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COMPLEX CENTERS OF POLYNOMIAL DIFFERENTIAL
EQUATIONS

MOHAMAD ALI M. ALWASH

Abstract. We present some results on the existence and nonexistence of cen-

ters for polynomial first order ordinary differential equations with complex co-
efficients. In particular, we show that binomial differential equations without

linear terms do not have complex centers. Classes of polynomial differential

equations, with more than two terms, are presented that do not have complex
centers. We also study the relation between complex centers and the Pugh

problem. An algorithm is described to solve the Pugh problem for equations
without complex centers. The method of proof involves phase plane analysis

of the polar equations and a local study of periodic solutions.

1. Introduction

Consider the differential equation

ż :=
dz

dt
= AN (t)zN + AN−1(t)zN−1 + . . . + A1(t)z (1.1)

where z is complex and Ai(t) are continuous functions in t. Let z(t, c) be the
solution of (1.1) such that z(0, c) = c. For a fixed real number ω, we say that z(t, c)
is periodic when z(0, c) = z(ω, c). If the functions Ai(t) are periodic with period
ω, then a periodic solution of equation (1.1) is a periodic function with period ω.
The multiplicity of a periodic solution ϕ(t) of (1.1) is the multiplicity of ϕ(0) as
a zero of the displacement function q 7→ z(ω, c) − c. Note that q is defined and
analytic in an open set containing the origin. The solution z = 0 is called a center
for the differential equation if all solutions starting in a neighborhood of 0 are ω-
periodic. A center is called a complex center when the coefficients are complex
functions, and it is called a real center when the coefficients are real functions. If
the coefficients are real functions and AN (t) does not change sign, then z = 0 is
not a center (see [1]). There are real centers when AN (t) changes sign (see [5], [6],
and [15]); the problem is related to the classical center-focus problem of polynomial
two-dimensional systems. The case N = 3, with A3(t) ≡ 1, was considered recently
in [7]; where it was shown that the equation could have a center at the origin
if the coefficients are complex valued. Two unexpected properties of the Abel
differential equation are given in [7]; there is no upper bound for the number of
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periodic solutions, and the center variety is formed by infinitely many connected
components. The work in [7] is mainly motivated by a problem stated in [9]. It
was shown in [9] that if the coefficients are real and bounded by a constant C,
then there are at most 8 exp{(3C + 2) exp[ 32 (2C + 3)N ]} periodic solutions. The
problem in [9] is to prove an analogue of this result for complex equations, that is,
for complex z and complex coefficients Ai. This paper is partly motivated by the
results of [7].

Another motivation for the work in this paper is the local study of the Pugh
problem about equations with real coefficients. We recall that Pugh problem (see
[14]) is to find an upper bound for the number of periodic solutions in terms of N .
It was shown in [10] that there are no upper bounds for the number of periodic
solutions for N ≥ 4. Upper bounds can be found for some particular classes; (see
[1] and its references). Hence, one should seek upper bounds for the number of
periodic solutions in terms of N and the degrees of the real polynomial functions
Ai(t). A local version of Pugh problem is to find an upper bound for the multiplicity
of a periodic solution in terms of N and the degrees of the polynomials Ai(t). This
problem was considered in [13], with N = 4. It was conjectured in [13], that if
A4 ≡ 1, A1 ≡ 0, A2 and A3 are of degree k then the multiplicity of the origin is at
most k +3. It was shown in [4], that when k = 2 then the multiplicity of the origin
is at most 8 and there is a unique equation with this maximum multiplicity. It
was shown in [3], that the multiplicity of the origin is at most 10 when the degrees
of A2(t) and A3(t) are 2 and 3, respectively. Having determined the maximum
multiplicity, the next step is to construct equations with this number of periodic
solutions. This is done by making a sequence of perturbations in A2(t) and A3(t),
each of which reduces the multiplicity of the origin by one; a periodic solution
thus bifurcates out of the origin. This bifurcation task was considered in [3] and
[4]. The local problem can be considered with the use of Groebner bases method.
This task is considered in the last section; the case N = 4 and A1 ≡ 0 is studied.
The problem reduces to study the solvability of system of polynomial equations in
many variables. Since the solvability in the theory of Groebner bases is over the
field of complex numbers, it becomes necessary to consider equations with complex
coefficients. That is to consider complex centers.

All the known equations with complex centers have linear terms. On the other
hand, computations for equations without linear part demonstrate that z = 0 is
not a center for polynomial coefficients. These remarks lead us to conjecture that
polynomial differential equations without linear terms do not have centers at the
origin, at least when the coefficients are polynomial functions in t.

Conjecture 1.1. Assume that Aj(t), for j = 2, 3, . . . , N − 1, are polynomial func-
tions in t. The solution z = 0 is not a center for the differential equation

ż = zN + AN−1(t)zN−1 + · · ·+ A3(t)z3 + A2(t)z2.

In the statement of the conjecture, we are not including equations in which the
coefficients are trigonometric polynomials. The results of Section 5 about such
equations demonstrate that the maximum possible multiplicity of the origin when
the coefficients are complex is higher than the maximum multiplicity when the
coefficients are restricted to be real numbers.

First,we present classes of equations with complex coefficients that do not have
centers at the origin. Our main results in this direction are the following:
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Theorem 1.2. Assume that the differential equation (1.1) has an invariant line
θ = α, and either AN (t) > γ > 0, or AN (t) < γ < 0. If γ cos((N − 1)α) > 0 then
the equation can have only a finite number of periodic solutions on the invariant
line. In particular, z = 0 is not a center.

Proposition 1.3. Consider continuous functions A(t), B(t) and C(t) and let

λ1 =
∫ ω

0

C(t)dt,

λ2 =
∫ ω

0

B(t)dt,

λ3 =
∫ ω

0

[A(t) + (M − L)B(t)(
∫ t

0

C(s)ds)]dt.

The solution z = 0 of the differential equation

ż = A(t)zN + B(t)zM + C(t)zL, (1.2)

with 1 < L < M < N = L + M − 1, has multiplicity L if and only if λ1 6= 0.
The multiplicity is M if and only if λ1 = 0 and λ2 6= 0; and it is N if and only if
λ1 = λ2 = 0 and λ3 6= 0. If the origin is a center then λ1 = λ2 = λ3 = 0.

Remark 1.4. It follows from Proposition 1.3, that:
(1) If B(t) and C(t) are polynomial functions with small coefficients, then z = 0

is not a center for the differential equation

ż = zN + B(t)zM + C(t)zL

with 1 < L < M < N = L + M − 1.
(2) A polynomial differential equation with only two terms has a center at z = 0

only when one of the terms is linear.

Now, we describe some equations that have centers at the origin.

Proposition 1.5. The solution z = 0 of the differential equation

ż = zN + A(t)z (1.3)

is of multiplicity N if and only if

e
R ω
0 A(t)dt = 1,

∫ ω

0

e(N−1)
R t
0 A(s)dsdt 6= 0.

The origin is a center if and only if

e
R ω
0 A(t)dt = 1,

∫ ω

0

e(N−1)
R t
0 A(s)dsdt = 0.

Equations with centers at the origin are given in the following result; the second
part is a version of the result in [7]. As it was first noticed in [7], the center
variety in each of the equations considered here contains infinitely many connected
components. Center variety of each of the known real centers contains a finite
number of connected components.

Corollary 1.6. (1) With ω = 2π, we consider the differential equation

ż = zN + (C +
2

N − 1
tan(t + c0))z,
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where c0 is a complex non-real number. The multiplicity of z = 0 is one if
and only if C = pi, where p is an integer. The multiplicity is N if and only
if ∫ 2π

0

e(N−1)pit sec2(t + c0)dt 6= 0.

If this integral vanishes then z = 0 is a center. In particular, there is a
center when (N − 1)p is an odd number.

(2) Suppose that C is a number and x is a real number. With ω = 2π, the
solution z = 0 is a center for the equation

ż = zN +
1

N − 1
(C − xi cos t)z

if and only if C = pi, where p is an integer and x is a zero of the Bessel’s
function Jp.

Now, we give another class of equations that have a center. The coefficients of
the equation satisfy a composition type condition similar to those in [5], [6], and
[15].

Proposition 1.7. Let p(t) be a differentiable ω-periodic function and q(t) is a
continuous function with e

R ω
0 q(t)dt = 1. The solution z = 0 is a center for the

differential equation

ż = q(t) z +
N∑

k=2

p′(t) fk(p(t)) e(1−k)
R t
0 q(s)ds zk,

where fk are any continuous functions.

Finally, we use the method of Groebner bases to study multiplicity of periodic
solutions when the coefficients are polynomial functions in t, or in cos t and sin t.

Theorem 1.8. Consider the equation

ż = z4 + A(t)z3 + B(t)z2,

where A(t) and B(t) are polynomial functions.
(I) In each of the following classes of coefficients, z = 0 is not a center and the
maximum possible multiplicity is the same whether the coefficients are complex or
restricted to be real.

(1) A and B are polynomial functions in t of degrees 3 and 2, respectively.
(2) A and B are polynomial functions in t of degrees 5 and 1, respectively.
(3) A and B are polynomial functions in t of degrees 1 and 3, respectively.

(II) In each of the following classes of coefficients, z = 0 is not a center and
the maximum possible multiplicity for real coefficients is less than the maximum
multiplicity for complex coefficients. Moreover, the origin is not a center.

(1) A and B are homogeneous polynomial functions in cos t and sin t of degrees
1.

(2) A and B are homogeneous polynomial functions in cos t and sin t of degrees
2.

(3) A and B are homogeneous polynomial functions in cos t and sin t of degrees
3 and 1, respectively.
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In the next section, we prove Theorem 1.2. Section 3 contains the proof of
Proposition 1.3. The proofs of Proposition 1.5 and Proposition 1.7 are given in
Section 4. In Section 5, we consider the case N = 4. Several classes of equations
are considered and provide evidences to support our conjecture.

2. Proof of Theorem 1.2

Proof. Let Am(t) = am(t)+ibm(t) and z = reiθ. With this notation, equation (1.1)
becomes

(ṙ + iθ̇r)eiθ = rNeNiθPN + rN−1e(N−1)iθ(aN−1 + ibN−1) + + · · ·+ reiθ(a1 + ib1).

Multiplying both sides by e−iθ and separating the real and imaginary parts, give:

ṙ = rNPN cos((N − 1)θ)

+
N−2∑
j=1

rN−j [aN−j cos((N − j − 1)θ)− bN−j sin((N − j − 1)θ)]

θ̇ = rN−1PN sin((N − 1)θ)

+
N−2∑
j=1

rN−j−1[aN−j sin((N − j − 1)θ) + bN−j cos((N − j − 1)θ)].

Now, let us choose a real number a with

a > (
2

(N − 1)γω cos((N − 1)α)
)

1
N−1

and such that the inequality

ṙ >
γ cos((N − 1)α)

2
rN

is satisfied when r ≥ a and θ = α. Consider a solution, reiθ with initial condition
r0e

iα. If r0 ≥ a, then the inequality implies that

r(t) ≥ 1

(r1−N
0 − 0.5(N − 1)γ cos((N − 1)α)t)

1
N−1

.

Therefore, if r0 ≥ a, then the solution becomes unbounded at a point t0 with

t0 ≤
2r1−N

0

(N − 1)γ cos((N − 1)α)
≤ ω.

Hence, the solution is undefined on the interval [0, ω]. Therefore, solutions start
outside the disk r ≤ a are not periodic, and any solution leaves the disk r ≤ a stays
outside the disk as time increases.

If there is an infinite sequence of periodic solutions z(t, rneiα). The numbers rn

are inside the disk r ≤ a. Hence, let rn → r0. If z(t, r0e
iα) is a periodic solution,

then all solutions starting in a neighborhood of r0e
iα are periodic. But q is an

analytic function. It follows that q ≡ 0. Therefore, z = 0 is a center for the
equation (1.2). We define a real number R by

R = sup{r : z(t, reiα) is periodic}.
It is clear that R < ∞. If the solution z(t, Reiα) is defined, then it is a periodic
solution. Since q is analytic, it follows from the property of continuous dependence
of a solution on its initial value, that z(t, reiα) is periodic for r in a neighborhood



6 M. A. M. ALWASH EJDE-2007/101

of R. This is contrary to the definition of R. Therefore, z(t, Reiα) is undefined on
the interval [0, ω] and becomes unbounded at t0ε[0, ω] and leaves the disk r ≤ a.
But z(t, Reiα) leaves r ≤ a, whence z(t, reiα) leaves r ≤ a for r < R and close to R.
These solutions will not return to the disk r ≤ a because ṙ(t) > 0, and hence they
are not periodic solutions. This is a contradiction to the assumption that z = 0 is
a center.

If z(t, r0e
iα) is undefined, then it leaves the disk r ≤ a. Therefore, z(t, rneiα)

leaves r ≤ a for large enough n. This is again a contradiction to the periodicity of
z(t, rneiα). �

Corollary 2.1. Assume that AN (t) > γ > 0.
(1) Let Aj(t) = aj(t) + ibj(t), where aj and bj are real continuous functions.

If there exists an integer k such that

aj sin(j
2kπ

N − 1
) = bj cos(j

2kπ

N − 1
)

for j = 1, 2, . . . , N − 1, then z = 0 is not a center for (1.1).
(2) If the coefficients Aj, j = 1, 2, . . . , N − 1, are real functions then z = 0 is

not a center for (1.1).
(3) If N − 1 is a multiple of 4, Aj are pure imaginary functions for all odd j,

and Aj are real for all even j, then z = 0 is not a center for equation (1.1).

Proof. To prove the first part, let α = 2kπ
N−1 . The condition in the statement implies

that

aj sin(jα) = bj cos(jα),

sin((N − j − 1)α) = − sin(α), sin((N − 1)α) = 0.

Hence, θ̇(α) = 0. The line θ = α is an invariant line. Any solution has a point on
this line stays on the line as long as it is defined.

On the other hand,
cos((N − 1)α) = 1.

Hence, AN (t) cos((N − 1)α) = AN (t) > γ. The conditions of Theorem 1.2 are
satisfied and the result follows.

The second part follows directly from the first part with k = 0. It is known that
z = 0 is not a center when the coefficients are real functions (see [1]). To prove the
third part, we take k = N−1

4 . This implies that α = 2kπ
N−1 = π

2 . Thus sin(mα) = 0
if m is even, and cos(mα) = 0 if m is odd. �

Remark 2.2. Equations (1.1), with real coefficients, have been studied in [11] and
[12] using the methods of complex analysis and topological dynamics. However,
some results of [11] and [12] do not hold when the coefficients are allowed to be
complex. For example, Abel differential equation, N = 3, has 3 periodic solutions
when its coefficients are real. On the other hand, it may have an infinite number
of periodic solutions when the coefficients are complex (see, [7]). Equations with
real coefficients satisfy other properties; in particular, the real axis is an invariant
set and the complex conjugate of a periodic solution is also a periodic solution.
The phase portrait presented in [11], with some modifications, could be used for
equations with complex coefficients. The next task is to obtain some global results
on the number of periodic solutions as in [1] and [2]; we defer this exploitation to
another paper.
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3. Proof of Proposition 1.3

Proof. For 0 ≤ t ≤ ω and c in a neighborhood of 0, we write

z(t, c) =
∞∑

n=1

dn(t)cn,

where d1(0) = 1 and dn(0) = 0 if n > 1. Thus

q(c) = (d1(ω)− 1)c +
∞∑

n=2

dn(ω)cn.

The multiplicity is K if and only if

d1(ω) = 1, d2(ω) = d3(ω) = · · · = dK−1(ω) = 0, dK(ω) 6= 0.

The origin is a center when d1(ω) = 1 and dn(ω) = 0 for all n > 1. The functions
dn(t) are determined by substituting the sum into the equation (1.2) and comparing
coefficients of powers of c. The following recursive sequence of differential equations
is obtained with the initial equations.

ḋn = ASN + BSM + CSL,

where

SK =
∑

j1+j2+···+jK=n

dj1dj2 . . . djK
,

with Kε{N,M,L}. To solve these equations, we integrate repeatedly. It is clear
that ḋ1 = 0 and hence d1 ≡ 1. The next non-zero equation is

ḋL = C(d1)L.

It gives

dL(t) =
∫ t

0

C(s)ds.

The formula for dM has two possibilities. If M + 1 6= 2L, then

ḋM = B(d1)M .

This implies

dM (t) =
∫ t

0

B(s)ds.

In the case M + 1 = 2L, the equation becomes

ḋM = B(d1)M + LCdL(d1)L−1).

We integrate this equation to obtain

dM (t) =
∫ t

0

B(s)ds +
L

2
(
∫ t

0

C(s)ds)2.

Consequently, the formula for dN has two possibilities. The equation is

ḋN = A(d1)N + BMdL(d1)M−1 + CLdM (d1)L−1.

We integrate this equation to obtain dN (t). If M + 1 6= 2L, then

dN (t) =
∫ t

0

A(s)ds + (M − L)
∫ t

0

(B(s)
∫ s

0

C(u)du)ds + L

∫ t

0

B(s)ds

∫ t

0

C(s)ds.
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In the case M + 1 = 2L, the formula becomes

dN (t) =
∫ t

0

A(s)ds + (M − L)
∫ t

0

(B(s)
∫ s

0

C(u)du)ds

+ L

∫ t

0

B(s)ds

∫ t

0

C(s)ds +
L2

6
(
∫ t

0

C(s)ds)3.

The multiplicity is L if
∫ ω

0
C(t)dt 6= 0. The multiplicity is M if

∫ ω

0
C(t)dt = 0 but∫ ω

0
B(t)dt 6= 0. Finally, if the multiplicity is greater than M , then

dN (ω) =
∫ ω

0

A(t)dt + (M − L)
∫ ω

0

(B(t)
∫ t

0

C(s)ds)dt.

The assumption in the statement of Proposition 1.3, implies that dN (ω) 6= 0. There-
fore, the multiplicity is at most N . �

Corollary 3.1.
(1) For any continuous functions A(t) and B(t) with

∫ ω

0
A(t)dt 6= 0, the origin

is not a center for the equation

ż = A(t)zN + B(t)zM

when 1 < M < N .
(2) Assume that A(t), B(t), C(t), and D(t) are continuous functions, and con-

sider the differential equation

ż = A(t)zN + B(t)zM + C(t)zL + D(t)z,

with 1 < L < M < N = L + M − 1. Let

A1(t) = e(1−N)
R t
0 D(s)dsA(t),

B1(t) = e(1−M)
R t
0 D(s)dsB(t),

C1(t) = e(1−L)
R t
0 C(s)dsC(t).

If any of the following conditions is not satisfied then the origin is not a
center,

e
R ω
0 D(t)dt = 1,∫ ω

0

C1(t)dt = 0,∫ ω

0

B1(t)dt = 0,∫ ω

0

[A1(t) + (M − L)B1(t)
∫ t

0

C1(s)ds]dt = 0.

Proof. The first part follows directly from the above result. If B(t) ≡ 0, then
dN (ω) > γω 6= 0. Hence, the multiplicity is at most N .

Now we prove the second part. The first necessary condition for a center is
e

R ω
0 D(t)dt = 1. We make the transformation w = e

R t
0 D(s)dsz, and obtain

ẇ = A1(t)wN + B1(t)wM + C1(t)wL,

where A1, B1, and C1 are as defined in the statement of the Corollary. Initial
conditions and multiplicities of periodic solutions are unchanged under this trans-
formation. Now the result follows from Proposition 1.3. �
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Remark 3.2. If the differential equation has a linear term, then the equations
for dk are more complicated. Instead, we will have linear differential equations in
which the right-hand side depends also on dk. We consider such cases in the next
section.

4. Proof of Propositions 1.5 and 1.7

Proof of Proposition 1.5. We follow the procedure of the previous section. In this
case, we obtain a sequence of linear differential equations.

ḋ1 = Ad1,

ḋk = Adk, 2 ≤ k ≤ (N − 1),

ḋN = (d1)N + AdN

together with the initial conditions

d1(0) = 1; dk(0) = 0, 2 ≤ k ≤ N.

Solving these initial value problems, gives

d1(t) = e
R t
0 A(s)ds,

dk(t) ≡ 0, 2 ≤ k ≤ (N − 1),

dN (t) =
∫ t

0

A(s)ds

∫ t

0

e(N−1)
R s
0 A(u)duds.

The origin is of multiplicity N if and only if d1(ω) = 1 and dN (ω) 6= 0. These two
conditions give

e
R ω
0 A(t)dt = 1,∫ ω

0

e(N−1)
R t
0 A(s)dsdt 6= 0.

If these two integrals vanish then the solution z = 0 is a center. This follows from
the general solution of this equation. The general solution is given by

w(t) = e(1−N)
R t
0 A(s)ds[(1−N)

∫ t

0

e(N−1)
R s
0 A(u)duds + C],

where w = z1−N and C is a constant. Since w(0) = w(ω), all the solutions are
periodic. Hence, z = 0 is a center. �

It is clear that the conditions for a center are not satisfied by any real function
A(t). We give two equations that have centers at the origin. In the first equation,
we have

A(t) = C +
2

N − 1
tan(t + c0).

Since the zeros of the complex function cos are real, the function A(t) is a periodic
function of period 2π, when c0 is a complex non-real number. The origin is of
multiplicity one when

e
R 2π
0 [C+ 2

N−1 tan(t+c0)]dt = 1.

This gives
e2πCe

1
N−1 [ln(sec2(2π+c0))−ln(sec2(c0))] = 1.
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Since sec(t + c0) is of period 2π, the condition becomes e2πC = 1. Hence, C = pi
for an integer p. The second condition is∫ 2π

0

e(N−1)pit sec2(t + c0)dt = 0.

If (N − 1)p is odd, then a change of variables t 7→ t− π gives∫ 2π

π

e(N−1)pit sec2(t + c0)dt = −
∫ π

0

e(N−1)pit sec2(t + c0)dt = 0.

Therefore, ∫ 2π

0

e(N−1)pit sec2(t + c0)dt = 0.

The conditions for a center given in Proposition 1.5 are satisfied. Hence, all the
solutions z(t, c), with c is in a neighborhood of 0, are 2π-periodic. This proves the
first part of Corollary 1.6.

The second part in Corollary 1.6, with N = 3, is similar to the result of [7]. In
fact, it was shown in [7] that z = 0 is a center for the equation

ż = z3 + (C0 + C1e
−it + C2e

it)z

if and only if C0 = ki for an integer k, C1C2 6= 0, and 4i
√

C1C2 is a zero for J2|k|.
Now, we prove the second part of Corollary 1.6. The first condition for a center

in Proposition 1.5 is

e
R 2π
0 (C−xi sin t)dt = e2Cπ.

But, e2Cπ = 1 if and only if C = pi, for an integer p. The second condition for a
center becomes∫ 2π

0

epit−xi sin tdt =
∫ 2π

0

cos(pt− x sin t)dt + i

∫ 2π

0

sin(pt− x sin t)dt.

The imaginary part of this quantity is zero; it is an integral of an odd 2π−periodic
function over the interval [0, 2π]. The real part is 2

∫ π

0
cos(pt − x sin t)dt. This

integral is the integral form of the Bessel’s function. Therefore, the real part is zero
if x is a zero of the Bessel’s function Jp. We recall that the integral form and power
series expansion of Jp are defined by

Jp(x) =
∫ π

0

cos(pt− x sin t)dt =
∞∑

j=0

(−1)j (x
2 )p+2j

j!(p + j)!
.

The power series representation of Bessel’s function is used in [7]. Consequently,
their proof is much longer than our proof.

Proof of Proposition 1.7. With the change of variables z 7→ e
R t
0 q(s)dsz, the equation

becomes

ż =
N∑

k=2

p′(t) fk(p(t)) zk.

From the expansion of Section 3, we can show inductively that the coefficients dk

are functions of p(t). This implies that z(t, c) is a function of p(t). Therefore, in a
neighborhood of the origin, all solutions are ω-periodic and z = 0 is a center. �
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Remark 4.1. If the coefficient of zN in the statement of Proposition 1.7 satisfies
the condition

p′(t) fN (p(t)) = e(N−1)
R t
0 q(s)ds

then the coefficient of zN equals 1. This condition is satisfied when p(t) = e2πit

2πi ,
fN ≡ 1, and q = 2πi. The period in this case is N − 1.

5. The Pugh problem

The use of computer algebra has led to significant progress in the investigation
of the properties of polynomial differential systems. In this section, we describe
an application of computer algebra to find the maximum possible multiplicity of
periodic solutions of polynomial differential equations. In particular, we present
solutions to the local Pugh problem [14] and Shahshahani conjecture [13]. We
mention that Pugh problem was listed as a part of problem 13 in Steve Smale list
of 18 open problems for the next century. This problem was considered as a version
of Hilbert sixteenth problem. Hilbert sixteenth problem is to estimate the number
of limit cycles of polynomial two-dimensional systems. Research related to Hilbert
sixteenth problem has derived enormous benefit from the availability of computer
algebra.

Consider the differential equation

ż = z4 + A(t)z3 + B(t)z2 (5.1)

We show that this local problem can be solved using the method of Groebner bases.
We give an automatic means of finding the maximum possible multiplicity of a
periodic solution. The algorithm involves computing Groebner bases. Computer
algebra systems, such as Maple, can be used to implement this algorithm. If the
equation does not have a complex center, then the local Pugh problem is solvable
by our procedure. The algorithm for computing the maximum possible multiplicity
is then described in this section. We apply the algorithm for equations in which the
coefficients A(t) and B(t) are polynomial functions in t, and in cos t and sin t. The
case N = 4 is considered. However, the method works for any N . In the case that
the coefficients are polynomial functions in t, we show that the maximum possible
multiplicity is the same whether the coefficients are complex or are restricted to
be real. When the coefficients are trigonometric polynomials, cases are described
where the maximums are not equal. Moreover, we show that the origin is not a
complex center in each of the equations considered; these results provide evidences
to support our conjecture.

We follow the same procedure of Section 3. For equation (5.1), d1(t) ≡ 1 and
the equations satisfied by the dn(t) (for n > 1) are

ḋn =
∑

i+j+k+l=n

didjdkdl + A
∑

i+j+k=n

didjdk + B
∑

i+j=n

didj . (5.2)

These equations were integrated by parts repeatedly and the formulae for dn, with
n ≤ 8, are given in [4]. The calculations become extremely complicated as n
increases. It is impossible to accomplish these computations by hand except in the
simplest cases.

The next step, in computing the multiplicity, is to consider the quantities

ηn = dn(ω)
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Note that ηn is a polynomial function in the coefficients of the polynomials A and
B. The multiplicity of the origin is k if

η2 = η3 = · · · = ηk−1 = 0, ηk 6= 0.

We write µmax(C) for the maximum possible multiplicity of z = 0 for equations in a
class C. For the class of equations in which the coefficients are polynomial functions
of degree m, Pugh problem is to find µmax in terms of m.

Now, we give the formulae of ηn with n ≤ 4, for equation (5.1). We use a tilde
over a function to denote its indefinite integral:

f̃(t) =
∫ t

0

f(s)ds

Proposition 5.1. For equation (5.1), the quantities η2, η3, and η4 are as follows.

η2 =
∫ ω

0

Bdt, η3 =
∫ ω

0

Adt, η4 = ω +
∫ ω

0

(B̃A)dt

Proof. The formulae were obtained by solving equations (5.2) recursively. The
computations leading to the formulae proceed by sequences of judiciously chosen
integrations by parts; for any functions f and g, we make use of the identity

f̃ g̃ = f̃ g̃ − ˜̃
fg.

These are elementary though together they form a complicated web. To obtain ηn,
we reduce dn(ω) modulo the ideal generated by d2(ω), . . . , dn−1(ω). �

The Algorithm. We shall write µmax(real) when the coefficients of the polyno-
mials A and B are real numbers, and µmax(complex) when the coefficients are
complex numbers. It follows from the result in [1], that µmax(real) < ∞. We call
the set of equations that have this maximum multiplicity, the maximum variety,
Vmax. Similarly, we define Vmax(real) and Vmax(complex).

To find µmax, first we integrate recursively to compute the functions dn(t). Then
we consider the expressions dn(ω), which are polynomial functions in the coeffi-
cients of A and B. To obtain ηn we reduce dn(ω) modulo the ideal generated by
d2(ω), . . . , dn−1. We stop until the system η2 = η3 = · · · = ηk = 0 has no real solu-
tions. In this case µmax = k. From the theory of Groebner bases, the Groebner basis
of the ideal 〈η2, η3, . . . , ηk〉 is 〈1〉 if and only if the system η2 = η3 = · · · = ηk = 0
has no complex solutions. So, we have to verify that this maximum multiplicity
can be attained by certain real values of coefficients. The procedure gives an upper
bound for µmax. However, for the equations in which the coefficients are polynomial
functions of t that we will consider, µmax(real) = µmax(complex) < ∞.

The algorithm for computing µmax can be summarized as follows:

• Input: functions A(t) and B(t) which are polynomials in t, or in cos t and
sin t.

• Integrate to compute dn(t).
• Compute dn(ω).
• Find ηn by reducing dn(ω) modulo 〈η2, η3, . . . , ηn−1〉.
• Stop when the Groebner basis 〈η2, η3, . . . , ηk〉 is 〈1〉.
• Output: µmax = k.
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For the details related to Groebner bases, we refer to [8]. We use the software
package Maple 8 to compute Groebner bases. Some of the Groebner bases are not
given, but they are available upon request.

Now, we consider the first class of coefficients. Here, we assume that ω = 1. Let

B(t) = C1 + at + bt2,

A(t) = C2 + ct + dt2 + et3.

If η2 = η3 = 0, then

12C1 + 6a + 4b + 3c = 0, 12C2 + 6d + 4e + 3f = 0.

This class of equations was used in [3] to construct equations with 10 real periodic
solutions. We substitute the values of C1 and C2 from these equations and then
compute the Groebner basis of the ideal 〈η4, η5, . . . , η10〉. This basis is 〈1〉. There-
fore, the maximum possible multiplicity is 10. To find the equations that have this
maximum multiplicity, we compute the Groebner basis 〈η4, η5, . . . , η9〉. This set of
equations has 15 solutions, counting multiplicity, and at least one of the solutions
is real. We summarize the result for this class in the following lemma.

Lemma 5.2. If A(t) and B(t) are polynomial functions in t of degrees 3 and 2,
respectively, then µmax(real) = µmax(complex) = 10. Moreover, Vmax is a zero-
dimensional ideal.

The Groebner basis is computed with the graded reverse lexicographic term order
and with respect to the list [b, c, d, a, e]; this term order usually gives more compact
Groebner basis. Then, the basis is changed to the lexicographic term order, which
is the most suitable to eliminate variables from a set of equations. The last equation
in this basis is a polynomial in e of degree 15; it has at least one real solution. The
other variables are given explicitly as functions of e.

The next class has the coefficients

B(t) = C1 + at,

A(t) = C2 + bt + ct2 + dt3 + et4 + ft5.

Let 2C1 + a = 0 and 60C2 + 30b + 20c + 15d + 12e + 10f = 0 for η2 = η3 = 0. We
compute the Groebner basis as in the first case. This gives 〈η4, η5, . . . , η10〉 = 〈1〉.
Moreover, 〈η4, η5, . . . , η9〉 has a polynomial equation in f of degree 6, which has two
real solutions and four complex non-real solutions. The other variables are given
as functions of f . The result for this class are given in the following lemma.

Lemma 5.3. If A(t) and B(t) are polynomial functions in t of degrees 5 and 1,
respectively, then µmax(real) = µmax(complex) = 10. Moreover, Vmax is a zero-
dimensional ideal.

In the last class of polynomials in t, we let

A(t) = C1 + bt + ct2 + dt3,

B(t) = C2 + at.

If η2 = η3 = 0, then

12C1 + 6b + cb + 3d = 0, 2C2 + a = 0.

We substitute the values of C1 and C2 from these equations and then compute
the Groebner basis of the ideal 〈η4, η5, . . . , η8〉. This basis is 〈1〉. Therefore, the



14 M. A. M. ALWASH EJDE-2007/101

maximum possible multiplicity is 8. To find the equations that have this maximum
multiplicity, we compute the Groebner basis 〈η4, η5, . . . , η7〉. The last equation,
which is a polynomial in a, has two real solutions and four complex non-real solu-
tions. The other variables are given in terms of a.

Lemma 5.4. If A(t) and B(t) are polynomial functions in t of degrees 3 and 1,
respectively, then µmax(real) = µmax(complex) = 8. Moreover, Vmax is a zero-
dimensional ideal.

〈8695641600 b− 6086949120 d− 773773 a5 + 3151791360 a2,

8695641600c + 13043462400d + 773773 a5 − 3151791360 a2,

−50295245 a4 + 37439568 d2 + 118513886400 a,

−120772800 d + 70343 da3, 773773 a6 − 3151791360 a3 + 3130430976000〉

Now, we consider classes of coefficients which are polynomial functions in cos t
and sin t. Here, we take ω = 2π.

Lemma 5.5. If A(t) and B(t) are homogeneous polynomial functions in cos t and
sin t of degree 1 or 2, then µmax(real) = 6 and µmax(complex) = 7. The sets
Vmax(real) and Vmax(complex) are not zero-dimensional ideals.

In the case A(t) = c cos t + d sin t, and B(t) = a cos t + b sin t. It is clear that
η2 = η3 = 0. From Maple, we have:

〈η4, η5, η6〉 = 〈a2 + b2, bc− ad− 2〉.
This set has complex solutions but does not have a real solution. Moreover

〈η4, η5, η6, η7〉 = 〈1〉.
For the other case A(t) = c cos2 t + d cos t sin t + c1 sin2 t and B(t) = a cos2 t +
b cos t sin t + a1 sin2 t. We have η2 = a + a1 and η3 = c + c1. If a1 = −a and
c1 = −c, then Maple gives

〈η4, η5, η6〉 = 〈4a2 + b2, bc− ad− 8〉,
and

〈η4, η5, η6, η7〉 = 〈1〉.
A similar argument proves the Lemma.

If one of the coefficients A(t) and B(t) contains only terms with of even degrees
and the other coefficient contains only terms of odd degrees, then it follows from
5.1 Proposition that µmax(real) = µmax(complex) = 4. When the coefficients are
homogeneous polynomials of degree 3, the Groebner basis becomes very large.

Lemma 5.6. Let A(t) be a homogeneous polynomial of degree 3, and B(t) is a
homogeneous polynomial of degree 1. The solution z = 0 is not a center. Moreover,
µmax(real) = 8, and µmax(complex) = 10.

We take B(t) = a cos t + b sin t. Using the identities sin3 t = sin t(1− cos2 t) and
cos3(t) = cos t(1 − sin2 t), we can write a homogeneous polynomial of degree 3 in
the following form:

A(t) = c cos t + d sin t + e cos t sin2 t + f sin t cos2 t.

The Groebner basis of 〈η4, η5, η6, η7〉 has a real solution; we can take a = d = 1, c =
f = 0, e2 = 432, and 36 b = e. On the other hand, 〈η4, . . . , η8〉 does not have a real
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solution but 〈η4, . . . , η9〉 6= 〈1〉, and 〈η4, . . . , η10〉 = 〈1〉. On the other hand, η8 has
the form

η8 = π ((5/8) a4 + (5/8) b4 + (5/4) a2 b2 + (1/96) e2 + (1/96) f2).

It is clear that η8 6= 0, when the coefficients are restricted to be real numbers.
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