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ABSTRACT 

This research presents a novel spatial mapping technique that is capable of 

extracting the vector map of an indoor environment based on the images captured from a 

smartphone camera and the spatial maps captured from the Microsoft HoloLens. The 

extracted vector map follows the facet model concept and can be used as input in ray 

tracing algorithm. The ray tracing algorithm is used for visualizing and predicting the 

indoor wireless channels. The proposed solution offers three different algorithms, the first 

algorithm (Low cost 2D image to facet model algorithm) uses the edge and corner 

detection algorithms to compute the coordinates of the walls and doors of the indoor 

environment. The second algorithm (Minimum- maximum algorithm) computes the 

spatial map corner vertices by using the data processing techniques. The third algorithm 

(Spatial understanding algorithm) uses the Microsoft HoloLens Toolkit’s “spatial 

understanding” feature to compute the spatial maps for detecting and measuring the 

individual wall dimensions. Finally, using the corner coordinates, spatial corner vertices 

and individual wall dimensions from all the three algorithms, a simple 3D vector map is 

designed. The output of all the algorithms is a facet model that can be used by ray tracing 

algorithms which are embedded in Augmented Reality (AR) applications. The overall 

process provides a better human-to-network interface and an improved user experience 

that is expected to provide a new way for indoor network planning of residential 5G 

systems. 
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I. INTRODUCTION

Background 

Augmented reality (AR) is an enhanced version of a real-time reality where the 

computer-generated virtual images are augmented over a real-world environment. For 

augmenting the virtual data over the real-world environment, the system should 

understand the physical world environment. The indoor environment is one of the 

physical worlds where we spend most of our time. Computing indoor environment vector 

map became an active research field that encompasses the use of the real-world indoor 

environment in different AR applications like gaming, indoor navigation, interior 

designing, property advertising, indoor security, and other applications related to the 

Internet of Things (IoT), and ray-tracing algorithms, etc.  

Commonly used indoor mapping methods are 2-dimensional (2D) mapping, 

where all the dimensions of a building are measured manually, which is not suitable for 

real-time AR applications. Research is going on to meet the need of a real-time 3D 

indoor vector map for various AR applications using the high-end camera like RGB 

depth (RGB-D), simultaneous localization, and monocular (SLAM) camera. Currently, 

AR glasses like Microsoft HoloLens have an integrated spatial mapping technique. 

Where it uses different hardware sensors, and depth camera to map the surrounding 

environment. 

However, these cameras are complicated, and hard to use. To overcome these 

problems, a new solution is proposed where the individual wall images are captured and 

analyzed for measuring building dimensions. Different image processing techniques are 

used for building dimension measurements. The proposed solution is simple, and easy to 
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operate without any requirement of an external devices like depth, RGB-D or SLAM 

camera. 

The proposed solution uses the individual walls of an indoor environment 

captured by the smart-phone camera as input. These images are enhanced by using 

different image processing techniques. The image noise present in the captured images 

are reduced using the Gaussian filter. Wall boundary of all individual walls is extracted 

using the edge detection algorithms. Corners of all individual walls, and their doors are 

detected using corner detection algorithms. The dimensions of all walls, and doors are 

calculated by measuring the distance between the two corners. Based on the calculated 

dimensions, and Cartesian coordinate system, coordinates (x, y, z) of each corner are 

computed. Using the calculated coordinates, the 3D indoor vector map of an indoor 

environment is built. After successful computation of indoor vector map, the Individual 

wall images were embedded over their respective walls of a 3D indoor vector map to 

form a 3D interior view. 

Thus, the vector map developed from the proposed solution adds a new capability 

for mobile AR applications by making it to learn the indoor environment details like door 

position, room width, and breadth. This enables the augmented reality user to interact 

with the computed vector map with more precise details. A 3D hologram of the computed 

vector map can also be used in fully immersive virtual reality applications. The 

developed vector maps can also be used in determining the indoor environment wave 

propagation through the ray-tracing algorithm. The proposed solution works best for all 

medium-sized apartment, but it is hard to capture the complete large wall, so if we need 

to compute a vector map of large space area, the Microsoft HoloLens is used. The spatial 
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map computed from Microsoft HoloLens are sophisticated, and includes the coordinates 

details of all wall spaces, furniture, and other things present inside the environment.  

The second proposed solution reduces their complexity of indoor vector mapping 

by converting the complex spatial maps into simple vector maps with only the 

coordinates of the room. These simple vector maps can also be used in other 

technologies. In this research, we are using these vector maps for indoor network 

planning. Thus, for small apartments with considerable wall spaces, the indoor network 

mapping using smart-phone can be used. The smartphone indoor vector map techniques 

enhance the mobile AR applications capabilities. The second proposed solution works 

best for large commercial spaces, where the dimension of all wall spaces is measured, 

and indoor network maps are computed. These indoor vector maps can be used in ray 

tracing algorithms to compute indoor network planning by visualizing the signal 

strengths of various channels. 

Augmented reality 

Augmented reality (AR) is a combined view of both physical, and virtual world, 

where the graphical data are augmented on top of the real physical world. The user can 

see both virtual, and real world together on top of each other, which enables a new 

dimension of reality which will be helpful in educational, industrial, training, 

entertainment, and advertisement industries. For augmenting the virtual data over the 

real-world environment, the system should understand the physical world. For that, the 

indoor environment is one of the physical worlds which can be used to augment the 
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virtual world. Thus, our indoor environments can be mapped and used for overlaying the 

graphical data. So that, we can experience the virtual or digital content like computer 

display, games, videos, etc. by sitting in the living area without blocking our physical 

world. 

Indoor environment map 

The spatial maps are the vital part of the AR, where the graphical data are 

augmented over the real physical world. Since most of the time we spend our time inside 

our house, office, school, and factory areas, etc. We will be using the AR in indoor 

environments compared to outdoor environment. Since we need to augment the graphical 

data in our indoor environment, we should efficiently map the indoor environment so that 

the AR applications understand the physical world and augment the virtual world. 

Therefore, the need for efficient indoor network mapping is very high for the AR. 

Research objective, and solutions 

The need for indoor environment maps in the AR technology is discussed above. 

Currently, the AR is introduced into the market from major IT companies like Google, 

and Microsoft. The Microsoft took the AR into a next level by integrating the spatial 

mapping technique into their well sophisticated AR glass called HoloLens. At present 

only, few AR glasses are released into the market. All AR glasses use the same spatial 

mapping technique which uses sophisticated hardware sensors, and depth cameras to map 

the environment. These AR glasses map the complete spatial map of the indoor 

environment with all the furniture, and things present inside it. These spatial maps are 

useful in running complex AR applications. However, in certain simple applications, only 
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the vector map with the indoor environment coordinates are enough. These simple 

coordinate vector maps can be built using only the basic camera, and no sophisticated 

hardware sensors, and depth cameras are needed.  

This feature reduces the need for expensive AR glasses for mapping the indoor 

environment. A simple indoor environment vector maps can also be computed using all 

smartphones inbuilt cameras. This feature adds on a new simple spatial mapping with 

indoor coordinates to mobile AR applications. Thus, we are extending the mobile AR 

capabilities, and simplifying the existing AR glasses spatial maps into simple coordinate 

systems for simple AR applications. In this research, we have designed an indoor 

environment vector map technique for smartphones, and 2 different algorithms to 

simplify the Microsoft HoloLens spatial maps into simple vector maps to implement 

indoor network planning through ray tracing algorithm. 

Thesis outline 

This thesis is organized as follows. In Chapter II, a detailed literature review 

based on the previous work related to spatial mapping, corner detection, indoor 

environment vector map, and indoor network planning is explained. In Chapter III, 

computing indoor environment vector map from a basic camera is explained with the 

"Low cost 2D image to facet model" algorithm in detail. In Chapter IV, computing 

vector map from the spatial map with less complexity is explained through a spatial 

understanding features of Microsoft HoloLens in detail. In Chapter V, the results, and 

analysis of results are explained. Finally, Chapter VI summarizes the overall research 

contributions, and possible future research. 
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II. LITERATURE REVIEW

The computation of indoor vector maps, and spatial mapping are active research 

fields for various AR (AR) applications. Characteristic examples are gaming, interior 

design, property advertising, indoor security, indoor navigation, that all required 

information of the indoor space to overlay holograms. Spatial mapping requires high-end 

cameras like RGB depth (RGB-D), and Simultaneous Localization, and Monocular 

(SLAM) cameras, and this increases the overall cost of the system [1]. Spatial mapping 

is the process of analyzing the 3D space and transforming it into a set of vertices coupled 

with other information such as vertices normal, and vertices type. In most applications, 

this transformation is beneficial since a user can place holograms, and avatars in the real 

space, and interact with them. In some occasions, other applications may require a 

simplified spatial mapping where the overall objective is just to create the vector map of 

the walls, and doors of the indoor environment without the need for indoor clutter 

information. This research proposes a novel technique that can provide the 3D mapping 

of indoor spaces utilizing the facet concept, and only requires the use of a commodity 

smartphone cameras.  

Different types of AR algorithms, and limitations for real-time imaging are 

discussed in [2]. The presented applications are used in case of the military, medical, 

gaming, interior designing, and advertising [2]. A survey of AR technologies, and 

applications is also presented in [3][4]. The growth of augmented reality leads for the 

research, and development of sophisticated spatial mapping, and 3D indoor mapping 

algorithms. 
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The existing spatial mapping is computed using RGB-D cameras [5][6], and 

SLAM cameras [7][8]. The RGB-D camera captures 3D RGB images with their depth 

details. SLAM cameras simultaneously map the indoor environment with localization of 

indoor environment features, and clutter. Both RGB-D, and SLAM cameras are 

integrated in expensive AR devices. The indoor environment map computed using 

SLAM camera, and the detected boundary is shown in Figure 1. 

The next generation of communication networks, namely, the 5G networks, are 

expected to create new opportunities for mobile AR applications [9]. One characteristic 

application is network visualization, and human-to-network interaction. For example, a 

user can visualize the results of ray tracing simulations that are overlaid on top of the 

physical space with the use of an AR application. This is very important for 5G 

networks where short-range communications are expected to create extensive indoor 

network planning challenges [9]. To perform field strength prediction, ray tracing 

algorithms use the facet model, where the indoor environment is represented in a vector 

format with facets incorporating data of the coordinates, and the material structure of

a) b) 

Figure 1. a) Indoor environment mapping using SLAM camera b) Detected boundary 
of an indoor environment [29]. 
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each facet [10]. An example of the use of indoor vector maps for ray tracing algorithms 

is given in [11]. 

The proposed low cost 2D image to facet model algorithm uses a simple camera 

of a smartphone device that captures images of individual walls and is capable of 

constructing a simplified 3D map of the indoor space. The 3D map is a facet model that 

can be used by indoor channel estimation algorithms. The AR application then overlays 

the ray tracing results to enable a better human to network interaction. The facet model is 

created by identifying the coordinates, and dimensions of the walls, and doors of indoor 

environment. This process incorporates image processing techniques responsible for the 

edge, and corner detection. Different existing types of edge detection algorithms, and 

their performance with respect to the Gaussian threshold value is shown in Figure 2. The 

proposed solution uses the Canny edge detector to extract wall, and door boundaries [12]. 

Corners on the found edges are detected using the concept of detect minimum 

eigenvectors algorithm.  

a) b) 

Figure 2. a) Different types of edge detection algorithms, b) Different edge detector 
performance based on the threshold value [9]. 
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An interesting analysis, and comparison of corner detection techniques are given 

in [13]-[15]. Corner point determination on the basis of lambda values are explained in 

Figure 3. Based on the detected corners of the walls, and doors of individual rooms, the 

entire indoor environment is synthesized to create a full 3D vector representation. The 

overall objective of the proposed solution is to create the necessary foundations for the 

efficient network planning, and positioning of femtocell stations with the use of a typical 

smartphone device, and AR applications. The above low cost 2D image to facet model 

algorithm discussed can measure the dimensions of individual wall efficiently and 

compute the indoor environment map. However, to get efficient results the user needs to 

capture the complete wall in a single picture [21]. This can be achieved easily in most of 

the medium sized apartments. If the user wants to map the indoor environment of big 

spaces like office, college or other buildings with large wall spaces. Capturing the 

complete wall into a single picture will be hard. In these cases, we can use the spatial 

mapping technique. 

Figure 3. Corner detection algorithms conditions for differentiating flat, linear edge, 
and corners [14]. The distribution of x and y deraivative can be characterized by the 
shape and size of the principal component ellipse.
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The spatial mapping technique is an active research area in all the AR devices, 

and applications. Spatial mapping technique is an ability to understand, and map all the 

indoor spaces including the objects present inside it. The Microsoft HoloLens have the 

efficient inbuilt spatial mapping feature which maps the indoor environment. The 

Microsoft HoloLens uses the spatial mapping technique in various mixed reality 

applications [18]. The sensors, and cameras present inside the Microsoft HoloLens are 

explained in Figure 4. Expanding the capabilities of the spatial mapping technique might 

become useful in several different technologies [20]. Out of the different technologies, 

we are aiming to implement the spatial mapping technique on indoor network planning 

[12]. For that, the indoor vector maps are extracted, and computed from the spatial 

maps. These vector maps are used as input to the ray tracing algorithm [11]. 

Figure 4. Microsoft HoloLens hardware details [19]. 
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The ray tracing algorithm models the propagation of electromagnetic signals. The 

signal interaction, and losses concerning to the physical world like walls, buildings, etc. 

can be visualized through the ray tracing algorithm. The geometric optics in ray tracing 

algorithm decomposes the total signal strength from the source into a different number of 

rays. These rays carry a different value of phase, and amplitude which can be visualized 

in the ray tracing output. This technique of visualizing the signals, and signal strength 

enables the user to understand the signal propagation, and interaction in a better, and 

easier way [11]. 

To understand the physical world that interacts with different signals, we are 

using the indoor spatial maps. These spatial maps captured from the Microsoft HoloLens 

contains a lot of unwanted indoor object details. For the indoor network planning, and ray 

tracing algorithm, we need only the 3D-coordinates of indoor space, and their wall 

dimensions [21]. The Microsoft HoloLens uses the depth sensor to measure the distance 

between the Microsoft HoloLens, and the target object [26]. The depth sensor can 

measure a distance of up to 3.1 meters, and an area of up to 4.25 square meters [26]. If 

the user wants to measure a distance above that, the user has to move forward, and map 

the environment. The depth sensor considers each initial point of mapping as the origin. 

If the user changes the position of the Microsoft HoloLens, the depth sensor measures the 

coordinate distance from the changed positions, and results in the complex coordinate 

system [21]. Currently, The Microsoft HoloLens is not providing access to depth sensor 

data. Therefore, we are not able to convert the multiple complex coordinates into a single 
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coordinate system [25]. Thus, to have a single coordinate system, the user should not 

change the position of the Microsoft HoloLens and have to map the environment from the 

same position. Fortuitously, Microsoft unconstrained a Mixed Reality HoloToolKit 

software development kit [22]. This software development kit provides the different 

functionalities to relate, and understand the spatial maps for developing different mixed 

reality applications [12][24][25]. 

In this proposed research, based on the Microsoft HoloLens depth sensor data, we 

have designed two different algorithms. These algorithms work on two different 

methodologies. The primary objective of the two algorithms is to remove unwanted 

spatial map data, and to extract only the useful information like wall width, breadth, and 

room area. The two different algorithms are: 

1. Minimum-Maximum algorithm

2. Spatial understanding algorithm

Using the extracted data from the above two algorithms a simple vector map of a 

building is built. These indoor vector maps are computed based on the facet model, 

which are easier to understand for the ray tracing algorithm [12]. This ray tracing 

algorithm displays the signal strength, and its propagation. From which the users can 

have a better scientific understanding of signal strength, and signal interaction with the 

physical world. This process opens a new door in indoor network planning that can be 

performed by any non-technical users, and non-experts in the field [21]. 
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III. LOW COST 2D IMAGE TO FACET MODEL 

Overview 

The algorithm processes images of the indoor environment identify the walls, and 

doors positions, computes the coordinates, and creates the facet model for each wall, and 

door. For the purpose of this investigation, window detection was omitted. This process is 

performed for each room of the indoor space, and the found facets are combined in a data 

structure to represent the entire indoor environment. This process can be considered as a 

simplified spatial mapping technique that neglects the detailed furniture clutter since it is 

not significantly affecting signal propagation. The input of the algorithm are the images 

Figure 5. Flowchart of 3D indoor facet mapping. 
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of every wall but also the height of the ceiling. The images can be captured using a 

standard camera of a typical smart phone device, without the need of using an expensive 

depth camera. The input images are then pre-processed to enable an efficient edge, and 

corner detection process which is important for the identification of the vertices, and 

coordinates of the walls, and doors. The 3D Cartesian coordinates of a room are 

calculated using the length, width, and height of the room which is computed once the 

wall, and door vertices are detected. Using these coordinates, the 3D vector map or else 

the facet model can be constructed, and become available to third party applications such 

as ray tracing, and AR. 

The detailed overview of the proposed solution is presented in Figure 5 and is 

analyzed in the following sections. For efficient performance of the algorithm, the 

following assumptions should stand: 

• Capture photo of the wall from the center of the room by standing parallel to the wall

• The captured image must be clear without any clutter near the top corners of the walls

• If the wall is large, the user can use the panorama function of the smartphone device to

capture the entire wall in a single image file

In practice, the aforementioned conditions are usually met in most typical 

residential units. It should be noted that the proposed technique cannot be used for large 

corporate offices, since a wall is usually large enough, and cannot fit in one photo screen. 
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Image pre-processing 

The image pre-processing is the first step of the overall technique and prepares 

the images of the room for the edge, and corner detection phase. For the efficient edge, 

and corner detection, the input image is converted into a grayscale image [5]. The second 

step of the pre-processing phase is to crop selected regions of interest from the gray scale 

image. For the purpose of our investigation these are the top, and left corners of the wall 

as shown in Figure 6. The regions of interest are used to minimize unwanted edge, and 

corner detection, and reduce the computational demands of the algorithm. 

The last part of the pre-processing phase corresponds to a down sampling of the 

image pixel size procedure on the cropped images that further reduces the computational 

demands of the process. Usually, the image can be convolved with a Gaussian filter to 

reduce the number of unwanted edges [9]. The smoothing process [9] is given in the 

following formula: 

𝑆[𝑖, 𝑗] = 𝐺[𝑖, 𝑗; 𝜎] ∗ 𝐼[𝑖, 𝑗] (1) 

, where I[i, j] denotes the input image of pixel size i x j, G[I,j;σ] denotes Gaussian 

smoothing filter, and S[i, j] denotes the array of smoothed data, and σ is the gradient level 

of the filter.  

a) b)  c) 

Figure 6. a) The two regions of interest on the original wall image, b) Pre-processed 
image of top left region, c) detected edges, and candidate corners. 
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Image is down-sampled to different resolutions like 1280x768, 960x720, 

640x480, and experimented for best corner detection results. Images with low 

resolution 640x480 help to reduce the number of false corner detection compared to 

higher resolution images. A 5x5 size Gaussian filter is used for efficient edge, and 

corner detection [13]. The overall process of the image pre-processing is demonstrated 

in Figure 6 a), and Figure 6 b). The next phase of the proposed solution is to process 

those images for edge and corner detection. 

Edge and corner detection 

The edge, and corner detection of the wall image is the most crucial part of the 

algorithm. This is because, corner detection is directly related to the coordinates of the 

wall of the room, and thus the development of the facet model. The edge, and corner 

detection flowchart is given in Figure 7. The first part of the algorithm is to perform edge 

detection upon the preprocessed input wall images by implementing the edge Canny 

method [9]. The Canny method calculates the gradient using the derivative of a Gaussian 

filter, and uses two thresholds to identify strong, and weak edges. With this approach, the 

edge detection of unwanted noisy parts of the image is minimized. The Canny method 

uses a threshold to distinguish between strong, and weak edges. For the purpose of our 

investigation, the edge is detected according to the following function. 

EM	=	edge	(S,	Canny,	δ,	σ)	(2) 

, where S denotes the pre-processed image, Canny denotes the edge detection 

algorithm, δ is the threshold used, and is a two-element vector, σ is a scalar of the 

standard deviation of the Gaussian filter, and EM denotes the edge map of the wall 

image. 
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The EM image is a binary matrix with 1s representing the points where an edge is 

detected. The threshold value is a sensitivity value and is used to ignore all edges that are 

not stronger than the selected threshold. The initial threshold was set to δ=0.4, and if no 

corners found, it decrements by 0.02. The standard deviation was set to σ=sqrt(2). 

The corner detection is the second step of the process during which the edge map of the 

image is processed for the identification of the candidate corners. The output of the 

Figure 7. Flowchart of edge detection, and corner detection. 
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formula [14]: 
𝐶=>?@AB = CD

𝐼EF 𝐼E𝐼G
𝐼E𝐼G 𝐼GF

H = I𝜆K 0
0 𝜆F

M (4) 

, where Ix denotes the horizontal gradients of the edge map, Iy denotes the vertical 

gradients of the edge map, IxIy denotes the edges on diagonal. Cmetric denotes the matrix 

with two Eigen values λ1, λ2 characterized by their shape, and size of the principal 

low cost 2D image to facet model algorithm is a set of potential points that can be 

considered corners of the walls, as shown in Figure 6. c). The red mark corresponds to 

the set of potential points. It is observed that the corner point that falls on the intersection 

of the three edges is the preferred wall corner. The identification of the final corner is 

described in the next section. For the purpose of our investigation, the 

detectMinEigenFeatures low cost 2D image to facet model algorithm [14] was used. This 

is a MATLAB function, and has the following  structure: 

Corner	=	detectMinEigenFeatures	(EM,	q,	G);	 (3)

, where EM denotes the edge map in gray scale (binary), q is a scalar value between 

[0, 1], and denotes the corner strength, and quality. Larger values of q are used to eliminate 

erroneous corner points. For the purpose of our investigation, the value was set q=0.5  

because the pre-processing phase of the image eliminates the majority of erroneous points. 

The function returns an object file called Corner that incorporates location of corners in  

pixel coordinates i, j, and the corner metric value, Cmetric. Larger corner metric indicates a 

strongest candidate for a corner [13]. Parameter G is the Gaussian filter dimension, and is  

an odd integer value in the range [3, inf]. For the purpose of our investigation, we set G=3. 

The Gaussian filter is used to smooth the gradient of the input image. The minimum Eigen 

values of the low cost 2D image to facet model algorithm is computed using the 

following         
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component ellipse inside each filter of an image were computed. According to the used 

parameter q the output of the low cost 2D image to facet model algorithm may not 

provide any candidate corner points. In that case, the algorithm reduces the corner 

quality parameter q with a step of 0.05 until corner points are detected. This process is 

also presented in Figure 7. The corner detection phase ends with the detection of at least 

one or more strong candidate corner points with a corner metric value above the quality 

level. The same procedure is performed for the bottom corners of the wall. Thus, the 

output of the corner detection process is a set of corner points for each region of interest 

of the wall. For the top left region of interest (ROI) of the wall, the output is a set of 

points (xi,yi), iÎ  TL where TL indicates the number of found corners for this region of the 

wall. Respectively, for the top right part of the wall the potential corner points are (xj,yj), 

jÎ  TR. The bottom left part includes the candidate corner points (xm,ym), mÎ  BL. Finally, 

the bottom right part of the image includes the candidate corner points (xn,yn), nÎ  BR. 

Computation of wall dimension

This part of the algorithm provides an estimation of the wall width according to 

the detected candidate corners. These corner points may include both good candidate 

corners but also erroneous corners. In order to avoid the negative effects of the erroneous 

corners in wall width measurements, the best candidates should be determined. For that 

reason, each corner point in all regions of interest are compared with each other. The 

corner points from the top part of the wall that have the same y value yi~yj, where i, and j 

are the two candidate corner points from the top right, and top left part of the wall, are 

preferred. In addition, the corner points from the top left, and bottom left part of the wall 

that have the same x value xi~xm. 
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, where i, and m are the two candidate corner points from the bottom, and top left 

part of the wall, are preferred. Similarly, the same procedure occurs for the bottom left, and 

bottom right, and also for the top, and bottom right part of the walls. The final corner 

detection is computed according to the overall process is shown in Figure 8. The width, w, 

of a room wall is calculated by measuring the pixel distance between the two final corners. 

, where ℎ |𝑦A∗ − 𝑦=∗|\  is the pixel resolution rp measured in meters/pixel. The

pixel resolution can be computed according to the height of the wall, h, which is defined 

by the user, and the number of pixels between the two corners. In a mathematical form, 

this is presented in (6). The detected wall boundary is demonstrated in below Figure 9. 

𝑖∗, 𝑗∗, 𝑚∗, 𝑛∗ = min
A,`,=,a

b|𝑥A − 𝑥=| ∙ e𝑦A − 𝑦 e ∙ |𝑦= − 𝑦a| ∙ e𝑥 − 𝑥aef     (5) 

𝑤 =
ℎ

|𝑦A∗ − 𝑦=∗| ∙ e𝑥A
∗ − 𝑥 ∗e (6) 

Figure 8. Corner points matching between two regions of interest of a wall image. 

a) b) 

Figure 9. Detected wall boundary. 
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Door detection 

The door detection process follows a similar approach where an edge, and corner 

detection algorithm is used to find the location of the boundaries of the door [17]. An 

illustration of the overall process is given in in Figure 7. For the door detection, the 

region of interest is focused above the half of the wall, and below the third quarter of a 

wall. This is because, most doors found in typical residential units have these height 

values. To increase the efficiency of the door corner detection algorithm, the 

following conditions were assumed: 

• The preferred door corner should have a y-axis value equal to a standard door height

of 2.1 meter. Thus, rp×|yi-ym|=2.1m.

• Two corner points should have the same y-axis values. Thus, |yi-yj|~0.

• Two corner points should be separated by a standard door width 0.9 meters. Thus,

rp×|xi-xj|=0.9m.

Similar to the wall detection process, the algorithm first identifies the position of

the door boundaries, computes the door dimension, and defines the coordinate values 

of its corners. The detected door boundary is as shown in Figure 10. 

a)  b)  c) 

Figure 10. (a) Input image with region of interest (ROI) selected. (b) Detected door 
corners over edge map. (c) Detected door on a wall 
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IV. SPATIAL MAPPING

Spatial mapping is a mapping technique mapped using a depth sensor where it 

computes the vertices, and vertices normal of the indoor environment, and all the 

furniture, objects or things present inside it. The Microsoft HoloLens uses the depth 

sensor, and a laser ray cast to measure the vertices or depth distance between the 

HoloLens, and the wall, ceiling, floor, and different object or things distance. Based on 

this depth measurement, the vertices of all spaces are computed into an object file. These 

spatial maps are sophisticated and can be used in varieties of complex AR applications. 

However, for our proposed problem, we need a simple vector map with only the room 

coordinates. So, we are using the spatial map from the Microsoft HoloLens, and we will 

convert the spatial map into a vector map. Since Microsoft HoloLens is using a well-

sophisticated depth sensor, it can map large commercial room wall spaces. This feature of 

mapping large wall spaces will clear the limitation of our previous algorithm which is 

aimed at residential spaces. 

In the following proposed solution, two different algorithms are discussed, they are: 

1. Minimum-Maximum algorithm

2. Spatial understanding algorithm

       The two algorithms are explained briefly in next chapters. The minimum-

maximum algorithm is designed to work in MATLAB. It uses the spatial map object 

file of the HoloLens as input and converts the spatial map into a simple vector map. 

The second algorithm i.e. spatial understanding algorithm uses the inbuilt HoloLens 

algorithm in C#, and Unity,  
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Minimum – Maximum Algorithm 

Overview 

The algorithm processes the spatial maps of an indoor environment captured from 

the Microsoft HoloLens. These spatial maps consist vertices, vertices normal, and 

fragments. Based on the vertices normal, vertices of an individual wall are identified, and 

Figure 11. Flowchart of Minimum – Maximum Algorithm 
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named after their directions. Vertices with minimum, and maximum “x” or “z” values of 

all the walls are identified. Thus, for each individual wall, 2 vertices of minimum, and 

maximum values both “x” axis, “z” axis or each from “x”, and “z” axis is identified. The 

dimension of each wall will be the distance between the 2 vertices points. Using the 

dimensions of all 4 walls of a room i.e. length, and breadth, the 3D indoor vector map 

will be computed, and used as an input to ray tracing algorithm to visualize signal 

strength, and signal propagation. The overview of the minimum-maximum algorithm 

with individual steps involved in it is as shown in Figure 11. 

Spatial mapping process 

Figure 12. Spatial map of an indoor environment. 

Before, working on the spatial coordinates of the spatial map. We need to 

understand, how the spatial map is captured inside the Microsoft HoloLens. The 

spatial map of an indoor environment captured from the Microsoft HoloLens is as 

shown in Figure 12. The spatial mapping technique involves both hardware, and 

inbuilt software functionalities of the Microsoft HoloLens. Depth sensor is used in the 

HoloLens to measure the distance between the HoloLens, and the target object or the 

target surface. 
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The depth sensor computes 3D cartesian coordinate system in terms of triangles of 

multiple vertices. It has the capacity to measure a distance of up to 3.1 meters, and If we 

want to measure a distance above that, the user wearing the HoloLens should step 

forward till the sensor reaches the target and have to map the surrounding environment. 

Thus, using a depth sensor in the HoloLens standing at one point we can only build a 

spatial map with a single coordinate system of area 4.25 square meters. 

If the user wants to map the area above that, the user needs to step forward, and the 

HoloLens computes multiple different coordinate systems with different origins, resulting 

in complex, and invalid coordinate system. Thus, in order to measure the wall dimensions 

of a room, the user needs to stay in the same position, and have to map the indoor 

environment. Using this algorithm, the user can map a room of an area up to 4.25 square 

meters, which works best in common residential apartments. 

Spatial map data 

The indoor environment is scanned through Microsoft HoloLens, and a detailed 

spatial map for the same is generated with 3D (x, y, z) spatial coordinates of all the 

spaces, and objects present inside it. The spatial map data can be saved or exported from 

HoloLens to a computer in a .obj file format. The spatial map data will consist of 3 main 

information i.e. vertices, vertices normal, and fragments. The Microsoft HoloLens maps 

the data in terms of small triangles where the vertices represent each point of a triangle. 

Vertices normal represents the direction of the object or the wall direction. Fragments 

data represents the graphical representation of the spatial map. Figure 12 demonstrates 

the spatial map of an indoor environment mapped through Microsoft HoloLens. 
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Individual indoor wall vertices clustering 

The extracted spatial map data is then imported into MATLAB for data analyzing, 

and processing of useful information. The main objective of the "Minimum & 

Maximum" algorithm is to find the precise dimensions of a room using the vertices & 

vertices normal data of an indoor environment spatial map. Since fragment data is used 

for graphical representation. we excluded its data, and clustered only the vertices, and 

vertices normal data from the spatial map .obj file data. Vertices normal is the key 

variable which can be used to identify the direction of an indoor space, objects, and walls 

so, based on the vertices normal direction, vertices of all 4 different walls i.e. wall1, 

wall2, wall3 & wall4 are grouped separately. Where: 

• wall1  =  X positive direction

• wall2  =  Z positive direction

• wall3  =  X negative direction

• wall4  =  Z negative direction

• ceiling =  Y positive direction

• floor   =  Y negative direction

Now, we are having 6 different vertices groups with the right hand (x, y, z) 3D- 

coordinate system. Each unit in the coordinate system is measured in terms of meter unit 

i.e. (x=1m, y-2m, z=3m). Since the spatial map is done at the same position, and the

coordinates distance values are measured from the HoloLens. We can consider HoloLens 

position as an origin. 
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Computation of wall dimension

Now, we will find the maximum, and minimum values of the x-axis, and z-axis 

as shown in Figure 13. Since we are measuring the coordinate distance from the same 

position or the origin, the maximum, and minimum vertices x-axis, and z-axis values are 

always will be near the corner of the mapped environment, and the orientation of the 

coordinate system will always remain same as in Figure 13. Identify the respective 

coordinates of the max(x), min(x), max(z), min(z). Using the 3D cartesian distance 

formula, find the distance between the two corner point vertices, and these distances will 

be the width of the individual wall. Using these dimension, length, and breadth of a room 

are calculated i.e. length is the average of 2 parallel walls wall1, wall3, and breadth is the 

average of other 2 parallel walls wall2, and wall4. Similarly, the height of the room is 

Figure 13. Minimum-Maximum vertices Identification 
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also computed by measuring, and adding the max(y), and min(y). Thus, of the room is 

also computed by measuring, and adding the max(y), and min(y). Thus, (length, height, 

breadth) i.e. (x, y, z) is measured, and using this 3D coordinate values, simple, and clear 

vector map suitable for ray tracing algorithm is built.  

The spatial map of an indoor environment is as observed in below Figure 14 a). 

The spatial information is complex, and hard to visualize. These spatial maps are used as 

input to the minimum-maximum algorithm, and all 8 corners of an indoor environment 

are identified. Based on the corners, individual walls, i.e. wall1, wall2, wall3, and wasll4 

are identified. Figure 14 b), c), d), e) shows the individual walls of an indoor 

environment. The dimensions of these wall samples are calculated, and the coordinates of 

the room are recorded in the data structure. 

Wall1 = dist{ Vert[max(x), y, z], Vert[x, y, min(z)]] } (1) 

Wall2 = dist{ Vert[max(x), y, z], Vert[x, y, max(z)] } (2) 

Wall3 = dist{ Vert[min(x), y, z], Vert[x, y, max(z)] } (3) 

Wall4 = dist{ Vert[min(x), y, z], Vert[x, y, min(z)] } (4)
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Figure 14. a) spatial map of an indoor environment. b), c), d), & e) Individual walls 
of an indoor environment. 
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Spatial Understanding Algorithm 

Overview 

Figure 15. Spatial understanding algorithm 

The main limitation of the Minimum-Maximum algorithm is that we have to scan 

the room from the same position, and we can only scan a room of area only up to 4.25 

square meter. This limitation can be overcome by Microsoft’s inbuilt spatial mapping 

functions. Where the functions integrate the different coordinate, systems computed 

from different origins into a single coordinate system during the scanning process. Thus, 

using these functions, the user can scan the indoor environment, so all usable surfaces 

like the wall, floor, ceiling, etc. irrespective of the initial positions. The user can also 

move 
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around in any directions or any orientation and maps the indoor environment. The 

overview flowchart of spatial understanding algorithm is shown in Figure 15. 

Topology result 

        The single coordinate system computed from multiple different coordinate systems 

of different origins are stored in Topology result structure object by the spatial mapping 

function. The Topology result object consist the spatial map data of position or vertices, 

vertices normal, width, and length. The spatial map of an entire indoor environment is a 

combination of multiple small spatial maps mapped in a random shape, and order. The 

spatial mapping functions combine all the individual spatial maps together. It stores 

individual spatial map data i.e. mentioned in the result topology in a descending order. 

struct TopologyResult 

 { 

     DirectX::XMFLOAT3 position; 

     DirectX::XMFLOAT3 normal; 

     float width; 

     float length; 

 }; 

Individual wall identification 

The Spatial understanding is another inbuilt function of the Microsoft 

HoloLens. It has different topology queries to understand the spatial map data stored in 

the result topology structure. Using spatial understanding functions, the spatial maps of 

an indoor environment can be understood and used in different varieties of mixed 

reality 
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applications. Different objects, and spaces like the chair, table, couch, floor, ceiling, wall, 

and large open spaces, etc. can be identified. Using the existing topology queries, we can 

specify the conditions to find the large walls of a room as shown in this code snippet. 

EXTERN_C __declspec(dllexport) int QueryTopology_FindLargestWalls( 

     _In_ float minHeightOfWallSpace, 

     _In_ float minWidthOfWallSpace, 

     _In_ float minHeightAboveFloor, 

     _In_ float minFacingClearance, 

     _In_ int locationCount, 

     _Inout_ Dll_Interface::TopologyResult* locationData) 

The above function identifies the large wall spatial maps and stores it in the 

topology result structure. The largest spaces are stored on the top in a descending order. 

The first 4 largest spatial map areas identified are the spatial maps of 4 individual walls.  

Figure 16. Individual wall identification using spatial understanding. 
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Computation of wall dimension

The spatial understanding function identifies the large spatial map data in the 

topology result. Computes the position, and normal, and calculates the length, and width 

of the individual spatial map spaces. The first two large space areas are stored in the 

result topology will be wall1, and wall3. The next 3rd, and 4th spaces in the result 

topology will be wall2, and wall4. Using these dimension, length, and breadth of a room 

are calculated i.e. length is the average of 2 parallel walls wall1, wall3, and breadth is the 

average of other 2 parallel walls wall2, and wall4. The large wall detection with the 

spatial understanding is shown in Figure 16 with the pink line boundary of the wall. 

Thus, we identified the 4 different walls of a room. These dimension values will be used 

in building a vector map of the building. Using the same algorithm, we tried inserting 

suitable conditions for the detection of the door in the indoor space. since the Microsoft 

HoloLens considers the doors same as walls, and there is no much considerable space 

difference between wall, and a door like the difference between a floor, and a table. We 

weren’t able to identify the doors inside the indoor spaces. 

After successful execution of the Minimum–Maximum algorithm, the spatial map 

data is been processed, and structured into different vertices groups based on their 

vertices normal. Each wall group coordinates are plotted to see the specific spatial map 

of its own wall group. The spatial map of 4 different wall groups are shown in Figure 14. 

Using these walls, we can visually know the width, and length of the walls. Also, we can 

understand how the spatial mapping is done from the Microsoft HoloLens. We can also 

observe from the plots the maximum distance measured from the Microsoft HoloLens i.e. 
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origin is less than 3.1mt, and the total area will be less than 4.25 square meter. The 

detected large wall in the indoor space are as shown in Figure 16, where the Spatial 

Understanding function understands the spatial map of an indoor space. It also separates 

all the spatial map areas into different individual areas based on their directions, and their 

length, width, and area. The spaces with maximum areas are stored on top of the result 

topology array. Using these result topology data, we can extract the dimensions or spatial 

map space of 4 individual walls of a room.  

Using the above 2 algorithms, we can measure the length, and breadth of an 

individual room with 8 corners of a room. These coordinates can be stored in a facet 

model format. Each facet represents an individual wall with four corner coordinates (x, y, 

z). These coordinates indicate the respective corners. Using the same process, the facet 

model of all other rooms is computed, and combined together to form a clear vector map 

of an entire building without any unwanted indoor objects data. The vector map of a 3-

bedroom apartment is computed. The finally designed vector map is used as an input to a 

ray tracing algorithm. The ray tracing algorithm models the electromagnetic wave 

propagation using the Geometric Optic (GO), and sum of the individual rays carrying 

different amplitude, and phase. The indoor space details like wall length, breadth area, 

etc. been loaded into ray tracing algorithm, and the resulting electromagnetic signal 

variations or channel condition can be visualized inside the modeled indoor vector map. 

This process opens up a new set of functionalities, and options for non-technical users, 

and non-experts to perform indoor network planning. 
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V. THE FACET MODEL

Constructing the 3D environment 

After the successful wall, and door width detection, the final coordinates of the 

room can be stored in a facet model format. The vector map is represented by its facet 

where each wall, and door is defined by four coordinate points x,y,z. These coordinates 

indicate the respective corners. The facet representation of a single room is presented in 

Figure 17 a. For more enhanced experience, it is possible to overlay the picture as texture 

on the facet as presented in Figure 17 b. 

Using the same method, and principles, the 3D vector map of the remaining 

rooms of the indoor environment can be constructed. One difficulty for this case is the 

positioning of the rooms to form a realistic indoor environment, close to the real one. For 

the purpose of our investigation, we assume that the user takes four pictures per room to 

cover the 360 space and takes the pictures in a clockwise manner. Once the user 

completes this process for one room, then the user takes the pictures of the adjacent 

room, starting from the wall that is shared with the previous room.  

a)        b) 

Figure 17. a) 3D vector map. (b) 3D indoor environment interior view. 
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Figure 18. Integrating individual room blocks into a building based on the direction 

of next room with respect to initial room. 

In that way, there is always a “calibration” or orientation point that allows the 

algorithm to reconstruct, and attach the facet of each room, and form a realistic indoor 

environment. This process is presented in Figure 18. where the first room is marked as 

initial and attached to the adjacent room according to the shared wall of the two rooms. In 

the next iteration, the second room becomes the reference room, and the third room is 

attached according to their shared wall. This process is followed until the user captures 

images of all rooms of the indoor environment, and the indoor environment is fully 

constructed. 

Data structure 

The data structure of the facet model is presented in Table I. The indoor 

environment in composed by a set of individual rooms. Each room has a number of walls, 

and each wall may have a number of doors. The elements of the room structure store all 

the details of the indoor environment like wall width, room number, room position, wall 

image, wall coordinates, and door coordinates. The room position field is used to 

determine the position of the room according to the previous one. The wall image is used 

as a texture and is overlaid on the facet model to enhance the user experience. The pixel 

size is used for the computation of the dimensions of the walls, and doors length, and 

width, and may also be used for future applications. The wall coordinates, and door 
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coordinates represent the vector format of the facet, and is the most valuable element of 

the structure, used by the ray tracing algorithm. 

Finally, each facet incorporates its constitutive parameters that are used for the 

computation of the diffraction, reflection, and transmission coefficients of the ray tracing 

model. For the purpose of our investigation, the wall was assumed to be made by brick 

material, and the doors by wood material. The constitutive parameters of these materials 

can be found in [12]. The details of the indoor environment can be fetched using the 

‘Building Details’ button of the main GUI, as described in the following section of the 

report. 

Room Wall 

Position 

Room 

Properties 
Description 

Room(i).Wall(j) Room_Position Top, down, left, right, front & back position 

---------||--------- Wall_Image Respective room wall image 

---------||--------- Width_Pixel Wall width in pixel size 

---------||--------- Width Wall width in meter 

---------||--------- Height Wall height in meter 

---------||--------- Coordinates Wall (x,y,z) coordinates as a set of four corners 

---------||--------- Door 
Door (x,y,z) coordinates as a set of four 

corners 

Table 1. Data Structure of the facet model. 
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VI. RESULTS

 Graphical user interface  

a) 

b) 
Figure 19. a) Main GUI of indoor building vector mapping, b) Secondary GUI for 

uploading images of a room and mapping individual rooms. 
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A GUI was designed to make the use of the developed app easy, and user friendly. 

The user can enter the standard height of the ceiling that is used as reference for the pixel 

resolution definition. The user also enters the room position that is used as a reference 

point for the construction of the 3D space. Finally, the user uploads the images for each 

wall of the indoor environment by using a secondary GUI as indicated in Figure 19. The 

user can upload four individual wall images per room and indicate if there is a door in the 

room. The door checkbox was used to reduce the computational cost by eliminating 

unwanted door detection processes. Once the user uploads the data to the system, the 

facet model is computed. Within the GUI, there is a button to indicate if there is a 

window in a wall. For the purpose of our investigation, windows were not incorporated in 

the facet model, and is something that will be integrated in future versions of the 

algorithm. 

Augmented reality to Ray tracing

The scenario under investigation is presented in Figure 20. A two-bedroom 

student dorm apartment was examined that has three main rooms. The facet model of the 

apartment was successfully reconstructed when the user uploads the twelve images of the 

walls of the three rooms. A commodity smart phone device was used to capture the 

images. The user spent 3 minutes to take the photos, and upload into the system using the 

GUI. When the user uploads the images to the system, the algorithm performed the pre-

processing phase by down sampling, and applying Gaussian filters. The input images 

were down sampled to different resolutions, and the best performance was met when the 

resolution was set to 640x480.  
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 a) b) 

c) 

Figure 20. a) 3D Vector map of a building. b) 3D Interior view of a building, c) 

Implementation of a Ray Tracing algorithm on the facet model. 

It was found that the most suitable corner detection technique was 

‘DetectMinEigenFeatures’ of MATLAB since it provided the most accurate results and 

is widely used by the research community. The found coordinates of all rooms  

were integrated together to form the facet model of the entire indoor environment. The 
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processed images are then embedded on to their respective walls to form a 3D interior 

view which is as demonstrated in Figure 20 b). It should be noted that the user inputs at 

the GUI, such as the height of the ceilings, the position of different rooms, and the 

existence of doors on walls, reduced the computational cost by 35%-40%. This is 

because, the algorithm did not search for doors in case there was no door at the room and 

made a more efficient positioning of the rooms to form the entire indoor space. 

The final step of the proposed system is to use the facet model of the indoor space 

as input to a ray tracing algorithm [11]. The ray tracing algorithm models the propagation 

of the electromagnetic waves using the Geometric Optic (GO) technique and decomposes 

the total field strength as sum of individual rays carrying a different amplitude, and 

phase. The amplitude was computed as a combination of multiple reflection, 

transmission, and diffraction coefficients. For the purpose of our investigation the used 

frequency was assumed to be of the order of the 6GHz band of 5G systems. The results 

are presented in Figure 20 c). It is observed that the walls, and doors of the environment 

interact with the electromagnetic waves and change their signal strengths. With the use of 

the proposed system, the user is able to take 12 images of the walls of the house, and with 

just a few clicks be able to visualize the signal variation, and channel condition of the 5G 

femtocell station inside the house. This process opens new frontiers in indoor network 

planning that can be performed by non-technical users, and non-experts in the field. In 

addition, it creates new opportunities for the education of indoor channel modelling with 

the use of AR (AR) devices, and applications.  
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After successful execution of the Minimum–Maximum algorithm, the spatial map 

data is been processed, and structured into different vertices groups based on their 

vertices normal. Each wall group coordinates are plotted to see the specific spatial map 

of its own wall group. The spatial map of 4 different wall groups are as shown in Figure 

14. Using these plots, we can visually know the width, and length of the walls. Also, we

can understand how the spatial mapping is done from the Microsoft HoloLens. We can 

also observe from the plots the maximum distance measured from the Microsoft 

HoloLens i.e. origin is less than 3.1mt, and the total area will be less than 4.25 square 

meter. The detected large wall in the indoor space is as shown in Figure 16, where the 

Spatial Understanding function understands the spatial map of an indoor space. It also 

separates all the spatial map areas into different individual areas based on their 

directions, and their length, width, and area. The spaces with maximum areas are stored 

on top of the result topology array. Using these result topology data, we can extract the 

dimensions or spatial map space of 4 individual walls of a room.  

Using the above 2 algorithms, we can measure the length, and breadth of an 

individual room with 8 corners of a room. These coordinates can be stored in a facet 

model format. Each facet represents an individual wall with four corner coordinates (x, y, 

z). These coordinates indicate the respective corners. Using the same process, the facet 

model of all other rooms is computed, and combined together to form a clear vector map 

of an entire building without any unwanted indoor objects data. The vector map of a 3-

bedroom apartment is computed and is as shown in Figure 20. a. The finally designed 

vector map is used as an input to a ray tracing algorithm. The ray tracing algorithm 

models the electromagnetic wave propagation using the Geometric Optic (GO), and sum 
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of the individual rays carrying different amplitude, and phase. The indoor space details 

like wall length, breadth area, etc. been loaded into ray tracing algorithm, and the 

resulting electromagnetic signal variations or channel condition can be visualized inside 

the modeled indoor vector map. This process opens up a new set of functionalities, and 

options for non-technical users, and non-experts to perform indoor network planning. 

Wall dimension measurement comparison 

 

Wall 
Samples 

Actual 
Measurements 

Low cost 2D 
image to facet 

model algorithm

Min-Max 
Algorithm 

Spatial 
Understanding 

Algorithm 

1 3 3.15 3.15 2.9 

2 3.4 2.95 3.2 3.5 

3 5.3 3.15 5.29 5.2 

4 3.4 2.95 3.2 3.4 

5 1.8 3.06 2.12 1.7 

6 4.2 3.5 3.59 4.2 

7 2.3 3.06 2.17 2.3 

8 3.1 3.5 4.56 3.1 

9 2.6 2.71 2.77 2.6 

10 2.6 2.71 2.67 2.6 

11 2.2 3.07 3.5 2.1 

12 3.7 3.07 3.5 3.7 

13 3.2 3.35 3.86 3.2 

14 2.9 3.13 2.98 2.8 

15 3.1 3.35 2.8 3.2 

16 2.9 3.13 2.7 2.9 

Table 2. Wall dimension measurement comparison between the proposed 
algorithms. 
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 For checking the efficiency, and wall measurement accuracy of all three proposed 

algorithms, a 2-Bed apartment is considered. Actual measurements of all individual walls 

are measured using a laser beam measurement device and recorded in column 2. The low 

cost 2D image to facet model algorithm is applied over the images of all individual walls 

captured from a smart-phone. The resulting wall dimension measurements are recorded in 

column 3. The low cost 2D image to facet model algorithm results are compared with the 

actual dimensions, and the low cost 2D image to facet model algorithm achieved 93% 

accuracy. The minimum- maximum algorithm is implemented over the Microsoft 

HoloLens spatial map object file. The algorithm computes the individual wall dimensions, 

and the data has been recorded in column 3. The minimum- maximum algorithm shows 

an improved accuracy compared to low cost 2D image to facet model algorithm. 

 The minimum-maximum algorithm shows a 2.4% increased accuracy with a total 

accuracy of 95.4% which is good for efficient indoor vector mapping. Even though the 

minimum-maximum algorithm achieved good accuracy, it has a limitation of measuring a 

room of only area less than 4.25 square meters. So, the spatial understanding algorithm is 

implemented, and the resulting wall dimensions are recorded in column 4. Since the 

spatial algorithm uses the inbuilt algorithms, and functions from Microsoft HoloLens 

software development kit, it achieves higher accuracy than the other two algorithms. The 

minimum-maximum algorithm shows a 3.6% improved accuracy than low cost 2D image 

to facet model algorithm, and 1.2% improved accuracy than a minimum-maximum 

algorithm. Thus, the spatial understanding algorithm achieves the highest 96.6% accuracy 

compared to the actual wall dimensions. 
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The accuracy of all three different algorithms concerning the actual dimensions 

of all individual walls are show in Table 3. The difference between the accuracy of the 

algorithms is also listed in the table. The proposed algorithms show an improvisation 

from one algorithm to another. The difference between all 3 individual algorithms is not 

much significant for use in AR applications. Whereas in Indoor network planning, the 

accuracy of indoor space wall dimension is essential to get the best ray tracing, signal 

strength, and signal propagation results. So, based on the application, and requirement of 

accuracy, and availability of hardware any one of the above three algorithms can be used. 

Figure 21. Wall dimension measurement comparison chart. 

Algorithm Accuracy Difference 

Low cost 2D image to facet model 
algorithm 

 93% - 

Minimum-Maximum Algorithm 95.4% + 2.4%

Spatial Understanding Algorithm 96.6% + 1.2%
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Wall measurement samples

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Actual measurements Low cost 2D photo to facet 
model algorithm

Min-Max Algorithm Spatial Understanding Algorithm

Table 3. Proposed algorithms individual accuracy, and difference 
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The graphical representation of wall dimensions of sixteen different wall samples 

are as shown in the Figure 21. Different colors in the histogram chart represent the actual 

dimension, and individual wall dimension measurement algorithms. The chart provides 

the simple comparison understanding of all three algorithms compared to the actual 

dimensions. Out of 16 walls, all three algorithms work best for 9 walls. The spatial 

algorithm matches the actual dimension in all 16 wall samples, so it’s the most reliable 

algorithm out of all the three algorithms. The low cost 2D image to facet model algorithm 

accuracy was dropped in 4 wall dimension measurements with reduced accuracy. The 

minimum-maximum algorithm accuracy was dropped in only 2 walls with different wall 

dimension results. But these mis-calculation of dimension will be corrected in the vector 

map building function, where it compares the individual wall with their parallel walls and 

matches up with the right dimension.  

The ray tracing results, and indoor vector map builds based on all three algorithms 

are as shown in Figure 22. In column 2, we can observe the 3D indoor vector maps of a 2-

bedroom apartment. Observe the changes in the room area or dimensions of the individual 

algorithm concerning actual dimension vector map. All the three algorithms show a slight 

difference in individual room area, but the changes are not significant. The changes are 

less, and don’t affect the ray tracing results. Thus, all the three algorithms can be used for 

indoor network planning. The ray tracing results of all three algorithms are shown in 

column 3. Thus, using these algorithms, the user can build a 3D indoor environment 

vector map, and use them to visualize the signal strength for Indoor network planning 

using ray tracing algorithms. 
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Indoor Vector Map Ray Tracing Results 

Actual 

Dimensions 

Low cost 2D 
image to facet 

model 
algorithm

Min-Max 

Algorithm 

Figure 22. Indoor vector map, and ray tracing results of all three algorithms.
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Figure 22. Continued. 

Indoor environment signal strength at different locations. 

Indoor environment signal strength at different regions with respect to all three 

algorithms are observed. The signal strength of an indoor environment in the region 

marked in a red line is shown in Figure 23 a). In this case, the region closer to the signal 

source is selected. The changes in signal strength with respect to the walls, and doors can 

be observed. Since there is a door parallel to the source in the left-side room the signal 

loss is less compared to the right-side room where the signal is blocked more. The signal 

strength of the indoor environment away from the signal source is shown in Figure 23 b). 

Only one room is considered, so the signal strength reduces once it crosses the walls of 

the room, which can be observed in Figure 23 b).  The signal strength of the indoor 

environment away from the signal source is shown in Figure 23 c). Only one room is 

considered, so the signal strength reduces once it crosses the walls of the room. This can 

also be observed in Figure 23 c). Thus, from the three cases, we can observe, and 

compare the variations of all three algorithms indoor vector maps. Since there is no much 

difference in the dimension measurement of all three algorithms, the signal strength 

variations of the algorithms are less. 

Spatial 

Understanding 

Algorithm 
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Figure 23. Signal strength of all three algorithms at the region of red line, i.e. a) at 
the center of source. b) and c), away from the source. 

a) 

 b) 

c)
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VII. CONCLUSION

This research presents a novel image processing algorithm that is capable of 

creating the facet model of an indoor environment based on images captured by typical 

smart phone cameras. The algorithm can be considered as a simplified spatial mapping 

technique that leverages AR (AR) technologies, and principles. The application of the 

algorithm was focused on ray tracing, and wireless indoor channel prediction. With the 

evolution of 5G networks, and AR application, it is expected that there will be a great 

need for integrating network planning, and visualization algorithms with AR 

technologies. It was found that the proposed solution could be used for standard indoor 

residential houses, but it is not efficient for large or complex indoor spaces. The proposed 

solution applies edge, and corner detection algorithms on the images of the walls, and 

identifies the coordinates, and dimensions of the basic electromagnetic clutter, which are 

walls, and doors. The coordinate system was based on the facet model that is used by 

most of the ray tracing, and channel estimation algorithms. It was found that in less than 

3 minutes a user could obtain signal strength estimations in a 3-bedroom house just by 

uploading .jpg images of the walls of all rooms.  

The proposed solution works best for all medium-sized apartment but if we need 

to compute a vector map of some large space area like office, school or other large 

commercial spaces. It is hard to capture the complete large wall space inside a single 

picture. So, to overcome this limitation, and to reduce the complexity of existing spatial 

maps, Microsoft HoloLens is used. The spatial map computed from Microsoft HoloLens 

is sophisticated, and it includes coordinates details of all the furniture, and things present 

inside the environment, which will not be used in many different AR applications.  
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The spatial maps mapped through the Microsoft HoloLens are used for the minimum-

maximum, and spatial understanding algorithms. These spatial maps are efficient in 

mapping indoor environment. These maps will contain the spatial data of all the objects 

inside the mapped space i.e. wall, empty space, furniture's, etc., which is very complex. 

For efficient indoor network planning, and ray tracing algorithm, we need clear, simple 

vector map with only the building dimensions data. Thus, we designed 2 other 

algorithms. In algorithm1, we processed the spatial map vertices of individual walls 

based on vertices normal and measured the dimensions of a room. But due to the 

limitation of the depth sensor capability of measuring maximum of 3.1 meter, and not 

able to access the direct real-time sensor data from the HoloLens. we are only able to 

map an area less than 4.25 square meter.  

In order to overcome this limitation, we have used the inbuilt functionalities 

available in the HoloLens like plane finding, spatial understanding, and different 

topology queries. In which the Microsoft HoloLens understands the spatial map, and 

stores different individual spatial maps into an array. These arrays consist of multiple 

small spatial maps of an indoor environment, and are arranged in a descending order of 

spatial area. These spatial maps also consist of their respective width, and breadth of the 

individual spaces. Since the wall spaces are the biggest spaces compared to other small 

spaces, table space or & couch space , etc., we can easily consider the first 2 largest 

spatial maps as the 2 parallel walls of a room, and next 2 largest spatial maps as the 

other 2 parallel walls of a room. Thus, we got the spatial maps of all the 4 walls, and 

extracted their dimensions. In the end, the dimensions of a room from the 2 algorithms 

are used to build a 3D 
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coordinate system. From which the vector maps are build and used as an input for the ray 

tracing algorithm to visualize signal, and for indoor network planning. The above 2 

algorithms are efficient and can measure the indoor walls dimensions precisely, but they 

don't have a feature of identifying the doors inside the indoor environment, which is an 

important factor for ray tracing, and indoor network planning so, a new algorithm or 

technique needs to be designed for identifying doors from the indoor spatial map data. 
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VIII. FUTURE WORK

The proposed solution offers three different algorithms to compute indoor 

environment vector map. All three individual algorithms achieve the research objective of 

computing vector map. The low cost 2D image to facet model algorithm creates a novel 

vector mapping technique using image processing algorithms. The other two algorithms 

i.e. minimum-maximum algorithm and spatial understanding algorithms converts the

existing complex spatial maps into simple vector maps. Though, all three algorithms 

successfully compute the indoor environment vector map, each algorithm will have their 

own advantages and disadvantages. The low cost 2D image to facet model algorithm is 

best suitable for residential apartments and are cost efficient. The minimum-maximum 

algorithm is best suitable for small commercial spaces. Both low cost 2D image to facet 

model algorithm and minimum-maximum algorithm can measure an indoor environment 

of area less than 4.25 square meters. The spatial understanding algorithm works best for 

all spaces like residential and large commercial spaces irrespective of their dimensions. 

Both minimum-maximum algorithms require existing AR devices like Microsoft 

HoloLens to compute the spatial maps and cost more than the low cost 2D image to facet 

algorithms. Since, all things presents inside the indoor environment like wall, windows, 

doors, furniture, etc. affects the ray tracing results, the more precise details of these things 

will increase the accuracy of ray tracing results. In our proposed solution. Since we are 

using the image processing techniques only in low cost 2D image to facet model 

algorithms, we are able to identify the doors. Thus, to have an efficient solution from all 

the three designed algorithms, it is best to integrate the low cost 2D image to facet model 

algorithm and spatial understanding algorithms. So that the integrated algorithm will 
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work best in all residential and commercial spaces with door, window and furniture 

detection. This feature of object identification and all the things present in the 

environment will increase the ray tracing results and provides a new way of indoor 

network planning. 
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APPENDIX  SECTION

1. Vector map

function varargout = Vector_Map(varargin) % VECTOR_MAP MATLAB code for 
Vector_Map.fig 
%   VECTOR_MAP, by itself, creates a new VECTOR_MAP or raises the 
existing 
%   singleton*. 
% 
%   H = VECTOR_MAP returns the handle to a new VECTOR_MAP or the handle 
to 
%   the existing singleton*. 
% 
%   VECTOR_MAP('CALLBACK',hObject,eventData,handles,...) calls the 
local 
%   function named CALLBACK in VECTOR_MAP.M with the given input 
arguments. 
% 
%   VECTOR_MAP('Property','Value',...) creates a new VECTOR_MAP or 
raises the 
%   existing singleton*. Starting from the left, property value pairs 
are 
%   applied to the GUI before Vector_Map_OpeningFcn gets called. An 
%   unrecognized property name or invalid value makes property 
application 
%   stop. All inputs are passed to Vector_Map_OpeningFcn via varargin. 
% 
%   *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
%   instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

% Begin initialization code  
gui_Singleton = 1; 
gui_State = struct('gui_Name',    mfilename, ... 

 'gui_Singleton', gui_Singleton, ... 
 'gui_OpeningFcn', @Vector_Map_OpeningFcn, ... 
 'gui_OutputFcn', @Vector_Map_OutputFcn, ... 
 'gui_LayoutFcn', [] , ... 
 'gui_Callback',  []); 

if nargin && ischar(varargin{1}) 
  gui_State.gui_Callback = str2func(varargin{1}); 
end 

if nargout 
  [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
  gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

% --- Executes just before Vector_Map is made visible. 
function Vector_Map_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject  handle to figure 
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% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
% varargin  command line arguments to Vector_Map (see VARARGIN) 

% Choose default command line output for Vector_Map 
handles.output = hObject; 
  % Room.Wall=struct('Coordinates',[],'Width',[],'Image',[]); 
  % handles.Room = Room; 
  % % Update handles structure 
  % setappdata(0,'Room',handles.Room); 

guidata(hObject, handles); 
%  
%     textIn = 'Welcome to Indoor building vector mapping'; 
%     ha = actxserver('SAPI.SpVoice'); 
%     invoke(ha,'speak',textIn) 
% UIWAIT makes Vector_Map wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

% --- Outputs from this function are returned to the command line. 
function varargout = Vector_Map_OutputFcn(hObject, eventdata, handles) 
% varargout cell array for returning output args (see VARARGOUT); 
% hObject  handle to figure 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 

% Get default command line output from handles structure 
varargout{1} = handles.output; 

% --- Executes on button press in Height. 
function Height_Callback(hObject, eventdata, handles) 
% hObject  handle to Height (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
%     textIn = 'please enter wall height'; 
%     ha = actxserver('SAPI.SpVoice'); 
%     invoke(ha,'speak',textIn) 

function HeightEdit_Callback(hObject, eventdata, handles) 
% hObject  handle to HeightEdit (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 

% Hints: get(hObject,'String') returns contents of HeightEdit as text 
%    str2double(get(hObject,'String')) returns contents of HeightEdit 
as a double  
str=str2double(get(handles.HeightEdit,'String')); 
if isempty(str2double(str)) 
  str=2.7; 
end 
setappdata(0,'height',str) 
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% --- Executes during object creation, after setting all properties. 
function HeightEdit_CreateFcn(hObject, eventdata, handles) 
% hObject  handle to HeightEdit (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  empty - handles not created until after all CreateFcns 
called 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
  set(hObject,'BackgroundColor','white'); 
end 
  
 
% --- Executes on button press in UploadPhotos. 
function UploadPhotos_Callback(hObject, eventdata, handles) 
% hObject  handle to UploadPhotos (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
%height=handles.Height1; 
% %   textIn = 'please upload indoor wall photos'; 
% %   ha = actxserver('SAPI.SpVoice'); 
% %   invoke(ha,'speak',textIn) 
height=getappdata(0,'height');  
Indoor_Wall_Photo(height); 
  
 
% --- Executes on button press in RoomPosition. 
function RoomPosition_Callback(hObject, eventdata, handles) 
% hObject  handle to RoomPosition (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
%     textIn = 'please enter room position'; 
%     ha = actxserver('SAPI.SpVoice'); 
%     invoke(ha,'speak',textIn) 
  
 
% --- Executes on button press in Left. 
function Left_Callback(hObject, eventdata, handles) 
% hObject  handle to Left (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
  % textIn = 'left'; 
  % ha = actxserver('SAPI.SpVoice'); 
  % invoke(ha,'speak',textIn) 
setappdata(0,'Room_Position','left'); 
  
 
% --- Executes on button press in Top. 
function Top_Callback(hObject, eventdata, handles) 
% hObject  handle to Top (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
setappdata(0,'Room_Position','top'); 
  
 
% --- Executes on button press in Right. 
function Right_Callback(hObject, eventdata, handles) 
% hObject  handle to Right (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
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% handles  structure with handles, and user data (see GUIDATA) 
  % textIn = 'right'; 
  % ha = actxserver('SAPI.SpVoice'); 
  % invoke(ha,'speak',textIn) 
setappdata(0,'Room_Position','right'); 
  
  
% --- Executes on button press in None. 
function None_Callback(hObject, eventdata, handles) 
% hObject  handle to None (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
%   textIn = 'none'; 
%   ha = actxserver('SAPI.SpVoice'); 
%   invoke(ha,'speak',textIn) 
setappdata(0,'Room_Position','none'); 
  
  
% --- Executes on button press in Bottom. 
function Bottom_Callback(hObject, eventdata, handles) 
% hObject  handle to Bottom (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
  % textIn = 'bottom'; 
  % ha = actxserver('SAPI.SpVoice'); 
  % invoke(ha,'speak',textIn) 
setappdata(0,'Room_Position','bottom'); 
  
  
% --- Executes on button press in Front. 
function Front_Callback(hObject, eventdata, handles) 
% hObject  handle to Front (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
%   textIn = 'front'; 
%   ha = actxserver('SAPI.SpVoice'); 
%   invoke(ha,'speak',textIn) 
setappdata(0,'Room_Position','front'); 
  
 
% --- Executes on button press in Back. 
function Back_Callback(hObject, eventdata, handles) 
% hObject  handle to Back (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
  % textIn = 'back'; 
  % ha = actxserver('SAPI.SpVoice'); 
  % invoke(ha,'speak',textIn) 
setappdata(0,'Room_Position','back'); 
  
  
% --- Executes on button press in BuildingDetails. 
function BuildingDetails_Callback(hObject, eventdata, handles) 
% hObject  handle to BuildingDetails (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
%     textIn = 'building details'; 
%     ha = actxserver('SAPI.SpVoice'); 
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%     invoke(ha,'speak',textIn) 
a=getappdata(0,'Room1'); 
assignin('base','Room',a); 
openvar('Room'); 
  
  
% --- Executes on button press in BuildingVectorMap. 
function BuildingVectorMap_Callback(hObject, eventdata, handles) 
% hObject  handle to BuildingVectorMap (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
%   textIn = 'building vector map'; 
%   ha = actxserver('SAPI.SpVoice'); 
%   invoke(ha,'speak',textIn) 
Building_Vector_Map(getappdata(0,'Room1')); 
view(3); 
rotate3d on; 
  
 
% --- Executes on button press in ThreeDBuilding. 
function ThreeDBuilding_Callback(hObject, eventdata, handles) 
% hObject  handle to ThreeDBuilding (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
%     textIn = '3d view of building'; 
%     ha = actxserver('SAPI.SpVoice'); 
%     invoke(ha,'speak',textIn) 
% % if isfield(handles,'Room')==0 
%   Room.Wall=struct('Coordinates',[],'Width',[],'Image',[]); 
%   handles.Room = Room; 
% endr 
cla 
Threed_Building(getappdata(0,'Room1')); 
view(3); 
rotate3d on; 
  
  
% --- Executes on mouse press over axes background. 
function axes1_ButtonDownFcn(hObject, eventdata, handles) 
% hObject  handle to axes1 (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
  
  
% --- Executes on button press in Reset. 
function Reset_Callback(hObject, eventdata, handles) 
% hObject  handle to Reset (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
%   textIn = 'reset'; 
%   ha = actxserver('SAPI.SpVoice'); 
%   invoke(ha,'speak',textIn) 
close(gcbf); 
Vector_Map; 
 
2. Indoor wall photo 
 
function varargout = Indoor_Wall_Photo(varargin) 
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% INDOOR_WALL_PHOTO MATLAB code for Indoor_Wall_Photo.fig 
%   INDOOR_WALL_PHOTO, by itself, creates a new INDOOR_WALL_PHOTO or 
raises the existing 
%   singleton*. 
% 
%   H = INDOOR_WALL_PHOTO returns the handle to a new INDOOR_WALL_PHOTO 
or the handle to 
%   the existing singleton*. 
% 
%   INDOOR_WALL_PHOTO('CALLBACK',hObject,eventData,handles,...) calls 
the local 
%   function named CALLBACK in INDOOR_WALL_PHOTO.M with the given input 
arguments. 
% 
%   INDOOR_WALL_PHOTO('Property','Value',...) creates a new 
INDOOR_WALL_PHOTO or raises the 
%   existing singleton*. Starting from the left, property value pairs 
are 
%   applied to the GUI before Indoor_Wall_Photo_OpeningFcn gets called. 
An 
%   unrecognized property name or invalid value makes property 
application 
%   stop. All inputs are passed to Indoor_Wall_Photo_OpeningFcn via 
varargin. 
% 
%   *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one 
%   instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help Indoor_Wall_Photo 
  
% Last Modified by GUIDE v2.5 11-May-2017 19:43:07 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',    mfilename, ... 
          'gui_Singleton', gui_Singleton, ... 
          'gui_OpeningFcn', @Indoor_Wall_Photo_OpeningFcn, ... 
          'gui_OutputFcn', @Indoor_Wall_Photo_OutputFcn, ... 
          'gui_LayoutFcn', [] , ... 
          'gui_Callback',  []); 
if nargin && ischar(varargin{1}) 
  gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
  [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
  gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before Indoor_Wall_Photo is made visible. 
function Indoor_Wall_Photo_OpeningFcn(hObject, eventdata, handles, 
varargin) 
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% This function has no output args, see OutputFcn. 
% hObject  handle to figure 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
% varargin  command line arguments to Indoor_Wall_Photo (see VARARGIN) 
  
 
% Choose default command line output for Indoor_Wall_Photo 
handles.output = hObject; 
  % Room=getappdata(0,'Room'); handles.Room = Room; 
guidata(hObject,handles); 
% Update handles structure 
%cla(handles.axes1); 
% axes(handles.axes1); 
% hold off; 
% cla reset; 
guidata(hObject, handles); 
if isfield(handles,'Room')==0 
Room.Wall=struct('Coordinates',[],'Width',[],'Image',[],'door',[],'wind
ow',[]); 
  handles.Room = Room; 
end 
close(gcbf); 
setappdata(0,'door1',0); 
setappdata(0,'door2',0); 
setappdata(0,'door3',0); 
setappdata(0,'door4',0); 
  
 
% UIWAIT makes Indoor_Wall_Photo wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
% --- Outputs from this function are returned to the command line. 
function varargout = Indoor_Wall_Photo_OutputFcn(hObject, eventdata, 
handles)  
% varargout cell array for returning output args (see VARARGOUT); 
% hObject  handle to figure 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
  
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
% --- Executes on button press in UploadIndoorWall1. 
function UploadIndoorWall1_Callback(hObject, eventdata, handles) 
% hObject  handle to UploadIndoorWall1 (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
%     Wall=guidata(gcbo); 
%     textIn = 'please upload first wall photo'; 
%     ha = actxserver('SAPI.SpVoice'); 
%     invoke(ha,'speak',textIn) 
[basefilename,path]= uigetfile({'*.jpg'},'Open jpeg Image File'); 
filename= fullfile(path, basefilename); 
I = imread (filename); 
size(I) 
% Wall_Images=[]; 
IndoorWall1=I; 
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handles.Wall1=IndoorWall1; 
guidata(hObject, handles); 
imshow(I, 'Parent', handles.axes1); 
  
  
% --- Executes on button press in UploadIndoorWall2. 
function UploadIndoorWall2_Callback(hObject, eventdata, handles) 
% hObject  handle to UploadIndoorWall2 (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
%     textIn = 'please upload second wall photo'; 
%     ha = actxserver('SAPI.SpVoice'); 
%     invoke(ha,'speak',textIn) 
[basefilename,path]= uigetfile({'*.jpg'},'Open jpeg Image File'); 
filename= fullfile(path, basefilename); 
I = imread (filename); 
size(I) 
IndoorWall2=I; 
handles.Wall2=IndoorWall2; 
guidata(hObject, handles); 
imshow(IndoorWall2, 'Parent', handles.axes2); 
  
  
% --- Executes on button press in UploadIndoorWall3. 
function UploadIndoorWall3_Callback(hObject, eventdata, handles) 
% hObject  handle to UploadIndoorWall3 (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
%     textIn = 'please upload third wall photo'; 
%     ha = actxserver('SAPI.SpVoice'); 
%     invoke(ha,'speak',textIn) 
[basefilename,path]= uigetfile({'*.jpg'},'Open jpeg Image File'); 
filename= fullfile(path, basefilename); 
I = imread (filename); 
size(I); 
IndoorWall3=I; 
handles.Wall3=IndoorWall3; 
guidata(hObject, handles); 
imshow(IndoorWall3, 'Parent', handles.axes3); 
  
 
% --- Executes on button press in UploadIndoorWall4. 
function UploadIndoorWall4_Callback(hObject, eventdata, handles) 
% hObject  handle to UploadIndoorWall4 (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
%     textIn = 'please upload fourth wall photo'; 
%     ha = actxserver('SAPI.SpVoice'); 
%     invoke(ha,'speak',textIn) 
[basefilename,path]= uigetfile({'*.jpg'},'Open jpeg Image File'); 
filename= fullfile(path, basefilename); 
I = imread (filename); 
size(I); 
IndoorWall4=I; 
handles.Wall4=IndoorWall4; 
guidata(hObject, handles); 
imshow(IndoorWall4, 'Parent', handles.axes4); 
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% --- Executes on button press in VectorMap. 
function VectorMap_Callback(hObject, eventdata, handles) 
% hObject  handle to VectorMap (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
%   textIn = 'vector map of a room'; 
%   ha = actxserver('SAPI.SpVoice'); 
%   invoke(ha,'speak',textIn)  
Room=getappdata(0,'Room'); 
RoomNumber=getappdata(0,'Room_No'); 
Room_Position=getappdata(0,'Room_Position'); 
if RoomNumber>1 
  Room=getappdata(0,'Room1'); 
end 
Room(RoomNumber).Wall(1).Image=handles.Wall1; 
Room(RoomNumber).Wall(2).Image=handles.Wall2; 
Room(RoomNumber).Wall(3).Image=handles.Wall3; 
Room(RoomNumber).Wall(4).Image=handles.Wall4; 
height=getappdata(0,'height'); 
Room1=Single_Room_Vector_Map(height,RoomNumber,Room_Position,Room,getap
pdata(0,'door1'),getappdata(0,'door2'),getappdata(0,'door3'),getappdata
(0,'door4')); 
% handles.Room = Room; 
guidata(hObject,handles); 
setappdata(0,'Room1',Room1); 
view(3); 
rotate3d on; 
  
 
% --- Executes on button press in ThreeDRoomView. 
function ThreeDRoomView_Callback(hObject, eventdata, handles) 
% hObject  handle to ThreeDRoomView (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
  % textIn = '3d view of a room'; 
  % ha = actxserver('SAPI.SpVoice'); 
  % invoke(ha,'speak',textIn) 
cla reset 
IndoorWall1=handles.Wall1; 
IndoorWall2=handles.Wall2; 
IndoorWall3=handles.Wall3; 
IndoorWall4=handles.Wall4; 
height=getappdata(0,'height'); 
Room=getappdata(0,'Room1'); 
Single_Room_ThreeD(IndoorWall1,IndoorWall2,IndoorWall3,IndoorWall4,heig
ht,Room); 
rotate3d on; 
  
  
% --- Executes on button press in home. 
function home_Callback(hObject, eventdata, handles) 
% hObject  handle to home (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
%     textIn = 'home'; 
%     ha = actxserver('SAPI.SpVoice'); 
%     invoke(ha,'speak',textIn) 
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close(gcbf); 
Vector_Map; 
  
  
% --- Executes on button press in Reset. 
function Reset_Callback(hObject, eventdata, handles) 
% hObject  handle to Reset (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
%     textIn = 'reset'; 
%     ha = actxserver('SAPI.SpVoice'); 
%     invoke(ha,'speak',textIn) 
close(gcbf); 
Indoor_Wall_Photo; 
  
 
% --- Executes on button press in RoomNumber. 
function RoomNumber_Callback(hObject, eventdata, handles) 
% hObject  handle to RoomNumber (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
  % textIn = 'please enter room number'; 
  % ha = actxserver('SAPI.SpVoice'); 
  % invoke(ha,'speak',textIn) 
  
  
function Room_No_Callback(hObject, eventdata, handles) 
% hObject  handle to Room_No (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of Room_No as text 
%    str2double(get(hObject,'String')) returns contents of Room_No as a 
double 
str=str2double(get(handles.Room_No,'String')); 
if isempty(str2double(str)) 
  set(handles.Room_No,'string','0'); 
  warndlg('Input must be numerical'); 
end 
setappdata(0,'Room_No',str) 
  
  
% --- Executes during object creation, after setting all properties. 
function Room_No_CreateFcn(hObject, eventdata, handles) 
% hObject  handle to Room_No (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  empty - handles not created until after all CreateFcns 
called 
% Hint: edit controls usually have a white background on Windows. 
%    See ISPC, and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
  set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes on button press in door1. 
function door1_Callback(hObject, eventdata, handles) 
% hObject  handle to door1 (see GCBO) 
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% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
% Hint: get(hObject,'Value') returns toggle state of door1 
door=get(handles.door1,'Value'); 
setappdata(0,'door1',door); 

% --- Executes on button press in door2. 
function door2_Callback(hObject, eventdata, handles) 
% hObject  handle to door2 (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
% Hint: get(hObject,'Value') returns toggle state of door2 
door2=get(handles.door2,'Value'); 
setappdata(0,'door2',door2); 

% --- Executes on button press in door3. 
function door3_Callback(hObject, eventdata, handles) 
% hObject  handle to door3 (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
door3=get(handles.door3,'Value'); 
setappdata(0,'door3',door3); 
% Hint: get(hObject,'Value') returns toggle state of door3 

% --- Executes on button press in door4. 
function door4_Callback(hObject, eventdata, handles) 
% hObject  handle to door4 (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles, and user data (see GUIDATA) 
door4=get(handles.door4,'Value'); 
setappdata(0,'door4',door4); 
% Hint: get(hObject,'Value') returns toggle state of door4 

3.Building Vector Map

function [ output_args ] = Building_Vector_Map( Room ) 
%UNTITLED3 Summary of this function goes here 
%  Detailed explanation goes here 
hold on; 
for i=1:numel(Room) 
for j=1:4 

w=Room(i).Wall(j).Coordinates; 
patch(w(:,1),w(:,2),w(:,3),'b'); 
axis equal; 
axis tight; 
alpha(0.5); 

end 
end 
end 
4. Corner detection

function [ a ] = corner_detection( top_right_corner) 
%J=imsharpen(top_right_corner);  
J=top_right_corner; 
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no_of_corners=0; 
% quality_level=0.9; 
threshold=0.08; 
k=imresize(J,0.5); 
G = fspecial('gaussian',[4 4],0.6); 
Ig = imadjust(imfilter(k,G,'same')); 
 
while no_of_corners<3  
 
threshold=threshold-0.02; % threshold level for edge detection. 
% quality_level=quality_level-0.1; % quality level for corner 
detection. 
L=edge(Ig,'canny',threshold); % edge detection function. 
  
% edge dilation.  
se=strel('disk',3); % small disc formation on edges. 
S=imdilate(L,se); 
 
% edge filling.  
X=bwareaopen(S,400); 
N=bwpropfilt(X,'MajorAxisLength',100); 
M=imfill(N,'holes'); 
 
% corner detection.   
points = detectMinEigenFeatures(M,'FilterSize',115); 
no_of_corners=points.Count; 
 
end 
 
5.Corners Match 
 
Function[width,Pixel_Meter,height,rect_x1,rect_x2]=corners_match(top_le
ft_corner_position,top_right_corner_position,no_of_columns,b,no_of_rows
,Wall_Width,height) 
 
x2=top_right_corner_position.Location(1,1)+(0.75*no_of_columns);  
width_pixel=sqrt((top_left_corner_position.Location(1,1)-
x2).^2+(top_left_corner_position.Location(1,2)-
top_right_corner_position.Location(1,2)).^2); 
  
actual_height_pixel=2*((no_of_rows/2)-
min(top_left_corner_position.Location(1,2),top_right_corner_position.Lo
cation(1,2))); 
width=(height*width_pixel)/(actual_height_pixel); 
  
rect_x2=top_left_corner_position.Location(1,2); 
rect_x1=top_left_corner_position.Location(1,1); 
rect_x3=width_pixel; 
rect_x4=actual_height_pixel;  
  
Pixel_Meter=width_pixel./width; 
  
End 
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6. Door detection 
 
function [ door_found,x_meter ] = Door_Detection(a,pixel,Length) 
%UNTITLED2 Summary of this function goes here 
%  Detailed explanation goes here 
 
b=rgb2gray(a); 
no_of_rows=size(b,1); 
no_of_columns=size(b,2); 
 
ROI=(b(0.20*no_of_rows:0.5*no_of_rows,1:no_of_columns)); 
% imshow(ROI); 
I=ROI; 
L = imresize(I,0.5); 
n = 1; 
 
Idouble = im2double(I); 
avg = mean2(Idouble); 
sigma = std2(Idouble); 
J = imadjust(L,[avg-n*sigma avg+n*sigma],[]); 
Iblur1 = imgaussfilt(J,1,'FilterSize',5); 
 
points=detectHarrisFeatures(Iblur1,'MinQuality',0.1,'FilterSize',5); 
number_of_corners=points.Count; 
 
for i=1:number_of_corners 
  for j=2:number_of_corners 
 
    if (abs(points.Location(i,1)-points.Location(j,1))>400 && 
abs(points.Location(i,1)-points.Location(j,1))<520) 
 
      if (abs(points.Location(i,2)-points.Location(j,2))>0 && 
abs(points.Location(i,2)-points.Location(j,2))<15) 
 
      x1=points.Location(i,1); 
      y1=points.Location(i,2); 
      x2=points.Location(j,1); 
      y2=points.Location(j,2); 
 
      door_found=1; 
 
      x_val=min(x1,x2); 
      Pixel_Per_Meter=pixel/Length; 
      x_meter=x_val/Pixel_Per_Meter; 
       
      return 
      end 
    end  
  end 
end 
 
door_found=0; 
x_meter=0; 
end 
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7. Individual or First room 
 
function [ Room ] = First_Room( 
length,breadth,height,Room,First_Wall_Direction) 
%UNTITLED Summary of this function goes here 
%  Detailed explanation goes here 
Room_No=1; 
  
p1=flip(Room(Room_No).Wall(1).Image,1); 
p2=flip(Room(Room_No).Wall(2).Image,1); 
p3=flip(Room(Room_No).Wall(3).Image,1); 
p4=flip(Room(Room_No).Wall(4).Image,1); 
  
if strcmp(First_Wall_Direction,'North')==1 
  s1=p1;s2=p2;s3=p3;s4=p4; 
elseif strcmp(First_Wall_Direction,'West')==1 
   s1=p4;s2=p1;s3=p2;s4=p3; 
elseif strcmp(First_Wall_Direction,'South')==1 
   s1=p3;s2=p4;s3=p1;s4=p2; 
elseif strcmp(First_Wall_Direction,'East')==1 
   s1=p2;s2=p3;s3=p4;s4=p1; 
else 
  disp('Please enter valid direction'); 
end 
   
% front 
surface([0 length;0 length], [breadth breadth;breadth breadth], [0 
0;height height], ... 
  'FaceColor', 'texturemap', 'CData', s1 ); 
   
% back 
surface([0 length;0 length], [0 0; 0 0], [0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', fliplr(s3) ); 
  
% left 
surface([0 0; 0 0], [breadth 0;breadth 0], [0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', fliplr(s4) );  
 
% right 
surface([length length;length length], [0 breadth;0 breadth], [0 0; 
height height], ... 
  'FaceColor', 'texturemap', 'CData', fliplr(s2) ); 
  
alpha 0.5; 
view(3); 
axis equal; 
axis tight; 
end 
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8. Next room 
 
function [ Room] = Next_Room(Room,Room_No) 
%UNTITLED Summary of this function goes here 
%  Detailed explanation goes here 
  
i=Room_No; 
  
height=Room(i).Wall(4).height; 
% NR_Wall_One=Wall_Class; 
% NR_Wall_Two=Wall_Class; 
% NR_Wall_Three=Wall_Class; 
% NR_Wall_Four=Wall_Class; 
  
[Enhanced_Wall1,s1,Pixel_Meter,height,W1_rect_x1,W1_rect_x2]=Wall_Enhan
cement(Room(i).Wall(1).Image,0,height); 
[Enhanced_Wall2,s2,d,c,W2_rect_x1,W2_rect_x2]=Wall_Enhancement(Room(i).
Wall(2).Image,0,height); 
[Enhanced_Wall3,s3,e,f,W3_rect_x1,W3_rect_x2]=Wall_Enhancement(Room(i).
Wall(3).Image,0,height); 
[Enhanced_Wall4,s4,g,h,W4_rect_x1,W4_rect_x2]=Wall_Enhancement(Room(i).
Wall(4).Image,0,height); 
  
[Room]=Wall_Measurement(Enhanced_Wall1,Enhanced_Wall2,Enhanced_Wall3,En
hanced_Wall4,s1,s2,s3,s4,Pixel_Meter,height,Room_No,Room); 
  
wall_width_pixel=Room(i).Wall(1).Width*Pixel_Meter; 
rect=[W1_rect_x1,W1_rect_x2,wall_width_pixel,height*Pixel_Meter]; 
Room(i).Wall(1).Image=imcrop(s1,rect); 
  
wall_width_pixel=Room(i).Wall(2).Width*Pixel_Meter; 
rect=[W2_rect_x1,W2_rect_x2,wall_width_pixel,height*Pixel_Meter]; 
Room(i).Wall(2).Image=imcrop(s2,rect); 
  
wall_width_pixel=Room(i).Wall(3).Width*Pixel_Meter; 
rect=[W3_rect_x1,W3_rect_x2,wall_width_pixel,height*Pixel_Meter]; 
Room(i).Wall(3).Image=imcrop(s3,rect); 
  
wall_width_pixel=Room(i).Wall(4).Width*Pixel_Meter; 
rect=[W4_rect_x1,W4_rect_x2,wall_width_pixel,height*Pixel_Meter]; 
Room(i).Wall(4).Image=imcrop(s4,rect); 
  
% Useful link for 3d cube - 
https://www.mathworks.com/help/matlab/ref/primitivesurface-
properties.html 
  
end 
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9. Plain 3D 
 
function [ ] = Plain_ThreeD( 
Room,H_Length,H_Breadth,length,breadth,height,NR_Length,NR_Breadth,Hall
_Position ) 
%UNTITLED5 Summary of this function goes here 
%  Detailed explanation goes here 
 
 
FaceColor= 'y'; 
if strcmp(Hall_Position,'left')==1 
    
%NR_front 
surface([-NR_Length -(H_Length+NR_Length);-NR_Length -
(H_Length+NR_Length)], [H_Breadth H_Breadth;H_Breadth H_Breadth], [0 
0;height height], ... 
  'FaceColor', 'texturemap' ); 
   
%NR_back 
surface([-NR_Length -(H_Length+NR_Length);-NR_Length -
(H_Length+NR_Length)], [0 0; 0 0], [0 0; height height], ... 
  'FaceColor', 'texturemap'); 
  
%NR_left 
surface([-NR_Length -NR_Length;-NR_Length -NR_Length], [0 H_Breadth;0 
H_Breadth], [0 0; height height], ... 
  'FaceColor', 'texturemap' ); 
  
%NR_right 
surface([-(H_Length+NR_Length) -(H_Length+NR_Length);-
(H_Length+NR_Length) -(H_Length+NR_Length)], [0 H_Breadth;0 H_Breadth], 
[0 0; height height], ... 
  'FaceColor', 'texturemap' ); 
  
alpha 0.5; 
view(3); 
axis equal; 
axis tight; 
  
 
elseif strcmp(Hall_Position,'right')==1 
%IF ROOM IS IN LEFT 
surface([0 H_Length;0 H_Length], [H_Breadth H_Breadth;H_Breadth 
H_Breadth], [0 0;height height], ... 
  'FaceColor', 'texturemap' ); 
   
% back 
surface([0 H_Length;0 H_Length], [0 0; 0 0], [0 0; height height], ... 
  'FaceColor', 'texturemap'); 
  
% left 
surface([0 0; 0 0], [H_Breadth 0;H_Breadth 0], [0 0; height height], 
... 
  'FaceColor', 'texturemap' ); 
% right 
surface([H_Length H_Length;H_Length H_Length], [0 H_Breadth;0 
H_Breadth], [0 0; height height], ... 
  'FaceColor', 'texturemap' ); 
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alpha 0.5; 
view(3); 
axis equal; 
axis tight; 
  
 
elseif strcmp(Hall_Position,'top')==1 
  
% font 
surface([0 -H_Length;0 -H_Length], [H_Breadth H_Breadth;H_Breadth 
H_Breadth], [height height;height+height height+height], ... 
  'FaceColor', 'texturemap'); 
   
% back 
surface([0 -H_Length;0 -H_Length], [0 0; 0 0], [height height; 
height+height height+height], ... 
  'FaceColor', 'texturemap'); 
  
% left 
surface([0 0; 0 0], [H_Breadth 0;H_Breadth 0], [height height; 
height+height height+height], ... 
  'FaceColor', 'texturemap'); 
% right 
surface([-H_Length -H_Length;-H_Length -H_Length], [0 H_Breadth;0 
H_Breadth], [height height; height+height height+height], ... 
  'FaceColor', 'texturemap'); 
alpha 0.5; 
view(3); 
axis equal; 
axis tight; 
  
  
elseif strcmp(Hall_Position,'bottom')==1 
  
% font 
surface([0 -H_Length;0 -H_Length], [H_Breadth H_Breadth;H_Breadth 
H_Breadth], [0 0;-height -height], ... 
  'FaceColor', 'texturemap'); 
   
% back 
surface([0 -H_Length;0 -H_Length], [0 0; 0 0], [0 0; -height -height], 
... 
  'FaceColor', 'texturemap'); 
  
% left 
surface([0 0; 0 0], [H_Breadth 0;H_Breadth 0], [0 0; -height -height], 
... 
  'FaceColor', 'texturemap'); 
% right 
surface([-H_Length -H_Length;-H_Length -H_Length], [0 H_Breadth;0 
H_Breadth], [0 0; -height -height], ... 
  'FaceColor', 'texturemap' ); 
alpha 0.5; 
view(3); 
axis equal; 
axis tight; 
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elseif strcmp(Hall_Position,'back')==1 
 
surface([0 -H_Length;0 -H_Length], [-H_Breadth -H_Breadth;-H_Breadth -
H_Breadth], [0 0;height height], ... 
  'FaceColor', 'texturemap' ); 
   
% back 
surface([0 -H_Length;0 -H_Length], [0 0; 0 0], [0 0; height height], 
... 
  'FaceColor', 'texturemap'); 
  
% left 
surface([0 0; 0 0], [-H_Breadth 0;-H_Breadth 0], [0 0; height height], 
... 
  'FaceColor', 'texturemap' ); 
  
% right 
surface([-H_Length -H_Length;-H_Length -H_Length], [0 -H_Breadth;0 -
H_Breadth], [0 0; height height], ... 
  'FaceColor', 'texturemap' ); 
  
alpha 0.5; 
view(3); 
axis equal; 
axis tight; 
  
 
elseif strcmp(Hall_Position,'front')==1 
 
surface([0 -H_Length;0 -H_Length], [H_Breadth+NR_Breadth 
H_Breadth+NR_Breadth;H_Breadth+NR_Breadth H_Breadth+NR_Breadth], [0 
0;height height], ... 
  'FaceColor', 'texturemap' ); 
   
% back 
surface([0 -H_Length;0 -H_Length], [NR_Breadth NR_Breadth; NR_Breadth 
NR_Breadth], [0 0; height height], ... 
  'FaceColor', 'texturemap'); 
  
% left 
surface([0 0; 0 0], [H_Breadth+NR_Breadth 
NR_Breadth;H_Breadth+NR_Breadth NR_Breadth], [0 0; height height], ... 
  'FaceColor', 'texturemap'); 
  
% right 
surface([-H_Length -H_Length;-H_Length -H_Length], [NR_Breadth 
H_Breadth+NR_Breadth;NR_Breadth H_Breadth+NR_Breadth], [0 0; height 
height], ... 
  'FaceColor', 'texturemap'); 
alpha 0.5; 
view(3); 
axis equal; 
axis tight; 
  
else  
disp('please enter proper input for Next_Room_Position'); 
end 
end 
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10. Plain 3D vector map 
 
function [ output_args ] = 
Plain_ThreeD_Vector_Map(length,breadth,height,Room,First_Wall_Direction
) 
% UNTITLED Summary of this function goes here 
%  Detailed explanation goes here 
  
% font 
surface([0 length;0 length], [breadth breadth;breadth breadth], [0 
0;height height], ... 
  'FaceColor', 'texturemap' ); 
   
% back 
surface([0 length;0 length], [0 0; 0 0], [0 0; height height], ... 
  'FaceColor', 'texturemap'); 
  
% left 
surface([0 0; 0 0], [breadth 0;breadth 0], [0 0; height height], ... 
  'FaceColor', 'texturemap'); 
  
% right 
surface([length length;length length], [0 breadth;0 breadth], [0 0; 
height height], ... 
  'FaceColor', 'texturemap' ); 
  
alpha 0.5; 
view(3); 
axis equal; 
axis tight; 
  
 
if strcmp(Next_Room_Position,'right')==1 
%IF ROOM IS IN RIGHT 
  
%NR_front 
surface([length length+NR_Length;length length+NR_Length], [NR_Breadth 
NR_Breadth;NR_Breadth NR_Breadth], [0 0;height height], ... 
  'FaceColor', 'texturemap' ); 
   
%NR_back 
surface([length length+NR_Length;length length+NR_Length], [0 0; 0 0], 
[0 0; height height], ... 
  'FaceColor', 'texturemap' ); 
  
%NR_left 
surface([length length;length length], [0 NR_Breadth;0 NR_Breadth], [0 
0; height height], ... 
  'FaceColor', 'texturemap' ); 
  
%NR_right 
surface([length+NR_Length length+NR_Length;length+NR_Length 
length+NR_Length], [0 NR_Breadth;0 NR_Breadth], [0 0; height height], 
... 
  'FaceColor', 'texturemap' ); 
  
alpha 0.5; 
view(3); 
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axis equal; 
axis tight; 
  
  
elseif strcmp(Next_Room_Position,'left')==1 
%IF ROOM IS IN LEFT 
  
surface([0 -NR_Length;0 -NR_Length], [NR_Breadth NR_Breadth;NR_Breadth 
NR_Breadth], [0 0;height height], ... 
  'FaceColor', 'texturemap' ); 
   
% back 
surface([0 -NR_Length;0 -NR_Length], [0 0; 0 0], [0 0; height height], 
... 
  'FaceColor', 'texturemap' ); 
  
% left 
surface([0 0; 0 0], [NR_Breadth 0;NR_Breadth 0], [0 0; height height], 
... 
  'FaceColor', 'texturemap'); 
% right 
surface([-NR_Length -NR_Length;-NR_Length -NR_Length], [0 NR_Breadth;0 
NR_Breadth], [0 0; height height], ... 
  'FaceColor', 'texturemap' ); 
  
alpha 0.5; 
view(3); 
axis equal; 
axis tight; 
  
  
elseif strcmp(Next_Room_Position,'top')==1 
%IF ROOM IS IN TOP 
  
% font 
surface([0 NR_Length;0 NR_Length], [breadth breadth;breadth breadth], 
[height height;height+height height+height], ... 
  'FaceColor', 'texturemap' ); 
   
% back 
surface([0 NR_Length;0 NR_Length], [0 0; 0 0], [height height; 
height+height height+height], ... 
  'FaceColor', 'texturemap' ); 
  
% left 
surface([0 0; 0 0], [breadth 0;breadth 0], [height height; 
height+height height+height], ... 
  'FaceColor', 'texturemap' ); 
% right 
surface([NR_Length NR_Length;NR_Length NR_Length], [0 breadth;0 
breadth], [height height; height+height height+height], ... 
  'FaceColor', 'texturemap'); 
alpha 0.5; 
view(3); 
axis equal; 
axis tight; 
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elseif strcmp(Next_Room_Position,'bottom')==1 
%IF ROOM IS IN BOTTOM 
  
% font 
surface([0 NR_Length;0 NR_Length], [breadth breadth;breadth breadth], 
[0 0;-height -height], ... 
  'FaceColor', 'texturemap', 'CData' ); 
   
% back 
surface([0 NR_Length;0 NR_Length], [0 0; 0 0], [0 0; -height -height], 
... 
  'FaceColor', 'texturemap'); 
  
% left 
surface([0 0; 0 0], [breadth 0;breadth 0], [0 0; -height -height], ... 
  'FaceColor', 'texturemap'); 
% right 
surface([NR_Length NR_Length;NR_Length NR_Length], [0 breadth;0 
breadth], [0 0; -height -height], ... 
  'FaceColor', 'texturemap' ); 
alpha 0.5; 
view(3); 
axis equal; 
axis tight; 
  
 
elseif strcmp(Next_Room_Position,'back')==1 
%IF ROOM IS IN front 
  
surface([0 NR_Length;0 NR_Length], [-breadth -breadth;-breadth -
breadth], [0 0;height height], ... 
  'FaceColor', 'texturemap'); 
   
% back 
surface([0 NR_Length;0 NR_Length], [0 0; 0 0], [0 0; height height], 
... 
  'FaceColor', 'texturemap'); 
  
% left 
surface([0 0; 0 0], [-breadth 0;-breadth 0], [0 0; height height], ... 
  'FaceColor', 'texturemap'); 
  
% right 
surface([NR_Length NR_Length;NR_Length NR_Length], [0 -breadth;0 -
breadth], [0 0; height height], ... 
  'FaceColor', 'texturemap' ); 
  
alpha 0.5; 
view(3); 
axis equal; 
axis tight; 
  
 
elseif strcmp(Next_Room_Position,'front')==1 
%IF ROOM IS IN front 
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surface([0 NR_Length;0 NR_Length], [breadth+NR_Breadth 
breadth+NR_Breadth;breadth+NR_Breadth breadth+NR_Breadth], [0 0;height 
height], ... 
  'FaceColor', 'texturemap' ); 
   
% back 
surface([0 NR_Length;0 NR_Length], [0 0; 0 0], [0 0; height height], 
... 
  'FaceColor', 'texturemap'); 
  
% left 
surface([0 0; 0 0], [breadth+NR_Breadth 0;breadth+NR_Breadth 0], [0 0; 
height height], ... 
  'FaceColor', 'texturemap' ); 
  
% right 
surface([NR_Length NR_Length;NR_Length NR_Length], [0 
breadth+NR_Breadth;0 breadth+NR_Breadth], [0 0; height height], ... 
  'FaceColor', 'texturemap' ); 
  
alpha 0.5; 
view(3); 
axis equal; 
axis tight; 
  
 
else 
   
disp('please enter proper input for Next_Room_Position'); 
  
end 
  
Plain_ThreeD( Room,length,breadth,height ) 
view(3); 
axis equal; 
axis tight; 
  
end 
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11. Single room 3d 
 
function [ output_args ] = Single_Room_ThreeD( 
wall1,wall2,wall3,wall4,height,Room ) 
%UNTITLED7 Summary of this function goes here 
%  Detailed explanation goes here 
  
% height=2.27; %height in meters 
Room_No=Room(1).Wall(1).RoomNumber; 
  
 
Room(Room_No).Wall(1).Image=wall1; % wall 1 
Room(Room_No).Wall(2).Image=wall2; % wall 2 
Room(Room_No).Wall(3).Image=wall3; % wall 3 
Room(Room_No).Wall(4).Image=wall4; % wall 4 
  
i=1; 
for j=1:4 
Room(i).Wall(j).height=height; 
end 
  
s1=flip(wall1,1); 
s2=flip(wall2,1); 
s3=flip(wall3,1); 
s4=flip(wall4,1); 
  
length=Room(Room_No).Wall(1).Width; 
breadth=Room(Room_No).Wall(2).Width; 
  
% font 
surface([0 length;0 length], [breadth breadth;breadth breadth], [0 
0;height height], ... 
  'FaceColor', 'texturemap', 'CData', s1 ); 
   
% back 
surface([0 length;0 length], [0 0; 0 0], [0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', s3 ); 
  
% left 
surface([0 0; 0 0], [breadth 0;breadth 0], [0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', s2 ); 
  
% right 
surface([length length;length length], [0 breadth;0 breadth], [0 0; 
height height], ... 
  'FaceColor', 'texturemap', 'CData', s4 ); 
  
alpha 0.5; 
view(3); 
axis off; 
axis tight; 
axis equal; 
end 
  
 
 
 
 



 

78 

12. Single room 3D vector map 
 
function [ Room1 ] = 
Single_Room_Vector_Map(height,RoomNumber,Room_Position,Room,door1,door2
,door3,door4 ) 
 
i=RoomNumber; 
Room_No=RoomNumber; 
Room(i).Wall(1).RoomNumber=RoomNumber; 
 
for j=2:4 
  Room(i).Wall(j).RoomNumber=RoomNumber; 
end 
  
Room(i).Wall(1).Room_Position=Room_Position; 
for j=2:4 
  Room(i).Wall(j).Room_Position=Room_Position; 
end 
   
for j=1:4 
Room(i).Wall(j).height=height; 
end 
  
[Room]=Next_Room(Room,RoomNumber); 
if door1==1 
[door_found,x_meter]=Door_Detection(Room(i).Wall(1).Image,Room(i).Wall(
1).Pixel,Room(i).Wall(1).Width); 
     
    if door_found==1 
      d=[0 x_meter 0; 0 x_meter 2;0 x_meter+0.9 2; 0 x_meter+0.9 0;0 0 
0;0 0 0;0 0 0;0 0 0]; 
    Room(i).Wall(1).Coordinates=[Room(i).Wall(1).Coordinates;d]; 
      Room(Room_No).Wall(1).door=d; 
     
    elseif door_found==0 
    d=[0 1.1 0; 0 1.1 2;0 2 2; 0 2 0;0 0 0;0 0 0;0 0 0;0 0 0]; 
    Room(i).Wall(1).Coordinates=[Room(i).Wall(1).Coordinates;d]; 
     
    Room(Room_No).Wall(1).door=d; 
    end 
 end 
  
if door2==1   
[door_found,x_meter]=Door_Detection(Room(i).Wall(2).Image,Room(i).Wall(
2).Pixel,Room(i).Wall(2).Width); 
     z=Room(Room_No).Wall(2).Width; 
    if door_found==1 
   d=[x_meter+0.9 z 0;x_meter+0.9 z 2; x_meter z 2;x_meter z 0]; 
    Room(Room_No).Wall(2).door=d; 
     Room(i).Wall(2).Coordinates=[Room(i).Wall(2).Coordinates;d]; 
     
    elseif door_found==0 
    d=[2 z 0;2 z 2; 1.1 z 2;1.1 z 0] 
    Room(Room_No).Wall(2).door=d; 
     Room(i).Wall(2).Coordinates=[Room(i).Wall(2).Coordinates;d]; 
    end 
end 
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if door3==1 
[door_found,x_meter]=Door_Detection(Room(i).Wall(3).Image,Room(i).Wall(
3).Pixel,Room(i).Wall(3).Width); 
     x=Room(Room_No).Wall(3).Width; 
    if door_found==1 
       d=[x x_meter 0; x x_meter 2;x x_meter+0.9 2; x x_meter+0.9 0]; 
    Room(i).Wall(3).Coordinates=[Room(i).Wall(3).Coordinates;d]; 
      Room(Room_No).Wall(3).door=d; 
     
    elseif door_found==0 
     
    d=[x 1.1 0; x 1.1 2;x 2 2; x 2 0]; 
     
    Room(i).Wall(3).Coordinates=[Room(i).Wall(3).Coordinates;d]; 
     
    Room(Room_No).Wall(3).door=d; 
    end 
end 
 
if door4==1 
[door_found,x_meter]=Door_Detection(Room(i).Wall(4).Image,Room(i).Wall(
4).Pixel,Room(i).Wall(4).Width); 
      
    if door_found==1 
      d=[x_meter+0.9 0 0;x_meter+0.9 0 2;x_meter 0 2;x_meter 0 0;]; 
    Room(i).Wall(4).Coordinates=[Room(i).Wall(4).Coordinates;d]; 
      Room(Room_No).Wall(4).door=d; 
     
    elseif door_found==0 
     
    d=[2 0 0;2 0 2;1.1 0 2;1.1 0 0]; 
     
    Room(i).Wall(4).Coordinates=[Room(i).Wall(4).Coordinates;d]; 
    Room(Room_No).Wall(4).door=d; 
    end 
  else 
end 
 
if RoomNumber==1 
 Room1=Room; 
else 
Room1=Patch(Room,RoomNumber,door1,door2,door3,door4); 
end 
 
i=RoomNumber; 
for j=1:4 
w=Room(i).Wall(j).Coordinates; 
patch(w(:,1),w(:,2),w(:,3),'b'); 
end 
  
axis off; 
axis equal; 
axis tight; 
alpha(0.5); 
  
end 
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13. 3D Building 
 
function [ Room ] = Threed_Building( Room ) 
%UNTITLED5 Summary of this function goes here 
%  Detailed explanation goes here 
  
First_Wall_Direction='East'; % For reference initial wall direction is 
set to East. 
height=Room(1).Wall(1).height; 
  
for Room_No=1:numel(Room) 
length=Room(Room_No).Wall(1).Width; 
breadth=Room(Room_No).Wall(2).Width; 
Room=ThreeD_Vector_Map(length,breadth,height,Room,First_Wall_Direction,
Room_No); 
 
alpha(0.5); 
axis off; 
hold on; 
end 
  
end 
  
14. 3D vector map 
 
function [Room] = 
ThreeD_Vector_Map(length,breadth,height,Room,First_Wall_Direction,Room_
No) 
%UNTITLED Summary of this function goes here 
%  Detailed explanation goes her 
i=Room_No-1; 
next_room=Room_No; 
  
if Room_No==1 
i=Room_No; %i=1 is room number 
  
p1=flip(Room(Room_No).Wall(1).Image,1); 
p2=flip(Room(Room_No).Wall(2).Image,1); 
p3=flip(Room(Room_No).Wall(3).Image,1); 
p4=flip(Room(Room_No).Wall(4).Image,1); 
  
if strcmp(First_Wall_Direction,'North')==1 
  s1=p1;s2=p2;s3=p3;s4=p4; 
elseif strcmp(First_Wall_Direction,'West')==1 
   s1=p4;s2=p1;s3=p2;s4=p3; 
elseif strcmp(First_Wall_Direction,'South')==1 
   s1=p3;s2=p4;s3=p1;s4=p2; 
elseif strcmp(First_Wall_Direction,'East')==1 
   s1=p2;s2=p3;s3=p4;s4=p1; 
else 
  disp('Please enter valid direction'); 
end 
hold on;   
  
length=(Room(1).Wall(1).Width+Room(1).Wall(3).Width)/2; 
breadth=(Room(1).Wall(2).Width+Room(1).Wall(4).Width)/2; 
  
% front 
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surf([0 length;0 length], [breadth breadth;breadth breadth], [0 
0;height height], ... 
  'FaceColor', 'texturemap', 'CData', s1 );   
% % back 
surf([0 length;0 length], [0 0; 0 0], [0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', fliplr(s3) ); 
% left 
surf([0 0; 0 0], [breadth 0;breadth 0], [0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', fliplr(s4) ); 
% right 
surf([length length;length length], [0 breadth;0 breadth], [0 0; height 
height], ... 
  'FaceColor', 'texturemap', 'CData', fliplr(s2) ); 
%alpha 0.5; 
view(3); 
axis equal; 
axis tight; 
hold on; 
  
elseif next_room<=numel(Room) 
   
q1=flip(Room(next_room).Wall(1).Image,1); 
q2=flip(Room(next_room).Wall(2).Image,1); 
q3=flip(Room(next_room).Wall(3).Image,1); 
q4=flip(Room(next_room).Wall(4).Image,1); 
  
length=(Room(i).Wall(1).Width+Room(i).Wall(3).Width)/2; 
breadth=(Room(i).Wall(2).Width+Room(i).Wall(4).Width)/2; 
 
NR_Length=(Room(next_room).Wall(1).Width+Room(next_room).Wall(3).Width)
/2; 
NR_Breadth=(Room(next_room).Wall(2).Width+Room(next_room).Wall(4).Width
)/2; 
  
Next_Room_Position=Room(next_room).Wall(1).Room_Position; 
  
if strcmp(Next_Room_Position,'right')==1 %If room position is right. 
   
r1=q2;r2=q3;r3=q4;r4=q1; 
Room(next_room).Wall(2).Reference_Wall=Room(i).Wall(1); 
  
%NR_front 
surface([length length+NR_Length;length length+NR_Length], [NR_Breadth 
NR_Breadth;NR_Breadth NR_Breadth], [0 0;height height], ... 
  'FaceColor', 'texturemap', 'CData', r1 ); 
%NR_back 
surface([length length+NR_Length;length length+NR_Length], [0 0; 0 0], 
[0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', r3 ); 
%NR_left 
surface([length length;length length], [0 NR_Breadth;0 NR_Breadth], [0 
0; height height], ... 
  'FaceColor', 'texturemap', 'CData', r2 ); 
%NR_right 
surface([length+NR_Length length+NR_Length;length+NR_Length 
length+NR_Length], [0 NR_Breadth;0 NR_Breadth], [0 0; height height], 
... 
  'FaceColor', 'texturemap', 'CData', r4 ); 
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%alpha 0.5; 
view(3); 
axis equal; 
axis tight; 

elseif strcmp(Next_Room_Position,'left')==1 %If room position is left. 

r1=q4;r2=q1;r3=q2;r4=q3; 
Room(next_room).Wall(2).Reference_Wall=[1 3]; 

%front 
surface([0 -NR_Length;0 -NR_Length], [NR_Breadth NR_Breadth;NR_Breadth 
NR_Breadth], [0 0;height height], ... 
  'FaceColor', 'texturemap', 'CData', fliplr(r1) ); 
% back 
surface([0 -NR_Length;0 -NR_Length], [0 0; 0 0], [0 0; height height], 
... 
  'FaceColor', 'texturemap', 'CData', r3 ); 
% left 
surface([0 0; 0 0], [NR_Breadth 0;NR_Breadth 0], [0 0; height height], 
... 
  'FaceColor', 'texturemap', 'CData',fliplr(r2) ); 
% right 
surface([-NR_Length -NR_Length;-NR_Length -NR_Length], [0 NR_Breadth;0 
NR_Breadth], [0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', fliplr(r4) ); 
%alpha 0.5; 
view(3); 
axis equal; 
axis tight; 

elseif strcmp(Next_Room_Position,'top')==1 %If room position is top. 

r1=q1;r2=q2;r3=q3;r4=q4; 

% font 
surface([0 NR_Length;0 NR_Length], [breadth breadth;breadth breadth], 
[height height;height+height height+height], ... 
  'FaceColor', 'texturemap', 'CData', r1 ); 
% back 
surface([0 NR_Length;0 NR_Length], [0 0; 0 0], [height height; 
height+height height+height], ... 
  'FaceColor', 'texturemap', 'CData', r3 ); 
% left 
surface([0 0; 0 0], [breadth 0;breadth 0], [height height; 
height+height height+height], ... 
  'FaceColor', 'texturemap', 'CData', r2 ); 
% right 
surface([NR_Length NR_Length;NR_Length NR_Length], [0 breadth;0 
breadth], [height height; height+height height+height], ... 
  'FaceColor', 'texturemap', 'CData', r4 ); 
%alpha 0.5; 
view(3); 
axis equal; 
axis tight; 

elseif strcmp(Next_Room_Position,'bottom')==1 %If room position is 
bottom.  
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r1=q1;r2=q2;r3=q3;r4=q4; 
  
% font 
surface([0 NR_Length;0 NR_Length], [breadth breadth;breadth breadth], 
[0 0;-height -height], ... 
  'FaceColor', 'texturemap', 'CData', r1 ); 
% back 
surface([0 NR_Length;0 NR_Length], [0 0; 0 0], [0 0; -height -height], 
... 
  'FaceColor', 'texturemap', 'CData', r3 ); 
% left 
surface([0 0; 0 0], [breadth 0;breadth 0], [0 0; -height -height], ... 
  'FaceColor', 'texturemap', 'CData', r2 ); 
% right 
surface([NR_Length NR_Length;NR_Length NR_Length], [0 breadth;0 
breadth], [0 0; -height -height], ... 
  'FaceColor', 'texturemap', 'CData', r4 ); 
%alpha 0.5; 
view(3); 
axis equal; 
axis tight; 
  
elseif strcmp(Next_Room_Position,'front')==1 %If room position is 
front. 
  
r1=q3;r2=q2;r3=q1;r4=q4; 
Room(i+1).Wall(2).Reference_Wall=Room(i).Wall(3); 
  
%front 
surface([0 NR_Length;0 NR_Length], [-breadth -breadth;-breadth -
breadth], [0 0;height height], ... 
  'FaceColor', 'texturemap', 'CData', r1 ); 
% back 
surface([0 NR_Length;0 NR_Length], [0 0; 0 0], [0 0; height height], 
... 
  'FaceColor', 'texturemap', 'CData', r3 ); 
% left 
surface([0 0; 0 0], [-breadth 0;-breadth 0], [0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', r2 ); 
% right 
surface([NR_Length NR_Length;NR_Length NR_Length], [0 -breadth;0 -
breadth], [0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', r4 ); 
%alpha 0.5; 
view(3); 
axis equal; 
axis tight; 
  
elseif strcmp(Next_Room_Position,'back')==1 %If room position is back. 
   
r1=q3;r2=q2;r3=q1;r4=q4; 
Room(i+1).Wall(2).Reference_Wall=Room(i).Wall(1); 
  
% front 
surface([0 NR_Length;0 NR_Length], [breadth+NR_Breadth 
breadth+NR_Breadth;breadth+NR_Breadth breadth+NR_Breadth], [0 0;height 
height], ... 
  'FaceColor', 'texturemap', 'CData', r1 ); 
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% back 
surface([0 NR_Length;0 NR_Length], [0 0; 0 0], [0 0; height height], 
... 
  'FaceColor', 'texturemap', 'CData', r3 ); 
% left 
surface([0 0; 0 0], [breadth+NR_Breadth 0;breadth+NR_Breadth 0], [0 0; 
height height], ... 
  'FaceColor', 'texturemap', 'CData', r2 ); 
% right 
surface([NR_Length NR_Length;NR_Length NR_Length], [0 
breadth+NR_Breadth;0 breadth+NR_Breadth], [0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', r4 ); 
%alpha 0.5; 
%view(3); 
axis equal; 
axis tight; 

else  
disp('please enter proper input for Next_Room_Position'); 
end 
else   
end 
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15. 3D view

function [Room] = ThreeD( 
Room,H_Length,H_Breadth,length,breadth,height,NR_Length,NR_Breadth,Hall
_Position ) 
%UNTITLED Summary of this function goes here 
%  Detailed explanation goes here 
i=Room(2).Wall(1).Room_No; 
t1=flip(Room(3).Wall(1).Image,1); 
t2=flip(Room(3).Wall(2).Image,1); 
t3=flip(Room(3).Wall(3).Image,1); 
t4=flip(Room(3).Wall(4).Image,1); 

if strcmp(Hall_Position,'left')==1 

%IF ROOM IS IN RIGHT 
h1=t4;h2=t1;h3=t2;h4=t3; 
Room(i+1).Wall(2).Reference_Wall=Room(i).Wall(3); 
%NR_front 
surface([-NR_Length -(H_Length+NR_Length);-NR_Length -
(H_Length+NR_Length)], [H_Breadth H_Breadth;H_Breadth H_Breadth], [0 
0;height height], ... 
  'FaceColor', 'texturemap', 'CData', h1 ); 

%NR_back 
surface([-NR_Length -(H_Length+NR_Length);-NR_Length -
(H_Length+NR_Length)], [0 0; 0 0], [0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', h3 ); 

%NR_left 
surface([-NR_Length -NR_Length;-NR_Length -NR_Length], [0 H_Breadth;0 
H_Breadth], [0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', h2 ); 

%NR_right 
surface([-(H_Length+NR_Length) -(H_Length+NR_Length);-
(H_Length+NR_Length) -(H_Length+NR_Length)], [0 H_Breadth;0 H_Breadth], 
[0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', h4 ); 

alpha 0.5; 
view(3); 
axis equal; 
axis tight; 

elseif strcmp(Hall_Position,'right')==1 
%IF ROOM IS IN LEFT 
h1=t2;h2=t3;h3=t4;h4=t1; 
Room(i+1).Wall(2).Reference_Wall=Room(i).Wall(1); 
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surface([0 H_Length;0 H_Length], [H_Breadth H_Breadth;H_Breadth 
H_Breadth], [0 0;height height], ... 
  'FaceColor', 'texturemap', 'CData', h1 ); 

% back 
surface([0 H_Length;0 H_Length], [0 0; 0 0], [0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', h3 ); 

% left 
surface([0 0; 0 0], [H_Breadth 0;H_Breadth 0], [0 0; height height], 
... 
  'FaceColor', 'texturemap', 'CData', h2 ); 
% right 
surface([H_Length H_Length;H_Length H_Length], [0 H_Breadth;0 
H_Breadth], [0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', h4 ); 

alpha 0.5; 
view(3); 
axis equal; 
axis tight; 
elseif strcmp(Hall_Position,'top')==1 
%IF ROOM IS IN TOP 
h1=t3;h2=t2;h3=t1;h4=t4; 
% font 
surface([0 -H_Length;0 -H_Length], [H_Breadth H_Breadth;H_Breadth 
H_Breadth], [height height;height+height height+height], ... 
  'FaceColor', 'texturemap', 'CData', h1 ); 

% back 
surface([0 -H_Length;0 -H_Length], [0 0; 0 0], [height height; 
height+height height+height], ... 
  'FaceColor', 'texturemap', 'CData', h3 ); 

% left 
surface([0 0; 0 0], [H_Breadth 0;H_Breadth 0], [height height; 
height+height height+height], ... 
  'FaceColor', 'texturemap', 'CData', h2 ); 
% right 
surface([-H_Length -H_Length;-H_Length -H_Length], [0 H_Breadth;0 
H_Breadth], [height height; height+height height+height], ... 
  'FaceColor', 'texturemap', 'CData', h4 ); 
alpha 0.5; 
view(3); 
axis equal; 
axis tight; 

elseif strcmp(Hall_Position,'bottom')==1 
%IF ROOM IS IN BOTTOM 
h1=t1;h2=t2;h3=t3;h4=t4; 
% font 
surface([0 -H_Length;0 -H_Length], [H_Breadth H_Breadth;H_Breadth 
H_Breadth], [0 0;-height -height], ... 
  'FaceColor', 'texturemap', 'CData', h1 ); 

% back 
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surface([0 -H_Length;0 -H_Length], [0 0; 0 0], [0 0; -height -height], 
... 
  'FaceColor', 'texturemap', 'CData', h3 ); 

% left 
surface([0 0; 0 0], [H_Breadth 0;H_Breadth 0], [0 0; -height -height], 
... 
  'FaceColor', 'texturemap', 'CData', h2 ); 
% right 
surface([-H_Length -H_Length;-H_Length -H_Length], [0 H_Breadth;0 
H_Breadth], [0 0; -height -height], ... 
  'FaceColor', 'texturemap', 'CData', h4 ); 
alpha 0.5; 
view(3); 
axis equal; 
axis tight; 

elseif strcmp(Hall_Position,'back')==1 
%IF ROOM IS IN front 
h1=t3;h2=t2;h3=t1;h4=t4; 
Room(i+1).Wall(2).Reference_Wall=[1 2]; 
surface([0 -H_Length;0 -H_Length], [-H_Breadth -H_Breadth;-H_Breadth -
H_Breadth], [0 0;height height], ... 
  'FaceColor', 'texturemap', 'CData', h1 ); 

% back 
surface([0 -H_Length;0 -H_Length], [0 0; 0 0], [0 0; height height], 
... 
  'FaceColor', 'texturemap', 'CData', fliplr(h3) ); 

% left 
surface([0 0; 0 0], [-H_Breadth 0;-H_Breadth 0], [0 0; height height], 
... 
  'FaceColor', 'texturemap', 'CData', fliplr(h2) ); 

% right 
surface([-H_Length -H_Length;-H_Length -H_Length], [0 -H_Breadth;0 -
H_Breadth], [0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', fliplr(h4) ); 

alpha 0.5; 
view(3); 
axis equal; 
axis tight; 

elseif strcmp(Hall_Position,'front')==1 
%IF ROOM IS IN front 
h1=t3;h2=t2;h3=t1;h4=t4; 
Room(i+1).Wall(2).Reference_Wall=Room(i).Wall(4); 
surface([0 -H_Length;0 -H_Length], [H_Breadth+NR_Breadth 
H_Breadth+NR_Breadth;H_Breadth+NR_Breadth H_Breadth+NR_Breadth], [0 
0;height height], ... 
  'FaceColor', 'texturemap', 'CData', h1 ); 

% back 
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surface([0 -H_Length;0 -H_Length], [NR_Breadth NR_Breadth; NR_Breadth 
NR_Breadth], [0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', h3 ); 
  
% left 
surface([0 0; 0 0], [H_Breadth+NR_Breadth 
NR_Breadth;H_Breadth+NR_Breadth NR_Breadth], [0 0; height height], ... 
  'FaceColor', 'texturemap', 'CData', h2 ); 
  
% right 
surface([-H_Length -H_Length;-H_Length -H_Length], [NR_Breadth 
H_Breadth+NR_Breadth;NR_Breadth H_Breadth+NR_Breadth], [0 0; height 
height], ... 
  'FaceColor', 'texturemap', 'CData', h4 ); 
alpha 0.5; 
view(3); 
axis equal; 
axis tight; 
  
else  
disp('please enter proper input for Next_Room_Position'); 
end 
end 
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16. wall enhancement

function [test,b,Pixel_Meter,height,rect_x1,rect_x2] = 
Wall_Enhancement( Wall,Wall_Width,height) 
%UNTITLED6 Summary of this function goes here 
%  Detailed explanation goes her 
% b=imread('s1.jpg'); 
b=Wall; 
% figure 

% imshow(b); 
a=rgb2gray(b); 

% figure 
% imshow(a); 

no_of_rows=size(a,1); % to find number of rows in a image matrix. 
%disp(0.5*no_of_rows); 

no_of_columns=length(a); % to find number of columns in a mimage 
matrix. 
%disp(0.5*no_of_columns); 

% figure 
top_left_corner_image=a(1:0.25*no_of_rows,1:0.25*no_of_columns); % to 
crop only top lIMG_20170113_113504eft corner from image. 
% imshow(top_left_corner_image);  

% figure 
top_right_corner_image=a(1:0.25*no_of_rows,0.75*no_of_columns:no_of_col
umns); % to crop only right corner from image. 
% imshow(top_right_corner_image); 

top_left_corner_position=corner_detection(top_left_corner_image); 
top_right_corner_position=corner_detection(top_right_corner_image); 

[test,Pixel_Meter,height,rect_x1,rect_x2]=corners_match(top_left_corner
_position,top_right_corner_position,no_of_columns,b,no_of_rows,Wall_Wid
th,height); 
% disp('width'); 
% disp(test); 

end 
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17. wall measurement 
 
function [Room,length,breadth,height] = Wall_Measurement( 
Enhanced_Wall1,Enhanced_Wall2,Enhanced_Wall3,Enhanced_Wall4,s1,s2,s3,s4
,Pixel_Meter,height,Room_No,Room) 
%UNTITLED4 Summary of this function goes here 
%  Detailed explanation goes here 
  
if Enhanced_Wall1>Enhanced_Wall3 
  length=Enhanced_Wall1; 
else 
  length=Enhanced_Wall3; 
end 
  
i=Room_No; 
Room(i).Wall(1).Width=length; 
Room(i).Wall(1).Pixel=length*Pixel_Meter; 
Room(i).Wall(3).Width=length; 
Room(i).Wall(3).Pixel=length*Pixel_Meter; 
  
if Enhanced_Wall2>Enhanced_Wall4 
  breadth=Enhanced_Wall2; 
else 
  breadth=Enhanced_Wall4; 
end 
  
Room(i).Wall(2).Width=breadth; 
Room(i).Wall(2).Pixel=breadth*Pixel_Meter; 
Room(i).Wall(4).Width=breadth; 
Room(i).Wall(4).Pixel=breadth*Pixel_Meter; 
  
disp('Width of wall 2 & wall 4 in meters:'); 
disp(breadth); 
  
% coordinates are in x,z,y format 
Room(i).Wall(1).Coordinates(1:4,1:3)=[0 0 0;0 0 height ;0 breadth 
height ; 0 breadth 0 ]; 
 
Room(i).Wall(2).Coordinates(1:4,1:3)=[ 0 breadth 0;0 breadth height; 
length breadth height ;length breadth 0]; 
 
Room(i).Wall(3).Coordinates(1:4,1:3)=[length breadth 0; length breadth 
height ; length 0 height ;length 0 0 ]; 
 
Room(i).Wall(4).Coordinates(1:4,1:3)=[length 0 0; length 0 height ;0 0 
height ;0 0 0]; 
 
end 
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18. Spatial mapping  
 
x1=min(VRoom1.Object1); 
x2=max(VRoom1.Object1); 
y1=max(VRoom1.VarName3); 
y2=min(VRoom1.VarName3); 
z1=min(VRoom1.VarName4); 
z2=max(VRoom1.VarName4); 
  
l1=sqrt(x1^2+z1^2); 
l2=sqrt(x2.^2+z2.^2); 
  
b1=sqrt(x1.^2+z2.^2); 
b2=sqrt(x2.^2+z1.^2); 
  
disp('Length'); 
length=(abs(l1)+abs(l2))/2; 
disp(length); 
  
disp('height'); 
height=abs(y1)+abs(y2); 
disp(height); 
  
disp('breadth'); 
breadth=(abs(b1)+abs(b2))/2; 
disp(breadth); 
  
Room(1).Wall(1).Coordinates(1:4,1:3)=[0 0 0;0 0 height ;0 breadth 
height ; 0 breadth 0 ]; 
Room(1).Wall(2).Coordinates(1:4,1:3)=[ 0 breadth 0;0 breadth height; 
length breadth height ;length breadth 0]; 
Room(1).Wall(3).Coordinates(1:4,1:3)=[length breadth 0; length breadth 
height ; length 0 height ;length 0 0 ]; 
Room(1).Wall(4).Coordinates(1:4,1:3)=[length 0 0; length 0 height ;0 0 
height ;0 0 0]; 
  
figure; 
surf(X,Y,Z,ReceivePower); 
shading interp 
colorbar 
 
hold on; 
 
for j=1:12 
w=facet(j).position; 
patch(w(:,1),w(:,2),w(:,3),'b'); 
axis equal; 
axis tight; 
axis off; 
end 
 
end 
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19. Minimum – Maximum Algorithm

a=RoomB;

j=1; 
Object=struct([]); 
for i=1:size(a,1) 
  if a.o(i,1)~='f' 
    if a.o(i,1)=='v' 

      Object(j).Vertex(i,:)=(a(i:i,2:4)); 

    elseif a.o(i,1)=='vn' 
      k=i-size( Object(j).Vertex,1); 
      Object(j).normal(k,:)=(a(i:i,2:4)); 

    end 
  else 
   if i<size(a,1) 
    if a.o(i+1,1)=='o' 
      i=i+1; 
      j=j+1; 
    else 
      continue; 
    end 
   end 
  end 
end   

temp_object=struct([]); 
for m=1:size(Object,2) 
  Object(m).Vertex(~any(table2array(Object(m).Vertex),2),:)=[]; 
  temp_object(m).Vertex=Object(m).Vertex; 
  for i=1:size(Object(m).normal,1) 

    if lt(table2array(Object(m).normal(i,1)),0) 
      temp_object(m).X_negative(i,:)=Object(m).normal(i,1); 
%       temp_object(m).X_Vert_Negative(i,:)=Object(m).Vertex; 
%       tem=max(temp_object(m).X_Vert_Positive),; 
    else 
      temp_object(m).X_positive(i,:)=Object(m).normal(i,1); 
%       temp_object(m).X_Vert_Positive(i,:)=Object(m).Vertex(i:i,1:3); 
    end 

   if lt(table2array(Object(m).normal(i,2)),0) 
      temp_object(m).Y_negative(i,:)=Object(m).normal(i,2); 
%       temp_object(m).Y_Vert_Negative(i,:)=Object(m).Vertex(i:i,1:3); 
    else 
      temp_object(m).Y_positive(i,:)=Object(m).normal(i,2); 
%       temp_object(m).Y_Vert_Positive(i,:)=Object(m).Vertex(i:i,1:3); 
    end 

    if lt(table2array(Object(m).normal(i,3)),0) 
      temp_object(m).Z_negative(i,:)=Object(m).normal(i,3); 
%       temp_object(m).Z_Vert_Negative(i,:)=Object(m).Vertex(i:i,1:3); 
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    else 
      temp_object(m).Z_positive(i,:)=Object(m).normal(i,3);  
%       temp_object(m).Z_Vert_Positive(i,:)=Object(m).Vertex(i:i,1:3); 
    end 
  
  end 
  
  if isempty(temp_object(m).X_positive)==0 && 
isempty(temp_object(m).X_negative)==0 
    if 
mean(table2array(temp_object(m).X_positive))>mean(abs(table2array(temp_
object(m).X_negative))) 
      x=mean(table2array(temp_object(m).X_positive)); 
      temp_object(m).X_direction=('X_positive'); 
  
    else 
       x=mean(abs(table2array(temp_object(m).X_negative))); 
       temp_object(m).X_direction=('X_negative'); 
    end 
  end 
  
  if isempty(temp_object(m).Y_positive)==0 && 
isempty(temp_object(m).Y_negative)==0 
    if 
mean(table2array(temp_object(m).Y_positive))>mean(abs(table2array(temp_
object(m).Y_negative))) 
      y=mean(table2array(temp_object(m).Y_positive)); 
      temp_object(m).Y_direction=('Y_positive'); 
    else 
       y=mean(abs(table2array(temp_object(m).Y_negative))); 
       temp_object(m).Y_direction=('Y_negative'); 
    end 
  end 
  
  if isempty(temp_object(m).Z_positive)==0 && 
isempty(temp_object(m).Z_negative)==0 
    if 
mean(table2array(temp_object(m).Z_positive))>mean(abs(table2array(temp_
object(m).Z_negative))) 
      z=mean(table2array(temp_object(m).Z_positive)); 
      temp_object(m).Z_direction=('Z_positive'); 
    else 
       z=mean(abs(table2array(temp_object(m).Z_negative))); 
       temp_object(m).Z_direction=('Z_negative'); 
    end 
  end 
  
  if x>y 
    if x>z 
      temp_object(m).direction=temp_object(m).X_direction; 
      disp(temp_object(m).X_direction); 
    else 
      disp(temp_object(m).Z_direction); 
      temp_object(m).direction=temp_object(m).Z_direction; 
    end 
  else 
    if y>z 
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      disp(temp_object(m).Y_direction); 
      temp_object(m).direction=temp_object(m).Y_direction; 
    else 
      disp(temp_object(m).Z_direction); 
      temp_object(m).direction=temp_object(m).Z_direction; 
    end 
  end 
   
end 
  
wall=struct([]); 
p=0;q=0;r=0;s=0; 
for n=1:size(temp_object,2) 
  if isempty(temp_object(n).direction)==0 
    if temp_object(n).direction=='X_positive'  
      p=p+1; 
      wall(1).X_Positive_wall(p).Vertex=temp_object(n).Vertex; 
    elseif temp_object(n).direction=='X_negative' 
      q=q+1; 
      wall(2).X_Negative_wall(q).Vertex=temp_object(n).Vertex; 
     
    elseif temp_object(n).direction=='Z_positive' 
      r=r+1; 
      wall(3).Z_Positive_wall(r).Vertex=temp_object(n).Vertex; 
    elseif temp_object(n).direction=='Z_negative' 
      s=s+1; 
      wall(4).Z_Negative_wall(s).Vertex=temp_object(n).Vertex; 
    end 
  end 
   
end 
  
ceiling_floor=struct([]); 
for n=1:size(temp_object,2) 
  if isempty(temp_object(n).direction)==0 
    if temp_object(n).direction=='Y_positive' 
      p=p+1; 
      ceiling_floor(1).Y_Positive_wall(p).Vertex=temp_object(n).Vertex; 
    elseif temp_object(n).direction=='Y_negative' 
      q=q+1; 
      ceiling_floor(2).Y_Negative_wall(q).Vertex=temp_object(n).Vertex; 
    end 
  end 
   
end 
  
wall(1).wall1=[]; 
for t=1:size(wall(1).X_Positive_wall,2) 
% find the (Xmax,Zmax), (Xmin,Zmin) & (Xmax,Zmin)|(Xmin,Zmin) TO FIND 
THE ORIENTATION OF ROOM w.r.t X,Y,Z COORDINATE SYSTEM. 
%   [u,o]=max(table2array(wall(1).X_Positive_wall(t).Vertex)); 
   
   
wall(1).wall1=vertcat(wall(1).wall1,wall(1).X_Positive_wall(t).Vertex); 
%   
wall(1).X_Positive_wall(t).dimensions=array2table(max(table2array(wall(
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1).X_Positive_wall(t).Vertex))+abs(min(table2array(wall(1).X_Positive_w
all(t).Vertex)))); 
%   wall(1).dimensions(t,:)=wall(1).X_Positive_wall(t).dimensions; 
end 
  u=0;o=0; 
% find maximum of x,y,z, and apply distance formula between 2 corner 
points. 
%wall(1).X_Positive_wall(t).dimensions=array2table(sqrt(max(table2array
(wall(1).X_Positive_wall(t).Vertex)).^2+min(table2array(wall(1).X_Posit
ive_wall(t).Vertex)).^2)); 
  [u,i]=max((wall(1).wall1.Object1(:,1))); 
  u=(wall(1).wall1(i,:)); 
  [o,i]=min(((wall(1).wall1.Object1(:,1)))); 
  o=(wall(1).wall1(i,:)); 
  wall(1).Length=abs(u.Object1)+abs(o.Object1); 
disp("length1"); 
disp(wall(1).Length); 
figure 
plot3(wall(1).wall1{:,1},wall(1).wall1{:,2},wall(1).wall1{:,3}); 

wall(2).wall2=[]; 
if isfield(wall(2),'X_Negative_wall')==0 
  l2=0; 
  wall(2).Length=0; 
else 
  for t=1:size(wall(2).X_Negative_wall,2) 
%  
wall(2).X_Negative_wall(t).dimensions=array2table(sqrt(max(table2array(
wall(2).X_Negative_wall(t).Vertex)).^2+min(table2array(wall(2).X_Negati
ve_wall(t).Vertex)).^2)); 
%   %   
wall(2).X_Negative_wall(t).dimensions=array2table(max(table2array(wall(
2).X_Negative_wall(t).Vertex))+abs(min(table2array(wall(2).X_Negative_w
all(t).Vertex)))); 
%     wall(2).dimensions(t,:)=wall(2).X_Negative_wall(t).dimensions; 

wall(2).wall2=vertcat(wall(2).wall2,wall(2).X_Negative_wall(t).Vertex); 
  end  
%   l2=max(table2array(wall(2).dimensions(:,1))); 
  [u,i]=max((wall(2).wall2.Object1(:,1))); 
  u=(wall(2).wall2(i,:)); 
  [o,i]=min(((wall(2).wall2.Object1(:,1)))); 
  o=(wall(2).wall2(i,:)); 
  wall(2).Length=abs(u.Object1)+abs(o.Object1); 
  disp("length2"); 
  disp(wall(2).Length); 
  figure 
  plot3(wall(2).wall2{:,1},wall(2).wall2{:,2},wall(2).wall2{:,3}); 

end 

wall(3).wall3=[]; 
for t=1:size(wall(3).Z_Positive_wall,2) 
%wall(3).Z_Positive_wall(t).dimensions=array2table(sqrt(max(table2array
(wall(3).Z_Positive_wall(t).Vertex)).^2+min(table2array(wall(3).Z_Posit
ive_wall(t).Vertex)).^2)); 
%   
wall(3).Z_Positive_wall(t).dimensions=array2table(max(table2array(wall(
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3).Z_Positive_wall(t).Vertex))+abs(min(table2array(wall(3).Z_Positive_w
all(t).Vertex)))); 
%   wall(3).dimensions(t,:)=wall(3).Z_Positive_wall(t).dimensions; 

wall(3).wall3=vertcat(wall(3).wall3,wall(3).Z_Positive_wall(t).Vertex); 
end 
[u,i]=max((wall(3).wall3.VarName4(:,1))); 
u=(wall(3).wall3(i,:)); 
[o,i]=min(((wall(3).wall3.VarName4(:,1)))); 
o=(wall(3).wall3(i,:)); 
wall(3).Length=abs(u.VarName4)+abs(o.VarName4); 
disp("length3"); 
disp(wall(3).Length); 
figure 
plot3(wall(3).wall3{:,1},wall(3).wall3{:,2},wall(3).wall3{:,3}); 

wall(4).wall4=[]; 
if isfield(wall(4),'Z_Negative_wall')==0 
  b2=0; 
else 
  for t=1:size(wall(4).Z_Negative_wall,2) 
%  
wall(4).Z_Negative_wall(t).dimensions=array2table(sqrt(max(table2array(
wall(4).Z_Negative_wall(t).Vertex)).^2+min(table2array(wall(4).Z_Negati
ve_wall(t).Vertex)).^2)); 
  %   
wall(4).Z_Negative_wall(t).dimensions=array2table(max(table2array(wall(
4).Z_Negative_wall(t).Vertex))+abs(min(table2array(wall(4).Z_Negative_w
all(t).Vertex)))); 
%     wall(4).dimensions(t,:)=wall(4).Z_Negative_wall(t).dimensions; 

wall(4).wall4=vertcat(wall(4).wall4,wall(4).Z_Negative_wall(t).Vertex); 
  end 
%   b2=max(table2array(wall(4).dimensions(:,3))); 
  [u,i]=max((wall(4).wall4.VarName4(:,1))); 
  u=(wall(4).wall4(i,:)); 
  [o,i]=min(((wall(4).wall4.VarName4(:,1)))); 
  o=(wall(4).wall4(i,:)); 
  wall(4).Length=abs(u.VarName4)+abs(o.VarName4); 
  disp("length4"); 
  disp(wall(4).Length); 
  %figure 
  plot3(wall(4).wall4{:,1},wall(4).wall4{:,2},wall(4).wall4{:,3}); 
end 

  for t=1:size(ceiling_floor(2).Y_Negative_wall,2) 
  %   
idx=all(cellfun(@isempty,ceiling_floor(2).Y_Negative_wall(t).Vertex{:,:
}),2); 
  %   ceiling_floor(2).Y_Negative_wall(t).Vertex(idx,:)=[]; 
    if isempty(ceiling_floor(2).Y_Negative_wall(t).Vertex)==0 

ceiling_floor(2).Y_Negative_wall(t).dimensions=array2table(max(table2ar
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ray(ceiling_floor(2).Y_Negative_wall(t).Vertex))+abs(min(table2array(ce
iling_floor(2).Y_Negative_wall(t).Vertex)))); 
  %  
wall(4).Z_Negative_wall(t).dimensions=array2table(max(table2array(wall(
4).Z_Negative_wall(t).Vertex))+abs(min(table2array(wall(4).Z_Negative_w
all(t).Vertex)))); 

ceiling_floor(2).dimensions(t,:)=ceiling_floor(2).Y_Negative_wall(t).di
mensions; 
    end 
  end 

for t=1:size(ceiling_floor(1).Y_Positive_wall,2) 
  if isempty(ceiling_floor(1).Y_Positive_wall(t).Vertex)==0 

ceiling_floor(1).Y_Positive_wall(t).dimensions=array2table(max(table2ar
ray(ceiling_floor(1).Y_Positive_wall(t).Vertex))+abs(min(table2array(ce
iling_floor(1).Y_Positive_wall(t).Vertex)))); 
%   
wall(4).Z_Negative_wall(t).dimensions=array2table(max(table2array(wall(
4).Z_Negative_wall(t).Vertex))+abs(min(table2array(wall(4).Z_Negative_w
all(t).Vertex)))); 

ceiling_floor(1).dimensions(t,:)=ceiling_floor(1).Y_Positive_wall(t).di
mensions; 
  end 
end 

h1=max(table2array(ceiling_floor(1).dimensions(:,2))); 
h2=max(table2array(ceiling_floor(2).dimensions(:,2))); 

height=2.7; 
length=mean(length1,length3); 
breadth=mean(length2,length4); 

%for creating data table 
l1=wall(1).Length; 
l2=wall(2).Length; 
l3=wall(3).Length; 
l4=wall(4).Length; 

Room(1).Wall(1).Coordinates(1:4,1:3)=[0 0 0;0 0 height ;0 breadth 
height ; 0 breadth 0 ]; 
Room(1).Wall(2).Coordinates(1:4,1:3)=[ 0 breadth 0;0 breadth height; 
length breadth height ;length breadth 0]; 
Room(1).Wall(3).Coordinates(1:4,1:3)=[length breadth 0; length breadth 
height ; length 0 height ;length 0 0 ]; 
Room(1).Wall(4).Coordinates(1:4,1:3)=[length 0 0; length 0 height ;0 0 
height ;0 0 0]; 

figure; 
hold on; 
for i=1:numel(Room) 
for j=1:4 
w=Room(i).Wall(j).Coordinates; 
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patch(w(:,1),w(:,2),w(:,3),'b'); 
axis equal; 
axis tight; 

alpha(0.5); 

end 
end 

figure; 
plot(wall(1).wall1{:,1},wall(1).wall1{:,3}); 

newt=[]; 
size=size(Object); 
for i=1:size(1,2) 
  newt=vertcat(newt,Object(i).Vertex); 
end 
figure 
plot(newt{:,1},newt{:,3}); 
plot3(newt{:,1},newt{:,2},newt{:,3}); 

for i=1:size(temp_object,2) 
  figure; 
  plot(temp_object(i).Vertex{:,1},temp_object(i).Vertex{:,3}); 
end 
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