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Abstract. In this article, we consider the p-Kirchhoff type problem“
1 + λ

Z
RN
|∇u|p + λb

Z
RN
|u|p

”
(−∆pu+ b|u|p−2u) = f(u), x ∈ RN ,

where λ > 0, the nonlinearity f can reach critical growth. Without the
Ambrosetti-Robinowitz condition or the monotonicity condition on f , we prove

the existence of positive solutions for the p-Kirchhoff type problem. In addi-

tion, we also study the asymptotic behavior of the solutions with respect to
the parameter λ→ 0.

1. Introduction and statement of results

In this article, we study the p-Kirchhoff type problem(
1 + λ

∫
RN
|∇u|p + λb

∫
RN
|u|p

)
(−∆pu+ b|u|p−2u) = f(u) in RN , (1.1)

where b, λ > 0, ∆pu := div(|∇u|p−2∇u) with 1 < p < N and the nonlinearity f
may be critical. Problem (1.1) with p = 2 reduces to the Kirchhoff type problem

(1 + λ

∫
RN
|∇u|2 + λb

∫
RN
|u|2)(−∆u+ bu) = f(u) in RN . (1.2)

In the previous decades, the Kirchhoff type problem (1.2) has been object of inten-
sive research as its strong relevance in applications. From a physical point of view,
problem (1.2) on bounded domain Ω ⊂ RN is related to the stationary analogue of
the equation

ρ
∂2u

∂t2
−
(P0

h
+

E

2L

∫ L

0

|∂u
∂x
|2 dx

)∂2u

∂x2
= 0, (1.3)

which is proposed by Kirchhoff in [10] as an existence of the classical D’Alembert’s
wave equations for free vibration of elastic strings. After Lions [12] introduced a
functional analysis approach to equation (1.3), he gave the equation

utt −
(
a+ b

∫
Ω

|∇u|2 dx
)

∆u = f(x, u), x ∈ Ω, u = 0, x ∈ ∂Ω. (1.4)
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When Kirchhoff’s model takes into account the change of the string length caused
by oscillations, u represents the displacement, f(x, u) denotes the external force,
b is the initial tension while a is related to the intrinsic properties of the string,
such as Young’s modulus. Moreover, problem (1.2) on bounded domain appears
in many mathematical biological contexts. In [1], Kirchhoff type problem models
some biological systems, where u describes a process which depends on the average
of itself, such as population density.

In recent years, Kirchhoff type problems on RN have been studied widely by the
variational methods and results can be seen in [9, 11, 13, 14]. Especially, in [11], Li
et al. considered problem (1.2) under the following conditions

(A1) f ∈ C(R+,R+) and |f(t)| ≤ C1(|t|+ |t|p−1) for t ≥ 0 and some p ∈ (2, 2∗);
(A2) limt→0 f(t)/t = 0;
(A3) limt→∞ sup f(t)/t =∞.

Theorem 1.1 (see[11]). Assume that N ≥ 3 and (A1)–(A3) hold. Then there
exists λ0 > 0 such that for any λ ∈ [0, λ0], problem (1.2) has at least one positive
solution.

Subsequently, Liu, Liao and Tang [14] studied problem (1.2) under some weaker
conditions than the ones in [11]. In [11, 14], the authors only considered problem
(1.2) with subcritical growth. For the p-Kirchhoff type problem (1.1), there are
also many results, see for example [2, 5, 6, 8]. Autuori, Colasuonno and Pucci
[2] obtained two nontrivial solutions of possibly degenerate nonlinear eigenvalue
problems involving the p-poly-harmonic Kirchhoff operator in bounded domains.
Using the Nehari manifold method, Chen and Zhu [6] obtained positive solutions
to the problem[
a+λ

(∫
RN

(|∇u|p+b|u|p)dx
)τ]

(−∆pu+b|u|p−2u) = |u|m−2u+µ|u|q−2u, x ∈ RN .

For fractional p-Kirchhoff problems, we refer to [18] and the references therein.
The papers cited above were all focused on p-Kirchhoff type problem with sub-

critical growth. Many of them need usual compactness conditions. Compared
to p-Kirchhoff problems with subcritical growth, there are few results in term of
p-Kirchhoff type problem involving critical growth. In [19], the author only consid-
ered the p-Kirchhoff type problem with specified critical growth term, not involving
general critical growth. To the best of our knowledge, without usual compactness
condition, there are few results conducted on problem (1.1) with general nonlinear-
ity f reaching critical growth.

Main results. In this article, we study p-Kirchhoff type problem (1.1) with critical
growth. Throughout the paper, f ∈ C(R+,R+) with R+ = [0,+∞) and satisfies

(A4) lims→0 f(s)/sp−1 = 0;
(A5) lims→∞ sup f(s)/sp

∗−1 ≤ 1, where p∗ = Np/(N − p);
(A6) There are α > 0 and q ∈ (p, p∗) such that f(s) ≥ αsq−1 for all s ≥ 0.
Condition (A5) implies that f has a critical growth at infinity and the limit of

f(s)/sp
∗−1 at +∞ is not necessary to exist.

Let S and Cs denote the best constants of Sobolev embeddings D1,p(RN ) ↪→
Lp

∗
(RN ) and W 1,p(RN ) ↪→ Ls(RN ), namely,

S
(∫

RN
|u|p

∗
)p/p∗

≤
∫

RN
|∇u|p for all u ∈ D1,p(RN ),
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Cs

(∫
RN
|u|s
)p/s

≤
∫

RN
(|∇u|p + b|u|p) for all u ∈W 1,p(RN ).

Our main results read as follows.

Theorem 1.2. Assume (A4)–(A6) hold. Then there exists λ∗ > 0 such that, for
any λ ∈ (0, λ∗), problem (1.1) possesses a nontrivial positive radial solution uλ,
provided that

α > S
N(p−q)
p2 Cp/qq m

N(p−q)
p2

+ q
p

(
N

p
− N

q

) q−p
p

.

Theorem 1.3. Assume (A4)–(A6) hold. As λ → 0, {uλ} converges to u in
W 1,p
r (RN ) (necessarily along a subsequence), where u is a ground state solution

of
−∆pu+ b|u|p−2u = f(u) in RN .

For p = 2 in Theorem 1.2, Li et al. [11] and Liu et al. [14] considered problem
(1.2), but they only studied Kirchhoff type problem (1.2) with the general nonlin-
earity involving subcritical growth. Theorem 1.2 is concerned with a nonlinearity
f reaching critical growth, which makes the problem much more complicated.

Main difficulties and ideas. To prove our results by variational methods, the
difficulties are two-fold. The first difficulty is due to the appearance of

∫
RN (|∇u|p+

b|u|p), which implies that (1.1) is no longer a pointwise identity. Namely, such
a phenomenon causes some mathematical difficulties. The second difficulty lies in
obtaining the boundedness of the Palais-Smale sequence (in short (PS) sequence) to
the energy functional without usual Ambrosetti-Rabinowtiz condition. To overcome
these difficulties, we adopt a local deformation argument from Byeon and Jeanjean
[4] to obtain a bounded (PS) sequence. Then we use similar ideas in [21] to make
a crucial modification on the min-max value as the presence of nonlocal term.

The rest of this is organized as follows. Section 2 is devoted to the limit problem.
In Section 3, we define a min-max level and construct a bounded (PS) sequence.
Finally, we give the proof of Theorem 1.2.
Notation
• ‖u‖s :=

( ∫
RN |u|

s
)1/s for s ∈ [1,∞) and u ∈ Ls(RN ).

• Let W 1,p(RN ) be the Sobolev space equipped with the norm

‖u‖ :=
(∫

RN
(|∇u|p + b|u|p)

)1/p

and W 1,p
r (RN ) = {u ∈W 1,p(RN ) : u(x) = u(|x|)}.

2. Limit problem

When λ = 0, problem (1.1) reduces to the problem

−∆pu+ b|u|p−2u = f(u) in RN , (2.1)

which is called the limit problem of problem (1.1). For λ > 0 small, we may view
the problem (1.1) as a corresponding perturbation problem to (2.1). In general, if
problem (2.1) is well-behaved, then we may expect that the perturbed problem (1.1)
possesses a solution in some neighborhood of solutions to problem (2.1). Indeed,
the idea plays a critical role in establishing the existence of positive solutions to
problem (1.1).
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We define

J(u) :=
1
p

∫
RN

(|∇u|p + b|u|p)−
∫

RN
F (u), u ∈W 1,p

r (RN ),

where F (t) =
∫ t

0
f(s) ds and the mountain pass valuem := infγ∈Γ max0≤t≤1 J(γ(t)),

where
Γ = {γ ∈ C([0, 1],W 1,p

r (RN )) : γ(0) = 0, J(γ(1)) < 0}.
J. Zhang et al. [20] show that m is the least energy of problem (2.1) and can be
achieved by a radially symmetric function. Let Wr denotes the set of positive
ground state solutions U of (2.1) satisfying U(0) = maxx∈RN U(x). Then, Wr ⊂
W 1,p
r (RN ) and Wr 6= ∅.

Lemma 2.1 ([20]). Under the assumptions in Theorem 1.2, Wr is compact in
W 1,p
r (RN ).

3. Proof of main results

Since we only seek positive solutions of problem (1.1), we may assume f(s) = 0
for all s < 0. In addition, we work in W 1,p

r (RN ) because problem (1.1) is au-
tonomous. Define

Φλ(u) =
1
p
‖u‖p +

λ

2p
‖u‖2p −

∫
RN

F (u), u ∈W 1,p(RN ).

By (A4)–(A6), Φλ ∈ C1(W 1,p(RN ),R) and for all u, v ∈W 1,p(RN ),

〈Φ′λ(u), v〉 = (1 + λ‖u‖p)
∫

RN
(|∇u|p−2∇u · ∇v + b|u|p−2uv)−

∫
RN

f(u)v.

It is standard to verify that the critical points of Φλ are weak solutions of (1.1).

Minimax level. Set Wt(x) = W (x/t), W ∈ Wr, by the Pohozǎev identity, we
have

J(Wt) =
1
p
tN−p

∫
RN
|∇W |p − tN

∫
RN

(
F (W )− b|W |p

p

)
=
(1
p
tN−p − N − p

Np
tN
)∫

RN
|∇W |p.

It is clear that J(Wt) → −∞ as t → ∞ and J(Wt∗) < −3 for some t∗ > 1. Let
Aλ = maxt∈[0,t∗] Φλ(Wt). By ∫

RN
|∇W |p = Nm,

we know
lim
λ→0

Aλ = lim
λ→0

max
t∈[0,t∗]

J(Wt) = m.

To get a uniformly bounded set of the mountain pathes, we have the following
result.

Lemma 3.1. There exist λ∗ > 0 and C2 > 0, such that for any λ ∈ (0, λ∗),
Φλ(Wt∗) < −3, ‖Wt‖ ≤ C2, t ∈ (0, t∗] and ‖W‖ ≤ C2 for any W ∈Wr.



EJDE-2018/89 p-KIRCHHOFF TYPE PROBLEM 5

Proof. For any W ∈ Wr, by Lemma 2.1, there exists C3 > 0 such that ‖W‖ ≤ C3

and

‖Wt‖p = tN−p‖∇W‖pp + btN‖W‖pp
≤ (tN−p + btN )‖W‖p

≤ ((t∗)N−p + b(t∗)N )Cp3 .

Let C2 = max{C3, ((t∗)N−p + b(t∗)N )1/pC3}, then ‖Wt‖ ≤ C2, t ∈ (0, t∗]. In
addition,

Φλ(Wt∗) = J(Wt∗) +
λ

2p
‖Wt∗‖2p ≤ J(Wt∗) +

λ

2p
C2p

2 .

By J(Wt∗) < −3, there exists λ∗ > 0 such that Φλ(Wt∗) < −3 for λ ∈ (0, λ∗). �

Next, we define a minmax value Bλ given by Bλ = infγ∈Γλ maxs∈[0,t∗] Φλ(γ(s))
where

Γλ = {γ ∈ C([0, t∗],W 1,p
r (RN )) : γ(0) = 0, γ(t∗) = Wt∗ , ‖γ(t)‖ ≤ C2 + 2}.

It is clear that Γλ 6= ∅ and Bλ ≤ Aλ for λ ∈ (0, λ∗).

Lemma 3.2. Bλ → m as λ→ 0.

Proof. Obviously, Bλ ≤ Aλ → m as λ → 0. Notice that Φλ(u) ≥ J(u) for u ∈
W 1,p
r (RN ) and for any γ ∈ Γλ, γ̃(·) = γ(t∗) ∈ Γ. Thus, Bλ ≥ m. So, limλ→0Bλ =

m. �

For c, d > 0, set

Φcλ = {u ∈W 1,p
r (RN ) : Φλ(u) ≤ c},

W d = {u ∈W 1,p
r (RN ) : inf

v∈Wr

‖u− v‖ ≤ d}.

Clearly, W d 6= ∅ for all d > 0. In the following, we look for a solution u ∈ W d of
problem (1.1) for λ > 0 small enough.

Lemma 3.3. There exist C ′ > 0 and λ∗ > 0 such that for any λ ∈ (0, λ∗) and
W ∈ ΦAλλ ∩ (W d\W d/2), we have ‖Φ′λ(W )‖ ≥ C ′, provided that

0 < d < min{1, (Nm)1/p,
1
4

(
p∗

2p
sp

∗/p)
1

p∗−p }. (3.1)

Proof. It suffices to prove that for d small with (3.1) and any {Wλi} ⊂W d with

lim
i→∞

Φλi(Wλi) ≤ m,

lim
i→∞

‖Φ′λi(Wλi)‖ → 0,

there exists W0 ∈ Wr such that Wλi → W0 in W 1,p
r (RN ), where limi→0 λi = 0.

For convenience, we replace λi by λ. Because Wλ ∈ W d, Wλ = uλ + vλ, where
uλ ∈ Wr and vλ ∈ W 1,p(RN ), such that uλ → u0 strongly in W 1,p

r (RN ), vλ → v0

weakly in W 1,p(RN ) and vλ → v0 a.e. in RN . Set W0 = u0 + v0, then W0 ∈ W d

and Wλ → W0 weakly in W 1,p(RN ). From limλ→∞ ‖Φ′λ(Wλ)‖ = 0, we get that
J ′(Wλ)→ 0 as λ→ 0. So J ′(W0) = 0. We claim that W0 6≡ 0. On the contrary, if
W0 ≡ 0, then ‖u0‖ = ‖v0‖ ≤ d. By the Pohozǎev identity and u0 ∈ Wr, we obtain
that ‖∇u0‖p = (Nm)1/p. However, by (3.1), ‖∇u0‖p ≤ ‖u0‖ ≤ d < (Nm)1/p.
This is a contradiction. So W0 6≡ 0 and J(W0) ≥ m. Moreover, by [3, Theorem
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2.1](also[15, Lemma 2.8]) and its remark, since Wλ satisfies J ′(Wλ) = o(1), we
know ∇Wλ → ∇W0 a. e. in RN . Then, we have as λ→ 0,

Φλ(Wλ) = J(Wλ) + o(1) = J(W0) + J(Wλ −W0) + o(1).

Thus J(Wλ −W0) ≤ o(1). Together with the Sobolev’s embedding D1,p(RN ) ↪→
Lp

∗
(RN ), by (A4)–(A6), we have

‖Wλ −W0‖p/2p ≤ ‖Wλ −W0‖p
∗

p∗/p
∗ ≤ S

p
p∗ ‖∇(Wλ −W0)‖p

∗

p /p
∗.

If ‖Wλ−W0‖ 6→ 0 as λ→ 0, then ‖Wλ−W0‖ ≥ (p
∗

2ps
p∗/p)

1
p∗−p . On the other hand,

‖Wλ −W0‖ ≤ ‖uλ − u0‖+ ‖vλ‖+ ‖v0‖ ≤ o(1) + 2d ≤ 1
2

(
p∗

2p
sp

∗/p)
1

p∗−p .

This is a contradiction. Thus, Wλ → W0 strongly in W 1,p
r (RN ). The proof is

completed. �

Lemma 3.4. Assume there exists C4 > 0, for small λ > 0 such that Φλ(γ(s)) ≥
Bλ − C4. Then γ(s) ∈W d/2, where γ(s) = W (·/s), s ∈ (0, t∗].

Proof. It follows from the Pohozǎev’s identity that for s ∈ (0, t∗],

Φλ(γ(s)) =
(1
p
sN−p − N − p

Np
sN
)∫

RN
|∇W |p + o(λ) = J(γ(s)) + o(λ).

Noting that m = maxs∈(0,t∗] J(γ(s)) = J(γ(1)), for C5 > 0 small, γ(s) = W (·/s) ∈
W d/2 for |s − 1| ≤ C5. Since Bλ → m as λ → 0, there exists C4 > 0, for λ > 0
small enough, such that Φλ(γ(s)) ≥ Bλ − C4. Furthermore, |s − 1| ≤ C5 and
γ(s) ∈W d/2. �

Next, we use the local deformation argument to get a bounded (PS) sequence.

Lemma 3.5. For λ > 0 small, there exists a sequence {un} ⊂ ΦAλλ ∩ W d with
limn→∞ Φ′λ(un)→ 0.

Proof. Assume by contradiction, there is β(λ) > 0 such that |Φ′λ(u)| ≥ β(λ),
u ∈ ΦAλλ ∩ W d for some small λ > 0. Similar arguments in [17] show that
there exists a pseudo-gradient vector field Ψλ in W 1,p

r (RN ) on a neighborhood
Dλ of ΦAλλ ∩ W d such that ‖Φλ(u)‖ ≤ 2 min{1, |Φ′λ(u)|} and 〈Φ′λ(u),Ψλ(u)〉 ≥
min{1, |Φ′λ(u)|}|Φ′λ(u)|. Denote δλ be a Lipschitz continuous function on W 1,p

r (RN )
such that δλ ∈ [0, 1] and

δλ(u) =

{
1, u ∈ ΦAλλ ∩W d

0, u ∈W 1,p
r (RN )\Dλ.

Define ξλ be a Lipschitz continuous function on R such that ξλ ∈ [0, 1] and

ξλ(t) =

{
1, |t−Bλ| ≤ C4/2,
0, |t−Bλ| ≥ C4,

where C4 is given in Lemma 3.4. Set

Eλ(u) =

{
−δλ(u)ξλ(Φλ(u))Ψλ(u), u ∈ Dλ,

0, u ∈W 1,p
r (RN )\Dλ.
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Then, the initial-value problem

d

dt
Yλ(u, t) = Eλ(Yλ(u, t)),

Yλ(u, 0) = u,

admits a unique global solution Yλ : W 1,p
r (RN )× R+ →W 1,p

r (RN ) which satisfies

(i) Yλ(u, t) = u, if t = 0 or u ∈ Dλ or |Φλ(u)−Bλ| ≥ C4;
(ii) ‖ ddtYλ(u, t)‖ ≤ 2, for (u, t) ∈W 1,p

r (RN )× R+;
(iii) d

dtΦλ(Yλ(u, t)) ≤ 0.

As in [7], we get that for any s ∈ (0, t∗], there is ts > 0 such that Yλ(γ(s), ts) ∈
ΦBλ−C4/2
λ , where γ(s) = W (·/s), s ∈ (0, t∗]. Let γ0(s) = Yλ(γ(s), t∗(s)), where

t∗(s) = inf{t ≥ 0, Yλ(γ(s), t) ∈ ΦBλ−C4/2
λ }. Then we can prove that γ0(s) is contin-

uous in [0, t∗] and ‖γ0(s)‖ ≤ C2+2. Therefore, γ0 ∈ Γλ with maxt∈[0,t∗] Φλ(γ0(t)) ≤
Bλ − C4/2, which contradicts the definition of Bλ. �

Proof of Theorem 1.2. For fixed d > 0 small which satisfies d < SN/p
2
/3, by

Lemma 3.5, there exist λ∗ > 0 with λ ∈ (0, λ∗) and {un} ⊂ ΦAλλ ∩ W d such
that Φλ(un) ≤ Aλ,Φ′λ(un) → 0 as n → ∞. We may assume limn→∞ ‖un‖p :=
κ ≤

(
d+ supu∈Wr

‖u‖
)p and un → uλ weakly in W 1,p

r (RN ), then by [17, Corollary
1.26], up to a subsequence, un → uλ strongly in Lt(RN ), t ∈ (p, p∗) and a. e. in RN .
Since un ∈W d, there exist Un ∈Wr and wn ∈W 1,p

r (RN ) such that un = Un + wn
and ‖wn‖ ≤ d. By Lemma 2.1, for some U ∈ Wr, Un → U strongly in W 1,p

r (RN ).
Let vn = un − uλ, then ‖vn‖ ≤ 3d for n large.

Step 1. For any δ > 1, up to a subsequence, it holds∫
RN

f(un)un ≤
∫

RN
f(uλ)uλ + δ

∫
RN
|vn|p

∗
+ on(1).

Obviously, there exists s0 > 1 such that f(s) ≤ δsp
∗

for all s ≥ s0. Choose
χ(s) ∈ C(R) such that χ(s) = 0 if s ≤ 1, χ(s) = f(s)/sp

∗
if s ≥ s0 and χ(s) ∈ [0, δ]

for any s ∈ R. Let g(s) = f(s) − χ(s)sp
∗
, s ≥ 0, then lims→0+ g(s)/sp−1 → 0 and

lims→+∞ g(s)/sp
∗ → 0. It follows from the compactness lemma of Strauss[16] that∫

RN
g(un)un =

∫
RN

g(uλ)uλ + on(1).

Meanwhile, similar to Brezis-Lieb Lemma [17, Lemma 1.32], we have∫
RN

χ(un)|un|p
∗

=
∫

RN
χ(un)|vn|p

∗
+
∫

RN
χ(uλ)|uλ|p

∗
+ on(1).

Therefore, ∫
RN

f(un)un =
∫

RN
g(un)un +

∫
RN

χ(un)|un|p
∗

=
∫

RN
f(uλ)uλ +

∫
RN

χ(un)|vn|p
∗

+ on(1)

≤
∫

RN
f(uλ)uλ + δ

∫
RN
|vn|p

∗
+ on(1).
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Step 2. We show that un → uλ strongly in D1,p(RN ) as n → ∞. In fact, uλ
satisfies

(1 + λκ)(−∆pu+ b|u|p−2u) = f(u), u ∈W 1,p(RN ).

Similar as that in Lemma 3.3, ∇un → ∇uλ a. e. in RN as n→∞. It follows from
the Brezis-Lieb Lemma that

‖un‖p = ‖vn‖p + ‖uλ‖p + o(1).

By Step 1 and 〈Φ′λ(un), un〉 → 0, we have

(1 + λκ)(‖vn‖p + ‖uλ‖p) ≤
∫

RN
f(uλ)uλ + δ

∫
RN
|vn|p

∗
+ on(1).

Since

(1 + λκ)‖uλ‖p =
∫

RN
f(uλ)uλ,

we have

(1 + λκ)‖vn‖p ≤ δ
∫

RN
|vn|p

∗
+ on(1).

If ‖∇vn‖p 6→ 0 as n→∞, then it follows from Sobolev’s embedding that

‖∇vn‖pp ≤ δ
∫

RN
|vn|p

∗
+ on(1) ≤ δS−p

∗/p‖∇vn‖p
∗

p + on(1),

which implies

lim inf
n→∞

‖∇vn‖p ≥
(
δ−1Sp

∗/p
)1/(p∗−p)

.

Then
lim inf
n→∞

‖∇vn‖p ≥ SN/p
2
,

which is impossible since d < SN/p
2
/3. Thus, ‖∇vn‖p → 0 as n→∞.

Step 3. un → uλ strongly in W 1,p(RN ). In fact, by Step 2, we have

(1 + λκ)(−∆puλ + b|uλ|p−2uλ) = f(uλ), uλ ∈W 1,p(RN ).

By Step 1, f(un)un → f(uλ)uλ strongly in L1(RN ). Thus, by 〈Φ′λ(un), un〉 → 0,
we get

(1 + λκ)‖un‖p =
∫

RN
f(un)un + on(1)

=
∫

RN
f(uλ)uλ + on(1)

= (1 + λκ)‖uλ‖p + on(1).

So, ‖un‖ → ‖uλ‖ as n → ∞. Therefore, un → uλ strongly in W 1,p(RN ), which
implies that Φ′λ(uλ) = 0 and uλ ∈ ΦAλλ ∩W d. For d small enough, uλ 6= 0. �

Proof of Theorem 1.3. For λ > 0 small enough, problem (1.1) admits a positive
solution uλ with uλ ∈ ΦAλλ ∩W d. That is, uλ ∈W d and Φ′λ(uλ) = 0, Φλ(uλ) ≤ Aλ.
Obviously, {uλ} is bounded in W 1,p

r (RN ). Up to a subsequence, we assume that
for some u ∈ W 1,p

r (RN ), uλ → u weakly in W 1,p
r (RN ), strongly in Lt(RN ) for

t ∈ (p, p∗) and a. e. in RN as λ → 0. Similar to Theorem 1.2, for d < SN/p
2
/3

given and small, u 6≡ 0 and uλ → u strongly in W 1,p
r (RN ) as λ → 0. It implies

that u ∈ W d and J ′(u) = 0, J(u) ≤ limλ→0Aλ = m. Since m is the least energy
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of problem (2.1), J(u) ≥ m. It follows that J(u) = m, i. e. u is a ground state
solution of problem (2.1). The proof is complete. �
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