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ABSTRACT 

 

The ability to automatically combine and analyze multiple concurrent processes, 

perhaps written by different people, becomes increasingly important in the modern 

mobile, distributed, and ad-hoc computational environments.  For instance, medical 

processes that guide medical procedures in hospitals are written by different people, yet 

they are performed concurrently on the same patient.  There are critical properties that 

such combined, concurrent processes must adhere to.  Failure to adhere to such properties 

may result in the loss of life or serious disability.  This work presents an automatic 

verification system written from scratch (about 32,000 lines of Java) that takes in 

rigorous descriptions of individual processes in Little-JIL, translates them semantically, 

combines them into an ad-hoc concurrent process, and performs static verification against 

specified critical properties via CTL model checking algorithms. 
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I.  INTRODUCTION 

Failures in real-world parallel processes can cause expensive and sometimes life-

threatening system failures.  In large-scale parallel computing systems, failures have 

increased both response time and slowdown time [1].  In hospitals, failures in the 

parallelized processes of nurses’ assessment, planning, implementation, and evaluation of 

patients at times has kept supplies, medication, equipment, and information from being 

properly provided to patients [2].  Finding and eliminating errors in parallel systems prior 

to their occurrence is thus important.  In the modern age of mobile, distributed and ad hoc 

computing, it has become even more important to be able to automatically find errors in 

processes written by different people which are being run concurrently.  One approach to 

identifying errors in parallel processes is to use model checking on a process language.   

 When parallelizing processes, it is often difficult to control the order of execution.  

Process A may execute before Process B or vice versa.  The number of possible execution 

paths can be calculated as a permutation of the number of processes executed in parallel.  

So, the number of interleavings is x! where x is the number of processes.  There can thus 

be an exponential blowup in the number of interleavings.  In modelling our processes in a 

process language like Little-JIL, which breaks down each state into further sub-states 

representing the state’s status, our graphs become even larger. 

 When two processes run in parallel on a computer it can be difficult to predict 

when certain subprocesses will execute.  Many libraries exist for creating “critical 

sections” of code that request that the section be executed in serial.  This is helpful, but if 

we could know in a formal way that a parallel process with a certain subprocess that 
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needs a certain property will never execute without that property, it would be very 

helpful. 

Race conditions accidentally introduced in parallel programs create many 

problems.  For example, a certain variable is written to before it is defined, throwing an 

undefined error and halting the program execution.  Even in real-world parallel processes, 

like in a hospital, race conditions can exist.  If a heart transplant procedure, in an extreme 

example, is started before the new heart has been received, it could cause the death of the 

patient while they are waiting on the operating table.  In the real world, many processes, 

even when explicitly defined, have a surprising amount of ambiguity which can lead to 

misinterpretations and, in some cases, race conditions.  One approach to reducing 

ambiguity in processes is to model the process explicitly in a process language, such as 

Little-JIL. 

Little-JIL models contain control structures such as leaf, sequential, parallel, try, 

and choice.  Each of these then have their own translation into a template of states.  A leaf 

state’s translation, as shown in Figure 1, starts with a leaf control structure. This is fed 

into our program in an XML (extensible markup language) representation. The leaf 

control structure is then converted to its semantic translation consisting of leaf posted, 

leaf started, leaf completed and leaf terminated [3].  The leaf posted transitions into the 

leaf started through its connecting edge.  The leaf started then has edges going to both 

leaf completed and leaf terminated.  These multiple nodes which both connect to the leaf 

process successfully or terminating the program due to failure or error. 
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Figure 1.  Little-JIL Leaf State Translation 

 

Little-JIL’s sequential control structure’s translation is shown in Figure 2.  The initial 

control structure shown on the left represents a process path where first leaf 1 is traversed 

and then leaf 2.  It is sequential because the s2 is never started until the s1 is finished.  

The sequential translated template on the right starts at sequential posted, then traverses 

to sequential started.  Sequential started then traverses to leaf 1 posted, which then goes 

to leaf 1 started.  Leaf 1 started then connects to both leaf 1 completed and leaf 1 

terminated.  Note that the leaf is being translated exactly how it was in Figure 1, but now 

because it is a child of the sequential node, the leaf 1 posted is transitioned into from 

sequential 1 started and leaf 1 completed then continues on to leaf 2 posted, while leaf 1 

terminated continues on to sequential 1 terminated.  In general, completed nodes 

continue on to the next control structure, if there is one, while terminated nodes continue 

on to the next terminated node, if there is one. 

In Figure 2 we see that after leaf 1 completes, the process continues to leaf 2 

posted, which then continues to leaf 2 started.  Leaf 2 started connects to both leaf 2 

completed and leaf 2 terminated.  Leaf 2 completed continues to sequential 1 completed, 
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which leaf 2 terminated continues on to sequential 1 terminated.  So, we see how a 

sequential node will transition through its first child, then through its second child and so 

on, before returning to end on either its own sequential completed or sequential 

terminated node. 

 

Figure 2.  Little-JIL Sequential State Translation 

 

In Figure 3 we see how a Little-JIL parallel node is translated.  The initial control 

structure format is shown on the left, which would come from the XML file.  Here 
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parallel 1 connects to both leaf 1 and leaf 2.  We can see this is exactly the initial form of 

the sequential with two leaf children in its control structure XML form in Figure 2.  The 

initial Little-JIL structures show the different paths a process can take, but the order in 

which the process will traverse its nodes is only inferred by the name of the control 

structures.  The order is not clearly marked out by the structure’s directed edges, as it is in 

the accompanying translated templates. 

On the right of Figure 3 the translation template of the parallel node with two leaf 

nodes is shown.  It begins at parallel 1 posted, which transitions to parallel 1 started.  

Then parallel 1 started connects to both leaf 1 posted and leaf 2 posted.  This could 

represent the different ways parallel process are actually executed in practice in an 

unthreaded, single core situation or this could just be a sequential representation of two 

actual concurrent processes.  One child is executed first, then the other child, but we 

generally do not know which one will go first because it could be either.  Both leaf posted 

nodes connect to their respective leaf started nodes.  Both leaf started nodes then connect 

to their respective leaf completed nodes as well as their respective leaf terminated nodes.  

Then each leaf completed node connects to parallel 1 completed as well as to the other 

leaf’s posted node.  So, leaf 1 completed connects to parallel 1 and also to leaf 2 posted.  

Each leaf’s terminated node connects to parallel 1 terminated.  There is some ambiguity 

in this translation template in the sense that although the first executed leaf completed 

node has an edge pointing to parallel 1 completed, that flow will never actually happen.  

The leaf completed node of first leaf executed will always transition next to the other 

leaf’s posted node.  The edge connecting that initial leaf completed to parallel 1 

completed really only represents the path the second executed leaf will take after it’s 
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completed node is finished.  This ambiguity is removed when the translation’s explicit 

interleavings are shown, as in Figure 4. 

 

 

Figure 3.  Little-JIL Parallel State Translation 

 

The structure on the right side of Figure 3 and the structure shown in Figure 4 are 

semantically equivalent.  The parallel template in Figure 3 shows the different possible 

interleavings by having both leaf completed nodes point to both parallel 1 completed and 

the other leaf’s posted node.  This is slightly ambiguous because the reader has to infer 

which leaf executes first and which second and understand that only the second actually 

transitions to parallel 1 completed, while the first leaf completed actually only transitions 

to the other leaf’s posted node.  These kinds of edges are called “may immediately 

precede” edges because their existence in the actual chosen path is not necessarily a 
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given.  If the reader did not understand this, they might incorrectly infer that the diagram 

is even suggesting a loop might be possible with one leaf transitioning to the other leaf 

and then back to the first leaf.  Yet the small size and simplicity in the calculation of this 

graph are the benefits this trade off. 

Figure 4 shows the semantically equivalent version of the parallel template 

translation on the right of Figure 3, but with the ambiguity removed by showing the 

leaves’ explicit interleavings and what exactly they will transition into.  We see that it 

begins with parallel 1 posted and that node transitions into parallel 1 started.  Parallel 1 

started then connects to leaf 1 posted and leaf 2 posted.  Leaf 1 posted connects to leaf 1 

started and leaf 1 started connects to leaf 1 completed and leaf 1 terminated as we would 

expect after learning the leaf’s translation template in Figure 1.  Leaf 1 completed 

connects to leaf 2 posted.  Here is one interleaving shown.  Leaf 2 posted connects to leaf 

2 started, which connects to leaf 2 completed and leaf 2 terminated.  Leaf 2 connects to 

parallel 1 completed and leaf 2 terminated connects to parallel 1 terminated. 

 The second interleaving shown in Figure 4 is when parallel 1 connects to leaf 2 

posted, which then connects to leaf 2 started and leaf 2 started connects to leaf 2 

completed and leaf 2 terminated, while leaf 2 completed connects to leaf 1 posted.  The 

first interleaving showed leaf 1 being executed first and then transitioning into leaf 2 (or 

into parallel 1 terminated), while this interleaving is showing leaf 2 executing first and 

then transitioning into leaf 1 (or into parallel 1 terminated as well).  This interleaving 

mirrors the first.  In this interleaving, leaf 1 posted connects to leaf 1 started which 

connects to leaf 1 completed and leaf 1 terminated.  Leaf 1 completed connects to parallel 

1 completed and leaf 1 terminated connects to parallel 1 terminated. 
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Figure 4.  Translation Of The XML In Figure 3, Including The Leaves’ Explicit 

Interleavings 

 

A simple process of two leaves run sequentially, when expanded according to 

Little-JIL rules, becomes a graph of 12 nodes (see Figure 2).  Similarly, two leaves 

executed in parallel, expand to a graph of 12 nodes after initial translation and then to a 

graph of 20 nodes after the explicit interleavings are modeled (see figures 3 and 4).  

When more complicated real-world processes are modelled, the number of nodes quickly 

reaches to the thousands or more.  In analyzing these larger graphs, we begin speaking of 

the “topology” of the graph, abstracting out some of the less significant details because 

there are so many nodes that the diagram is zoomed out to include them all, which makes 

the individual nodes and their names so small that they are hard or impossible to read. 
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II.  APPROACH 

This paper focuses on the ability to automatically combine multiple processes, 

possibly written by different people, so they run concurrently and can then be checked for 

certain properties.  This is achieved through translation of Little-JIL control structures to 

their Little-JIL template states and by modelling the interleavings of parallel processes.  

The inputs to the translation program are XML files representing the processes modelled 

in Little-JIL syntax.  The outputs of the translation program are Kripke structures, which 

are then ready for model checking. 

 I use CTL (computation tree logic) model checking and the Little-JIL process 

language to identify errors in parallel processes and to identify specific paths the error 

route takes.  Since there are different execution paths a process may take, a process can 

be accurately modeled using a tree graph.  CTL is an appropriate logic to use to identify 

whether certain properties hold on the graph since it checks all possible paths through a 

tree.  Little-JIL is a flexible and adaptive process language that models how agents 

perform processes [5].  It has been chosen because it is easy to use, yet powerful enough 

to model a wide variety of real-world processes [6]. 

 A process is just a collection of steps.  A formalized process language like Little-

JIL has control structures like sequential, parallel and try.  I use two processes in this 

paper (each consisting of two combined processes), a computer program and a medical 

process.  I first model the abstract process with the graphical process language.  Then I 

output the graphical process into XML.  Now that the process is represented by code, I 

run it through the translator.  The translator takes in one or more files of XML steps and 

outputs a directed graph data structure that represents the steps.  The translator also 
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translates the control structure nodes of the graph into their semantic substeps, according 

to the rules laid out by our graphical process language.  At this point, I have a Kripke 

structure ready for model checking.  I use a temporal logic on our Kripke structure to 

formally verify whether our combined parallel processes have certain safety or liveness 

properties. 
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III.  PROBLEM DESCRIPTION 

The problem this paper tries to solve is how to automatically combine two or 

more processes, potentially written by different people or organizations, into a single 

process with fine granularity and then check for various properties on the combined 

graph.  This could make quick, painless, and potentially lifesaving fixes to errors 

introduced when processes are combined.  In the modern mobile, distributed, and ad hoc 

computing environments, there is more need than ever to be able to quickly and easily 

combine processes and make sure they work together as intended. 

The first example problem I look at is the combined parallel processes of a patient 

hospitalized with COVID-19 (coronavirus disease 2019) and the hospital’s ordering of a 

ventilator from their supplier.  We would like to know two things here.  The first is, “Is it 

true that someone who is a high COVID-19 risk to others will never be at home?” In this 

question, the hope is that perhaps low risk individuals will quarantine at home, but that 

high-risk individuals would hopefully be in the hospital where their chance of widely 

spreading the virus would be much lower.  The second question we would like to know 

is, “If a ventilator is requested, will it always eventually be available to use?” The 

concerns here are whether the ventilator will be shipped and if the supplier has any 

ventilators currently in stock. 

The second problem I address in this paper is determining if the code of a bank 

system which both deposits checks and processes transfers will always deposit the checks 

first.  This is code that would be run in the morning, after mobile check deposits and 

online transfers were requested the previous night after business hours.  First thing in the 

morning, the bank wants to run this program to deposit the checks and then process the 
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transfers.  Since the check deposits in this case will all add to the bank accounts’ 

balances, they want to make sure all the checks are processed first to ensure the transfers 

will have the maximum available funds to minimize the amount of overdrafts.  Since 

there is a certain amount of reading from disk in both cases, we would ideally like to run 

both programs in parallel.  We would like to make sure though, that the actual processing 

of transfers never happens before all the checks are deposited. 
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IV.  SOLUTION DESIGN 

I decided to use Little-JIL to model processes for this paper for its combination of 

expressiveness and simplicity.  Little-JIL is a graphical language that models processes, 

which was developed by Leon Osterweil at University of Massachusetts in 1998 and was 

further developed over the next sixteen years [7].  The tools Little-JIL provides allow for 

the modelling of processes followed by autonomous agents and the modelling of all the 

different possible paths a process is allowed to take.  It introduces types of states, like 

sequential, parallel and leaf, as well as semantic translations of those each of those states, 

into nodes such as started, completed or terminated.  The parallel node will be the core of 

our modelling of parallel processes. 

 The Little-JIL semantic translation states help bring specificity to our processes 

and help eliminate ambiguity.  For example, say a state is just “perform heart transplant”.  

If it’s running in parallel with another state and the two alternate switching back and 

forth, we won’t know if the heart transplant state is just ready, or if it has just begun.  

Bringing status states like posted, started, terminated, and completed into the process 

model help us get a more granular status of where each state is and when.  This 

specificity can help avoid errors caused by ambiguity.  This is an example of Little-JIL’s 

expressive power. 

 Little-JIL has a helpful implementation which uses the Eclipse IDE (integrated 

development environment) [8].  In Eclipse, I’ve modelled our processes visually in Little-

JIL diagram, which has vague parallels to a UML-type (Unified Modeling Language) 

diagram.  The Little-JIL Eclipse extension has an “export to XML” feature.  I have used 

this to get my initial XML files.  When Little-JIL uses XML, it uses the file extension 
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“ljx” instead of “xml”, but the file is actually just an XML file.  In this paper, I refer to 

these files as just XML files.   

 These XML files are the representation of my processes that I feed into the 

translator.  I have pared down and cleaned up the XML code which Eclipse exports to just 

the process steps.  Originally the Eclipse XML includes the XML prolog, some metadata 

and some connector tags which are a bit extraneous to our task.  I have also removed the 

connector XML tags to simplify the XML reading module. 

 I’ve written the translator in Java.  The entire program, including the translator 

and the analyzer, is about 32,000 lines of code.  The initial translator takes in the XML 

file of the Little-JIL processes and then translates them using algorithms I’ve written that 

correspond to the specifications of the Little-JIL language.  The programmatic outputs of 

the algorithms are Kripke structure graphs of nodes of the different paths the process can 

take.  The visual outputs of the translation are graphs displayed using Java Swing [9] and 

the JUNG (Java Universal Network/Graph Framework) [10] graphing library.  To run 

model checking CTL algorithms, I’ve used the ANTLR (Another Tool for Language 

Recognition) [11] compiler library.  ANTLR is a modern compiler writing library, which 

can handle the potentially infinite nesting aspect of CTL formulas well.  The analyzer 

I’ve written can process looping structures and also self-referential structures. 

 Little-JIL diagrams use certain symbols to represent different control structures.  

As seen in Figure 5 below, there are various symbols in blue on the black step bars: an 

equals sign for a parallel step, an arrow for a sequential step and no symbol if it’s a leaf 

step.  The circles above the steps are interface badges and the downward triangle and 

upward triangle are pre-requisite badge and post-requisite badge, respectively.  Although 
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these are helpful features of Little-JIL, we need not concern ourselves with the interface 

badges and pre- and post-requisites for the purposes of this paper. [12]  

 The COVID-19 problem is fairly straightforward, as shown below in Figure 5.  It 

is two processes run in parallel: an individual’s experience with COVID-19 and how a 

hospital orders a ventilator.  There is a parallel root step added to connect the two 

separate processes and to execute them concurrently.  The COVID-19 process consists of 

two parallel processes run in sequence.  First is the initial response and then is 

hospitalization.  The initial response consists of isolating at home, monitoring symptoms, 

researching and planning how to get a swab test, and then researching and planning a 

hospital visit.  The hospitalization consists of a RT-PCR (reverse transcription polymerase 

chain reaction) test, a lung ultrasound, a chest CT (computed tomography) scan and 

ventilation.  The hospital orders ventilation process consists of five steps run 

sequentially: medical team requesting the ventilator from management, the hospital 

requesting the ventilator from their vendor, the vendor shipping the ventilator, the 

hospital receiving the ventilator, and the hospital’s orderly setting up the ventilator in the 

room.  The first of those, the medical team requesting the ventilator from management is 

further broken down into three steps run sequentially: the team filling out the purchase 

order, the team requesting approval from management, and the team receiving feedback 

from management.  These were both processes I put together myself after researching 

online the different processes hospitals were using for COVID-19 and for procuring 

medical equipment.  [13] [14] [15] [16] [17] [18] [19] [20] 
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Figure 5.  Little-JIL Diagram Of COVID-19 Problem 

 

 The banking example in this paper is a bit more involved than the COVID-19 

example.  The code for the ProcessChecks.java class file and for the 

ProcessTransfers.java class file is about 60 lines of code for each.  The code for both is 

included here in Appendix B.  Both ProcessChecks and ProcessTransfers is its own class.  

There is also a Bank class with utility methods for parsing csv files and there are some 

additional class files for the data structures of account, check and transfer.  Both the 

ProcessChecks and ProcessTransfers files are implemented with Java callable so they run 

asynchronously to demonstrate parallel execution.  ProcessChecks takes in a string 

variable for the file path to the checks csv file.  It first calls a getChecksList function, 

which splits the csv file by line and saves each line as an element in an array.  Then it 
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creates a check object for each csv row and creates a list of checks.  It next calls a 

depositChecks function, which loops through the list of checks and for each check gets 

the account number, gets the account for that account number and then deposits the check 

in the account.  The actual deposit method is a method on the account data type.  The 

deposit method just adds the amount of the check to the account balance.   

 The ProcessTransfers file is very similar to the ProcessChecks file.  It mirrors 

each method but with transfers instead of checks.  First it gets each line of the transfers 

csv file, then it gets the transfers from each line.  Then it processes the transfer.  In the 

processTransfer method, it gets the from account and the to account for the transfer, as 

well as the transfer amount.  There are some if statements creating some logic checking if 

the from and to accounts are both accounts at the bank.  If they are, then the transfer 

amount is subtracted from the from account and added to the to account. 

 Both class files were then represented in Little-JIL.  Figure 6 shows the 

ProcessChecks.java Little-JIL representation.  The root node, process checks, is a 

sequential control structure.  Process checks has three children: set class’s bank property, 

get checks list from csv, and depositChecks(checks).  Set class’s bank property is a leaf, 

while both get checks list from csv and depositChecks(checks) are sequential steps.  Get 

checks list from csv has two children: get list of csv rows and get list of checks from csv 

rows.  Both of these are sequential steps.  Get list of csv rows has five children: init 

stringList, get bufferedReader, set i=0, readCsv row, and close csvReader.  All of these 

are leaf steps except for readCsv row, which is sequential.  ReadCsv row has three 

children, set row = csv.readLine(), csvRows.addRow(row), and i++.  Get list of checks 

from csv rows has two children: init checks var, a leaf, and add check to checks, a 
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sequential step.  Add check to checks has four leaf children: checkElems = row.split, get 

check details var, create check, and add check to checks.  DepositChecks(checks) is a 

sequential with one sequential child, depositCheck.  DepositCheck has two children: acct 

= bank.getAcct() and set balance = bal + amt. 

 

 

Figure 6.  Process Checks Little-JIL Diagram 
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 In many ways, the process transfers diagram in Figure 7 mirrors the process 

checks diagram, since the code of the two files has quite a similar control flow.  The root 

node, process transfers, is a sequential step with three children, set class bank property, 

get transfers list from csv, and processTransfers.  Set class bank property is a leaf, while 

the other two are sequential steps.  Get transfers list from csv has two children, both 

sequential: get list of csv rows and get transfers from rows.  Get list of csv rows has five 

children: init csvRows & declare row var, get bufferedReader, i=0, readCsv row, and 

close csvReader.  All five are leaves except for readCsv row, which is sequential.  

ReadCsv row has three leaf children, row = csv.readLine, csvRows.addRow, and i++.  

Get transfers from rows has two leaf children, init transfers var and get transfer.  

ProcessTransfers has one sequential child, processTransfer.  ProcessTranfer has three 

children, get transfer details var, process from acct transaction, and process to acc 

transaction.  Get transfer details var is a leaf while the other two are sequential.  Process 

from acct transaction has two leaf children: fromAcct = bank.getAcct and 

fromAcct.withdraw.  Process to acct transaction has two leaf children: toAcct = 

bank.getAcct and toAcct.deposit. 
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Figure 7.  Process Transfers Little-JIL Diagram 

 

The first step in translation was to get the manually created XML file (based on 

the manually created Little-JIL diagrams above) into a Kripke structure.  This is the 

initial iteration of the Kripke structure which will later be replaced by the translated 

Kripke structure and after that by the translated Kripke structure which includes all the 

parallel interleavings.  To get the Kripke structure representation of the XML files, I 

wrote a Java translator which iterates over the lines of the XML file, creates a vertex data 

structure for each XML tag and then put all the created vertices in an array.  Quite a lot of 
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information is stored for each vertex in the vertex data structure, including node number, 

node name, Little-JIL control structure type, what parents and children the vertex has, 

and if it has siblings, what sibling number it is and so on. 

You can see the XML graph of the COVID-19 parallel process in Figure 8.  The 

process that is the individual’s experience of COVID-19 is on the left side of the root 

node and the hospital ordering the ventilator process is on the right side of the root node.  

The root node is an added parallel node so the process becomes the a parallel process, 

executing both processes in parallel.  The left side of the process starts with a sequential 

step that is simple the individual’s experience of COVID.  The two children of that node 

are the initial response node, a parallel node, and the hospitalization node, also parallel 

node.  The initial response has four leaf children: isolate at home, monitor symptoms, 

research/plan how to get swab test, and research/plan a hospital visit.  The hospitalization 

node also has four leaf children: the RT-PCR test, a lung ultrasound, a chest CT scan, and 

ventilation.  On the right side, hospital orders ventilator has one sequential step, medical 

team requests ventilator from management, and four leaf children: hospital requests 

ventilator from vendor, vendor ships ventilator, hospital receives ventilator, and orderly 

sets up ventilator in room.  The medical team requests ventilator from management step 

has three leaf steps: team fills out purchase order, team requests approval form from 

management, and team receives feedback from management. 
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Figure 8.  COVID-19 XML Graph 

 

You can see the XML Kripke structure of the process checks file below in Figure 

9.  It is identical in structure to the Little-JIL diagram in Figure 6.  The visual display of 

the Kripke structure in Figure 9 was created using the JUNG Java graphing library, which 

is great for creating graphs [10].  After translation from the XML to the Kripke, the 

Little-JIL steps are states in a finite state machine.  Each state has a name like s0, where 

zero is the number of that step.  Each state also has its description shown after the name 

and in parentheses after that, its Little-JIL control structure type and number.  Including 

the Little-JIL type and number is helpful for future comparison after this graph is 

translated into its Little-JIL status steps, since at that point each Little-JIL type 

(sequential, leaf, etc.) will actually be four or more nodes (posted, started, terminated, 

etc.).  Since the Kripke structure of the graphs in Figures 9 and 10 are identical to the 
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Little-JIL structure of the graph in Figures 6 and 7 and since I described those graphs at 

great length above, I will omit further description of them here. 

 

Figure 9.  Process Checks XML Graph 

 

Just like how the XML graph in Figure 8 is semantically equivalent to the Little-

JIL diagram in Figure 6, the process transfers XML graph in Figure 9 is semantically 

equivalent to the Little-JIL process transfers diagram in Figure 7.  Now the Little-JIL 

steps are represented in a directed graph using node names, node descriptions and in the 

Little-JIL type and number in parentheses.  The structure of the graph in Figure 9 is 

identical to the graph in Figure 7, which is described at great length above in that section. 
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Figure 10.  Process Transfers XML Graph 

 

Both the COVID-19 and the banking problems can be expressed in logical terms 

with CTL temporal qualifiers as well as in plain English.  The proposition “someone who 

is a high risk to others will never be at home” is represented as AG(¬(s∧q)), where s is 

high risk to others and q is at home.  The plain English expression, “If a ventilator is ever 

requested, it will always eventually be available to use” is AG(u→AF(v)) where u is 

ventilator requested and v is ventilator available to use.  These are the models to check to 

see if their properties hold for the whole graph.  Checking if someone who is high risk 

will never be home is a safety property.  We check if, under certain condition, the event 

never occurs.  Likewise, checking if a requested ventilator will eventually be available 
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for use is a liveness property.  This is because we are checking if, under a certain 

condition, an event does occur. 

The initial banking problem in English, “Transfers are never processed before all 

the checks are deposited” can be rephrased more technically as, “The transfer buffer is 

always null until the checks array size is zero and the checks buffer is closed.” In CTL, 

this can be expressed as is A[¬t U(s∧¬q)], where t is the transfer buffer, s is the condition 

that the checks array size equals zero and q is the checks buffer.   
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V.  MY CONTRIBUTION 

Below are the translation algorithms I have written, based on Jamieson Cobleigh’s 

diagrams of Little-JIL states in Verifying Properties of Process Definitions [12].  These 

algorithms take in a sequence of Little-JIL control structure steps and output a sequence 

of Little-JIL steps with all their possible statuses, such as posted, started, terminated, and 

completed.  For parallel states, I have added algorithms to find all the different possible 

permutations, as steps may happen in a somewhat arbitrary order in a parallel process.  

Most of the utility and helper functions have been omitted here for brevity. 

 The three main subroutines for my translation strategy are translate(), 

translateChildrenRecursively(), and swapInTemplate(), all shown below in Figure 12.  

Also key to my translation strategy are the leaf (Figure 13), sequential (Figure 14), and 

parallel (Figure 15) template subroutines.  All these functions are presented here in 

pseudocode, but the full Java implementation code is available in Appendex A. The 

functions mention the VertexList, which is an array-like data structure I’ve created which 

stores all the vertices in the graph along with information like which vertex is the root, 

the total number of steps in the translation process along with a variable keeping track of 

how many steps the user would like to see.  Being able to stop the translation process at 

specific steps helps with verification that the translation algorithms are working as 

intended. 

I checked the correctness of the translator by checking the semantics of the 

produced Kripke structures against the Little-JIL and against the Little-JIL translation 

rules presented in the paper Verifying Properties of Process Definitions by Cobleigh, 

Clake and Osterweil [12].  I have reproduced below the figures from that paper which 
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explain how a leaf, sequential and parallel step should be translated in Little-JIL.  These 

are the exact figures from that paper, presented exactly as they were there. 

 In Figure 11 you can see the Little-JIL translation of a leaf, sequential, and 

parallel nodes.  A leaf node translates into four leaf status nodes: leaf posted, leaf started, 

leaf completed and leaf terminated.  The translation template starts with leaf posted, 

which has one child, the leaf started node.  The leaf started has two children, the leaf 

completed and leaf terminated nodes.  A leaf node never has children, so there are no 

substeps to be considered like with sequential and parallel. 

 The sequential translation template in Figure 11 shows that a single sequential 

node with two or more substeps translates into four sequential status nodes with the 

substeps embedded in between the sequential started and sequential completed.  The four 

sequential status steps are sequential posted, sequential started, sequential completed and 

sequential terminated.  The sequential posted has one child, the sequential started.  The 

child of the sequential started node is the first substep.  Then the child of that substep is 

the next substep.  If there are more than two substeps, the chain of substeps continues, 

with one substep having one child, the next substep.  The final substep only has one 

child, sequential completed.  All substeps besides the last always have two children, the 

next substep and also the sequential terminated node.  The substeps being one after 

another and only the first substep connecting to sequential started is what creates the 

sequential control flow. 

The parallel translation template in Figure 11 shows that a single parallel node 

translates into four parallel status nodes plus all the substep nodes.  Parallel posted has 

one child, parallel started.  Parallel started has each substep as a child.  The substep 
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children of parallel nodes are the most complicated part of Little-JIL translation.  Each 

substep has two parallel substep children, parallel completed and parallel terminated.  

Each substep also has every other substep besides itself as a child.  The parallel control 

flow in this translation template comes from the fact that every substep is a child of 

parallel started and a child of every other child.  It is understood that the children execute 

at the same time or at least overlap in execution, assuming a multi-threaded model.  In 

parallel execution using a single thread model the execution order might appear to be 

random and could switch back and forth between substeps before finishing the prior 

substep.  If a substep is started and then control is given to another substep, control would 

eventually return to the unfinished step to be completed.   

 

Figure 11.  Little-JIL Translation Templates For Leaf, Sequential and Parallel 

 

Below are the translation algorithms, in pseudocode, that I wrote to translate Little-JIL 

XML to Kripke structures with Little-JIL status nodes.  In the case of parallel processes, 
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interleavings have the option of being shown.  First is the main translate function, the 

first function below in Figure 12.  The translate() function takes in a array-like list of 

Little-JIL process nodes, already linked in a tree-like structure, to translate.  It also takes 

in a Boolean flag which is true if the function should determine and include all the 

possible interleavings.  There is a switch statement which checks the Little-JIL node type 

(leaf, parallel, etc.) of the root and swaps in the appropriate template.  Then the function 

runs translateChildrenRecursively root.  Since there are no loops in the translate() 

function, the time complexity of the translate() function alone is constant. 

The next translation function in Figure 12 is translateChildrenRecursively().  

translateChildrenRecursively takes in a single node and also the Boolean flag for whether 

or not to show the interleavings.  First the function gets the children of the node 

argument.  Then it loops through each child and checks if it’s an original child (from the 

original node list to be translated) and if so, then it runs swapInTemplate() with the 

appropriate template function (leaf, parallel, etc.) as an argument to swapInTemplate().  

After all the children have been translated it recursively calls itself again on all the 

current children. 

In terms of algorithmic complexity for translateChildrenRecursively(), the first 

for loop is called o number of times, where o is the number of children the node had 

when the function is started.  The second loop is called p times, which is the number of 

children the node had after the first for loop.  The number of possible children is different 

depending on the Boolean showInterleavings.  If we are not showing the explicit 

interleavings, we know that the number of children is less than 4(n – 1), where n is the 

number of nodes in the original list to be translated.  n – 1 because the node itself being 
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translated couldn’t be in the children, but theoretically all the other nodes could be.  And 

that value is multiplied by four in case all the children have been already translated and 

each been replaced by four or more template nodes.  Since o and p both will be less than 

4(n – 1), together both loops will be called less than 4(n – 1) + 4(n – 1) times or 8(n – 1) 

times, which is of linear algorithmic complexity.  So if we are not showing interleavings, 

translateChildrenRecursively() is of linear algorithmic complexity. 

 If we are showing explicit interleavings, we can say that both o and p will be 

equal to or less than (n – 1)! * (n – 1).  n – 1 in the first term because the node itself can’t 

be its own child and factorial because if all children are children of a parallel node there 

would be (n – 1)! permutations, each with (n – 1) nodes.  So if we are showing explicit 

interleavings, translateChildrenRecursively() is of factorial algorithmic complexity.   

When we consider how many times translateChildrenRecursively() calls itself 

compared to n where n is the number of nodes in the initial node list to be translated, we 

see that the complexity is linear when we are not showing interleavings and factorial 

when we are showing interleavings.  When we are not showing interleavings, each 

original node results in four nodes when translated: posted, started, terminated and 

completed.  So, the total number of nodes in the final Kripke in this case will be 4n.  

Since translateChildrenRecursively() is called once for each node in the Kripke, it will be 

called a linear number of times.  Since the number of inner loop calls is linear and the 

number of times translateChildrenRecursively() is called is linear, in the case where we 

are not showing the interleavings, the overall complexity of 

translateChildrenRecursively() is linear. 
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In the case where we are showing explicit interleavings and the node is a parallel 

started node with multiple children, we know that o is exponentially greater than n 

because o <= (n – 1)! as explained above.  So we can say the overall complexity of 

translateChildrenRecursively() is factorial when we are showing explicit interleavings. 

The last translation function in Figure 12 is swapInTemplate().  First, it loops 

through all the nodes in the template which was passed in as an argument.  For each 

template node, it adds that node to the main translated node list.  Then it removes the 

node which is being replaced by the template (such as a parallel node, in the case of a 

parallel template) and it removes any children which were replaced by interleavings 

(since all permutations are found and added, the originals must be removed or there will 

be some redundancy).   

The loop in swapInTemplate executes once for each node in the template.  This 

will be four nodes in the case of a leaf template or a sequential template.  For a parallel 

without explicit interleavings it will be the four status nodes plus any original children.  

Since the original children could not be more than n – 1 (the amount of nodes in the 

original node list to translate, minus the parallel node itself), this in the worst case 

scenario would be 4 + (n – 1) which is n + 3.  So, the complexity in that case is linear.  In 

the case of a parallel with interleavings, the worst case would be 4 + (n – 1)! which is 

factorial complexity. 

In determining the overall complexity of our translations, we see that translate() 

has linear complexity.  Both translateChildrenRecursively() and swapInTemplate() have 

linear complexity without explicit interleavings and factorial complexity with explicit 

interleavings.  So, we can say that the translation functions together have linear 
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complexity without explicit interleavings and factorial complexity with explicit 

interleavings. 

12 

translate(nodeList, showInterleavings) { 

    // swap in template for root node 

    root = nodeList.getRoot 

    switch (root.getNodeType) { 

        case leaf: root = leafTemplate(root) 

        case sequential: root = sequentialTemplate(root) 

        case parallel: root = parallelTemplate(root, showInterleavings) 

  } 

    // run translateChildrenRecursively on root 

    translateChildrenRecursively(root) 

} 

 

translateChildrenRecursively(node, showInterleavings) { 

    // translate all the children 

    for (child in node.getChildren) { 

        if (child.isOriginal) { 

          switch (root.getNodeType) { 

            case leaf: swapInTemplate(leafTemplate(node)) 

            case sequential: swapInTemplate(sequentialTemplate(node)) 

            case parallel: swapInTemplate(parallelTemplate(node, showInterleavings)) 

          } 

        } 

    } 

 

    // loop through all current children and run 

    for (child in node.getChildren) { 

      translateChildrenRecursively(child, showInterleavings) 

    } 

} 

 

swapInTemplate(template) { 
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  for (node in template.nodeList) { nodeList.add(node) }    // add template nodes to nodeList 

  nodeList.remove(template.nodeToReplace)                   // remove the node being replaced 

  nodeList.remove(template.childrenReplacedByInterleavings) // remove children replaced by interleavings 

} 

Figure 12.  Translate() Pseudocode 

 

Below in Figure 13, 14 and 15 are simplified pseudocode versions of the template 

functions.  In Figure 13 we have the leafTemplate().  First the leafTemplate() function 

creates all four leaf status nodes: leafPosted, leafStarted, leafCompleted and 

leafTerminated.  Then it hooks up the nodes of the template: leafStarted is a child of 

leafPosted and leafCompleted and leafTerminated are children of leafStarted.  Then it 

hooks up the parent nodes by looping through all the parent nodes and adding leafPosted 

as a child to each of them.  Then it hooks up the children nodes by looping through all the 

children nodes and checking them for terminated or completed status.  If they are 

terminated, it adds them as a child to leafTerminated and if they are completed, it adds 

them as a child to leafCompleted.  Then it returns a new nodeList object with leafPosted, 

leafStarted, leafCompleted, and leafTerminated as arguments.   

In terms of complexity for the leafTemplate(), the two loops in the leaf template 

are looping through the parents and looping through the children.  The number of 

possible parents and children are a little hard to predict because these could be node 

created in other translation steps.  We can say, though, in a Kripke without explicit 

interleavings, the number of parents and children will both be less than 4n each, where n 

is the number of nodes in the original node list to translate.  In a Kripke with 

interleavings, the number of parents and children will both be less than 4n + (n – 1)! The 

4n represents how each node can be replaced by a four node template and the (n – 1)! 
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represents the maximum number of possible interleaved nodes where n is all the nodes in 

the original template list and minus 1 is because we can remove the node being translated 

from the list of possible children that could be used in interleavings.  So without explicit 

interleavings, the complexity of the leafTemplate() is linear and with explicit 

interleavings it is factorial. 

13 

leafTemplate(node) { 

 

    // create template nodes 

    leafPosted = new node() 

    leafStarted = new node() 

    leafCompleted = new node() 

    leafTerminated = new node() 

 

    // hook template nodes to each other 

    leafPosted.addChild(leafStarted) 

    leafStarted.addChild(leafCompleted) 

    leafStarted.addChild(leafTerminated) 

 

    // hook up parents 

    parents = node.getParents 

    for (parent in parents) { 

        parent.addChild(leafPosted) 

    } 

 

    // hook up children 

    children = node.getChildren 

    for (child in children) { 

        if (child.getStatus == terminated) { 

            leafTerminated.addChild(child) 

        } else if (child.getStatus == completed) { 

        leafCompleted.addChild(child) 
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        } 

    } 

 

    return new nodeList(leafPosted,leafStarted,leafCompleted,leafTerminated) 

} 

Figure 13.  LeafTemplate() Pseudocode 

 

In Figure 14 below, we have the sequentialTemplate() function.  One of the first things it 

does is create the four sequential status template nodes: seqPosted, seqStarted, 

seqCompleted and seqTerminated.  Then it hooks up the template nodes to each other: 

seqStarted is added as a child to seqPosted and the first substep node is added as a child 

to seqStarted.  Then the parents are hooked up by looping through the parents and adding 

seqPosted as a child to each.  Next the substeps are hooked up. 

Hooking up the substeps is the heart of the sequential template algorithm.  A for 

statement loops through all the substeps, using i as the current index.  If i is not equal to 

the index of the last substep, the next substep is added as a child to the current substep.  If 

i is equal to the index of the last substep seqCompleted is added as a child to the current 

substep.  Regardless of whether or not i equals the index of the last substep, 

seqTerminated is added as a child of the current substep.   

The substep template concludes by hooking up the children nodes and then 

returning new nodeList template.  To hook up the children nodes, it loops through all the 

children and checks the status of each one.  If the status is terminated, the child is added 

as a child to seqTerminated.  Otherwise, the child is added as a child to leafCompleted.  

Then all four template nodes (seqPosted, seqStarted, seqCompleted, and seqTerminated) 
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are passed in as arguments to a new nodeList objects which is returned by the 

sequentialTemplate() function. 

In terms of algorithmic complexity for the sequentialTemplate() function, there 

are three loops: hooking up the parents, the substeps and the children.  Just as for the 

loops hooking up the parents and children in leafTemplate(), the complexity of the loops 

is linear without explicit interleavings and factorial with explicit interleavings.  This 

reasoning is explained above in the leafTemplate() section.  This same reasoning applies 

to the hooking up substeps loop as well, so we can conclude that sequentialTemplate()’s 

complexity is linear without explicit interleavings and factorial with interleavings. 

14 

sequentialTemplate(node) { 

    // get substeps 

    substeps = node.getSubsteps 

 

    // create template nodes 

    seqPosted = new node() 

    seqStarted = new node() 

    seqCompleted = new node() 

    seqTerminated = new node() 

 

    seqPosted.addChild(seqStarted)  // hook up template nodes to each other 

    seqStarted.addChild(substeps[0]) // hook up seqStarted to first substep 

 

    // hook up parents 

    parents = node.getParents 

    for (parent in parents) { 

        parent.addChild(seqPosted) 

    } 

 

    // hook up substeps 



 37 

    for (i=0; i<substeps.length; i++) { 

        substep = substeps[i] 

        lastIndex = substeps.length - 1 

        // if not last substep, hook up to next substep 

        if (i != lastIndex) { 

            substep[i].addChild(substep[i+1]) 

            // if last substep, hook up to seqCompleted 

        } else { 

            substep.addChild(seqCompleted) 

        } 

        // all substeps get hooked up to seqTerminated 

        substep.addChild(seqTerminated) 

    } 

 

    // hook up children 

    children = node.getChildren 

    for (child in children) { 

        // hook up seqTerminated to any children of status terminated 

        if (child.getStatus == terminated) { 

            seqTerminated.addChild(child) 

            // hook up all other children to seqCompleted 

        } else if { 

            leafCompleted.addChild(child) 

        } 

    } 

    return new nodeList(seqPosted,seqStarted,seqCompleted,seqTerminated) 

} 

Figure 14.  SequentialTemplate() Pseudocode 

 

In Figure 15 below, we have the parallelTemplate(), which is more complicated 

than the previous two templates.  First the function creates the four parallel status nodes: 

parPosted, parStarted, parCompleted and parTerminated.  Then it hooks up the template 
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nodes to each other by adding parStarted as a child to parPosted.  Then it loops through 

the parents, adding seqPosted as a child to each parent.  Next, the function uses an if 

statement with a check for the showInterleavings Boolean to provide functionality both 

showing interleavings and not showing interleavings. 

If showInterleavings is false, the parTemplate() hooks up the substeps, then hooks 

up the children and then returns a new template, newList.  To hook up the substeps, it 

loops through all the substeps twice, using i as the index for the outer for loop and j as the 

index for the inner loop.  This is to hook up every substep to every other substep.  If i 

does not equal j, then substep[j] is added as a child to substep[i].  Then the inner for loop 

closes.  The last thing the outer for loop does is hook parCompleted and parTerminated 

up to every substep. 

To hook up the children, in the case where showInterleavings is false, the function 

loops through all the children and checks their status.  If the status is terminated, the child 

is added as a child to parTerminated.  Otherwise the child is added as a child to 

parCompleted.  Finally, the parTemplate without interleavings returns a new nodeList 

object, with the following arguments: parPosted, parStarted, parCompleted, 

parTerminated and a new List object containing an argument of the original children. 

In the case that parTemplate() has showInterleavings as true, the function gets the 

explicit interleavings, calling the getInterleavings() recursive function, shown in Figure 

16 and described in that section.  Then each interleaving is looped through.  For each 

interleaving, each node of the interleaving is also looped through.  Every node first has 

all its children removed.  If it is the first node in the interleaving, it is added as a child to 

parStarted.  If it is not the last node in the interleaving, then the next node in the 
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interleaving is added as a child to the current node.  Then to hook up the children, all the 

children which are not original children (that is, all children created by the translation 

functions or all the children with statuses) are looped through and have their status 

checked.  If the child status is terminated, is added as a child to parTerminated and 

otherwise, it is added as a child to parCompleted.  Finally, the parallelTemplate() 

function with interleavings returns a new nodeList object, with the following arguments 

passed in: parPosted, parStarted, parCompleted, parTeminated and the interleavings 

node list. 

In terms of algorithmic complexity, the parallelTemplate() function has one loop 

before the showInterleavings control splits into two paths.  That initial loop cycles 

through all the parent nodes.  This loop’s complexity is linear without explicit 

interleavings and factorial with explicit interleavings, with the same reasoning as the 

parent loop in the leafTeamplate() and sequentialTemplate().   

The parallelTemplate() section where showInterleavings is false has two loops.  

The first loops through the substeps and the second loops through the children.  These are 

similar to the substep and children loops in the sequentialTemplate(), with the one 

exception that the substep loop here is actually two nested for loops.  The number of 

potential substeps without interleavings is 4n – 1 where n is the number of nodes in the 

initial node list to be translated.  The 4n is because each node in the nodeList could 

potentially be translated to four status nodes and the minus 1 is because the initial node 

will not be a substep node.  Since these worst case of 4n – 1 number of substeps is being 

looped through twice though in a nested fashion, it could potentially be executed (4n – 

1)2 times.  This is an n2 level of complexity or polynomial complexity. 
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The section of the parallelTemplate() with showInterleavings as true has two main 

loops.  The first loop cycles through all the interleavings, but then also loops through all 

the nodes in each interleaving.  We know that just the number of interleavings is already 

of an exponential complexity.  There could potentially be (n – 1)! interleavings.  The 

number of nodes would also be a factorial quantity, but there is no need to calculate it 

since we already know this loop has factorial complexity.  The second loop cycles 

through the children, which we know from the leafTemplate() and sequentialTemplate() is 

linear without explicit interleavings and factorial with explicit interleavings.  So, to 

summarize the complexity findings of the parallel template, without explicit interleavings 

it is of polynomial complexity and without explicit interleavings, the parallelTemplate() 

has factorial complexity. 

15 

parallelTemplate(node, showInterleavings) { 

 

    // create template nodes 

    parPosted = new node() 

    parStarted = new node() 

    parCompleted = new node() 

    parTerminated = new node() 

 

    // hook up template nodes 

    parPosted.addChild(parStarted) 

 

    // hook up parents 

    parents = node.getParents 

    for (parent in parents) { 

        parent.addChild(seqPosted) 

    } 
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    // get getChildren 

    children = node.getChildren 

    childrenOriginal = node.getChildrenOriginal 

    childrenNotOriginal = node.getChildrenNotOriginal 

 

    // if not showing interleavings 

    if (!showInterleavings) { 

 

        // hook up substeps 

        substeps = node.getSubsteps 

        for (i=0; i<substeps.length; i++) { 

            substep = substeps[i] 

            for (j=0; j<substeps.length; j++) { 

                if (i != j) { 

                    substep.addChild(substep[j]) 

                } 

            } 

            substep.addChild(parCompleted) 

            substep.addChild(parTerminated) 

        } 

 

        // hook up children 

        for (child in children) { 

            // hook up parTerminated to any children of status terminated 

            if (child.getStatus == terminated) { 

                parTerminated.addChild(child) 

                // hook up all other children to leafCompleted 

            } else if { 

                 parCompleted.addChild(child) 

            } 

        } 

 

        return new nodeList(parPosted, parStarted, parCompleted, parTerminated, new List(origChildren)) 

 

        // else if showing interleavings 
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    } else { 

        // get interleavings & store in global interleavings variable 

        l=0                 // index of first element to permute 

        r=child.length - 1  // index of last element to permute 

        getInterleavings(children, l, r) // stores permutations in interleavings global variable 

 

        // clean up the interleavings 

        for (interleaving in interleavings) { 

            for (i=0; i < interleaving.length; i++) { 

                thisNode = interleaving[i] 

                thisNode.removeChildren()                 // remove original children from each node 

                if (i == 0) { 

                    parStarted.addChild(thisNode)           // hook up first node in each interleaving to parStarted 

                } 

                if (i < interleavings.length - 1) { 

                    nextNode = interleaving[i + 1] 

                    thisNode.addChild(nextNode)             // link interleaving nodes in the order of each permutation 

                } 

            } 

        } 

 

        // hook up children 

        for (childNotOrig in childrenNotOriginal) { 

            status = childNotOrig.getStatus 

            if (status == TERMINATED) { 

                parTerminated.addChild(childNotOrig) 

            } else { 

                parCompleted.addChild(childNotOrig) 

            } 

        } 

        return new nodeList(parPosted, parStarted, parCompleted, parTerminated, interleavings) 

    } 

} 

Figure 15.  ParallelTemplate() Pseudocode 
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Lastly in our explanation of the translation functions, we have the 

getInterleavings() function below in Figure 16.  The intent of this function is to find all 

the possible interleavings.  This means finding all the possible permutations of the 

children in question.  Permutation calculation is a common computer science exercise.  I 

have used a recursive solution for this from the geeksforgeeks.org programming tutorial 

website [21]. 

The get interleavings recursive function takes in an array-like list, a left index and 

a right index as arguments.  The base case occurs when the left and right index are the 

same.  In that case, the current value of the list is added to a global interleavings array 

variable.  The recursive case occurs when the left and right index are not the same.  In 

that case, it runs a for loop with a start condition of left set equal to right, an end 

condition of index i being less than or equal to right and an increment of i++.  Inside the 

for loop the l and i elements of the list are swapped, then getInterleavings() is called 

again, with parameters of list, l+1 and r.  Then the list elements l and i are swapped back 

before the end of the inside of the for loop.  In effect this loop initially swaps elements on 

the left of the list and then calls getInterleavings using the new list and moves left one 

element to the right.  This ends up cycling through all possible permutations as the 

recursive calls move left to the right and as the iterations of the initial l=0 case moves i to 

the right as well.  In terms of algorithmic complexity, the getInterleavings() function will 

be recursively called more than n! where n is the number of children being interleaved.  

So getInterleavings() is certainly of factorial algorithmic complexity. 

16 

// gets all permutations of the list parameter 

// initially l is 0 and r is index of last list element 
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// this permutation strategy from https://www.geeksforgeeks.org/write-a-c-program-to-print-all-permutations-of-a-given-string/ 

getInterleavings(list, l, r) { 

    // base case 

    if (l == r) { 

        interleavings.add(list) // unique permutation found and stored in interleavings global variable 

        // recursive case 

    } else { 

        for (int i=l; i<=r; i++) { 

            swap(list[l], list[i]);             // swaps l & i elements 

            getInterleavings(list, l+1, r);     // l increases by one with each recursion until base case is met 

            swap(list[l], list[i]);             // swaps l & i elements back 

        } 

    } 

} 

Figure 16.  GetInterleavings() Pseudocode 

 

Since the translation algorithms are my main contribution, it is important to be sure they 

are accurate and are translating correctly.  To ensure this, I begin testing small 

translations visually against the Little-JIL translation rule diagrams and then 

progressively move to testing larger diagrams.  The Little-JIL translation rule diagram is 

in Figure 11. 

We start testing with perhaps the simplest diagram possible in Figure 17, a 

sequential node with two leaves.  We’ll check it against the Little-JIL rules in Figure 11 

and see if it’s correct.  On the left of Figure 17, you see a sequential node with two 

leaves, which is our starting XML graph.  From Figure 11, we would expect the 

sequential to translate to a sequential posted, a sequential started, then some substeps and 

ending with sequential completed and sequential terminated.  That is the sequential 

template.  The sequential template begins with the sequential started being a child of 
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sequential posted.  The first substep in the template in Figure 11 is a child of sequential 

started.  The second substep in the template is a child of the first substep.  The sequential 

completed comes next in the template and is a child of the second substep.  Sequential 

terminated is child of both substeps in the template.  All of what I just described about 

the sequential template diagram in Figure 11 is exactly what we see on the right of Figure 

17, except that the leaves are also translated.  So next we compare the translated leaves in 

Figure 17 with the leaf template in Figure 11. 

Given the leaf template in Figure 11, we see that a translated leaf node has a leaf 

posted, leaf started, leaf completed and leaf terminated.  The leaf template begins with 

leaf started, which is a child of leaf posted.  Next in the template in Figure 11 is a leaf 

completed and leaf terminated, which are children of leaf started.  Since with leaf 1 

begins with leaf 1 posted, leaf 1 posted should be a child of sequential started.  This 

matches substep 1 in the template diagram.  Then leaf 1 started is a child of leaf 1 posted, 

as shown in the template.  Leaf 1 completed and leaf 1 terminated are next in the 

template, as children of leaf 1 started.  For leaf 2, since it begins with leaf 2 posted, leaf 2 

posted should be a child of leaf 1 completed.  This matches substep 2 in Figure 11 and 

also matches that leaf 1 is the equivalent of substep 1 in the sequential diagram in Figure 

11 and leaf 2 is the equivalent of substep n.  Matching the template diagram, we can 

expect leaf 2 started to be a child of leaf 1 posted.  Next are leaf 2 completed and 

terminated and they are children of leaf 2 started, as in Figure 11.  Finally, we see in the 

template that sequential completed should be a child of leaf 2 completed.  Also, 

sequential terminated is a child of both leaf 1 terminated and leaf 2 terminated in the 

template.  The above descriptions of what we would expect to see with translated leaf 
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nodes 1 and 2, compared to the leaf template translation rule in Figure 11 is exactly what 

we see in Figure 17.  We can thus conclude the translator is translating a sequential with 

two leaves correctly. 

 

 

Figure 17.  Sequential With Two Leaves XML & Translation 

 

The sequential with three leaves, which we have in Figure 18, is similar to a 

sequential with two leaves in Figure 17.  The three leaf version should translate exactly 

like the sequential with two leaves, but will have one more leaf on the far right, as the last 

child of sequential 1.  Going from the leaf template rule in Figure 11, we know that a 

translated leaf has leaf started as a child of leaf posted and then leaf completed and leaf 

terminated as a child of leaf started.  This is what we see in Figure 18 for the leaf 3 
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structure.  Then to see if the other connections are correct, we know that the outgoing 

node of the previous leaf is leaf 2 completed, so it should have leaf 3 posted as a child, 

which it does.  We know that the outgoing node of leaf 3 is leaf 3 completed, so it should 

have sequential 1 completed as its child, like in the sequential template in Figure 11.  We 

know that the terminal node of leaf 3 is leaf terminated, so this should have a child of 

sequential 1 terminated.  This is exactly how the translator translated the sequential with 

three leaves, as seen in Figure 18, so we can conclude that the translator correctly 

translates a sequential with three leaves. 

 

 

Figure 18.  Sequential And Three Leaves XML & Translation 

 

Continuing in our pattern of testing more and more complicated XML diagrams, 

Figure 19 is a nested sequential: a sequential node with two children, a leaf and another 
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sequential.  The second sequential has two leaf children.  Comparing to the sequential 

template in Figure 11, we know that the translation will begin and end with sequential 1.  

The first node should be sequential 1 posted, followed by sequential 1 started.  The last 

nodes (the two terminals) in the overall structure should be sequential 1 completed and 

sequential 1 terminated.  Looking at the sequential template, sequential 1’s substeps 

should follow after sequential 1 started.  The two substeps of sequential 1 in Figure 19 

are leaf 1 and sequential 2.  Since leaf 1 is on the left, it is equivalent to substep 1 in the 

sequential template in Figure 11.  Since sequential 2 is on the right, it is the equivalent to 

substep 2 in the sequential template.  Since leaf 1 is substep 1 and sequential 2 is substep 

2, in order to match the template, after sequential 1 started, we would need leaf 1 

followed by sequential 2. 

Leaf 1 in Figure 19 should translate like the leaf template in Figure 11: leaf 

posted, followed by leaf started, followed by both leaf completed and leaf terminated.  

Since leaf posted is the entry node for the leaf template, and leaf 1 is substep 1 of 

sequential 1, leaf posted should be a child of sequential 1 started.  Since leaf 1 completed 

is the successful exit node of the leaf template, it will connect to substep 2, or sequential 

2.  Since leaf 1 terminated is the failure exit node of the leaf template, it will connect to 

sequential 1 terminated, like in the sequential template in Figure 11. 

Sequential 2 in Figure 19 should match the sequential template in Figure 11 when 

translated.   It should start with sequential 2 posted, followed by sequential 2 started, 

followed by substep 1 (leaf 2 in this case), followed by substep 2 (leaf 3), followed by 

sequential 2 completed.  Since leaf 2 and leaf 3 are the substeps of sequential 2, both 

should connect to sequential 2 terminated, like in Figure 11.  Since sequential 2 posted is 
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the template’s entry node, and sequential 2 is sequential 1’s substep 2, sequential posted 

should be a child of substep 1, or in this case, leaf 1 completed.  This is how it would 

match the sequential template in Figure 11.  Since sequential 2 is the last substep of 

sequential 1 and sequential 2’s successfully exit node is sequential 2 completed, to match 

the template, sequential 2 completed should connect to sequential 1 completed.  To match 

the template, sequential 2 terminated should also be a child of both substeps’ terminated 

nodes, so in this case sequential 2 terminated should be a child of leaf 2 terminated and 

leaf 3 terminated. 

The only part of the translation left to explain in Figure 19 is how and where leaf 

2 and leaf 3 will translate.  We have seen how leaf substeps translate above with leaf 1 

and leaf 2 and leaf 3 should follow the same structure.  Both leaves would match the leaf 

template and each have a leaf posted, leaf started, followed by both leaf completed and 

leaf terminated.  Since the leaf posted nodes are the leaf template’s entry node, sequential 

2 started should have leaf 2 posted as a child and leaf 2 completed should have leaf 3 

posted as a child (since leaf 2 completed is the leaf template’s successful exit node).  

Both leaf 2 terminated and leaf 3 terminated should connect to sequential 2 terminated to 

match the sequential template in Figure 11. 

All the above descriptions of how the nested sequential on the left of Figure 19 

should translate to match the templates in Figure 11 are exactly how the translated graph 

on the right of Figure 19 do in fact look.  So, we can conclude that the translator is 

translating nested sequential structures correctly.  The next graph we will check for 

correctness in Figure 20 is the same nested sequential in Figure 19, but with sequential 

1’s children’s order reversed. 
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Figure 19.  Nested Sequential XML & Translation 

 

Another test of the correctness of the nested sequential nodes would be to reverse 

the order of sequential 1’s children from Figure 19.  So, in Figure 20 we also have a 

nested sequential but sequential 2 is the first child of sequential 1.  Here we would expect 

sequential 1 started to be a child of sequential 1 posted, to match the sequential template 

in Figure 11.  Then sequential 1 posted should be a child of sequential 1 started, as in the 

template.  If the template structure continues, we would expect sequential 1 started to be 

a child of sequential 1 posted.  Then we would expect leaf 1 posted to be a child of 

sequential 2 started.  Then to match the leaf template in Figure 11, leaf 1 started should 

be a child of leaf 1 posted and leaf 1 completed and terminated should be children of leaf 

1 started.  Then we would expect leaf 2 posted to be a child of leaf 1 completed, since 
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leaf completed is the leaf template’s exit successful exit node.  Then also following 

Figure 11’s leaf template, leaf 2 started should be a child of leaf 2 posted and leaf 2 

completed and terminated should be children of leaf 2 started.  Then we would expect 

leaf 3 posted to be a child of sequential 2 completed.  Then, if the leaf template holds 

again for leaf 3, leaf 3 started should be a child of leaf 3 posted and leaf 3 completed and 

terminated should be children of leaf 3 started.  Then sequential 1 completed should be a 

child of leaf 3 completed, since leaf 3 is substep 2 of sequential 1.  We would also expect 

sequential 2 terminated to be a child of both leaf 1 terminated and leaf 2 terminated, to 

match the template.  We would expect sequential 1 terminated to be a child of sequential 

2 terminated and leaf 3 terminated.  This is all exactly what we see in Figure 20, so we 

can conclude that the translator can translate a nested sequential correctly.  This is all 

exactly what we see in Figure 20, so we can continue to maintain that the translator is 

translating nested sequential nodes correctly. 
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Figure 20.  Another Nested Sequential XML & Translation 

 

Continuing to test more complex diagrams against the translation rules in Figure 

11, we now begin to test parallel nodes.  First, we check the parallel with two leaves in 

Figure 21 and 22.   In Figure 21 we have the XML and translation without explicit 

interleavings.  In Figure 22 we have the translation with explicit interleavings.  Then in 

Figure 23 and 24 we have a parallel with three leaves.  Then in Figure 25 and 26 we have 

a parallel with four leaves.  We conclude our correctness of translation of simple parallel 

nodes with Figure 27 and 28, of a parallel with five leaves.  We finish our parallel testing 

with a translation of two parallel nodes, each with two leaves. 

In Figure 21, we have the XML and translation without interleavings of a parallel 

node with two leaf children.  This is exactly the same arrangement as the parallel 

template in Figure 11, but here the leaf substeps are also translated.  So matching Figure 

11, we would expect parallel 1 posted to be the first node and for parallel 1 started to be 
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a child of parallel 1 posted.  Since leaf 1 in Figure 21 corresponds to substep 1 in the 

parallel template, we would expect leaf 1 to be a child of parallel started and then since 

leaf 2 corresponds to substep 2, we expect leaf 2 to be a child of leaf 1.  When leaf 1 and 

leaf 2 are translated, we check if they match against the leaf template in Figure 11.  So, 

we would expect leaf 1 posted and leaf 2 posted to be children of parallel started.  We 

would expect leaf 1 started to be a child of leaf 1 posted and leaf 2 started to be a child of 

leaf 2 posted, if the template holds.  We could expect leaf 1 completed and leaf 1 

terminated to be children of leaf 1 started since that’s how they are arranged in the leaf 

template.  We would expect leaf 2 completed and leaf 2 terminated to be children of leaf 

2 started, like in the template.  We would also expect leaf 1 posted to be a child of leaf 2 

completed and for leaf 2 posted to be a child of leaf 1 completed, since leaf 1 and leaf 2 

are both children of each other in the template and since completed is the exit node and 

posted is the entrance node.  We would expect parallel complete and parallel terminated 

to be children of both leaf 1 complete and leaf 2 complete, like in Figure 11.   

 

 

Figure 21.  Parallel With Two Leaves XML & Translation 
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For the explicit interleavings diagram in Figure 22, we would expect this diagram 

to look the same as Figure 21 going down from the top until leaf 1 and leaf 2 come to 

their complete and terminate nodes.  Then because we are showing the explicit 

interleavings, we expect to see all the permutations of leaf 1 and leaf 2.  There should be 

2! permutations since there are two nodes to permute and the equation for permutation is 

x! where x is the number of items to permute.  Since 2! equals two, we expect to see two 

interleavings.  Spelling these out specifically, the first permutation is leaf 1 followed by 

leaf 2 and the second is leaf 2 followed by leaf 1.  According to the leaf template in 

Figure 11, all these leaves will each have leaf posted, followed by leaf started, followed 

by both leaf completed and leaf terminated.  We would then expect, to match the parallel 

template, that leaf 2 posted will be a child of leaf 1 completed and leaf 1 posted will be a 

child of leaf 2 completed.  We would expect parallel terminated to be a child of the 

terminated node of both interleavings, to match Figure 11.  We would also expect 

parallel completed to be a child of the completed nodes of both interleavings.  This is all 

exactly what we see in Figures 21 and 22, so we can conclude that the translation of 

parallel with two leaves is correct. 
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Figure 22.  Parallel With Two Leaves (Explicit Interleavings) 

 

Now we test a parallel with three leaf node children in Figures 23 and 24.  

Following the translation rules in Figure 11, we’d expect the right side of Figure 23 to be 

exactly like the right side of Figure 21, but with leaf 3 added in.  We would expect leaf 3 

posted to be a child of parallel started, since like leaf 1 and 2, leaf posted is the leaf 

template entry node.  We’d expect leaf 3 started to be a child of leaf 3 posted and leaf 3 

completed and leaf 3 terminated to be children of leaf 3 started, according to the leaf 

template.  We also expect parallel completed to also be a child of leaf 3 completed and 

parallel terminated to also be a child of leaf 3 terminated, as in the parallel template in 

Figure 11. 
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Figure 23.  Parallel With Three Leaf Nodes XML & Translation (No Explicit 

Interleavings) 

 

For Figure 24, since there are three children to the parallel node in the XML, we 

would expect there to be 3! or six interleavings in the translation with explicit 

interleavings.  This is what we see in Figure 24.  We would expect this diagram to be 

quite similar to Figure 22, but with four more interleavings.  Each of the interleavings 

should have three translated leaf nodes, each with the structure of posted, then started, 

then completed and terminated, according to the leaf template in Figure 11.  Each final 

leaves’ leaf completed in the interleaving should connect to parallel 1 completed, since in 

Figure 11, each substep connects to parallel completed and leaf completed is the 

template’s success exit point.  Each leaf’s started node should connect to parallel 1 

terminated, since leaf started is the failure exit point.  The six permutations should cover 

the six possible orderings of three items: 123, 132, 213, 231, 321, 312.  This is all exactly 

what we see in Figure 24, so we can conclude that the translator is translating parallel 

nodes with three leaf children correctly. 
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Figure 24.  Parallel With Three Leaf Nodes (Explicit Interleavings) 

 

We now test a parallel node with four leaf nodes.  In Figure 25 we have a parallel 

with four leaf children.  We would expect the right side of this diagram to be exactly like 

Figure 23, with the addition of the fourth leaf.  Adding the fourth leaf closely follows the 

pattern that adding the third leaf in Figure 23 did.  We would expect this new leaf to 

follow the same rules as the other three.  When translated, the four new leaf nodes are 

leaf posted, leaf started, leaf completed and leaf terminated.  Like leaves 1-3, leaf 4 

posted should be a child of parallel 1 started.  Like the other three, leaf 4 completed has a 

child of parallel 1 completed as well as leaf 1 posted, leaf 2 posted and leaf 3 posted.  

Similarly, leaf 4 terminated has a child of parallel 1 terminated.  This all matches the 

parallel template in Figure 11. 
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Figure 25.  Parallel With Four Leaf Nodes XML & Translation (No Explicit 

Interleavings) 

 

In my testing, this is the point where the graphs become so large, they begin to get 

more and more difficult to read.  On the computer, you can zoom in and zoom out, which 

helps a lot if you are patient and can pan around a lot.  For the parallel with four leaves 

with interleavings, we would expect there to be 4! or 24 interleavings.  You can see in 

Figure 26 the 24 leaf posted nodes in the very top row with more than one node.  From 

this and from considering the previous parallel translations which were accurate, it seems 

likely the parallel with four leaves has been translated correctly. 

 

 

Figure 26.  Parallel With Four Leaf Nodes XML & Translation (Explicit Interleavings) 

 

In Figure 27 we have a parallel node with five leaf nodes.  Following the pattern 

above, we can see the fifth leaf added at the far right.  It is following the same rules that 

the other four leaf nodes are.  In Figure 28, we have the translation of the parallel with 

five leaf children with interleavings.  This graph is so large (about 2400 nodes), it is 
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almost impossible to read here in the paper.  But we know that with five children, the 

parallel node should have 300 interleavings.  Although difficult to say with certainty, it 

seems likely that there are 300 interleavings in the graph.  Given the correctness of the 

above parallel graphs, it seems likely that this graph is also correct. 

 

 

Figure 27.  Parallel With Five Leaf Nodes XML & Translation (No Explicit 

Interleavings) 

 

 

Figure 28.  Parallel With Five Leaf Nodes XML & Translation (With Explicit 

Interleavings) 

 

The last translation we examine for correctness is a dual parallel structure.  The 

XML graph can be seen in Figure 29.  Parallel 1 has two children, parallel 2 and parallel 

3.  Both parallel 2 and parallel 3 have two leaf children.  Parallel 2 has leaf 1 and leaf 2 

as children and parallel 3 has leaf 3 and leaf 4 as children.  Looking at the parallel 

template in Figure 11, we expect to see the parallel pattern in Figure 29 three times, once 

for each parallel node.  To match the template, the translation would start with parallel 1 

posted, which would have parallel 1 started as a child.  Since parallel 1 has two 
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substeps, we expect to see both substeps as children of parallel started, like in Figure 11.  

We do see parallel 2 and parallel 3 as children of parallel 1.  For a moment, we can skip 

over parallel 2 and 3 posted’s children.  To complete the initial parallel pattern in Figure 

11, we know that parallel 2 and 3 will connect to parallel 1 completed and parallel 1 

terminated.  We see towards the bottom of Figure 29 that parallel 2 completed and 

parallel 3 completed both connect to parallel 1 completed, which is what we would 

expect.  Similarly, parallel 2 terminated and parallel 3 terminated both have parallel 1 

terminated as a child, which matches the parallel template in Figure 11. 

Now we can go back and focus on parallel 2 and 3 posted’s children.  Here we 

expect parallel 2 and parallel 3 to each match the parallel template in Figure 11.  

Parallel 2 posted has parallel 2 started as a child, just as parallel 3 posted has parallel 3 

started as a child.  Referring back to Figure 11, leaf 1 and 2 correspond to substep 1 and 

2, just as leaf 3 and 4 also correspond to substep 1 and 2.  So if it will match the parallel 

template, substeps 1 and 2 will have each other as children, as will substep 3 and 4 have 

each other as children.  Then if it matches the template, leaf 1 and 2 will both connect to 

parallel 2 completed and parallel 2 terminated, just as leaf 3 and 4 will both connect to 

parallel 3 completed and parallel 3 terminated.  We know from Figure 11’s leaf template 

that each leaf when translated will be a leaf posted, which connects to a leaf started, 

which then connects to both a leaf completed and a leaf terminated.  All four leaves do in 

fact have this structure.  Since leaf posted is the entry node to the leaf, parallel 2 started 

has leaf 1 posted and leaf 2 posted as children.  The same with parallel 3 having leaf 3 

and leaf 4 as children.  Since leaf completed is the success exit node of the leaf, leaf 1 

completed and leaf 2 completed both have parallel 2 completed as a child to match the 
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parallel template where both substeps connect to parallel completed.  The same with leaf 

3 and 4.  Both leaf 3 completed and leaf 4 completed have parallel 3 completed as a child.  

Also matching the parallel template, we see that leaf 1 terminated and leaf 2 terminated 

both connect to parallel 2 terminated.  In the same way, leaf 3 terminated and leaf 4 

terminated both connect to parallel 3 terminated.  Thus, we see all three parallel patterns 

do in fact match the parallel template.  So, we can conclude that the parallel nodes 

running themselves in parallel do translate correctly when explicit interleavings are not 

shown. 

 

 

Figure 29.  Dual Parallel XML & Translation (Without Explicit Interleavings) 

 

In Figure 30 we have the dual parallel translation with explicit interleavings.  This 

graph should match Figure 29, but have all the permutations of all parallel children 

showing.  Since all three parallel nodes in this graph have two substeps, we expect to see 

2! or two permutations for each.  Starting with parallel 1, we do see that parallel 2 

precedes parallel 3 on the left and that parallel 3 precedes parallel 2 on the right.  So, the 

first interleaving calculation looks correct.  Now both sets of parallel 2 and both sets of 

parallel 3 should each have two interleavings of their children.  We do in fact see this in 
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Figure 30.  Parallel 2 on the left and parallel 2 on the right each have leaf 1 preceding 

leaf 2 and then as leaf 2 preceding leaf 1 under it.  The same with parallel 3.  Both the 

parallel 3 on the left and the parallel 3 on the right have leaf 3 preceding leaf 4 and also 

leaf 4 preceding leaf 3.  So all our permutations are accounted for. 

Now that we know the interleavings are correct in Figure 30, we should also 

check that all the connections in Figure 30 are correct.  For all eight leaf interleavings, the 

final node connects to the correct parallel completed node.  And for all eight leaf 

interleavings, each leaf terminated connects to the correct parallel terminated node.  We 

can conclude that the translator has translated the translation with explicit interleavings 

correctly. 

 

 

Figure 30.  Dual Parallel Translation (With Explicit Interleavings) 

 

In trying to assess the correctness of the COVID graph mentioned above, as well 

as the banking graph, we lean on correctness with the above graphs to infer that the 

COVID and banking translations are correct.  The COVID and banking graphs with 

explicit interleavings are quite massive, so it difficult to walk through each node and 

explain it with certainty. 
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VI.  RELATED WORK 

Although a fair amount of work has already been done in adjacent areas, none has 

taken the same approach as this paper, automatically combining Little-JIL processes to 

run concurrently and then to check for properties.  Some notable work, though, on model 

checking Little-JIL processes has been done by Lerner.  Lerner published a paper on 

model checking in Little-JIL, using a prebuilt model checking tool called LTSA [4]. Their 

using a prebuilt tool is one way their work is different than mine.  My translator and 

analyzer were written from scratch, which gives a kind of customizable experience not 

always possible with prebuilt tools.  Another difference is that Lerner’s approach is not 

one that combines processes, just runs single processes. 

Chen et al. have explored detecting safety critical defects in Little-JIL processes 

by automatically generating fault trees.  As long as the process being studied is very well 

defined in Little-JIL, they found automatic fault generation quite complete and beneficial 

in identifying errors in the process.  They presented an algorithm which generated the 

fault trees from Little-JIL process definitions [5].  The defects they searched for had to do 

with wrong inputs (artifacts or resources) to a step.  This is quite a different approach 

from mine because model checking for any given property because a property does not 

have to be an input.  A property can just be a condition (like “the sky is blue”).  Also, 

model checking in some ways is more powerful because of its temporal nature.  Although 

model checking can be combined with fault tree analysis, that is not what Chen et al.’s 

work is about.  Chen’s work is also not about parallel processes. 
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Rura and Lerner have studied Little-JIL static analysis using a constraint checker 

to find semantic errors and programming anomalies in processes.  They used xlinkit, a 

commercial constraint checker, which uses an XML type input process and compares the 

process to rules.  Examples of defects they look for are data loss, infinite recursion and 

race conditions [6].  This differs from my work in a few ways.  They are checking for 

semantic errors and process anomalies, but not for properties within the processes.  They 

are not using concurrency or automatic combination. 

Similarly, Cobleigh et al. used FLAVERS, a finite state verification system to 

verify properties of Little-JIL processes.  FLAVERS uses a control flow graph model and 

for concurrent processes, a trace flow graph.  They checked for race conditions, among 

other properties [7].  Although this work is similar to mine in that it is model checking on 

Little-JIL processes, there is no element of automatic process combination like in my 

work.  Also, they use FLAVERS for model checking, whereas my model checker is built 

from scratch. 

Some of the work model checking concurrent processes is quite sophisticated.  

Gupta explored the pros and cons of model checking with push down systems.  Part of 

their work is finding concurrency bugs with model checking [8].  One difference between 

their work and mine is they aren’t using Little-JIL and they also aren’t using automatic 

process combination.  They use VeriSol for model checking, where my model checker is 

written by hand.  They use a variety of strategies to reduce the bottlenecks caused by 

interleavings such as partial order reduction and property-driven pruning. 
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Mongiello and Castelluccia wrote a paper on model checking properties on the 

BEPL business process language.  BEPL stands for business execution process language 

and is a “graph-based description language for composition of web service that is 

especially suitable to model requirements of enterprise applications.”  They check for 

properties about the message exchange protocol involved in web service communication.  

Like in my work, they use CTL.  They use NuSMV as the input language to express the 

formal model [26].  The main differences between their work and mine is that I use 

Little-JIL and that I automatically combine different processes to model concurrency. 

Cheng et al. studied formal verification of embedded software, using automated 

mapping from model components to the math used by verification.  They use Ptolemy II 

for modelling embedded processes and NuSMV for model checking.  They use Kripke 

structures as well as communicating timed automata to represent the processes in a 

format for model checking.  They present a case study of traffic lights where there are 

two lights, one for cars and one for pedestrians.  The property they use is whether the 

light is green or not.  The proposition they check is whether it is impossible to have the 

car light and the pedestrian light at the same time.  Their SMV model checker results 

showed that the specification did hold [27].  This work is different from mine in that it 

does not automatically combine two or more processes to represent concurrent operation. 

Yin et al. did research around designing algorithms to help streamline issues 

stemming from the path explosion problem when verifying concurrent programs.  Their 

work reduces the number or required iterations by refinement constraint and learnt clause 

sharing.  They achieved a linear reduction of iterations.  This work is only related to mine 

in an adjacent way.  They focus in on the one problem of path explosion in model 
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checking and offer some creative solutions.  My work also explores the path explosion 

problem, but in relation to automatically combining one or more processes, potentially 

written by different people or organizations.  Interestingly, in their experimental results, 

the times their processes took to run are much larger than those in my results.  Their 

fastest example is 3.7 seconds and their slowest is 496 seconds.  All my results were less 

than 1 second, although it seems that their data set (SV-COMP 2018 benchmarks) is 

likely running much larger examples than I ran.  [28] 
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VII.  EVALUATION & EXPERIMENTAL RESULTS 

The main conclusions drawn from this paper is that both translation time and 

analysis time roughly increase linearly with an increase in the number of nodes in the 

graph.  Translation time increases dramatically with interleavings.  Analysis time in the 

general case decreases with interleavings, but when the graph is extremely large, it 

increases.  Also, modern personal computing processor power is easily sufficient for 

moderately sized graphs (5-20 nodes before translation, 1,500 – 2,500 after translation)

 When combining the COVID-19 experience in parallel with the hospital’s 

ordering of the ventilator, I found that the safety property of “someone who is a high risk 

to others will never be at home” held for all states, but that the liveness property of “if a 

ventilator is requested, it will eventually be available for use” did not hold for all states.  

So, it is true that someone who is a high risk to others will never be at home, but it is not 

true that a ventilator which is requested will necessarily eventually become available.  

My analyzer program (about 32,000 lines of Java code) determined that one 

counterexample path for the liveness property was 

(s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15,s16,s17,s18,s19,s20,s21,s22,s23,s24

,s25,s26,s27,s28,s29,s30,s31,s32,s33,s34,s35,s36,s37,s38,s39,s40,s41,s42,s43,s44,s45,s4

6,s47,s48,s49).  The analyzer took 0.017812 seconds to check the safety property and 

0.086823 seconds to check the liveness property.  By modelling the processes and 

graphing them in parallel, we have results which could theoretically be live saving, if this 

were an actual process used by a hospital.  The combined covid-hospitalization-simple.ljx 

and ventilator-order.ljx processes, when translated with interleavings, have 1,635 nodes.  

I had not anticipated nearly this many nodes, but it turned out the large number of 
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interleavings nodes made the number of nodes very large.  I had feared the program 

would crash if the number of nodes became too big, but it actually handled them quite 

easily in this example. 

Below are the translated graphs for the COVID-19 example created by my 

algorithms modelling the Little-JIL translation specification.  First are the translated 

graphs without interleavings and then the translated graphs with interleavings.  The 

graphs with interleavings really blow up in size exponentially, compared to the graphs 

without interleavings.   
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Figure 31.  COVID-19 Translation Graph (Without Interleavings) 
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Figure 32.  COVID-19 Translation Graph (With Interleavings) 

 

Below in Figure 33 are the graphs for the process checks XML graph and the 

process transfers XML graph, combined and running in parallel. 

 

 

Figure 33.  Combined XML ProcessChecks & ProcessTransfers Graphs In Parallel 
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I’ve included the banking Kripke graph (without explicit interleavings) in 

Appendix C because of its large size.  Below are the translated parallel banking graphs 

with explicit interleavings.   

 

 

Figure 34.  Bank-Parallel Graph Translated (Without Interleavings)  

 

The banking problem, “The transfer buffer is always null until the checks array 

size is zero and the checks buffer is closed” or A[¬t U(s∧¬q)], when evaluated, proved to 
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not be true for all states.  One counter example path the analyzer came up with is (s0).  In 

English, this is saying that although s0 has ¬t (the transfer buffer is null), it does not have 

(s∧¬q) as its child, so it is not true that the transfer buffer is necessarily null until the 

array buffer size is zero and checks buffer is null.  So, it is not true that transfers are never 

processed until deposits have been processed.  The combined ProcessChecks and 

ProcessTransfers graphs translated and running in parallel with interleavings has 379 

nodes.  The analyzer checked the A[¬p Uq∧¬r] model in 0.003197 seconds.  This is very 

helpful information and could theoretically keep accounts from being incorrectly marked 

as overdrawn. 

I also created some abstract XML graphs to translate, just to get better 

benchmarks on how quickly graphs of different sizes were being translated and to 

understand exactly how well or poorly my computer (2019 MacBook Pro with 2.6 GHz 6 

core i7 processor and 32 GB RAM) was handling the exponential blowup in larger graphs 

with many interleavings. 

 

Table 1. Experimental Results: Time To Translate & Analyze 

Problem # of nodes 

(total after translation,  

including 

interleavings) 

Proposition 

in English 

Model Does 

model 

hold  

Counter 

example path 

if does not 

hold 

Time to 

translate 

(seconds) 

Time to 

check model 

(seconds) 

COVID 1,635 “someone 

who is a 

high risk to 

others will 

never be at 

home” 

AG¬(r∧v)  Yes - 0.050548 0.018945 
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COVID 1,635 if a 

ventilator is 

requested, 

it will 

eventually 

be available 

for use” 

AG(p→AF(q)) No (s0,s1,s2,s3,s4,s5,s6

,s7,s8, 

s9,s10,s11,s12,s13,s

14, 

s15,s16,s17,s18,s19,

s20,s21, 

s22,s23,s24,s25,s26, 

s27,s28,s29,s30,s31,

s32,s33, 

s34,s35,s36,s37,s38, 

s39,s40,s41,s42,s43,

s44,s45, 

s46,s47,s48,s49) 

0.0475

99 

0.08459 

Banking-

Parallel 

379 “The 

transfer 

buffer is 

always null 

until the 

checks 

array size is 

zero and 

the checks 

buffer is 

closed” 

A[¬p Uq∧¬r] No (s0) 0.0157

28 

0.002371 

Parallel 

Node 

With 

Two 

Leaf 

Children 

19 “For every 

path, the 

heart is 

ready in the 

next state” 

AX(p) Yes - 0.0033

23 

 

0.000157 

 

Parallel 

Node 

With 

Three 

75 “There 

exists a 

path where 

the hold 

door button 

EF(p) Yes - 0.0024

86 

0.000228 
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Leaf 

Children 

is pressed 

in a future 

state” 

Parallel 

Node 

With 

Four 

Leaf 

Children 

387 “For all 

paths, the 

alarm is 

sounding in 

all states” 

AG(p) No {s0,s1,s2} 0.0026

52 

0.000609 

Parallel 

Node 

With 

Five 

Leaf 

Children 

2403 “For all 

paths, 

decibels are 

greater than 

100 in the 

next state” 

AX(p) Yes - 0.0937

26 

0.043702 

Parallel 

Node 

With Ten 

Leaf 

Children 

Throws 

OutOfMemor

yError: Java 

heap space 
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Figure 35.  Numbers Of Nodes Vs Translation Time & Model Check Time 

 

Table 2.  Translation/Analysis Time With & Without Interleavings 

  without interleavings with interleavings 

Problem Model # of 

nodes  

translation 

time  

(seconds)  

Analysis 

time  

(seconds) 

# of 

nodes 

Translation 

time  

(seconds) 

Analysis 

time 

(seconds) 

COVID AG¬(r∧v)  84 0.004577 0.028435 1,635 0.050548 0.018945 

COVID AG(p→AF(q)) 84 0.004837 0.138157 1,635 0.047599 0.08459 

Banking-

Parallel 

A[¬p Uq∧¬r] 196 0.007779 0.002238 379 0.015728 0.002371 

Parallel Node 

With Two Leaf 

Children 

AX(p) 8 0.001806 0.000148 19 0.003323 

 

0.000157 

 

Parallel Node 

With Three 

Leaf Children 

EF(p) 16 0.002527 0.00039 75 0.002486 0.000228 
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Parallel Node 

With Four Leaf 

Children 

AG(p) 20 0.002321 0.005053 387 0.002652 0.000609 

Parallel Node 

With Five Leaf 

Children 

AX(p) 24 0.002202 0.040588 2403 0.093726 0.043702 

 

 

Figure 36.  Translation Time With And Without Interleavings 
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Figure 37.  Analysis Time With And Without Interleavings 
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VIII.  FUTURE WORK 

More work that could be done in this area is improving the readability and visual 

layout of the types of large graphs parallel Little-JIL process create.  Improved 

visualization algorithms, while not affecting the logical results of CTL, could be helpful 

in quickly expressing the results clearly. 
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APPENDIX SECTION 

 

Appendix A: Little-JIL Translation Code 

 

Figure 38.  GetTranslatedVertexList() 

 

 

Figure 39.  TranslateRootVertex() 
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Figure 40.  TranslateChildrenRecursively() 

 

 

Figure 41.  TranslateVertexsChildren() 
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Figure 42.  TranslateVertex() 
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Figure 43.  Leaf Template (1/3) 
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Figure 44.  Leaf Template (2/3) 
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Figure 45.  Leaf Template (3/3) 

 



 85 

 

Figure 46.  Sequential Template (1/4) 
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Figure 47.  Sequential Template (2/4) 
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Figure 48.  Sequential Template (3/4) 
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Figure 49.  Sequential Template (4/4) 
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Figure 50.  Parallel Template (1/6) 
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Figure 51.  Parallel Template (2/6) 
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Figure 52.  Parallel Template (3/6) 
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Figure 53.  Parallel Template (4/6) 
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Figure 54.  Parallel Template (5/6) 

 

 

Figure 55.  Parallel Template (6/6) 
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Appendix B: Banking Problem Code  

 

Figure 56.  ProcessChecks.java 
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Figure 57.  ProcessTransfers.java 
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Appendix C: Large Translation and Interleavings Graphs 

 

 

Figure 58.  Banking Translation Graph (1/2) 
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Figure 59.  Banking Translation Graph (2/2) 
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Appendix D: Tests 

 

Figure 60.  One Step Test 

 

 

Figure 61.  Two Steps Test 
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Figure 62.  Three Steps Test 

 

 

Figure 63.  Four Steps Test 
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Figure 64.  Five Steps Test 

 

 

Figure 65.  Sequential Test 

 

 

Figure 66.  Parallel Two Steps Test 
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Figure 67.  Parallel Three Steps Test 

 

 

Figure 68.  Sequential With Two Substeps Test 
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Figure 69.  Parallel With Two Substeps Test 

 

Appendix E: Table Data Sources 

 

Table 3.  Data Source With Both COVID Results 

 

Problem Model 
Number of 
Nodes 

Translation 
Time 

Model Check 
Time 

Translation + 
Model Check Time 

COVID AG¬(r∧v)  1635 0.050548 0.018945 0.069493 

COVID AG(p→AF(q)) 1635 0.047599 0.08459 0.132189 

COVID 

average of both 
AG¬(r∧v) &  

AG(p→AF(q)) 1635 0.0490735 0.0517675 0.100841 

Banking-
Parallel A[¬p Uq∧¬r] 379 0.015728 0.002371 0.018099 

Parallel & 2 
Leaves AX(p) 19 0.003323 0.000157 0.00348 

Parallel & 3 
Leaves EF(p) 75 0.002486 0.000228 0.002714 

Parallel & 4 
Leaves AG(p) 387 0.002652 0.000609 0.003261 

Parallel & 5 
Leaves AX(p) 2403 0.093726 0.043702 0.137428 

 

Table 4.  Data Source With Averaged COVID Results 

 

Problem Model 
Number of 
Nodes 

Translation 
Time 

Model Check 
Time 

Translation + 
Model Check Time 

Parallel & 2 
Leaves AX(p) 19 0.003323 0.000157 0.00348 

Parallel & 3 
Leaves EF(p) 75 0.002486 0.000228 0.002714 

Banking-
Parallel A[¬p Uq∧¬r] 379 0.015728 0.002371 0.018099 
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Parallel & 4 
Leaves AG(p) 387 0.002652 0.000609 0.003261 

COVID 

average of both 
AG¬(r∧v) &  

AG(p→AF(q)) 1635 0.0490735 0.0517675 0.100841 

Parallel & 5 
Leaves AX(p) 2403 0.093726 0.043702 0.137428 
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