
N
’ /3 61 a2 1 jo i’ 2
(mpc*—g—;)us I + 5 2 o7 = @)
<

K1 21 a2 1 . 02
< 2ﬂ qu”L2(1 2) T [)\ (7‘5‘52)] %”P 12201 +§¢> lIs™1122(q) -

Taking 3 = 1 = ekap../2 and using (8.1)), we see that the estimates (8.2)), (8.3) and (8.4)
O

are valid.
Lemma 8.3. There exists a constant C > 0 (independent of o) such that

055 2y <G Va>o0. (8.5)
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Proof. For each j =1,...,N,let LY be the linear form (and continuous) on V' defined by
o §Io — gi'e
L) = [ o5 v
Q !
B */ A (87K (VP *)Vp'™ - Vi) dae
Q
- / Ae(s7)pe(s" ) K (VP ") Vs’ - Vi da + / Quajtdz, VY EV.
Q Q
It follows that for all ¢ € V,
L5 = |~ [ AlTK TV - Vo do
Q
- / Ae(s")pe(s’) K (VP ) V'™ - Vip da + / qudm\
Q Q
« (K1 j
<A (2 je
< (5 4w IVP 2 IV e
'y (K1 Jja
(e 0 (2 52 IV 2T 2 + s 221101
where ¢ = (A\*)?/A. and j = 1,..., N. Using Poincaré’s Inequality, we obtain
L5 @) <N (5 + 52 ) IV |22 V|2
n
'x (KR re
+ (e o (5 4 52 IV 2199l 2 + Cpllgus o2 IV 2
— (1 Jor T K1 ja
= V(5 ) IVP n o+ e e (5 4 ) V57
+ Colluas 2] V¥l 2,  for j=1,...,N

In what follows, C' denotes a constant which can change from one line to another. The
previous inequality can be rewritten as

La(¢) K * j /5 j
IO (514 ) (31992 a2 + (o + DI 12} + Colunslse
V|2 U
< IV 2y + IVS" 2y + llqwasll2y ), G=1,..., N,
where C' is the maximum of constants involved in the preceding inequality. Consequently
IL§ v+ < CUIVP  llez) + 1V N2y + lawasllcz@ ), d=1,..., N
which leads to
LS |15 < 302{||ija||2L2(Q) + ||V5ja“i2(sz) + ||Qwaj||?ﬁ(n)}7 j=1,...,N. (8.6)
Before going further, it seems good to notice that for each j = 1,..., N, the function

) % is in L?(Q) and then in V*, since L?(2) < V*. We can therefore consider that
[0,T] >t +— ¢5%(-,t) is a path in V* and we have -in the sense of classical derivatives,

V* 3 ¢() aga('7t) — ¢()S]a() —s a(')

Vit et t; j=1,...,N.
8t a ) E]]?J[? J ) )

Now let us calculate

T O ) 2 = [ 05 (1) 2
f 1655 e =3 [ =52

N tj i _ Sj’a
=3 [l
j=0 tj'
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N t; )
S A
=0 tj/
Using estimate , we obtain
T P
95 (-, 1) 2
P N A dt
| =52
2Lt jap2 Jay2 2 (8.7)
<O [ IVP ) + 1V G2y + Iguwes 72y } dt
j=0 tj/
a2 a2
=c{lvp 12200 + 1V llz2(0,) + qua”iQ(QT)} <cC
Here C' does not depend on «, because we proved earlier that the sequences {p®}a>o,
{5%}a>0 are bounded in L*(0,T; V) and the sequence {guwa }a>0 is bounded in L*(Q7). O
9. COMPACTNESS OF DISCRETE TIME SOLUTIONS

First, we give the following remark, see for instance [3].

Remark 9.1. Let w be a function belonging to L?*(Q2) and w, the average function in
time defined by relation (4.1]). Then

lim wy =w in L*(Qr) strongly. (9.1)

a—0

Lemma 9.2. Let s* satisfy the saturation equation (4.3). Then, there exists a constant
C such that

T
i/ / ¢{s*(x,t) — s%(z,t — &)Y dedt < C, VE>O. (9.2)
vE&Je Ja

Proof. We follow [I] (see also [2] and [8]). Let k be fixed (1 < k < N) and let T €]ka, T,

so there exists j > k + 1 such that 7 € I; =]t;_1,t;]. Let R(7) =](j — k)a, jo] and take

w(z,t) = kaxp)(t)0; **s*(z,7) as a test function in the equation of saturation (d.3).
For the parabolic term, we obtain

o5 wade = [ (607" kaxnn 007" (@,7))  at
I I Q
:// qzﬁc?;asakaxR(T)(t)a;’mso‘(x,T) dx dt
1Ja

:/Q [¢($)ka@f’m5a(m7r)/Iat_asa(a:,t)xR(T)(t) dt} dr,

with
Jjo
Jors @it = [ oS @ ar
I (7—k)a
Jjo @ e _
:/ sz, t) — s¥(z,t — ) dt
(j—k) a

_ , /(j_kJﬂ)a sz, t) — s%¥(z,t — ) dt

1/ (—k+r—Da a

= s @ (G~ k+r)a) = (@, (j — k+ 7~ 1)a)
=s%(z,jo) — s%(z, (j — k)a)
= sa(:C,T) - Sa(-T,T - kOc)

= kaat_k“s“(x,T) = ka@[’ms“(m,ja),
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which means that the parabolic term is equal to
2
/ () kad; " s (x, ) kad; ¥ s (x, jo) do = / qﬁ(ac)(k:oz)Q(@fkasa(:r,T)) dx
Q Q
By integrating this equality with respect to 7 from ka to T', we obtain

/ICZ/I(M‘%“M)Q dth:/kz/Q¢(m)(ka)2(8t_kasa(z,7))2d:rdT. (9.3)

‘We have also

/Q (Aw(sa)K(Vpa)Vpa + Ae(sa)p'c(so‘)K(Vpa)Vsa)Vw(:r, t) da dt

= [ (Al (T A K (V) V")
x kTosz(T)( 1V e s (2, 7) da dt
= [ kavortest ) [ Ou KTV + A
x K (Vp®)Vs®) xrir (t) dt da
- /Q kaV ;e s (x, ) /( MK (TP )V + Au(s°)pL (%) K (Vp*) Vs dt dar

j—k)a
Let
Jja
P = [ el T ALK ()" )
j—k)a
G(x) = kaVo; **s* (x, ).
Applying Holder’s inequality, we obtain

/ (/\w(sa)K(Vpo‘)Vpo‘ n Ae(sa)pL(SQ)K(Vpa)Vsa)Vw(x,t) da dt
< (/QFQ(:E) d:v)l/2 (/QG2($) dx)1/2.

Then we have
2 _ sz, 1) — s (z, T — ka)\2
/QG (z)dz = /Q (ka o ) dx

= Vs (z, 1) — Vs*(z,7 — ka) ’ dx
o

According to the inequality: (a + b)? < 24 + 22, for all a, b real, we have
2
/ G*(z)dx < / (|Vsa(x,7')\ + | Vs (z, 7 — ka)|) dx
Q Q

< / 2|Vs*(x,7)|° + 2|Vs*(z, T — ka)|? da.
Q

(9.4)

Using Holder’s inequality, we obtain

F*(z)dx
Q

:/ [/(f“ 1 (Aw(sa)K(Vpa)Vpa +Ae(8“)p’c(sa)K(Vp°‘)Vs”‘) dtrdx

j—k)a

//( 1 dt></( Aw(s*)K (VP™) VD™ + Ac(s®)pi(s*) K (Vp*)Vs*)? dt d

—k)a i—k)a
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Jjo
= ka/ / (Aw(s™)K(Vp*)Vp® +Ae(sa)p'c(sa)K(Vpa)Vsa)Qdt dx.
QJ(j—k)a
Taking into account all the previous estimates, (9.4) implies
/ ()\w(sa)K(Vpa)Vpa + Aé(sa)p/c(sa)K(Vpa)Vsa)Vw(:c,t) da dt
Qr
Jja , 2 1/2
< \/Qka(// (Aw(sa)K(Vpa)Vpa +A6(sa)pc(sa)K(Vpa)Vs°‘) dtdm)
QJ(j—k)a
e 2 [ 2 1/2
X (/ |Vs*(z,7)|" + |Vs¥(z, 7 — ka) dx)
Q
. xRl (e r* K1 a 2 1/2
< \/Qka(// ()\ (— + k2)Vp™ 4+ Cep. (— + K2)Vs ) dtd:r)
QJG-k)a n n
« 2 « 2 1/2
X (/ Vs (z,7)|” + |Vs®(z, 7 — ka)| dx) .
Q

In what follows, C' denotes a constant which can change from one line to another.

/Q (/\w(so‘)K(Vpa)Vpa + Ag(sa)pg(SQ)K(Vpa)Vsa)Vw(x, t) d dt

Jjo
< Va2kaC( / / (Vp® + Vs*)? dt d;c)l/2
Q

(G—k)a
1/2
x (/ Vs (2, 7)* + |Vsa(x,7—fka)|2d:v) ,
Q
where C' = max ()\*(%1 + m),C’sp,c*(%l + K2), AA;*Z +€). Then
/ (/\w(sa)K(Vpa)Vpo‘ + Ae(sa)plc(so‘)K(Vpa)Vsa)Vw(:v,t) du dt
Qp
Jor 1/2
< \/2kaC(/ / |Vpa\2+|V5°‘|2dtd$)
QJ(j—k)a

1/2
X (/ \Vs“(x,7)|2+|Vsa(:v,77ka)|2dx) .
)

Now, using the fact that, for 0 < p < 1 and a, b two real positive, (a + b)? < a? + b, we
obtain

/Q (M (°) K (V) V9™ + A ()0l (s K (V™) Vs ) V(. 1) de

< \/%C[(/Q \Vp“\2dxdt)1/2+ (/

Qrp

1/2 1/2
X Vs*(z, 7)) do + / Vs*(z, 7 — ka)|? dz .
([ 19s@nras)”+ ([ 1vs )]
Using (8.1) and (8.2)), we have
/ (AM(SQ)K(VpO‘)Vpa + Ae(so‘)pg(sa)K(Vpa)Vsa)Vw(:mt) da dt
Qp

|Vs®|? dz dt) 1/2]

< 2\/%0[(/9 |Vs* (z,7)|? dm)l/Z + (/Q Vs (z, 7 — ka)|? dm)1/2].

Integrating this inequality with respect to 7 from ka to T, and using estimate (88.2)), we
obtain

/kz /Q (A”(SQ)K(WQ)W’Q + Ae(sa)p’c(s")K(Vp“)Vsa)Vw(x, t) dx dt dr
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§\/%C/k /|Vs (z,7)? dx) dT+/Ica /|Vs (z,7 — ka)|? dx) d },

1/2 T—ka 1/2
< \/%c |vs . T)de) dT+/ ( |Vs°‘(x,s)\2dx)
0 0 Q

< Vakao | /0 /|V5 )\de)1/2dr+/0T(/Q|v5a(x,s)\2dx)”2ds],

< V2kaC.

ds],

(9.5)

Finally, concerning the second term in the equation of saturation,

/ quakaxr) ()0 ka sz, 7)dxdt = // qwakaat_ko‘sa(x,T) dx dt
Qr

(J—k)a

Jjo
- / kaat_kasa(x,ﬂ(/ Gua dt) dx.
Q (j—k)a

J
Putting

Jjo
E(z) = / Qua dt, G(zx) = kad; " s (x,T)
(

j—k)a
and using Holder’s inequality, we obtain

/Qquak:oeXR(T)(t)@ kog® (@, 1) da dt < (/QEQ(.T}) dm)l/2 (/QGQ(x) dm)l/z.

We have
(/QGZ(:E) dx)1/2 < Cp(/nvgz(x)d

Using the same techniques as above, we obtain

(/QGQ(Q:)da:)l/2 < cp(/gvcz(x)d

<ea[( [ v @nPas) " ([ (950 ko) as) .

jo 2
/Ez(x)dﬂc:/ (/ qwa(a:,t)dt) dz
Q o M G—k)a
jo Jo
g/ (/ 12dt></ qia(@t)dt) dx
Q (G—Fk)e (=K
]
:/ka/ Qo (z,t) dt do
Q (j—k)a

< kag2,, (z,t)dtdz < ka/ @ (z, t)dtdx.
Qr Qr

Also,

Consequently, for the second member we have

/ Guakaxr(r) ()0 **s*(x,7) dx dt
Qp

1/
< CpV2ka (/ q (x, t)dtdm)

/|Vs z, 7)) da:) + (/Q\Vsa(x,T—ka)fdw)lm]

= \/%C /Q|Vs°‘(w,7')| dx) v + (/Q |IVs*(x, T — ka)\2dm) 1/2}
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with C' = Cp( fQT qo(x,t) dt dz) /2 Integrating the previous inequality with respect to T
from ko to T, we obtain

T
/ / Guakaxr(r) (), ¥ s (x, ) dx dt dr
ka JQp

T 1/2 T 1/2
= \/2]@040[/ (/ Vs (z,7)|? da:) dr +/ (/ |Vs*(z, 7 — ka)|? dm) dr].
ko Q ka Q
Using the same arguments as in (9.5, we have

T
/ / Guakax () () " s (z,7) dz dt dT < V2kaC. (9.6)
ka JQp
Now, taking into account (9.3)), (9.5) and , one obtains
T
/ / o(z) (ka)? (Bfkasa(m, 7'))2 dz dr < VkaC
ka JQ
which implies that
1 T/ 2 —k 2
— z)(ka)*(0; "*s%(z, 7)) dedr < C, 9.7
o= [ [ ot@ka) (045 . m) dedr < (9.7

consequently, according to [I] (see also [2] and [§]), this concludes the proof of (9.2).
In our opinion, the proof can be completed as follows: For a fixed £ > 0, there exists
k > 0 such that £ €]ka, (k+1)a]. If k > 1 and since we are integrating a positive function,

we have .
%/& /Qqs{s“(x,t)—s‘*(w,t—s)}zdmdt

< L/T ${s (@,4) — 5% (¢ — )} da dt
o \/M ka JQ

2 T N R ,
: ﬁ/ka/ﬁ’{s (x,t) = 8% (x,t — ka)}* dw dt
2 T N . ,
+ﬁ/ka/9¢{s (2.t = ka) = 5% (@, t = )} dudt.

Since, by construction, the value of s* on each subinterval I, j = 1,..., N, is equal to
its value at the end of I;, we have "D = 5%(. (k 4 1)a) on Jka, (k + 1)a], and, for
t €lla, (I+1)a], s*(t—ka) = s'FFD> and s%(t —€) = sFD o 5= (hecause t — &
belongs to |(I—k—1)c, (I—k+1)a]). Then s*(t—ka)—s*(t—§) = 0 or s*(t—ka)—s*(t—§) =
S(l—k+1)a

(9.8)

— s(=M  Necessarily we have

2 [T . ) ]
Vka Ji /Q‘ﬁ{s (z,t — ka) — 8% (z,t — )} dz dt

2 N—-k—-1 (k+m+1)a )
= — o{s“(z,t — ka) — s (z,t — &)} dx dt
Vka WLZ:O /(Vk-&-m)oz /Q
N—-k—1
QQHQSHOO (m+1)a ma |2
< —— S — S .
< 2= "5 [

Since k > 1, a < 1and 3, [|s"TV* — s'%||2, < C (according to (8:4)), we obtain

T

\/% / ${s% (2, — ka) — s%(x, t — €)}2 dzdt < 206w 9.9)

ka JQ

Consequently, using (9.7)), and , we obtain
1 T 2
— d{s%(z,t) — s%(z,t — &)} dzdt < C. (9.10)
el
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If £ =0 then £ < o with o < 1. We can write
1 [T N o 2
— — — dx d
\/z/g /Qqs{s (2,) — (2.t — )} dw dt
1 [« o o 2
= - - dx d
\/E/g /Q¢{8 (z,t) — s%(z,t — &)} dadt

1 N-1 (k4+1)a
J’_ -
\/E ; ka

For t €]¢, a], we have t—¢ €]0, ], and then s*(z,t) = s*(x,t—¢) = s'®. Thus, the integral
on [¢, o] is zero. For t €lka, (k+1)a], we distinguish two cases: The first is ¢ €)ka, ka+£],
then t — € €](k — 1)a, ka], so 5%(z,t) = s*D* and s%(z,t — ) = s**. The second case is
t €lka+€, (k+1)a], then t—¢ €]ka, (k+1)a] and therefore s*(z,t) = s*(z, t—&) = sFHDe,
So, we obtain (remember the estimate (8.4)):

%/ﬁ /Qd){sa(w,t)—so‘(x,t—g)}2dxdt

N-1 (k+1)a
= [ e - =) drar
k=1

«

/Q H{s*(x,t) — s*(x, t — &)} dx dt.

N-1 rka+e
:% / /Qqs{s“u-,t)—s‘*(x,t—f>}2dxdt

k=1

Ellblloo =
< oo ||S(k+1)a - Skoz||22 o < C.
VE ; L

This completes the proof of estimate (9.2)). O
9.1. Passing to the limit in time discretization.

Lemma 9.3. The sequence (p™)a>o contains a subsequence converging weakly in L*(I; V)
to a function p as a goes to zero.

Proof. According to estimate (8.1]), the sequence (p®)a>o is bounded in L?(I; V'), therefore
it contains a subsequence (denoted in the same way) such that

p* —=pe L*(I;V) (weakly). (9.11)
0

Lemma 9.4. The sequence (s*)a>0 contains a subsequence converging strongly in L*(Qr)
to a function s and a.e. in Qr as o goes to zero.

Proof. Consider the set ' = {s* : a > 0} and let the spaces X = V, B = L*(Q),

Y = X* =V* = H Q) (the dual space). Tt is well known that X — B Y. We
cont. comp.

have the following

(1) F is uniformly bounded in L*(I; X), i.e., ||s*||p2(r.x) < C, with C independent of ).

(2) limg o [|7e f — fllL2(0,7—¢;x+) = O uniformly for f € F. Here (7¢f)(t) = f(t+£). In

fact, using (9.2)), we have

O /gT/Q(sa(a:,T)—sa(x,T—E))QdacdrgC\/g.

Putting o = 7 — £, we obtain

/T%/ (s"(z, 0+ &) — sa(x,a))zdxdcr < g\/é,
0 Q o
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meaning that
T—¢ c
/ [|7es® — 5a||2L2(Q) do < qbi\/g’ Va > 0.
0 *

Now, since L*(f2) is continuously embedded in X*, we have || - ||x+ < ¢/ || 12y, showing
that

T—¢& 9 C
/ [|Tes™ — ||+ do < ng\/g’ Ya > 0,
0 *

which implies that

li e x+y = 0.
EIL%HTES S ||L2(O,T7§,X) 0

Consequently, using [I7, Theorem 5, p. 84|, we see that F is relatively compact in
L*(I,L*(Q)) = L*(Qr). Therefore, from (5%)a>0, we can extract a subsequence (denoted
in the same way) converging strongly in L?(Q7) and a.e. in Qr to a function s, s €
L*(Qr). O

9.2. Consequences of estimates and the initial condition. Since the sequences
(5*) and (3%), are bounded in L*(I; V), we have

s* = s weakly in L*(I; V) and strongly in L*(Qr),
s =57 in L2(I; V) and weakly in L2(QT).

Using estimate and Remark we see that s — 3% — 0 in L?(Qr), so that s = s1.
On the one hand, from the estimate (8.5)) we have ¢a§: — w in L*(I; V*). On the other
hand, since 3% — s in L?(I; V), one can deduce that 5% — s in L?(I; L*(Q)) and 3* — s in
L?(I; V*); consequently, 3% — s in D'(I; V*) (the space of distributions on I with values
in V*) and 0;(¢5%) — 9¢(¢s) in D'(I; V*). Then w = d¢(¢ps) = ¢d;s.

Now, since 5% — s in L*(I; V) and 9;5% — 0;s in L*(I;V*), we see that % — s in
W(0,T). Let us recall that W (0,T) <cont C([0,T]; L*(Q)) (see, for instance, [15, @, [14]),
and, for £ a fixed element in D(2) , consider the linear functional F¢ defined by W(0,T) >
u— Fe(u) = [, u(0)(z)é(x) dr € R. If we write

| [ )@@ ds] < Ol 2o

< sup u(®)llL2@o)lléllL2@)
0<t<T

< Cllgll Lz llullw 0,1y

where C' is a positive constant, We see that F¢ is continuous with || Fg|(w(o,r)x <
ClléllL2(q)- Therefore,

lim Fe () = timy | 3°(0)(@)é(a) do = /

so(2)é(z) di = Fi(s) = / 5(0)(@)€(x) da.

Q

As ¢ is arbitrary in D(€2), we conclude that s(0) = so, see for instance [6, Corollary 4.24].
The initial condition is thus satisfied.

10. PROOF OF THEOREM
1. Equation of pressure. First, let us remember the approximate equations of pressure
/ AT K (VP ) V'™ Ve de = / Qojpdr, Yo cV,V¥j=1,...,N.
Q Q

Let ¢ in D(I; V), then for all ¢t € [t;—_1,t;[, ¥(t) € V, by taking it as a test function in the
equation above, we obtain

/)x(sjla)K(ija)ija~Vw(t) dx:/qaj¢(t)dx, for j=1,...,N.
Q Q
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Integrating with respect to ¢ from ¢;_; to ¢; and then by summing j from 1 to N, we have

N tj , . , N .
;/tj_l/g)\(sj O‘)K(Vpﬂa)Vpﬂa.Vw(t)dwdt:;/tj_l/nqajz/)(t)dxdt,

which is equivalent to

A(s%(t — a))K(Vp*)Vp™ - Vipdz dt = / qatdzdt with ¢ € D(I;V).

Qr Qr

Let us make a go to zero. Using hypothesis (H2) on the function A, Lemma and
denoting ¢ the weak limit of the sequence K (Vp®)Vp® in L?(Q27), we obtain

lim A(s*(t — @)K (Vp*)Vp™ - Vi da di

a—0 Qr

(10.1)
= / A(S)C -V dadt, Yy € D(I; V).
Qr
By Remark we have
lim Qo Y dx dt = / q¢dzdt, Vi € D(I; V). (10.2)
a—0 Qp Qp
Combining (10.1))and(10.2), we see that
/ A(S)C -V dedt = / g dzdt, Vip € D(I; V), (10.3)
Qp Qp
which implies
A(8)C -V da dt = / qvdzdt, Yy e L*(L;V). (10.4)
Qp Qr

Now, taking p’® as a test function in the equation of pressure, then integrating with
respect to ¢ from ¢;_1 to ¢; and then by summing j from 1 to N, we have

A(s®(t — @)K (Vp™)|Vp*|? dz dt = / qap” dz dt, (10.5)

Qr Qr

from (88.1)), remark lemma and passing to the limit when « goes to zero, we have
lim (s (t — ) K (Vp®)|Vp® | dz dt = / gp dz dt. (10.6)
a—0 Qr Qr

To justify that lima,_s0 fQT Gop® dx dt = fQT gp dzx dt, we write

« « « (e}
‘/ qap —qp‘:‘/ gap” —gqp +qp —qp’
Qp Qp

=‘/9Tpa(qa—q)+/QTQ(p“—p)‘

< p* Il lga — qll + ‘/ q(p” —p)’
Qr

= Cllae—al+| [ a6 -p),
T
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For all ¢ in L*(I; V), we have

0< / A5 (t — ) (K (V™) V™ — K (V) Vi) - (V" — Vig) da dit

:/ A(s®(t — ) K (Vp*)|Vp®|? dz dt
o (10.7)
- As%(t — ) K (Vp®)Vp® - Ve dz dt
Qr
- / A% (t — a))K(Ve)Ve - (Vp* — Vo) dz dt,
Qr
using (|10.5)), the above inequality becames

0< / gop” dx dt — / A(s™(t — a))K(Vp*)Vp* - Vepdr dt
Qr Qr

= [ A" - a)K(Ve) - Vo(Vi® - Vi) do
Qrp
passing to the limit as a goes to zero, we obtain

OS/ qu:cdt—/ /\(S)C-Vnpdwdt—/ AS)K(Vo)Vy - (Vp — V) dzdt.
Qp Qp Qr

Using ([10.4)), the previous inequality is equivalent to

0< / A(s)¢ - Vpdzdt — / A(s)(Vedzdt — / As)K(Ve)Ve - (Vp — V) dzdt.
Qr Qp Qr

Consequently,
0< / A()(C — K (V) V) (Vp — Vio) d dt.
Qr

Taking ¢ = p — n@ with n > 0, we obtain
| A6 (¢~ KT (V- 198)) - V5 20, (108)
Qr

when 7 approaches zero. Using the continuity of the operator A defined in subsection [5.1]
we have

[ N6~ K(Tn)VI)- T 20, Vg e (L),
Qp
Then, replacing ¢ by —¢ in ((10.8) and making n tend to zero, we deduce the equality
| A6~ K(n)Vp) - T5 =0,
Qp
which is exactly

/ A(5)C - V@ da dt :/ A($)K(Vp)Vp - V@drdt, Yo e L(I;V).
Qr Qr
This shows that ( = K(Vp)Vp, and as a result, (10.4) becomes
/ A(S)K(Vp)Vp - Vipdz dt = / qydxdt, Yy € LQ(I; V); (10.9)
Qp Qr

hence, p satisfies the equation of pressure.

Lemma 10.1. The following holds,

lim [ As(t—a)) (K(Vpa)Vpa - K(Vp)vp) (vp“ - vp) = 0.

a—0 Qp
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Proof. From (10.6)) and (10.9), we deduce that

lim As®(t — ) K (Vp*)|Vp®|? dz dt = / gpdzdt

a—0 Qr Qr

= A(s)¢Vpdz dt (10.10)

Qr

= M(s)K (Vp)|Vp|® dz dt.
Qr

Using (10.4), (10.9), (10.10), and Lemma[9.3] we obtain

0< lim | As®(t— oc))(K(Vpa)Vpa - K(Vp)Vp) : (vp‘" - vp) da dt

a—0 Qr

= lim A5 (t — @)K (Vp™)|Vp®|? da dt

a—0 Qr

— lim A(s“(t — @)K (Vp™)Vp™ - Vpdz di

a—0 Qr

— lim A(s*(t — a))K(Vp)Vp - (Vpa - Vp)

a—0 Qr
= / A(s)K (Vp)|Vp|® dx dt — / A8)K(Vp)Vp - Vpdz dt
Qr Qr
- ,\(s)K(vp)vp(vp - vp) —0. O
Qr

Lemma 10.2. The sequence (Vp®)aso converges in measure to Vp in Qr and a.e. for a
subsequence.

Proof. Let €1, § > 0 be two fixed numbers, and set
D ={|Vp® = Vp| > 6} = {(z,t) € Qr : [Vp*(,t) — Vp(z,t)| > 6}

||z

Then we consider the function K72 introduced in subsection Kiz(x) = k1 o] + Koz,
x € R%. The same method used to prove the monotony of operator A in the mentioned

subsection, shows that

(K12(z) — K12(y)) - (v — y) > kalz —y|*, Vo,y € R’

Writing
; A(s%(t — a))[K12(Vp®) — K12(Vp)] - [Vp® — Vp] dz dt
T
> [ 1K (V") = Kaa(Va)) - V9" = Vol dode
>\ /D k2| Vp® — Vp|® dz dt > \ik20” meas(D),
we see that

meas(D) < %262 /Q 6= @)Ka(VpY) ~ Kix (VP [V~ Vpldad

Since the right-hand side of the previous inequality tends to zero as « does, this by
Lemma meas(D) can be made less than &; for « sufficiently small. We conclude
that meas({|Vp® — Vp| > §}) < &1, for all £; > 0. This proves that the sequence (Vp®)
converges in measure to Vp. Therefore this sequence contains a subsequence, denoted in
the same way, converging a.e. to Vp in Qr. O



EJDE-2022/15 TWO-PHASE FLOW IN NANOPOROUS MEDIA 29

Remark 10.3. Using Lemma [10.2} one can have that K(Vp®) converge a.e. in Qr to
K(Vp) and since K(Vp®) < 7L + kg, we deduce K(Vp®) converge strongly to K(Vp) in
L*(Qr).

2. Equation of saturation. First we recall a well known result.

Lemma 10.4 (A discrete integration by parts formula). For a > 0, T > 0 two real
numbers and ® a smooth real function defined on the interval [0,T], let us put

o D(t) = M7 te[0,T —al.

If a < T and ¥ is a real smooth function defined on the same interval [0,T], then

/ R Tor
o (10.11)

1 T 1 e T—a o
= 7/ (@0)(t) dtff/o (<I>\If)(t)dt—/0 W)L D(t) dt.

o Jr_q e
Proof. For 0 <t < T — «, we can write
(PU)(t + ) — (PU)(t) = a®(t + )O7 U (t) + V()0 P(t).
Integrating the left-hand side on [0, T — «a], we obtain
T—a T—o T o
/ (@) (t + o) dt — / (@) (1) dt = / (@)(s) ds — / (@) (¢) dt.
0 0 T—a 0

Now, integrating on the right-hand side, we have

o /Tﬁa Bt + )L () di + a /Tﬁa V()2 D (L)

T T—a
= a/ D(t)0; W (t)dt + oc/ U ()7 ®(t).
« 0
Putting the results together, we obtain formula ((10.11)). O

Now, let us remember the approximate equation of saturation
T
/ (007 “s™, 1) dt + / Aw(sM)K(Vp™*)Vp™ - Vip dx dt
0 Qr

+ [ A(s™)p(s™)K(Vp™)Vs™ - Vi d di
Qr

T

Following [3], the pressure equation in the weak sense of Definition can be seen to
hold since UpZ,£%(I; V) (remember that a« = % = L) is dense in L*(I; V). Also, for the
equation of saturation, and for all ¢ € UsZ1£%(I; V'), we have for the second term, using

the same technique when passing to the limit in the equation of pressure, we obtain

lig}) Aw (M) K (Vp™)Vp™ - Vb dr dt = Aw(8)K(Vp)Vp - Vip dz dt,
@ Qr Qr

for the third term, using Remark [10.3] we obtain

lirr%) Ac(sM)pe(sM)K(Vp™)Vs® - Vipdx dt = Ac(8)p.(s)K (Vp)Vs - Vap dx dt.
=0 Jar Qr
For the last term, using Remark we have
T

T
lim way d = Wy d
" v /0 (qur )

a—0
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It follows from (4.3) that

T
lim (0, “s%, 1) dt + A (8)K(Vp)Vp - Vi dz dt

a—0 0 Qr

+ A (8)p,(s)K(Vp)Vs - Vip dz dt
Qr

T
- / (Gus ), Vb € U1 0°(I; V),

For any ¢ € L*(I; V), %o € £2(I;V), and because s(-,t) is constant over each interval
I; = (tj—1,t;], we observe that

T T
/ (90, “s%, 1) dt:/ (907 “s%, ) dt, (10.12)
0 0
then, identity (4.3]) can be written as

T
/ (00 “s™, o) dt = —/ Aw(8)K(Vp)Vp - Vo dz dt
0 Qr

T
— Ac(8)pe(8)K (VD) Vs - Vipg dx dt + /0 (qu, Va)-

Qr
This implies that

T
| / (607%s® ) dt| < CllYll ey, Vo € LA V).

The sequence (¢d; *s®) is thus bounded in L*(I;V*). Consequently, for a subsequence,
(07 *s™) converges weakly in L*(I; V*). For ¢ € D(I; V) and « > 0 small enough, using
Formula (10.11)), we have

T T—a
/ (6075 (1), (-, 1)) dt = — / (657, 020) dt
0 0
T T
- 78t d = 8t 5 d
R /0(¢s V) dt /0<¢sw>t

as a distribution. Therefore, ¢, “s* — ¢Os weakly in L*(I;V*). Combining these
results, the saturation equation holds in the weak sense of Definition [3.1{since UsZ,£%(I; V)
is dense in LQ(I; V). Thus the proof of Theorem is complete.

11. MAXIMUM PRINCIPLES ABOUT WEAK SOLUTIONS

Theorem 11.1. If (p, s) is a weak solution of system (S:), then 0 < s(z,t) <1 a.e. x in
Q and for all t in [0,T].

Proof. To show that s(z,t) > 0, we prove that its negative part s~ is zero on Qr. Let us
first remark that for (p, s) a weak solution of system (S:), the equation of saturation (3.3))
implies that

(pOcs,v) — / Aw(s)K(Vp)Vp - Vudz — / A (s)p.(s)K(Vp)Vs - Vudx

@ @ (11.1)

= / gwvdz, Yv €V, ae. in (0,T).
Q

Let us fix a number ¢ € (0,T]. Since the function R 3 r — 2(|r| —r) =7~ € Ris
Lipschitz, it is licit to take v = —s~ (o), with o € (0,t) non exceptional, as a test function
in the Equation (|1 written at the time point o. We obtain

(pO:s(o) /)x K(Vp)Vp-Vs~ d;r:—/A s)pL(s)K(Vp)Vs - Vs~ dx
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:—/ quws dx.
Q

Since Ay (s) = 0 for s < 0, we obtain [, Aw«(s)K(Vp)Vp- Vs~ dzdt = 0. Also, using that

Ac(8)pL(s)K(Vp)Vs - Vs~ dx = ; Ac(8)pa(s)K (Vp)|Vs™|* da

Q
> z-:p’c*ng/ |st\2dm7
Q

and the positivity of function g, (hypothesis (H4)), we obtain

(pOrs(a), —s™ (o)) + 6]3/6*%2/ |Vs™ |2 da < —/ qws dz < 0.
Q Q

We deduce that
(¢p0ss(a),—s (o)) <0 ae. o€ (0,t). (11.2)
Note that

(pOs(o), —s (o)) = 28t/¢(m)|s z,0)]*dz ae. o€ (0,T). (11.3)

Let us now suppose that s € D([0,T]; V), the space of restrictions to [0,7] of functions
indefinitely differentiable with compact support and values in V. In this case, we can
write

(6550 =s~(@) = = [ 6la) G (3,005 (@0 do

—— / 6(@) 22 (@,0)s™ (¢,0) da
QN {s(x,0)<0} ot
:/ o(x )88 (z,0)s (z,0)dx
QN {s(z,0)<0} ot
10, _ 2
= o(x)==|s (z,0)|" dz
[ o5 @)

28t/¢ Vs~ (x,0)|? dx

Adopting the techniques used by Chipot [9, Lemma 11.2, page 203], we can prove that
the ( remains true for s € W(0,T) = H*(0,T;V,V*). Integrating inequality (11.2)),
we obtam

[ (65015 @)tr = [ s @0 dr— 5 [ olols” w0 ds

1 - 2
*i/nqﬁ(xﬂs (z,t)]"dx < 0.

This because s(0) = so(z) > 0 (hypothesis (H4)), giving [, ¢(x)|s™ (z,0)|* dz = 0, and
the Inequality (T1.Z). Now, using (H1), we see that [, |s™ (z,t)|*dz =0, a.e. in t €]0,7T].
This proves that s(x,t) > 0 a.e. in Q7.

To show that s(z,t) < 1 a.e., we prove that (s — 1), the positive part of s — 1, is
zero on Q. Using the same techniques as before, we fix a number ¢ € (0,7], and take
v = (s — 1)*(0), with ¢ € (0,t) non exceptional, as a test function in written at
the time point 0. We obtain

(60us(0), (s — 1) (0)) + / M(8) K (Vp)Vp - V(s — 1)*da

Q

/A 8)pe(s)K(Vp)Vs - V(s — 1) dx (11.4)

:/qu(s—nwx.
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Putting {s > 1} = QN {s(z,0) > 1}, by the hypothesis (H2) and the definition of
extensions of the coefficients in equations, see Section [3] the equation of pressure leads to

/Q/\w(s)K(Vp)Vp V(s —1)"de = / A (8)K (Vp)Vp- V(s — 1)"da

{s>1}

:/{ N As)K(Vp)Vp - V(s —1)tdx

= / q(s — 1) Tde = / q(s —1)Tda.
{s>1} Q

Now, using the inequality
[ AU (Tp)Vs - V(s = 1) de = eplms [ 965 = 1) do
Q Q
and equation (11.4), we obtain

(60u5(0), (5 — 1)F (0)) + /

q(s — 1) dx + Ep'c*ﬁz/ V(s —1)" P de < / qw(s — 1) Tdzx
Q Q Q

Therefore, since ¢ — qu = qn, which is a positive function, we obtain
(6915(0). (5 = " () + eptra | V(s = VP do <= [ gus = 1) do <0,
Q Q

Consequently,
($0s(0), (s — 1) (0)) <0 ae. o€ (0,t). (11.5)
To go further, we note as above that
(#0es(0), (s = 1) (0)) = (¢8:(s — 1)(0), (s = 1) (o))

= %%/ﬂd)(xﬂ(s— D (z,0)?de ae. o€ (0,T).

(11.6)

This can be seen using the denseness for s € D([0,T]; V) in W(0,T).
Integrating the previous (11.5)), we obtain

| (o5, s=1)" (o) )as

= 1 X S — + X 2 x—l X S — + X 2 X
=1 [ ol 1 wof -} [ ol -1 @0
:%/Qq&(mﬂ(s—1)+(a:,t)|2da:§0.

This because s(0) = so(x) < 1 (hypothesis (H4)), giving [, ¢(z)|(s — 1)¥(z,0)* dz = 0,
and the Inequality (TL.5). Now, using Hypothesis (H1), we see that [, [(s—1)"(x,t)|* do =
0, a.e. in t €]0,T]. This proves that s(z,t) <1 a.e. in Q7. O

Remark 11.2. To finish, we mention that all results of this paper are in fact true for
a family of absolute permeability, in the sense that our results remain true if we replace
the expression of absolute rock permeability given in page [2] by any continuous function
K :R® — R, bounded from below and above by positive constants with K (2)z monotone.
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