

AN AUGMENTED REALITY FACET MAPPING TECHNIQUE FOR RAY

TRACING APPLICATIONS

by

Varun Kumar Siddaraju, B.E.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Engineering
December 2018

Committee Members:

 George Koutitas, Chair

 Semih Aslan

Damian Valles

COPYRIGHT

by

Varun Kumar Siddaraju

 2018

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,
section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations
from this material are allowed with proper acknowledgement. Use of this material for
financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Varun Kumar Siddaraju, authorize duplication of
this work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

To my family, friends and my inspiration

“ Dr. B. R. Ambedkar ”

v

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my advisor Dr. George Koutitas for

giving me the opportunity to work with him, and for his guidance, support, and

encouragement during my entire MS program. I am grateful to him for his trust, patience,

and constructive criticisms, which helped me improve the quality of my research.

Dr. Koutitas not only trained me to be a good student, but he has also taught me in many

other ways that could lead me to success in my future career.

I wish to express my gratitude to all the faculty members of the Ingram School of

Engineering at Texas State University for their excellent advice, constructive criticism,

and helpful and critical reviews throughout my MS program. A special thank, goes to

Dr. Vishu Viswanathan, Dr. Semih Aslan and Dr. Damian Valles, who kindly agreed to

serve in my thesis research. Their valuable comments and enlightening suggestions have

helped me to achieve a stable research path towards this thesis.

I would also like to thank all my friends Jeschel, Kiran, Vidya, Abhishek, Manju,

Karan and Meghana for their continuous motivation, support and guidance. Finally, I

would like to express my sincere gratitude to my parents and family, for their patience,

continuous support and encouragement throughout this thesis.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS .. xi

ABSTRACT .. xii

CHAPTER

I. INTRODUCTION ... 1

Background ... 1
Augmented reality ... 3
Indoor environment mapping .. 4
Research objectives and solutions .. 4
Thesis outline .. 5

 II. LITERATURE REVIEW .. 6

III. LOW COST 2D IMAGE TO FACET MODEL ... 13

 Overview ... 13

Image pre-processing .. 15
Edge and corner detection ... 16
Computation of wall dimension .. 19
Door detection ... 21

IV. SPATIAL MAPPING ... 22

 Minimum-Maximum algorithm ... 23

Overview ... 23

vii

Spatial mapping process ... 24
Spatial map data .. 25
Individual indoor wall vertices clustering 26
Computation of wall dimension .. 27

Spatial understanding algorithm ... 30

 Overview ... 30
 Topology result ... 31
 Individual wall identification .. 31
 Computation of wall dimension .. 33

V. THE FACET MODEL ... 35

Constructing the 3D environment ... 35
Data structure .. 36

VI. RESULTS ... 38

Graphical user interface .. 38
Augmented reality to ray tracing .. 39

 Wall dimension measurement comparison ... 43
Indoor environment signal strength at different locations 48

VII. CONCLUSION ... 50

VIII. FUTURE WORK ... 53

APPENDIX SECTION ... 55

REFERENCES ... 99

viii

LIST OF TABLES

Table Page

1. Data structure of the facet model .. 37

2. Wall dimension measurement comparison between proposed algorithms 43

3. Proposed algorithms individual accuracy and difference ... 45

ix

LIST OF FIGURES

Figure Page

1. Indoor environment mapping using SLAM camera ... 7

2. Different type of edge detection algorithms and their comparison 8

3. Corner detection algorithm conditions .. 9

4. Microsoft HoloLens hardware details ... 10

5. Flowchart of 3D indoor facet mapping ... 13

6. Region of interest, pre-processed image, edge and corner detection 15

7. Flowchart of edge detection and corner detection .. 16

8. Corner points matching between two ROI of a wall image .. 20

9. Detected wall boundary .. 20

10. Door detection ROI, corner detection and door boundary .. 21

11. Flowchart of Minimum-Maximum algorithm .. 23

12. Spatial map of an indoor environment .. 24

13. Minimum-Maximum vertices identification ... 27

14. Spatial map of individual walls based on vertices normal .. 29

15. Spatial understanding algorithm ... 30

16. Individual wall identification using spatial understanding ... 32

17. 3D vector map and 3D indoor environment interior view .. 35

18. Individual room integration into a building .. 36

19. Graphical user interface .. 38

x

20. 3D vector map of a building, 3D interior view of a building and implementation of
ray tracing algorithm on the facet model .. 40

21. Wall dimension measurement comparison chart .. 45

22. Indoor vector map and ray tracing result comparison .. 48

23. Signal strength of all three algorithms in different locations 49

xi

LIST OF ABBREVIATIONS

Abbreviation Description

AR Augmented reality

SLAM Simultaneous localization and monocular

RGB-D RGB Depth

3D 3rd Dimensional

5G 5th Generation

GUI Graphical user interface

EM Edge map

TL Top left

TR Top right

GO Geometric Optic

xii

ABSTRACT

This research presents a novel spatial mapping technique that is capable of

extracting the vector map of an indoor environment based on the images captured from a

smartphone camera and the spatial maps captured from the Microsoft HoloLens. The

extracted vector map follows the facet model concept and can be used as input in ray

tracing algorithm. The ray tracing algorithm is used for visualizing and predicting the

indoor wireless channels. The proposed solution offers three different algorithms, the first

algorithm (Low cost 2D image to facet model algorithm) uses the edge and corner

detection algorithms to compute the coordinates of the walls and doors of the indoor

environment. The second algorithm (Minimum- maximum algorithm) computes the

spatial map corner vertices by using the data processing techniques. The third algorithm

(Spatial understanding algorithm) uses the Microsoft HoloLens Toolkit’s “spatial

understanding” feature to compute the spatial maps for detecting and measuring the

individual wall dimensions. Finally, using the corner coordinates, spatial corner vertices

and individual wall dimensions from all the three algorithms, a simple 3D vector map is

designed. The output of all the algorithms is a facet model that can be used by ray tracing

algorithms which are embedded in Augmented Reality (AR) applications. The overall

process provides a better human-to-network interface and an improved user experience

that is expected to provide a new way for indoor network planning of residential 5G

systems.

1

I. INTRODUCTION

Background

Augmented reality (AR) is an enhanced version of a real-time reality where the

computer-generated virtual images are augmented over a real-world environment. For

augmenting the virtual data over the real-world environment, the system should

understand the physical world environment. The indoor environment is one of the

physical worlds where we spend most of our time. Computing indoor environment vector

map became an active research field that encompasses the use of the real-world indoor

environment in different AR applications like gaming, indoor navigation, interior

designing, property advertising, indoor security, and other applications related to the

Internet of Things (IoT), and ray-tracing algorithms, etc.

Commonly used indoor mapping methods are 2-dimensional (2D) mapping,

where all the dimensions of a building are measured manually, which is not suitable for

real-time AR applications. Research is going on to meet the need of a real-time 3D

indoor vector map for various AR applications using the high-end camera like RGB

depth (RGB-D), simultaneous localization, and monocular (SLAM) camera. Currently,

AR glasses like Microsoft HoloLens have an integrated spatial mapping technique.

Where it uses different hardware sensors, and depth camera to map the surrounding

environment.

However, these cameras are complicated, and hard to use. To overcome these

problems, a new solution is proposed where the individual wall images are captured and

analyzed for measuring building dimensions. Different image processing techniques are

used for building dimension measurements. The proposed solution is simple, and easy to

2

operate without any requirement of an external devices like depth, RGB-D or SLAM

camera.

The proposed solution uses the individual walls of an indoor environment

captured by the smart-phone camera as input. These images are enhanced by using

different image processing techniques. The image noise present in the captured images

are reduced using the Gaussian filter. Wall boundary of all individual walls is extracted

using the edge detection algorithms. Corners of all individual walls, and their doors are

detected using corner detection algorithms. The dimensions of all walls, and doors are

calculated by measuring the distance between the two corners. Based on the calculated

dimensions, and Cartesian coordinate system, coordinates (x, y, z) of each corner are

computed. Using the calculated coordinates, the 3D indoor vector map of an indoor

environment is built. After successful computation of indoor vector map, the Individual

wall images were embedded over their respective walls of a 3D indoor vector map to

form a 3D interior view.

Thus, the vector map developed from the proposed solution adds a new capability

for mobile AR applications by making it to learn the indoor environment details like door

position, room width, and breadth. This enables the augmented reality user to interact

with the computed vector map with more precise details. A 3D hologram of the computed

vector map can also be used in fully immersive virtual reality applications. The

developed vector maps can also be used in determining the indoor environment wave

propagation through the ray-tracing algorithm. The proposed solution works best for all

medium-sized apartment, but it is hard to capture the complete large wall, so if we need

to compute a vector map of large space area, the Microsoft HoloLens is used. The spatial

3

map computed from Microsoft HoloLens are sophisticated, and includes the coordinates

details of all wall spaces, furniture, and other things present inside the environment.

The second proposed solution reduces their complexity of indoor vector mapping

by converting the complex spatial maps into simple vector maps with only the

coordinates of the room. These simple vector maps can also be used in other

technologies. In this research, we are using these vector maps for indoor network

planning. Thus, for small apartments with considerable wall spaces, the indoor network

mapping using smart-phone can be used. The smartphone indoor vector map techniques

enhance the mobile AR applications capabilities. The second proposed solution works

best for large commercial spaces, where the dimension of all wall spaces is measured,

and indoor network maps are computed. These indoor vector maps can be used in ray

tracing algorithms to compute indoor network planning by visualizing the signal

strengths of various channels.

Augmented reality

Augmented reality (AR) is a combined view of both physical, and virtual world,

where the graphical data are augmented on top of the real physical world. The user can

see both virtual, and real world together on top of each other, which enables a new

dimension of reality which will be helpful in educational, industrial, training,

entertainment, and advertisement industries. For augmenting the virtual data over the

real-world environment, the system should understand the physical world. For that, the

indoor environment is one of the physical worlds which can be used to augment the

4

virtual world. Thus, our indoor environments can be mapped and used for overlaying the

graphical data. So that, we can experience the virtual or digital content like computer

display, games, videos, etc. by sitting in the living area without blocking our physical

world.

Indoor environment map

The spatial maps are the vital part of the AR, where the graphical data are

augmented over the real physical world. Since most of the time we spend our time inside

our house, office, school, and factory areas, etc. We will be using the AR in indoor

environments compared to outdoor environment. Since we need to augment the graphical

data in our indoor environment, we should efficiently map the indoor environment so that

the AR applications understand the physical world and augment the virtual world.

Therefore, the need for efficient indoor network mapping is very high for the AR.

Research objective, and solutions

The need for indoor environment maps in the AR technology is discussed above.

Currently, the AR is introduced into the market from major IT companies like Google,

and Microsoft. The Microsoft took the AR into a next level by integrating the spatial

mapping technique into their well sophisticated AR glass called HoloLens. At present

only, few AR glasses are released into the market. All AR glasses use the same spatial

mapping technique which uses sophisticated hardware sensors, and depth cameras to map

the environment. These AR glasses map the complete spatial map of the indoor

environment with all the furniture, and things present inside it. These spatial maps are

useful in running complex AR applications. However, in certain simple applications, only

5

the vector map with the indoor environment coordinates are enough. These simple

coordinate vector maps can be built using only the basic camera, and no sophisticated

hardware sensors, and depth cameras are needed.

This feature reduces the need for expensive AR glasses for mapping the indoor

environment. A simple indoor environment vector maps can also be computed using all

smartphones inbuilt cameras. This feature adds on a new simple spatial mapping with

indoor coordinates to mobile AR applications. Thus, we are extending the mobile AR

capabilities, and simplifying the existing AR glasses spatial maps into simple coordinate

systems for simple AR applications. In this research, we have designed an indoor

environment vector map technique for smartphones, and 2 different algorithms to

simplify the Microsoft HoloLens spatial maps into simple vector maps to implement

indoor network planning through ray tracing algorithm.

Thesis outline

This thesis is organized as follows. In Chapter II, a detailed literature review

based on the previous work related to spatial mapping, corner detection, indoor

environment vector map, and indoor network planning is explained. In Chapter III,

computing indoor environment vector map from a basic camera is explained with the

"Low cost 2D image to facet model" algorithm in detail. In Chapter IV, computing

vector map from the spatial map with less complexity is explained through a spatial

understanding features of Microsoft HoloLens in detail. In Chapter V, the results, and

analysis of results are explained. Finally, Chapter VI summarizes the overall research

contributions, and possible future research.

6

II. LITERATURE REVIEW

The computation of indoor vector maps, and spatial mapping are active research

fields for various AR (AR) applications. Characteristic examples are gaming, interior

design, property advertising, indoor security, indoor navigation, that all required

information of the indoor space to overlay holograms. Spatial mapping requires high-end

cameras like RGB depth (RGB-D), and Simultaneous Localization, and Monocular

(SLAM) cameras, and this increases the overall cost of the system [1]. Spatial mapping

is the process of analyzing the 3D space and transforming it into a set of vertices coupled

with other information such as vertices normal, and vertices type. In most applications,

this transformation is beneficial since a user can place holograms, and avatars in the real

space, and interact with them. In some occasions, other applications may require a

simplified spatial mapping where the overall objective is just to create the vector map of

the walls, and doors of the indoor environment without the need for indoor clutter

information. This research proposes a novel technique that can provide the 3D mapping

of indoor spaces utilizing the facet concept, and only requires the use of a commodity

smartphone cameras.

Different types of AR algorithms, and limitations for real-time imaging are

discussed in [2]. The presented applications are used in case of the military, medical,

gaming, interior designing, and advertising [2]. A survey of AR technologies, and

applications is also presented in [3][4]. The growth of augmented reality leads for the

research, and development of sophisticated spatial mapping, and 3D indoor mapping

algorithms.

7

The existing spatial mapping is computed using RGB-D cameras [5][6], and

SLAM cameras [7][8]. The RGB-D camera captures 3D RGB images with their depth

details. SLAM cameras simultaneously map the indoor environment with localization of

indoor environment features, and clutter. Both RGB-D, and SLAM cameras are

integrated in expensive AR devices. The indoor environment map computed using

SLAM camera, and the detected boundary is shown in Figure 1.

The next generation of communication networks, namely, the 5G networks, are

expected to create new opportunities for mobile AR applications [9]. One characteristic

application is network visualization, and human-to-network interaction. For example, a

user can visualize the results of ray tracing simulations that are overlaid on top of the

physical space with the use of an AR application. This is very important for 5G

networks where short-range communications are expected to create extensive indoor

network planning challenges [9]. To perform field strength prediction, ray tracing

algorithms use the facet model, where the indoor environment is represented in a vector

format with facets incorporating data of the coordinates, and the material structure of

a) b)

Figure 1. a) Indoor environment mapping using SLAM camera b) Detected boundary
of an indoor environment [29].

8

each facet [10]. An example of the use of indoor vector maps for ray tracing algorithms

is given in [11].

The proposed low cost 2D image to facet model algorithm uses a simple camera

of a smartphone device that captures images of individual walls and is capable of

constructing a simplified 3D map of the indoor space. The 3D map is a facet model that

can be used by indoor channel estimation algorithms. The AR application then overlays

the ray tracing results to enable a better human to network interaction. The facet model is

created by identifying the coordinates, and dimensions of the walls, and doors of indoor

environment. This process incorporates image processing techniques responsible for the

edge, and corner detection. Different existing types of edge detection algorithms, and

their performance with respect to the Gaussian threshold value is shown in Figure 2. The

proposed solution uses the Canny edge detector to extract wall, and door boundaries [12].

Corners on the found edges are detected using the concept of detect minimum

eigenvectors algorithm.

a) b)

Figure 2. a) Different types of edge detection algorithms, b) Different edge detector
performance based on the threshold value [9].

9

An interesting analysis, and comparison of corner detection techniques are given

in [13]-[15]. Corner point determination on the basis of lambda values are explained in

Figure 3. Based on the detected corners of the walls, and doors of individual rooms, the

entire indoor environment is synthesized to create a full 3D vector representation. The

overall objective of the proposed solution is to create the necessary foundations for the

efficient network planning, and positioning of femtocell stations with the use of a typical

smartphone device, and AR applications. The above low cost 2D image to facet model

algorithm discussed can measure the dimensions of individual wall efficiently and

compute the indoor environment map. However, to get efficient results the user needs to

capture the complete wall in a single picture [21]. This can be achieved easily in most of

the medium sized apartments. If the user wants to map the indoor environment of big

spaces like office, college or other buildings with large wall spaces. Capturing the

complete wall into a single picture will be hard. In these cases, we can use the spatial

mapping technique.

Figure 3. Corner detection algorithms conditions for differentiating flat, linear edge,
and corners [14]. The distribution of x and y deraivative can be characterized by the
shape and size of the principal component ellipse.

10

The spatial mapping technique is an active research area in all the AR devices,

and applications. Spatial mapping technique is an ability to understand, and map all the

indoor spaces including the objects present inside it. The Microsoft HoloLens have the

efficient inbuilt spatial mapping feature which maps the indoor environment. The

Microsoft HoloLens uses the spatial mapping technique in various mixed reality

applications [18]. The sensors, and cameras present inside the Microsoft HoloLens are

explained in Figure 4. Expanding the capabilities of the spatial mapping technique might

become useful in several different technologies [20]. Out of the different technologies,

we are aiming to implement the spatial mapping technique on indoor network planning

[12]. For that, the indoor vector maps are extracted, and computed from the spatial

maps. These vector maps are used as input to the ray tracing algorithm [11].

Figure 4. Microsoft HoloLens hardware details [19].

11

The ray tracing algorithm models the propagation of electromagnetic signals. The

signal interaction, and losses concerning to the physical world like walls, buildings, etc.

can be visualized through the ray tracing algorithm. The geometric optics in ray tracing

algorithm decomposes the total signal strength from the source into a different number of

rays. These rays carry a different value of phase, and amplitude which can be visualized

in the ray tracing output. This technique of visualizing the signals, and signal strength

enables the user to understand the signal propagation, and interaction in a better, and

easier way [11].

To understand the physical world that interacts with different signals, we are

using the indoor spatial maps. These spatial maps captured from the Microsoft HoloLens

contains a lot of unwanted indoor object details. For the indoor network planning, and ray

tracing algorithm, we need only the 3D-coordinates of indoor space, and their wall

dimensions [21]. The Microsoft HoloLens uses the depth sensor to measure the distance

between the Microsoft HoloLens, and the target object [26]. The depth sensor can

measure a distance of up to 3.1 meters, and an area of up to 4.25 square meters [26]. If

the user wants to measure a distance above that, the user has to move forward, and map

the environment. The depth sensor considers each initial point of mapping as the origin.

If the user changes the position of the Microsoft HoloLens, the depth sensor measures the

coordinate distance from the changed positions, and results in the complex coordinate

system [21]. Currently, The Microsoft HoloLens is not providing access to depth sensor

data. Therefore, we are not able to convert the multiple complex coordinates into a single

12

coordinate system [25]. Thus, to have a single coordinate system, the user should not

change the position of the Microsoft HoloLens and have to map the environment from the

same position. Fortuitously, Microsoft unconstrained a Mixed Reality HoloToolKit

software development kit [22]. This software development kit provides the different

functionalities to relate, and understand the spatial maps for developing different mixed

reality applications [12][24][25].

In this proposed research, based on the Microsoft HoloLens depth sensor data, we

have designed two different algorithms. These algorithms work on two different

methodologies. The primary objective of the two algorithms is to remove unwanted

spatial map data, and to extract only the useful information like wall width, breadth, and

room area. The two different algorithms are:

1. Minimum-Maximum algorithm

2. Spatial understanding algorithm

Using the extracted data from the above two algorithms a simple vector map of a

building is built. These indoor vector maps are computed based on the facet model,

which are easier to understand for the ray tracing algorithm [12]. This ray tracing

algorithm displays the signal strength, and its propagation. From which the users can

have a better scientific understanding of signal strength, and signal interaction with the

physical world. This process opens a new door in indoor network planning that can be

performed by any non-technical users, and non-experts in the field [21].

13

III. LOW COST 2D IMAGE TO FACET MODEL

Overview

The algorithm processes images of the indoor environment identify the walls, and

doors positions, computes the coordinates, and creates the facet model for each wall, and

door. For the purpose of this investigation, window detection was omitted. This process is

performed for each room of the indoor space, and the found facets are combined in a data

structure to represent the entire indoor environment. This process can be considered as a

simplified spatial mapping technique that neglects the detailed furniture clutter since it is

not significantly affecting signal propagation. The input of the algorithm are the images

Figure 5. Flowchart of 3D indoor facet mapping.

14

of every wall but also the height of the ceiling. The images can be captured using a

standard camera of a typical smart phone device, without the need of using an expensive

depth camera. The input images are then pre-processed to enable an efficient edge, and

corner detection process which is important for the identification of the vertices, and

coordinates of the walls, and doors. The 3D Cartesian coordinates of a room are

calculated using the length, width, and height of the room which is computed once the

wall, and door vertices are detected. Using these coordinates, the 3D vector map or else

the facet model can be constructed, and become available to third party applications such

as ray tracing, and AR.

The detailed overview of the proposed solution is presented in Figure 5 and is

analyzed in the following sections. For efficient performance of the algorithm, the

following assumptions should stand:

• Capture photo of the wall from the center of the room by standing parallel to the wall

• The captured image must be clear without any clutter near the top corners of the walls

• If the wall is large, the user can use the panorama function of the smartphone device to

capture the entire wall in a single image file

In practice, the aforementioned conditions are usually met in most typical

residential units. It should be noted that the proposed technique cannot be used for large

corporate offices, since a wall is usually large enough, and cannot fit in one photo screen.

15

Image pre-processing

The image pre-processing is the first step of the overall technique and prepares

the images of the room for the edge, and corner detection phase. For the efficient edge,

and corner detection, the input image is converted into a grayscale image [5]. The second

step of the pre-processing phase is to crop selected regions of interest from the gray scale

image. For the purpose of our investigation these are the top, and left corners of the wall

as shown in Figure 6. The regions of interest are used to minimize unwanted edge, and

corner detection, and reduce the computational demands of the algorithm.

The last part of the pre-processing phase corresponds to a down sampling of the

image pixel size procedure on the cropped images that further reduces the computational

demands of the process. Usually, the image can be convolved with a Gaussian filter to

reduce the number of unwanted edges [9]. The smoothing process [9] is given in the

following formula:

𝑆[𝑖, 𝑗] = 𝐺[𝑖, 𝑗; 𝜎] ∗ 𝐼[𝑖, 𝑗] (1)

, where I[i, j] denotes the input image of pixel size i x j, G[I,j;σ] denotes Gaussian

smoothing filter, and S[i, j] denotes the array of smoothed data, and σ is the gradient level

of the filter.

a) b) c)

Figure 6. a) The two regions of interest on the original wall image, b) Pre-processed
image of top left region, c) detected edges, and candidate corners.

16

Image is down-sampled to different resolutions like 1280x768, 960x720,

640x480, and experimented for best corner detection results. Images with low

resolution 640x480 help to reduce the number of false corner detection compared to

higher resolution images. A 5x5 size Gaussian filter is used for efficient edge, and

corner detection [13]. The overall process of the image pre-processing is demonstrated

in Figure 6 a), and Figure 6 b). The next phase of the proposed solution is to process

those images for edge and corner detection.

Edge and corner detection

The edge, and corner detection of the wall image is the most crucial part of the

algorithm. This is because, corner detection is directly related to the coordinates of the

wall of the room, and thus the development of the facet model. The edge, and corner

detection flowchart is given in Figure 7. The first part of the algorithm is to perform edge

detection upon the preprocessed input wall images by implementing the edge Canny

method [9]. The Canny method calculates the gradient using the derivative of a Gaussian

filter, and uses two thresholds to identify strong, and weak edges. With this approach, the

edge detection of unwanted noisy parts of the image is minimized. The Canny method

uses a threshold to distinguish between strong, and weak edges. For the purpose of our

investigation, the edge is detected according to the following function.

EM	=	edge	(S,	Canny,	δ,	σ)	(2)

, where S denotes the pre-processed image, Canny denotes the edge detection

algorithm, δ is the threshold used, and is a two-element vector, σ is a scalar of the

standard deviation of the Gaussian filter, and EM denotes the edge map of the wall

image.

17

The EM image is a binary matrix with 1s representing the points where an edge is

detected. The threshold value is a sensitivity value and is used to ignore all edges that are

not stronger than the selected threshold. The initial threshold was set to δ=0.4, and if no

corners found, it decrements by 0.02. The standard deviation was set to σ=sqrt(2).

The corner detection is the second step of the process during which the edge map of the

image is processed for the identification of the candidate corners. The output of the

Figure 7. Flowchart of edge detection, and corner detection.

18

formula [14]:
𝐶=>?@AB = CD

𝐼EF 𝐼E𝐼G
𝐼E𝐼G 𝐼GF

H = I𝜆K 0
0 𝜆F

M (4)

, where Ix denotes the horizontal gradients of the edge map, Iy denotes the vertical

gradients of the edge map, IxIy denotes the edges on diagonal. Cmetric denotes the matrix

with two Eigen values λ1, λ2 characterized by their shape, and size of the principal

low cost 2D image to facet model algorithm is a set of potential points that can be

considered corners of the walls, as shown in Figure 6. c). The red mark corresponds to

the set of potential points. It is observed that the corner point that falls on the intersection

of the three edges is the preferred wall corner. The identification of the final corner is

described in the next section. For the purpose of our investigation, the

detectMinEigenFeatures low cost 2D image to facet model algorithm [14] was used. This

is a MATLAB function, and has the following structure:

Corner	=	detectMinEigenFeatures	(EM,	q,	G);	 (3)

, where EM denotes the edge map in gray scale (binary), q is a scalar value between

[0, 1], and denotes the corner strength, and quality. Larger values of q are used to eliminate

erroneous corner points. For the purpose of our investigation, the value was set q=0.5

because the pre-processing phase of the image eliminates the majority of erroneous points.

The function returns an object file called Corner that incorporates location of corners in

pixel coordinates i, j, and the corner metric value, Cmetric. Larger corner metric indicates a

strongest candidate for a corner [13]. Parameter G is the Gaussian filter dimension, and is

an odd integer value in the range [3, inf]. For the purpose of our investigation, we set G=3.

The Gaussian filter is used to smooth the gradient of the input image. The minimum Eigen

values of the low cost 2D image to facet model algorithm is computed using the

following

19

component ellipse inside each filter of an image were computed. According to the used

parameter q the output of the low cost 2D image to facet model algorithm may not

provide any candidate corner points. In that case, the algorithm reduces the corner

quality parameter q with a step of 0.05 until corner points are detected. This process is

also presented in Figure 7. The corner detection phase ends with the detection of at least

one or more strong candidate corner points with a corner metric value above the quality

level. The same procedure is performed for the bottom corners of the wall. Thus, the

output of the corner detection process is a set of corner points for each region of interest

of the wall. For the top left region of interest (ROI) of the wall, the output is a set of

points (xi,yi), iÎ TL where TL indicates the number of found corners for this region of the

wall. Respectively, for the top right part of the wall the potential corner points are (xj,yj),

jÎ TR. The bottom left part includes the candidate corner points (xm,ym), mÎ BL. Finally,

the bottom right part of the image includes the candidate corner points (xn,yn), nÎ BR.

Computation of wall dimension

This part of the algorithm provides an estimation of the wall width according to

the detected candidate corners. These corner points may include both good candidate

corners but also erroneous corners. In order to avoid the negative effects of the erroneous

corners in wall width measurements, the best candidates should be determined. For that

reason, each corner point in all regions of interest are compared with each other. The

corner points from the top part of the wall that have the same y value yi~yj, where i, and j

are the two candidate corner points from the top right, and top left part of the wall, are

preferred. In addition, the corner points from the top left, and bottom left part of the wall

that have the same x value xi~xm.

20

, where i, and m are the two candidate corner points from the bottom, and top left

part of the wall, are preferred. Similarly, the same procedure occurs for the bottom left, and

bottom right, and also for the top, and bottom right part of the walls. The final corner

detection is computed according to the overall process is shown in Figure 8. The width, w,

of a room wall is calculated by measuring the pixel distance between the two final corners.

, where ℎ |𝑦A∗ − 𝑦=∗|\ is the pixel resolution rp measured in meters/pixel. The

pixel resolution can be computed according to the height of the wall, h, which is defined

by the user, and the number of pixels between the two corners. In a mathematical form,

this is presented in (6). The detected wall boundary is demonstrated in below Figure 9.

𝑖∗, 𝑗∗, 𝑚∗, 𝑛∗ = min
A,`,=,a

b|𝑥A − 𝑥=| ∙ e𝑦A − 𝑦 e ∙ |𝑦= − 𝑦a| ∙ e𝑥 − 𝑥aef (5)

𝑤 =
ℎ

|𝑦A∗ − 𝑦=∗| ∙ e𝑥A
∗ − 𝑥 ∗e (6)

Figure 8. Corner points matching between two regions of interest of a wall image.

a) b)

Figure 9. Detected wall boundary.

21

Door detection

The door detection process follows a similar approach where an edge, and corner

detection algorithm is used to find the location of the boundaries of the door [17]. An

illustration of the overall process is given in in Figure 7. For the door detection, the

region of interest is focused above the half of the wall, and below the third quarter of a

wall. This is because, most doors found in typical residential units have these height

values. To increase the efficiency of the door corner detection algorithm, the

following conditions were assumed:

• The preferred door corner should have a y-axis value equal to a standard door height

of 2.1 meter. Thus, rp×|yi-ym|=2.1m.

• Two corner points should have the same y-axis values. Thus, |yi-yj|~0.

• Two corner points should be separated by a standard door width 0.9 meters. Thus,

rp×|xi-xj|=0.9m.

Similar to the wall detection process, the algorithm first identifies the position of

the door boundaries, computes the door dimension, and defines the coordinate values

of its corners. The detected door boundary is as shown in Figure 10.

a) b) c)

Figure 10. (a) Input image with region of interest (ROI) selected. (b) Detected door
corners over edge map. (c) Detected door on a wall

22

IV. SPATIAL MAPPING

Spatial mapping is a mapping technique mapped using a depth sensor where it

computes the vertices, and vertices normal of the indoor environment, and all the

furniture, objects or things present inside it. The Microsoft HoloLens uses the depth

sensor, and a laser ray cast to measure the vertices or depth distance between the

HoloLens, and the wall, ceiling, floor, and different object or things distance. Based on

this depth measurement, the vertices of all spaces are computed into an object file. These

spatial maps are sophisticated and can be used in varieties of complex AR applications.

However, for our proposed problem, we need a simple vector map with only the room

coordinates. So, we are using the spatial map from the Microsoft HoloLens, and we will

convert the spatial map into a vector map. Since Microsoft HoloLens is using a well-

sophisticated depth sensor, it can map large commercial room wall spaces. This feature of

mapping large wall spaces will clear the limitation of our previous algorithm which is

aimed at residential spaces.

In the following proposed solution, two different algorithms are discussed, they are:

1. Minimum-Maximum algorithm

2. Spatial understanding algorithm

 The two algorithms are explained briefly in next chapters. The minimum-

maximum algorithm is designed to work in MATLAB. It uses the spatial map object

file of the HoloLens as input and converts the spatial map into a simple vector map.

The second algorithm i.e. spatial understanding algorithm uses the inbuilt HoloLens

algorithm in C#, and Unity,

23

Minimum – Maximum Algorithm

Overview

The algorithm processes the spatial maps of an indoor environment captured from

the Microsoft HoloLens. These spatial maps consist vertices, vertices normal, and

fragments. Based on the vertices normal, vertices of an individual wall are identified, and

Figure 11. Flowchart of Minimum – Maximum Algorithm

24

named after their directions. Vertices with minimum, and maximum “x” or “z” values of

all the walls are identified. Thus, for each individual wall, 2 vertices of minimum, and

maximum values both “x” axis, “z” axis or each from “x”, and “z” axis is identified. The

dimension of each wall will be the distance between the 2 vertices points. Using the

dimensions of all 4 walls of a room i.e. length, and breadth, the 3D indoor vector map

will be computed, and used as an input to ray tracing algorithm to visualize signal

strength, and signal propagation. The overview of the minimum-maximum algorithm

with individual steps involved in it is as shown in Figure 11.

Spatial mapping process

Figure 12. Spatial map of an indoor environment.

Before, working on the spatial coordinates of the spatial map. We need to

understand, how the spatial map is captured inside the Microsoft HoloLens. The

spatial map of an indoor environment captured from the Microsoft HoloLens is as

shown in Figure 12. The spatial mapping technique involves both hardware, and

inbuilt software functionalities of the Microsoft HoloLens. Depth sensor is used in the

HoloLens to measure the distance between the HoloLens, and the target object or the

target surface.

25

The depth sensor computes 3D cartesian coordinate system in terms of triangles of

multiple vertices. It has the capacity to measure a distance of up to 3.1 meters, and If we

want to measure a distance above that, the user wearing the HoloLens should step

forward till the sensor reaches the target and have to map the surrounding environment.

Thus, using a depth sensor in the HoloLens standing at one point we can only build a

spatial map with a single coordinate system of area 4.25 square meters.

If the user wants to map the area above that, the user needs to step forward, and the

HoloLens computes multiple different coordinate systems with different origins, resulting

in complex, and invalid coordinate system. Thus, in order to measure the wall dimensions

of a room, the user needs to stay in the same position, and have to map the indoor

environment. Using this algorithm, the user can map a room of an area up to 4.25 square

meters, which works best in common residential apartments.

Spatial map data

The indoor environment is scanned through Microsoft HoloLens, and a detailed

spatial map for the same is generated with 3D (x, y, z) spatial coordinates of all the

spaces, and objects present inside it. The spatial map data can be saved or exported from

HoloLens to a computer in a .obj file format. The spatial map data will consist of 3 main

information i.e. vertices, vertices normal, and fragments. The Microsoft HoloLens maps

the data in terms of small triangles where the vertices represent each point of a triangle.

Vertices normal represents the direction of the object or the wall direction. Fragments

data represents the graphical representation of the spatial map. Figure 12 demonstrates

the spatial map of an indoor environment mapped through Microsoft HoloLens.

26

Individual indoor wall vertices clustering

The extracted spatial map data is then imported into MATLAB for data analyzing,

and processing of useful information. The main objective of the "Minimum &

Maximum" algorithm is to find the precise dimensions of a room using the vertices &

vertices normal data of an indoor environment spatial map. Since fragment data is used

for graphical representation. we excluded its data, and clustered only the vertices, and

vertices normal data from the spatial map .obj file data. Vertices normal is the key

variable which can be used to identify the direction of an indoor space, objects, and walls

so, based on the vertices normal direction, vertices of all 4 different walls i.e. wall1,

wall2, wall3 & wall4 are grouped separately. Where:

• wall1 = X positive direction

• wall2 = Z positive direction

• wall3 = X negative direction

• wall4 = Z negative direction

• ceiling = Y positive direction

• floor = Y negative direction

Now, we are having 6 different vertices groups with the right hand (x, y, z) 3D-

coordinate system. Each unit in the coordinate system is measured in terms of meter unit

i.e. (x=1m, y-2m, z=3m). Since the spatial map is done at the same position, and the

coordinates distance values are measured from the HoloLens. We can consider HoloLens

position as an origin.

27

Computation of wall dimension

Now, we will find the maximum, and minimum values of the x-axis, and z-axis

as shown in Figure 13. Since we are measuring the coordinate distance from the same

position or the origin, the maximum, and minimum vertices x-axis, and z-axis values are

always will be near the corner of the mapped environment, and the orientation of the

coordinate system will always remain same as in Figure 13. Identify the respective

coordinates of the max(x), min(x), max(z), min(z). Using the 3D cartesian distance

formula, find the distance between the two corner point vertices, and these distances will

be the width of the individual wall. Using these dimension, length, and breadth of a room

are calculated i.e. length is the average of 2 parallel walls wall1, wall3, and breadth is the

average of other 2 parallel walls wall2, and wall4. Similarly, the height of the room is

Figure 13. Minimum-Maximum vertices Identification

28

also computed by measuring, and adding the max(y), and min(y). Thus, of the room is

also computed by measuring, and adding the max(y), and min(y). Thus, (length, height,

breadth) i.e. (x, y, z) is measured, and using this 3D coordinate values, simple, and clear

vector map suitable for ray tracing algorithm is built.

The spatial map of an indoor environment is as observed in below Figure 14 a).

The spatial information is complex, and hard to visualize. These spatial maps are used as

input to the minimum-maximum algorithm, and all 8 corners of an indoor environment

are identified. Based on the corners, individual walls, i.e. wall1, wall2, wall3, and wasll4

are identified. Figure 14 b), c), d), e) shows the individual walls of an indoor

environment. The dimensions of these wall samples are calculated, and the coordinates of

the room are recorded in the data structure.

Wall1 = dist{ Vert[max(x), y, z], Vert[x, y, min(z)]] } (1)

Wall2 = dist{ Vert[max(x), y, z], Vert[x, y, max(z)] } (2)

Wall3 = dist{ Vert[min(x), y, z], Vert[x, y, max(z)] } (3)

Wall4 = dist{ Vert[min(x), y, z], Vert[x, y, min(z)] } (4)

29

Figure 14. a) spatial map of an indoor environment. b), c), d), & e) Individual walls
of an indoor environment.

30

Spatial Understanding Algorithm

Overview

Figure 15. Spatial understanding algorithm

The main limitation of the Minimum-Maximum algorithm is that we have to scan

the room from the same position, and we can only scan a room of area only up to 4.25

square meter. This limitation can be overcome by Microsoft’s inbuilt spatial mapping

functions. Where the functions integrate the different coordinate, systems computed

from different origins into a single coordinate system during the scanning process. Thus,

using these functions, the user can scan the indoor environment, so all usable surfaces

like the wall, floor, ceiling, etc. irrespective of the initial positions. The user can also

move

31

around in any directions or any orientation and maps the indoor environment. The

overview flowchart of spatial understanding algorithm is shown in Figure 15.

Topology result

 The single coordinate system computed from multiple different coordinate systems

of different origins are stored in Topology result structure object by the spatial mapping

function. The Topology result object consist the spatial map data of position or vertices,

vertices normal, width, and length. The spatial map of an entire indoor environment is a

combination of multiple small spatial maps mapped in a random shape, and order. The

spatial mapping functions combine all the individual spatial maps together. It stores

individual spatial map data i.e. mentioned in the result topology in a descending order.

struct TopologyResult

 {

 DirectX::XMFLOAT3 position;

 DirectX::XMFLOAT3 normal;

 float width;

 float length;

 };

Individual wall identification

The Spatial understanding is another inbuilt function of the Microsoft

HoloLens. It has different topology queries to understand the spatial map data stored in

the result topology structure. Using spatial understanding functions, the spatial maps of

an indoor environment can be understood and used in different varieties of mixed

reality

32

applications. Different objects, and spaces like the chair, table, couch, floor, ceiling, wall,

and large open spaces, etc. can be identified. Using the existing topology queries, we can

specify the conditions to find the large walls of a room as shown in this code snippet.

EXTERN_C __declspec(dllexport) int QueryTopology_FindLargestWalls(

 In float minHeightOfWallSpace,

 In float minWidthOfWallSpace,

 In float minHeightAboveFloor,

 In float minFacingClearance,

 In int locationCount,

 Inout Dll_Interface::TopologyResult* locationData)

The above function identifies the large wall spatial maps and stores it in the

topology result structure. The largest spaces are stored on the top in a descending order.

The first 4 largest spatial map areas identified are the spatial maps of 4 individual walls.

Figure 16. Individual wall identification using spatial understanding.

33

Computation of wall dimension

The spatial understanding function identifies the large spatial map data in the

topology result. Computes the position, and normal, and calculates the length, and width

of the individual spatial map spaces. The first two large space areas are stored in the

result topology will be wall1, and wall3. The next 3rd, and 4th spaces in the result

topology will be wall2, and wall4. Using these dimension, length, and breadth of a room

are calculated i.e. length is the average of 2 parallel walls wall1, wall3, and breadth is the

average of other 2 parallel walls wall2, and wall4. The large wall detection with the

spatial understanding is shown in Figure 16 with the pink line boundary of the wall.

Thus, we identified the 4 different walls of a room. These dimension values will be used

in building a vector map of the building. Using the same algorithm, we tried inserting

suitable conditions for the detection of the door in the indoor space. since the Microsoft

HoloLens considers the doors same as walls, and there is no much considerable space

difference between wall, and a door like the difference between a floor, and a table. We

weren’t able to identify the doors inside the indoor spaces.

After successful execution of the Minimum–Maximum algorithm, the spatial map

data is been processed, and structured into different vertices groups based on their

vertices normal. Each wall group coordinates are plotted to see the specific spatial map

of its own wall group. The spatial map of 4 different wall groups are shown in Figure 14.

Using these walls, we can visually know the width, and length of the walls. Also, we can

understand how the spatial mapping is done from the Microsoft HoloLens. We can also

observe from the plots the maximum distance measured from the Microsoft HoloLens i.e.

34

origin is less than 3.1mt, and the total area will be less than 4.25 square meter. The

detected large wall in the indoor space are as shown in Figure 16, where the Spatial

Understanding function understands the spatial map of an indoor space. It also separates

all the spatial map areas into different individual areas based on their directions, and their

length, width, and area. The spaces with maximum areas are stored on top of the result

topology array. Using these result topology data, we can extract the dimensions or spatial

map space of 4 individual walls of a room.

Using the above 2 algorithms, we can measure the length, and breadth of an

individual room with 8 corners of a room. These coordinates can be stored in a facet

model format. Each facet represents an individual wall with four corner coordinates (x, y,

z). These coordinates indicate the respective corners. Using the same process, the facet

model of all other rooms is computed, and combined together to form a clear vector map

of an entire building without any unwanted indoor objects data. The vector map of a 3-

bedroom apartment is computed. The finally designed vector map is used as an input to a

ray tracing algorithm. The ray tracing algorithm models the electromagnetic wave

propagation using the Geometric Optic (GO), and sum of the individual rays carrying

different amplitude, and phase. The indoor space details like wall length, breadth area,

etc. been loaded into ray tracing algorithm, and the resulting electromagnetic signal

variations or channel condition can be visualized inside the modeled indoor vector map.

This process opens up a new set of functionalities, and options for non-technical users,

and non-experts to perform indoor network planning.

35

V. THE FACET MODEL

Constructing the 3D environment

After the successful wall, and door width detection, the final coordinates of the

room can be stored in a facet model format. The vector map is represented by its facet

where each wall, and door is defined by four coordinate points x,y,z. These coordinates

indicate the respective corners. The facet representation of a single room is presented in

Figure 17 a. For more enhanced experience, it is possible to overlay the picture as texture

on the facet as presented in Figure 17 b.

Using the same method, and principles, the 3D vector map of the remaining

rooms of the indoor environment can be constructed. One difficulty for this case is the

positioning of the rooms to form a realistic indoor environment, close to the real one. For

the purpose of our investigation, we assume that the user takes four pictures per room to

cover the 360 space and takes the pictures in a clockwise manner. Once the user

completes this process for one room, then the user takes the pictures of the adjacent

room, starting from the wall that is shared with the previous room.

a) b)

Figure 17. a) 3D vector map. (b) 3D indoor environment interior view.

36

Figure 18. Integrating individual room blocks into a building based on the direction

of next room with respect to initial room.

In that way, there is always a “calibration” or orientation point that allows the

algorithm to reconstruct, and attach the facet of each room, and form a realistic indoor

environment. This process is presented in Figure 18. where the first room is marked as

initial and attached to the adjacent room according to the shared wall of the two rooms. In

the next iteration, the second room becomes the reference room, and the third room is

attached according to their shared wall. This process is followed until the user captures

images of all rooms of the indoor environment, and the indoor environment is fully

constructed.

Data structure

The data structure of the facet model is presented in Table I. The indoor

environment in composed by a set of individual rooms. Each room has a number of walls,

and each wall may have a number of doors. The elements of the room structure store all

the details of the indoor environment like wall width, room number, room position, wall

image, wall coordinates, and door coordinates. The room position field is used to

determine the position of the room according to the previous one. The wall image is used

as a texture and is overlaid on the facet model to enhance the user experience. The pixel

size is used for the computation of the dimensions of the walls, and doors length, and

width, and may also be used for future applications. The wall coordinates, and door

37

coordinates represent the vector format of the facet, and is the most valuable element of

the structure, used by the ray tracing algorithm.

Finally, each facet incorporates its constitutive parameters that are used for the

computation of the diffraction, reflection, and transmission coefficients of the ray tracing

model. For the purpose of our investigation, the wall was assumed to be made by brick

material, and the doors by wood material. The constitutive parameters of these materials

can be found in [12]. The details of the indoor environment can be fetched using the

‘Building Details’ button of the main GUI, as described in the following section of the

report.

Room Wall

Position

Room

Properties
Description

Room(i).Wall(j) Room_Position Top, down, left, right, front & back position

---------||--------- Wall_Image Respective room wall image

---------||--------- Width_Pixel Wall width in pixel size

---------||--------- Width Wall width in meter

---------||--------- Height Wall height in meter

---------||--------- Coordinates Wall (x,y,z) coordinates as a set of four corners

---------||--------- Door
Door (x,y,z) coordinates as a set of four

corners

Table 1. Data Structure of the facet model.

38

VI. RESULTS

 Graphical user interface

a)

b)
Figure 19. a) Main GUI of indoor building vector mapping, b) Secondary GUI for

uploading images of a room and mapping individual rooms.

39

A GUI was designed to make the use of the developed app easy, and user friendly.

The user can enter the standard height of the ceiling that is used as reference for the pixel

resolution definition. The user also enters the room position that is used as a reference

point for the construction of the 3D space. Finally, the user uploads the images for each

wall of the indoor environment by using a secondary GUI as indicated in Figure 19. The

user can upload four individual wall images per room and indicate if there is a door in the

room. The door checkbox was used to reduce the computational cost by eliminating

unwanted door detection processes. Once the user uploads the data to the system, the

facet model is computed. Within the GUI, there is a button to indicate if there is a

window in a wall. For the purpose of our investigation, windows were not incorporated in

the facet model, and is something that will be integrated in future versions of the

algorithm.

Augmented reality to Ray tracing

The scenario under investigation is presented in Figure 20. A two-bedroom

student dorm apartment was examined that has three main rooms. The facet model of the

apartment was successfully reconstructed when the user uploads the twelve images of the

walls of the three rooms. A commodity smart phone device was used to capture the

images. The user spent 3 minutes to take the photos, and upload into the system using the

GUI. When the user uploads the images to the system, the algorithm performed the pre-

processing phase by down sampling, and applying Gaussian filters. The input images

were down sampled to different resolutions, and the best performance was met when the

resolution was set to 640x480.

40

 a) b)

c)

Figure 20. a) 3D Vector map of a building. b) 3D Interior view of a building, c)

Implementation of a Ray Tracing algorithm on the facet model.

It was found that the most suitable corner detection technique was

‘DetectMinEigenFeatures’ of MATLAB since it provided the most accurate results and

is widely used by the research community. The found coordinates of all rooms

were integrated together to form the facet model of the entire indoor environment. The

41

processed images are then embedded on to their respective walls to form a 3D interior

view which is as demonstrated in Figure 20 b). It should be noted that the user inputs at

the GUI, such as the height of the ceilings, the position of different rooms, and the

existence of doors on walls, reduced the computational cost by 35%-40%. This is

because, the algorithm did not search for doors in case there was no door at the room and

made a more efficient positioning of the rooms to form the entire indoor space.

The final step of the proposed system is to use the facet model of the indoor space

as input to a ray tracing algorithm [11]. The ray tracing algorithm models the propagation

of the electromagnetic waves using the Geometric Optic (GO) technique and decomposes

the total field strength as sum of individual rays carrying a different amplitude, and

phase. The amplitude was computed as a combination of multiple reflection,

transmission, and diffraction coefficients. For the purpose of our investigation the used

frequency was assumed to be of the order of the 6GHz band of 5G systems. The results

are presented in Figure 20 c). It is observed that the walls, and doors of the environment

interact with the electromagnetic waves and change their signal strengths. With the use of

the proposed system, the user is able to take 12 images of the walls of the house, and with

just a few clicks be able to visualize the signal variation, and channel condition of the 5G

femtocell station inside the house. This process opens new frontiers in indoor network

planning that can be performed by non-technical users, and non-experts in the field. In

addition, it creates new opportunities for the education of indoor channel modelling with

the use of AR (AR) devices, and applications.

42

After successful execution of the Minimum–Maximum algorithm, the spatial map

data is been processed, and structured into different vertices groups based on their

vertices normal. Each wall group coordinates are plotted to see the specific spatial map

of its own wall group. The spatial map of 4 different wall groups are as shown in Figure

14. Using these plots, we can visually know the width, and length of the walls. Also, we

can understand how the spatial mapping is done from the Microsoft HoloLens. We can

also observe from the plots the maximum distance measured from the Microsoft

HoloLens i.e. origin is less than 3.1mt, and the total area will be less than 4.25 square

meter. The detected large wall in the indoor space is as shown in Figure 16, where the

Spatial Understanding function understands the spatial map of an indoor space. It also

separates all the spatial map areas into different individual areas based on their

directions, and their length, width, and area. The spaces with maximum areas are stored

on top of the result topology array. Using these result topology data, we can extract the

dimensions or spatial map space of 4 individual walls of a room.

Using the above 2 algorithms, we can measure the length, and breadth of an

individual room with 8 corners of a room. These coordinates can be stored in a facet

model format. Each facet represents an individual wall with four corner coordinates (x, y,

z). These coordinates indicate the respective corners. Using the same process, the facet

model of all other rooms is computed, and combined together to form a clear vector map

of an entire building without any unwanted indoor objects data. The vector map of a 3-

bedroom apartment is computed and is as shown in Figure 20. a. The finally designed

vector map is used as an input to a ray tracing algorithm. The ray tracing algorithm

models the electromagnetic wave propagation using the Geometric Optic (GO), and sum

43

of the individual rays carrying different amplitude, and phase. The indoor space details

like wall length, breadth area, etc. been loaded into ray tracing algorithm, and the

resulting electromagnetic signal variations or channel condition can be visualized inside

the modeled indoor vector map. This process opens up a new set of functionalities, and

options for non-technical users, and non-experts to perform indoor network planning.

Wall dimension measurement comparison

Wall
Samples

Actual
Measurements

Low cost 2D
image to facet

model algorithm

Min-Max
Algorithm

Spatial
Understanding

Algorithm

1 3 3.15 3.15 2.9

2 3.4 2.95 3.2 3.5

3 5.3 3.15 5.29 5.2

4 3.4 2.95 3.2 3.4

5 1.8 3.06 2.12 1.7

6 4.2 3.5 3.59 4.2

7 2.3 3.06 2.17 2.3

8 3.1 3.5 4.56 3.1

9 2.6 2.71 2.77 2.6

10 2.6 2.71 2.67 2.6

11 2.2 3.07 3.5 2.1

12 3.7 3.07 3.5 3.7

13 3.2 3.35 3.86 3.2

14 2.9 3.13 2.98 2.8

15 3.1 3.35 2.8 3.2

16 2.9 3.13 2.7 2.9

Table 2. Wall dimension measurement comparison between the proposed
algorithms.

44

 For checking the efficiency, and wall measurement accuracy of all three proposed

algorithms, a 2-Bed apartment is considered. Actual measurements of all individual walls

are measured using a laser beam measurement device and recorded in column 2. The low

cost 2D image to facet model algorithm is applied over the images of all individual walls

captured from a smart-phone. The resulting wall dimension measurements are recorded in

column 3. The low cost 2D image to facet model algorithm results are compared with the

actual dimensions, and the low cost 2D image to facet model algorithm achieved 93%

accuracy. The minimum- maximum algorithm is implemented over the Microsoft

HoloLens spatial map object file. The algorithm computes the individual wall dimensions,

and the data has been recorded in column 3. The minimum- maximum algorithm shows

an improved accuracy compared to low cost 2D image to facet model algorithm.

 The minimum-maximum algorithm shows a 2.4% increased accuracy with a total

accuracy of 95.4% which is good for efficient indoor vector mapping. Even though the

minimum-maximum algorithm achieved good accuracy, it has a limitation of measuring a

room of only area less than 4.25 square meters. So, the spatial understanding algorithm is

implemented, and the resulting wall dimensions are recorded in column 4. Since the

spatial algorithm uses the inbuilt algorithms, and functions from Microsoft HoloLens

software development kit, it achieves higher accuracy than the other two algorithms. The

minimum-maximum algorithm shows a 3.6% improved accuracy than low cost 2D image

to facet model algorithm, and 1.2% improved accuracy than a minimum-maximum

algorithm. Thus, the spatial understanding algorithm achieves the highest 96.6% accuracy

compared to the actual wall dimensions.

45

The accuracy of all three different algorithms concerning the actual dimensions

of all individual walls are show in Table 3. The difference between the accuracy of the

algorithms is also listed in the table. The proposed algorithms show an improvisation

from one algorithm to another. The difference between all 3 individual algorithms is not

much significant for use in AR applications. Whereas in Indoor network planning, the

accuracy of indoor space wall dimension is essential to get the best ray tracing, signal

strength, and signal propagation results. So, based on the application, and requirement of

accuracy, and availability of hardware any one of the above three algorithms can be used.

Figure 21. Wall dimension measurement comparison chart.

Algorithm Accuracy Difference

Low cost 2D image to facet model
algorithm

 93% -

Minimum-Maximum Algorithm 95.4% + 2.4%

Spatial Understanding Algorithm 96.6% + 1.2%

W
al

l w
id

th
 in

 m
et

er
s

0

1.5

3

4.5

6

Wall measurement samples

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Actual measurements Low cost 2D photo to facet
model algorithm

Min-Max Algorithm Spatial Understanding Algorithm

Table 3. Proposed algorithms individual accuracy, and difference

46

The graphical representation of wall dimensions of sixteen different wall samples

are as shown in the Figure 21. Different colors in the histogram chart represent the actual

dimension, and individual wall dimension measurement algorithms. The chart provides

the simple comparison understanding of all three algorithms compared to the actual

dimensions. Out of 16 walls, all three algorithms work best for 9 walls. The spatial

algorithm matches the actual dimension in all 16 wall samples, so it’s the most reliable

algorithm out of all the three algorithms. The low cost 2D image to facet model algorithm

accuracy was dropped in 4 wall dimension measurements with reduced accuracy. The

minimum-maximum algorithm accuracy was dropped in only 2 walls with different wall

dimension results. But these mis-calculation of dimension will be corrected in the vector

map building function, where it compares the individual wall with their parallel walls and

matches up with the right dimension.

The ray tracing results, and indoor vector map builds based on all three algorithms

are as shown in Figure 22. In column 2, we can observe the 3D indoor vector maps of a 2-

bedroom apartment. Observe the changes in the room area or dimensions of the individual

algorithm concerning actual dimension vector map. All the three algorithms show a slight

difference in individual room area, but the changes are not significant. The changes are

less, and don’t affect the ray tracing results. Thus, all the three algorithms can be used for

indoor network planning. The ray tracing results of all three algorithms are shown in

column 3. Thus, using these algorithms, the user can build a 3D indoor environment

vector map, and use them to visualize the signal strength for Indoor network planning

using ray tracing algorithms.

47

Indoor Vector Map Ray Tracing Results

Actual

Dimensions

Low cost 2D
image to facet

model
algorithm

Min-Max

Algorithm

Figure 22. Indoor vector map, and ray tracing results of all three algorithms.

48

Figure 22. Continued.

Indoor environment signal strength at different locations.

Indoor environment signal strength at different regions with respect to all three

algorithms are observed. The signal strength of an indoor environment in the region

marked in a red line is shown in Figure 23 a). In this case, the region closer to the signal

source is selected. The changes in signal strength with respect to the walls, and doors can

be observed. Since there is a door parallel to the source in the left-side room the signal

loss is less compared to the right-side room where the signal is blocked more. The signal

strength of the indoor environment away from the signal source is shown in Figure 23 b).

Only one room is considered, so the signal strength reduces once it crosses the walls of

the room, which can be observed in Figure 23 b). The signal strength of the indoor

environment away from the signal source is shown in Figure 23 c). Only one room is

considered, so the signal strength reduces once it crosses the walls of the room. This can

also be observed in Figure 23 c). Thus, from the three cases, we can observe, and

compare the variations of all three algorithms indoor vector maps. Since there is no much

difference in the dimension measurement of all three algorithms, the signal strength

variations of the algorithms are less.

Spatial

Understanding

Algorithm

49

Figure 23. Signal strength of all three algorithms at the region of red line, i.e. a) at
the center of source. b) and c), away from the source.

a)

 b)

c)

50

VII. CONCLUSION

This research presents a novel image processing algorithm that is capable of

creating the facet model of an indoor environment based on images captured by typical

smart phone cameras. The algorithm can be considered as a simplified spatial mapping

technique that leverages AR (AR) technologies, and principles. The application of the

algorithm was focused on ray tracing, and wireless indoor channel prediction. With the

evolution of 5G networks, and AR application, it is expected that there will be a great

need for integrating network planning, and visualization algorithms with AR

technologies. It was found that the proposed solution could be used for standard indoor

residential houses, but it is not efficient for large or complex indoor spaces. The proposed

solution applies edge, and corner detection algorithms on the images of the walls, and

identifies the coordinates, and dimensions of the basic electromagnetic clutter, which are

walls, and doors. The coordinate system was based on the facet model that is used by

most of the ray tracing, and channel estimation algorithms. It was found that in less than

3 minutes a user could obtain signal strength estimations in a 3-bedroom house just by

uploading .jpg images of the walls of all rooms.

The proposed solution works best for all medium-sized apartment but if we need

to compute a vector map of some large space area like office, school or other large

commercial spaces. It is hard to capture the complete large wall space inside a single

picture. So, to overcome this limitation, and to reduce the complexity of existing spatial

maps, Microsoft HoloLens is used. The spatial map computed from Microsoft HoloLens

is sophisticated, and it includes coordinates details of all the furniture, and things present

inside the environment, which will not be used in many different AR applications.

51

The spatial maps mapped through the Microsoft HoloLens are used for the minimum-

maximum, and spatial understanding algorithms. These spatial maps are efficient in

mapping indoor environment. These maps will contain the spatial data of all the objects

inside the mapped space i.e. wall, empty space, furniture's, etc., which is very complex.

For efficient indoor network planning, and ray tracing algorithm, we need clear, simple

vector map with only the building dimensions data. Thus, we designed 2 other

algorithms. In algorithm1, we processed the spatial map vertices of individual walls

based on vertices normal and measured the dimensions of a room. But due to the

limitation of the depth sensor capability of measuring maximum of 3.1 meter, and not

able to access the direct real-time sensor data from the HoloLens. we are only able to

map an area less than 4.25 square meter.

In order to overcome this limitation, we have used the inbuilt functionalities

available in the HoloLens like plane finding, spatial understanding, and different

topology queries. In which the Microsoft HoloLens understands the spatial map, and

stores different individual spatial maps into an array. These arrays consist of multiple

small spatial maps of an indoor environment, and are arranged in a descending order of

spatial area. These spatial maps also consist of their respective width, and breadth of the

individual spaces. Since the wall spaces are the biggest spaces compared to other small

spaces, table space or & couch space , etc., we can easily consider the first 2 largest

spatial maps as the 2 parallel walls of a room, and next 2 largest spatial maps as the

other 2 parallel walls of a room. Thus, we got the spatial maps of all the 4 walls, and

extracted their dimensions. In the end, the dimensions of a room from the 2 algorithms

are used to build a 3D

52

coordinate system. From which the vector maps are build and used as an input for the ray

tracing algorithm to visualize signal, and for indoor network planning. The above 2

algorithms are efficient and can measure the indoor walls dimensions precisely, but they

don't have a feature of identifying the doors inside the indoor environment, which is an

important factor for ray tracing, and indoor network planning so, a new algorithm or

technique needs to be designed for identifying doors from the indoor spatial map data.

53

VIII. FUTURE WORK

The proposed solution offers three different algorithms to compute indoor

environment vector map. All three individual algorithms achieve the research objective of

computing vector map. The low cost 2D image to facet model algorithm creates a novel

vector mapping technique using image processing algorithms. The other two algorithms

i.e. minimum-maximum algorithm and spatial understanding algorithms converts the

existing complex spatial maps into simple vector maps. Though, all three algorithms

successfully compute the indoor environment vector map, each algorithm will have their

own advantages and disadvantages. The low cost 2D image to facet model algorithm is

best suitable for residential apartments and are cost efficient. The minimum-maximum

algorithm is best suitable for small commercial spaces. Both low cost 2D image to facet

model algorithm and minimum-maximum algorithm can measure an indoor environment

of area less than 4.25 square meters. The spatial understanding algorithm works best for

all spaces like residential and large commercial spaces irrespective of their dimensions.

Both minimum-maximum algorithms require existing AR devices like Microsoft

HoloLens to compute the spatial maps and cost more than the low cost 2D image to facet

algorithms. Since, all things presents inside the indoor environment like wall, windows,

doors, furniture, etc. affects the ray tracing results, the more precise details of these things

will increase the accuracy of ray tracing results. In our proposed solution. Since we are

using the image processing techniques only in low cost 2D image to facet model

algorithms, we are able to identify the doors. Thus, to have an efficient solution from all

the three designed algorithms, it is best to integrate the low cost 2D image to facet model

algorithm and spatial understanding algorithms. So that the integrated algorithm will

54

work best in all residential and commercial spaces with door, window and furniture

detection. This feature of object identification and all the things present in the

environment will increase the ray tracing results and provides a new way of indoor

network planning.

55

APPENDIX SECTION

1. Vector map

function varargout = Vector_Map(varargin) % VECTOR_MAP MATLAB code for
Vector_Map.fig
% VECTOR_MAP, by itself, creates a new VECTOR_MAP or raises the
existing
% singleton*.
%
% H = VECTOR_MAP returns the handle to a new VECTOR_MAP or the handle
to
% the existing singleton*.
%
% VECTOR_MAP('CALLBACK',hObject,eventData,handles,...) calls the
local
% function named CALLBACK in VECTOR_MAP.M with the given input
arguments.
%
% VECTOR_MAP('Property','Value',...) creates a new VECTOR_MAP or
raises the
% existing singleton*. Starting from the left, property value pairs
are
% applied to the GUI before Vector_Map_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to Vector_Map_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Begin initialization code
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @Vector_Map_OpeningFcn, ...
 'gui_OutputFcn', @Vector_Map_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);

if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Vector_Map is made visible.
function Vector_Map_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure

56

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% varargin command line arguments to Vector_Map (see VARARGIN)

% Choose default command line output for Vector_Map
handles.output = hObject;
 % Room.Wall=struct('Coordinates',[],'Width',[],'Image',[]);
 % handles.Room = Room;
 % % Update handles structure
 % setappdata(0,'Room',handles.Room);

guidata(hObject, handles);
%
% textIn = 'Welcome to Indoor building vector mapping';
% ha = actxserver('SAPI.SpVoice');
% invoke(ha,'speak',textIn)
% UIWAIT makes Vector_Map wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = Vector_Map_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in Height.
function Height_Callback(hObject, eventdata, handles)
% hObject handle to Height (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% textIn = 'please enter wall height';
% ha = actxserver('SAPI.SpVoice');
% invoke(ha,'speak',textIn)

function HeightEdit_Callback(hObject, eventdata, handles)
% hObject handle to HeightEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of HeightEdit as text
% str2double(get(hObject,'String')) returns contents of HeightEdit
as a double
str=str2double(get(handles.HeightEdit,'String'));
if isempty(str2double(str))
 str=2.7;
end
setappdata(0,'height',str)

57

% --- Executes during object creation, after setting all properties.
function HeightEdit_CreateFcn(hObject, eventdata, handles)
% hObject handle to HeightEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in UploadPhotos.
function UploadPhotos_Callback(hObject, eventdata, handles)
% hObject handle to UploadPhotos (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
%height=handles.Height1;
% % textIn = 'please upload indoor wall photos';
% % ha = actxserver('SAPI.SpVoice');
% % invoke(ha,'speak',textIn)
height=getappdata(0,'height');
Indoor_Wall_Photo(height);

% --- Executes on button press in RoomPosition.
function RoomPosition_Callback(hObject, eventdata, handles)
% hObject handle to RoomPosition (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% textIn = 'please enter room position';
% ha = actxserver('SAPI.SpVoice');
% invoke(ha,'speak',textIn)

% --- Executes on button press in Left.
function Left_Callback(hObject, eventdata, handles)
% hObject handle to Left (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
 % textIn = 'left';
 % ha = actxserver('SAPI.SpVoice');
 % invoke(ha,'speak',textIn)
setappdata(0,'Room_Position','left');

% --- Executes on button press in Top.
function Top_Callback(hObject, eventdata, handles)
% hObject handle to Top (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
setappdata(0,'Room_Position','top');

% --- Executes on button press in Right.
function Right_Callback(hObject, eventdata, handles)
% hObject handle to Right (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

58

% handles structure with handles, and user data (see GUIDATA)
 % textIn = 'right';
 % ha = actxserver('SAPI.SpVoice');
 % invoke(ha,'speak',textIn)
setappdata(0,'Room_Position','right');

% --- Executes on button press in None.
function None_Callback(hObject, eventdata, handles)
% hObject handle to None (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% textIn = 'none';
% ha = actxserver('SAPI.SpVoice');
% invoke(ha,'speak',textIn)
setappdata(0,'Room_Position','none');

% --- Executes on button press in Bottom.
function Bottom_Callback(hObject, eventdata, handles)
% hObject handle to Bottom (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
 % textIn = 'bottom';
 % ha = actxserver('SAPI.SpVoice');
 % invoke(ha,'speak',textIn)
setappdata(0,'Room_Position','bottom');

% --- Executes on button press in Front.
function Front_Callback(hObject, eventdata, handles)
% hObject handle to Front (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% textIn = 'front';
% ha = actxserver('SAPI.SpVoice');
% invoke(ha,'speak',textIn)
setappdata(0,'Room_Position','front');

% --- Executes on button press in Back.
function Back_Callback(hObject, eventdata, handles)
% hObject handle to Back (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
 % textIn = 'back';
 % ha = actxserver('SAPI.SpVoice');
 % invoke(ha,'speak',textIn)
setappdata(0,'Room_Position','back');

% --- Executes on button press in BuildingDetails.
function BuildingDetails_Callback(hObject, eventdata, handles)
% hObject handle to BuildingDetails (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% textIn = 'building details';
% ha = actxserver('SAPI.SpVoice');

59

% invoke(ha,'speak',textIn)
a=getappdata(0,'Room1');
assignin('base','Room',a);
openvar('Room');

% --- Executes on button press in BuildingVectorMap.
function BuildingVectorMap_Callback(hObject, eventdata, handles)
% hObject handle to BuildingVectorMap (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% textIn = 'building vector map';
% ha = actxserver('SAPI.SpVoice');
% invoke(ha,'speak',textIn)
Building_Vector_Map(getappdata(0,'Room1'));
view(3);
rotate3d on;

% --- Executes on button press in ThreeDBuilding.
function ThreeDBuilding_Callback(hObject, eventdata, handles)
% hObject handle to ThreeDBuilding (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% textIn = '3d view of building';
% ha = actxserver('SAPI.SpVoice');
% invoke(ha,'speak',textIn)
% % if isfield(handles,'Room')==0
% Room.Wall=struct('Coordinates',[],'Width',[],'Image',[]);
% handles.Room = Room;
% endr
cla
Threed_Building(getappdata(0,'Room1'));
view(3);
rotate3d on;

% --- Executes on mouse press over axes background.
function axes1_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to axes1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)

% --- Executes on button press in Reset.
function Reset_Callback(hObject, eventdata, handles)
% hObject handle to Reset (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% textIn = 'reset';
% ha = actxserver('SAPI.SpVoice');
% invoke(ha,'speak',textIn)
close(gcbf);
Vector_Map;

2. Indoor wall photo

function varargout = Indoor_Wall_Photo(varargin)

60

% INDOOR_WALL_PHOTO MATLAB code for Indoor_Wall_Photo.fig
% INDOOR_WALL_PHOTO, by itself, creates a new INDOOR_WALL_PHOTO or
raises the existing
% singleton*.
%
% H = INDOOR_WALL_PHOTO returns the handle to a new INDOOR_WALL_PHOTO
or the handle to
% the existing singleton*.
%
% INDOOR_WALL_PHOTO('CALLBACK',hObject,eventData,handles,...) calls
the local
% function named CALLBACK in INDOOR_WALL_PHOTO.M with the given input
arguments.
%
% INDOOR_WALL_PHOTO('Property','Value',...) creates a new
INDOOR_WALL_PHOTO or raises the
% existing singleton*. Starting from the left, property value pairs
are
% applied to the GUI before Indoor_Wall_Photo_OpeningFcn gets called.
An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to Indoor_Wall_Photo_OpeningFcn via
varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Indoor_Wall_Photo

% Last Modified by GUIDE v2.5 11-May-2017 19:43:07

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @Indoor_Wall_Photo_OpeningFcn, ...
 'gui_OutputFcn', @Indoor_Wall_Photo_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Indoor_Wall_Photo is made visible.
function Indoor_Wall_Photo_OpeningFcn(hObject, eventdata, handles,
varargin)

61

% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% varargin command line arguments to Indoor_Wall_Photo (see VARARGIN)

% Choose default command line output for Indoor_Wall_Photo
handles.output = hObject;
 % Room=getappdata(0,'Room'); handles.Room = Room;
guidata(hObject,handles);
% Update handles structure
%cla(handles.axes1);
% axes(handles.axes1);
% hold off;
% cla reset;
guidata(hObject, handles);
if isfield(handles,'Room')==0
Room.Wall=struct('Coordinates',[],'Width',[],'Image',[],'door',[],'wind
ow',[]);
 handles.Room = Room;
end
close(gcbf);
setappdata(0,'door1',0);
setappdata(0,'door2',0);
setappdata(0,'door3',0);
setappdata(0,'door4',0);

% UIWAIT makes Indoor_Wall_Photo wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = Indoor_Wall_Photo_OutputFcn(hObject, eventdata,
handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in UploadIndoorWall1.
function UploadIndoorWall1_Callback(hObject, eventdata, handles)
% hObject handle to UploadIndoorWall1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% Wall=guidata(gcbo);
% textIn = 'please upload first wall photo';
% ha = actxserver('SAPI.SpVoice');
% invoke(ha,'speak',textIn)
[basefilename,path]= uigetfile({'*.jpg'},'Open jpeg Image File');
filename= fullfile(path, basefilename);
I = imread (filename);
size(I)
% Wall_Images=[];
IndoorWall1=I;

62

handles.Wall1=IndoorWall1;
guidata(hObject, handles);
imshow(I, 'Parent', handles.axes1);

% --- Executes on button press in UploadIndoorWall2.
function UploadIndoorWall2_Callback(hObject, eventdata, handles)
% hObject handle to UploadIndoorWall2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% textIn = 'please upload second wall photo';
% ha = actxserver('SAPI.SpVoice');
% invoke(ha,'speak',textIn)
[basefilename,path]= uigetfile({'*.jpg'},'Open jpeg Image File');
filename= fullfile(path, basefilename);
I = imread (filename);
size(I)
IndoorWall2=I;
handles.Wall2=IndoorWall2;
guidata(hObject, handles);
imshow(IndoorWall2, 'Parent', handles.axes2);

% --- Executes on button press in UploadIndoorWall3.
function UploadIndoorWall3_Callback(hObject, eventdata, handles)
% hObject handle to UploadIndoorWall3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% textIn = 'please upload third wall photo';
% ha = actxserver('SAPI.SpVoice');
% invoke(ha,'speak',textIn)
[basefilename,path]= uigetfile({'*.jpg'},'Open jpeg Image File');
filename= fullfile(path, basefilename);
I = imread (filename);
size(I);
IndoorWall3=I;
handles.Wall3=IndoorWall3;
guidata(hObject, handles);
imshow(IndoorWall3, 'Parent', handles.axes3);

% --- Executes on button press in UploadIndoorWall4.
function UploadIndoorWall4_Callback(hObject, eventdata, handles)
% hObject handle to UploadIndoorWall4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% textIn = 'please upload fourth wall photo';
% ha = actxserver('SAPI.SpVoice');
% invoke(ha,'speak',textIn)
[basefilename,path]= uigetfile({'*.jpg'},'Open jpeg Image File');
filename= fullfile(path, basefilename);
I = imread (filename);
size(I);
IndoorWall4=I;
handles.Wall4=IndoorWall4;
guidata(hObject, handles);
imshow(IndoorWall4, 'Parent', handles.axes4);

63

% --- Executes on button press in VectorMap.
function VectorMap_Callback(hObject, eventdata, handles)
% hObject handle to VectorMap (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% textIn = 'vector map of a room';
% ha = actxserver('SAPI.SpVoice');
% invoke(ha,'speak',textIn)
Room=getappdata(0,'Room');
RoomNumber=getappdata(0,'Room_No');
Room_Position=getappdata(0,'Room_Position');
if RoomNumber>1
 Room=getappdata(0,'Room1');
end
Room(RoomNumber).Wall(1).Image=handles.Wall1;
Room(RoomNumber).Wall(2).Image=handles.Wall2;
Room(RoomNumber).Wall(3).Image=handles.Wall3;
Room(RoomNumber).Wall(4).Image=handles.Wall4;
height=getappdata(0,'height');
Room1=Single_Room_Vector_Map(height,RoomNumber,Room_Position,Room,getap
pdata(0,'door1'),getappdata(0,'door2'),getappdata(0,'door3'),getappdata
(0,'door4'));
% handles.Room = Room;
guidata(hObject,handles);
setappdata(0,'Room1',Room1);
view(3);
rotate3d on;

% --- Executes on button press in ThreeDRoomView.
function ThreeDRoomView_Callback(hObject, eventdata, handles)
% hObject handle to ThreeDRoomView (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
 % textIn = '3d view of a room';
 % ha = actxserver('SAPI.SpVoice');
 % invoke(ha,'speak',textIn)
cla reset
IndoorWall1=handles.Wall1;
IndoorWall2=handles.Wall2;
IndoorWall3=handles.Wall3;
IndoorWall4=handles.Wall4;
height=getappdata(0,'height');
Room=getappdata(0,'Room1');
Single_Room_ThreeD(IndoorWall1,IndoorWall2,IndoorWall3,IndoorWall4,heig
ht,Room);
rotate3d on;

% --- Executes on button press in home.
function home_Callback(hObject, eventdata, handles)
% hObject handle to home (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% textIn = 'home';
% ha = actxserver('SAPI.SpVoice');
% invoke(ha,'speak',textIn)

64

close(gcbf);
Vector_Map;

% --- Executes on button press in Reset.
function Reset_Callback(hObject, eventdata, handles)
% hObject handle to Reset (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% textIn = 'reset';
% ha = actxserver('SAPI.SpVoice');
% invoke(ha,'speak',textIn)
close(gcbf);
Indoor_Wall_Photo;

% --- Executes on button press in RoomNumber.
function RoomNumber_Callback(hObject, eventdata, handles)
% hObject handle to RoomNumber (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
 % textIn = 'please enter room number';
 % ha = actxserver('SAPI.SpVoice');
 % invoke(ha,'speak',textIn)

function Room_No_Callback(hObject, eventdata, handles)
% hObject handle to Room_No (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of Room_No as text
% str2double(get(hObject,'String')) returns contents of Room_No as a
double
str=str2double(get(handles.Room_No,'String'));
if isempty(str2double(str))
 set(handles.Room_No,'string','0');
 warndlg('Input must be numerical');
end
setappdata(0,'Room_No',str)

% --- Executes during object creation, after setting all properties.
function Room_No_CreateFcn(hObject, eventdata, handles)
% hObject handle to Room_No (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called
% Hint: edit controls usually have a white background on Windows.
% See ISPC, and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in door1.
function door1_Callback(hObject, eventdata, handles)
% hObject handle to door1 (see GCBO)

65

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of door1
door=get(handles.door1,'Value');
setappdata(0,'door1',door);

% --- Executes on button press in door2.
function door2_Callback(hObject, eventdata, handles)
% hObject handle to door2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of door2
door2=get(handles.door2,'Value');
setappdata(0,'door2',door2);

% --- Executes on button press in door3.
function door3_Callback(hObject, eventdata, handles)
% hObject handle to door3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
door3=get(handles.door3,'Value');
setappdata(0,'door3',door3);
% Hint: get(hObject,'Value') returns toggle state of door3

% --- Executes on button press in door4.
function door4_Callback(hObject, eventdata, handles)
% hObject handle to door4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles, and user data (see GUIDATA)
door4=get(handles.door4,'Value');
setappdata(0,'door4',door4);
% Hint: get(hObject,'Value') returns toggle state of door4

3.Building Vector Map

function [output_args] = Building_Vector_Map(Room)
%UNTITLED3 Summary of this function goes here
% Detailed explanation goes here
hold on;
for i=1:numel(Room)
for j=1:4

w=Room(i).Wall(j).Coordinates;
patch(w(:,1),w(:,2),w(:,3),'b');
axis equal;
axis tight;
alpha(0.5);

end
end
end
4. Corner detection

function [a] = corner_detection(top_right_corner)
%J=imsharpen(top_right_corner);
J=top_right_corner;

66

no_of_corners=0;
% quality_level=0.9;
threshold=0.08;
k=imresize(J,0.5);
G = fspecial('gaussian',[4 4],0.6);
Ig = imadjust(imfilter(k,G,'same'));

while no_of_corners<3

threshold=threshold-0.02; % threshold level for edge detection.
% quality_level=quality_level-0.1; % quality level for corner
detection.
L=edge(Ig,'canny',threshold); % edge detection function.

% edge dilation.
se=strel('disk',3); % small disc formation on edges.
S=imdilate(L,se);

% edge filling.
X=bwareaopen(S,400);
N=bwpropfilt(X,'MajorAxisLength',100);
M=imfill(N,'holes');

% corner detection.
points = detectMinEigenFeatures(M,'FilterSize',115);
no_of_corners=points.Count;

end

5.Corners Match

Function[width,Pixel_Meter,height,rect_x1,rect_x2]=corners_match(top_le
ft_corner_position,top_right_corner_position,no_of_columns,b,no_of_rows
,Wall_Width,height)

x2=top_right_corner_position.Location(1,1)+(0.75*no_of_columns);
width_pixel=sqrt((top_left_corner_position.Location(1,1)-
x2).^2+(top_left_corner_position.Location(1,2)-
top_right_corner_position.Location(1,2)).^2);

actual_height_pixel=2*((no_of_rows/2)-
min(top_left_corner_position.Location(1,2),top_right_corner_position.Lo
cation(1,2)));
width=(height*width_pixel)/(actual_height_pixel);

rect_x2=top_left_corner_position.Location(1,2);
rect_x1=top_left_corner_position.Location(1,1);
rect_x3=width_pixel;
rect_x4=actual_height_pixel;

Pixel_Meter=width_pixel./width;

End

67

6. Door detection

function [door_found,x_meter] = Door_Detection(a,pixel,Length)
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here

b=rgb2gray(a);
no_of_rows=size(b,1);
no_of_columns=size(b,2);

ROI=(b(0.20*no_of_rows:0.5*no_of_rows,1:no_of_columns));
% imshow(ROI);
I=ROI;
L = imresize(I,0.5);
n = 1;

Idouble = im2double(I);
avg = mean2(Idouble);
sigma = std2(Idouble);
J = imadjust(L,[avg-n*sigma avg+n*sigma],[]);
Iblur1 = imgaussfilt(J,1,'FilterSize',5);

points=detectHarrisFeatures(Iblur1,'MinQuality',0.1,'FilterSize',5);
number_of_corners=points.Count;

for i=1:number_of_corners
 for j=2:number_of_corners

 if (abs(points.Location(i,1)-points.Location(j,1))>400 &&
abs(points.Location(i,1)-points.Location(j,1))<520)

 if (abs(points.Location(i,2)-points.Location(j,2))>0 &&
abs(points.Location(i,2)-points.Location(j,2))<15)

 x1=points.Location(i,1);
 y1=points.Location(i,2);
 x2=points.Location(j,1);
 y2=points.Location(j,2);

 door_found=1;

 x_val=min(x1,x2);
 Pixel_Per_Meter=pixel/Length;
 x_meter=x_val/Pixel_Per_Meter;

 return
 end
 end
 end
end

door_found=0;
x_meter=0;
end

68

7. Individual or First room

function [Room] = First_Room(
length,breadth,height,Room,First_Wall_Direction)
%UNTITLED Summary of this function goes here
% Detailed explanation goes here
Room_No=1;

p1=flip(Room(Room_No).Wall(1).Image,1);
p2=flip(Room(Room_No).Wall(2).Image,1);
p3=flip(Room(Room_No).Wall(3).Image,1);
p4=flip(Room(Room_No).Wall(4).Image,1);

if strcmp(First_Wall_Direction,'North')==1
 s1=p1;s2=p2;s3=p3;s4=p4;
elseif strcmp(First_Wall_Direction,'West')==1
 s1=p4;s2=p1;s3=p2;s4=p3;
elseif strcmp(First_Wall_Direction,'South')==1
 s1=p3;s2=p4;s3=p1;s4=p2;
elseif strcmp(First_Wall_Direction,'East')==1
 s1=p2;s2=p3;s3=p4;s4=p1;
else
 disp('Please enter valid direction');
end

% front
surface([0 length;0 length], [breadth breadth;breadth breadth], [0
0;height height], ...
 'FaceColor', 'texturemap', 'CData', s1);

% back
surface([0 length;0 length], [0 0; 0 0], [0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', fliplr(s3));

% left
surface([0 0; 0 0], [breadth 0;breadth 0], [0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', fliplr(s4));

% right
surface([length length;length length], [0 breadth;0 breadth], [0 0;
height height], ...
 'FaceColor', 'texturemap', 'CData', fliplr(s2));

alpha 0.5;
view(3);
axis equal;
axis tight;
end

69

8. Next room

function [Room] = Next_Room(Room,Room_No)
%UNTITLED Summary of this function goes here
% Detailed explanation goes here

i=Room_No;

height=Room(i).Wall(4).height;
% NR_Wall_One=Wall_Class;
% NR_Wall_Two=Wall_Class;
% NR_Wall_Three=Wall_Class;
% NR_Wall_Four=Wall_Class;

[Enhanced_Wall1,s1,Pixel_Meter,height,W1_rect_x1,W1_rect_x2]=Wall_Enhan
cement(Room(i).Wall(1).Image,0,height);
[Enhanced_Wall2,s2,d,c,W2_rect_x1,W2_rect_x2]=Wall_Enhancement(Room(i).
Wall(2).Image,0,height);
[Enhanced_Wall3,s3,e,f,W3_rect_x1,W3_rect_x2]=Wall_Enhancement(Room(i).
Wall(3).Image,0,height);
[Enhanced_Wall4,s4,g,h,W4_rect_x1,W4_rect_x2]=Wall_Enhancement(Room(i).
Wall(4).Image,0,height);

[Room]=Wall_Measurement(Enhanced_Wall1,Enhanced_Wall2,Enhanced_Wall3,En
hanced_Wall4,s1,s2,s3,s4,Pixel_Meter,height,Room_No,Room);

wall_width_pixel=Room(i).Wall(1).Width*Pixel_Meter;
rect=[W1_rect_x1,W1_rect_x2,wall_width_pixel,height*Pixel_Meter];
Room(i).Wall(1).Image=imcrop(s1,rect);

wall_width_pixel=Room(i).Wall(2).Width*Pixel_Meter;
rect=[W2_rect_x1,W2_rect_x2,wall_width_pixel,height*Pixel_Meter];
Room(i).Wall(2).Image=imcrop(s2,rect);

wall_width_pixel=Room(i).Wall(3).Width*Pixel_Meter;
rect=[W3_rect_x1,W3_rect_x2,wall_width_pixel,height*Pixel_Meter];
Room(i).Wall(3).Image=imcrop(s3,rect);

wall_width_pixel=Room(i).Wall(4).Width*Pixel_Meter;
rect=[W4_rect_x1,W4_rect_x2,wall_width_pixel,height*Pixel_Meter];
Room(i).Wall(4).Image=imcrop(s4,rect);

% Useful link for 3d cube -
https://www.mathworks.com/help/matlab/ref/primitivesurface-
properties.html

end

70

9. Plain 3D

function [] = Plain_ThreeD(
Room,H_Length,H_Breadth,length,breadth,height,NR_Length,NR_Breadth,Hall
_Position)
%UNTITLED5 Summary of this function goes here
% Detailed explanation goes here

FaceColor= 'y';
if strcmp(Hall_Position,'left')==1

%NR_front
surface([-NR_Length -(H_Length+NR_Length);-NR_Length -
(H_Length+NR_Length)], [H_Breadth H_Breadth;H_Breadth H_Breadth], [0
0;height height], ...
 'FaceColor', 'texturemap');

%NR_back
surface([-NR_Length -(H_Length+NR_Length);-NR_Length -
(H_Length+NR_Length)], [0 0; 0 0], [0 0; height height], ...
 'FaceColor', 'texturemap');

%NR_left
surface([-NR_Length -NR_Length;-NR_Length -NR_Length], [0 H_Breadth;0
H_Breadth], [0 0; height height], ...
 'FaceColor', 'texturemap');

%NR_right
surface([-(H_Length+NR_Length) -(H_Length+NR_Length);-
(H_Length+NR_Length) -(H_Length+NR_Length)], [0 H_Breadth;0 H_Breadth],
[0 0; height height], ...
 'FaceColor', 'texturemap');

alpha 0.5;
view(3);
axis equal;
axis tight;

elseif strcmp(Hall_Position,'right')==1
%IF ROOM IS IN LEFT
surface([0 H_Length;0 H_Length], [H_Breadth H_Breadth;H_Breadth
H_Breadth], [0 0;height height], ...
 'FaceColor', 'texturemap');

% back
surface([0 H_Length;0 H_Length], [0 0; 0 0], [0 0; height height], ...
 'FaceColor', 'texturemap');

% left
surface([0 0; 0 0], [H_Breadth 0;H_Breadth 0], [0 0; height height],
...
 'FaceColor', 'texturemap');
% right
surface([H_Length H_Length;H_Length H_Length], [0 H_Breadth;0
H_Breadth], [0 0; height height], ...
 'FaceColor', 'texturemap');

71

alpha 0.5;
view(3);
axis equal;
axis tight;

elseif strcmp(Hall_Position,'top')==1

% font
surface([0 -H_Length;0 -H_Length], [H_Breadth H_Breadth;H_Breadth
H_Breadth], [height height;height+height height+height], ...
 'FaceColor', 'texturemap');

% back
surface([0 -H_Length;0 -H_Length], [0 0; 0 0], [height height;
height+height height+height], ...
 'FaceColor', 'texturemap');

% left
surface([0 0; 0 0], [H_Breadth 0;H_Breadth 0], [height height;
height+height height+height], ...
 'FaceColor', 'texturemap');
% right
surface([-H_Length -H_Length;-H_Length -H_Length], [0 H_Breadth;0
H_Breadth], [height height; height+height height+height], ...
 'FaceColor', 'texturemap');
alpha 0.5;
view(3);
axis equal;
axis tight;

elseif strcmp(Hall_Position,'bottom')==1

% font
surface([0 -H_Length;0 -H_Length], [H_Breadth H_Breadth;H_Breadth
H_Breadth], [0 0;-height -height], ...
 'FaceColor', 'texturemap');

% back
surface([0 -H_Length;0 -H_Length], [0 0; 0 0], [0 0; -height -height],
...
 'FaceColor', 'texturemap');

% left
surface([0 0; 0 0], [H_Breadth 0;H_Breadth 0], [0 0; -height -height],
...
 'FaceColor', 'texturemap');
% right
surface([-H_Length -H_Length;-H_Length -H_Length], [0 H_Breadth;0
H_Breadth], [0 0; -height -height], ...
 'FaceColor', 'texturemap');
alpha 0.5;
view(3);
axis equal;
axis tight;

72

elseif strcmp(Hall_Position,'back')==1

surface([0 -H_Length;0 -H_Length], [-H_Breadth -H_Breadth;-H_Breadth -
H_Breadth], [0 0;height height], ...
 'FaceColor', 'texturemap');

% back
surface([0 -H_Length;0 -H_Length], [0 0; 0 0], [0 0; height height],
...
 'FaceColor', 'texturemap');

% left
surface([0 0; 0 0], [-H_Breadth 0;-H_Breadth 0], [0 0; height height],
...
 'FaceColor', 'texturemap');

% right
surface([-H_Length -H_Length;-H_Length -H_Length], [0 -H_Breadth;0 -
H_Breadth], [0 0; height height], ...
 'FaceColor', 'texturemap');

alpha 0.5;
view(3);
axis equal;
axis tight;

elseif strcmp(Hall_Position,'front')==1

surface([0 -H_Length;0 -H_Length], [H_Breadth+NR_Breadth
H_Breadth+NR_Breadth;H_Breadth+NR_Breadth H_Breadth+NR_Breadth], [0
0;height height], ...
 'FaceColor', 'texturemap');

% back
surface([0 -H_Length;0 -H_Length], [NR_Breadth NR_Breadth; NR_Breadth
NR_Breadth], [0 0; height height], ...
 'FaceColor', 'texturemap');

% left
surface([0 0; 0 0], [H_Breadth+NR_Breadth
NR_Breadth;H_Breadth+NR_Breadth NR_Breadth], [0 0; height height], ...
 'FaceColor', 'texturemap');

% right
surface([-H_Length -H_Length;-H_Length -H_Length], [NR_Breadth
H_Breadth+NR_Breadth;NR_Breadth H_Breadth+NR_Breadth], [0 0; height
height], ...
 'FaceColor', 'texturemap');
alpha 0.5;
view(3);
axis equal;
axis tight;

else
disp('please enter proper input for Next_Room_Position');
end
end

73

10. Plain 3D vector map

function [output_args] =
Plain_ThreeD_Vector_Map(length,breadth,height,Room,First_Wall_Direction
)
% UNTITLED Summary of this function goes here
% Detailed explanation goes here

% font
surface([0 length;0 length], [breadth breadth;breadth breadth], [0
0;height height], ...
 'FaceColor', 'texturemap');

% back
surface([0 length;0 length], [0 0; 0 0], [0 0; height height], ...
 'FaceColor', 'texturemap');

% left
surface([0 0; 0 0], [breadth 0;breadth 0], [0 0; height height], ...
 'FaceColor', 'texturemap');

% right
surface([length length;length length], [0 breadth;0 breadth], [0 0;
height height], ...
 'FaceColor', 'texturemap');

alpha 0.5;
view(3);
axis equal;
axis tight;

if strcmp(Next_Room_Position,'right')==1
%IF ROOM IS IN RIGHT

%NR_front
surface([length length+NR_Length;length length+NR_Length], [NR_Breadth
NR_Breadth;NR_Breadth NR_Breadth], [0 0;height height], ...
 'FaceColor', 'texturemap');

%NR_back
surface([length length+NR_Length;length length+NR_Length], [0 0; 0 0],
[0 0; height height], ...
 'FaceColor', 'texturemap');

%NR_left
surface([length length;length length], [0 NR_Breadth;0 NR_Breadth], [0
0; height height], ...
 'FaceColor', 'texturemap');

%NR_right
surface([length+NR_Length length+NR_Length;length+NR_Length
length+NR_Length], [0 NR_Breadth;0 NR_Breadth], [0 0; height height],
...
 'FaceColor', 'texturemap');

alpha 0.5;
view(3);

74

axis equal;
axis tight;

elseif strcmp(Next_Room_Position,'left')==1
%IF ROOM IS IN LEFT

surface([0 -NR_Length;0 -NR_Length], [NR_Breadth NR_Breadth;NR_Breadth
NR_Breadth], [0 0;height height], ...
 'FaceColor', 'texturemap');

% back
surface([0 -NR_Length;0 -NR_Length], [0 0; 0 0], [0 0; height height],
...
 'FaceColor', 'texturemap');

% left
surface([0 0; 0 0], [NR_Breadth 0;NR_Breadth 0], [0 0; height height],
...
 'FaceColor', 'texturemap');
% right
surface([-NR_Length -NR_Length;-NR_Length -NR_Length], [0 NR_Breadth;0
NR_Breadth], [0 0; height height], ...
 'FaceColor', 'texturemap');

alpha 0.5;
view(3);
axis equal;
axis tight;

elseif strcmp(Next_Room_Position,'top')==1
%IF ROOM IS IN TOP

% font
surface([0 NR_Length;0 NR_Length], [breadth breadth;breadth breadth],
[height height;height+height height+height], ...
 'FaceColor', 'texturemap');

% back
surface([0 NR_Length;0 NR_Length], [0 0; 0 0], [height height;
height+height height+height], ...
 'FaceColor', 'texturemap');

% left
surface([0 0; 0 0], [breadth 0;breadth 0], [height height;
height+height height+height], ...
 'FaceColor', 'texturemap');
% right
surface([NR_Length NR_Length;NR_Length NR_Length], [0 breadth;0
breadth], [height height; height+height height+height], ...
 'FaceColor', 'texturemap');
alpha 0.5;
view(3);
axis equal;
axis tight;

75

elseif strcmp(Next_Room_Position,'bottom')==1
%IF ROOM IS IN BOTTOM

% font
surface([0 NR_Length;0 NR_Length], [breadth breadth;breadth breadth],
[0 0;-height -height], ...
 'FaceColor', 'texturemap', 'CData');

% back
surface([0 NR_Length;0 NR_Length], [0 0; 0 0], [0 0; -height -height],
...
 'FaceColor', 'texturemap');

% left
surface([0 0; 0 0], [breadth 0;breadth 0], [0 0; -height -height], ...
 'FaceColor', 'texturemap');
% right
surface([NR_Length NR_Length;NR_Length NR_Length], [0 breadth;0
breadth], [0 0; -height -height], ...
 'FaceColor', 'texturemap');
alpha 0.5;
view(3);
axis equal;
axis tight;

elseif strcmp(Next_Room_Position,'back')==1
%IF ROOM IS IN front

surface([0 NR_Length;0 NR_Length], [-breadth -breadth;-breadth -
breadth], [0 0;height height], ...
 'FaceColor', 'texturemap');

% back
surface([0 NR_Length;0 NR_Length], [0 0; 0 0], [0 0; height height],
...
 'FaceColor', 'texturemap');

% left
surface([0 0; 0 0], [-breadth 0;-breadth 0], [0 0; height height], ...
 'FaceColor', 'texturemap');

% right
surface([NR_Length NR_Length;NR_Length NR_Length], [0 -breadth;0 -
breadth], [0 0; height height], ...
 'FaceColor', 'texturemap');

alpha 0.5;
view(3);
axis equal;
axis tight;

elseif strcmp(Next_Room_Position,'front')==1
%IF ROOM IS IN front

76

surface([0 NR_Length;0 NR_Length], [breadth+NR_Breadth
breadth+NR_Breadth;breadth+NR_Breadth breadth+NR_Breadth], [0 0;height
height], ...
 'FaceColor', 'texturemap');

% back
surface([0 NR_Length;0 NR_Length], [0 0; 0 0], [0 0; height height],
...
 'FaceColor', 'texturemap');

% left
surface([0 0; 0 0], [breadth+NR_Breadth 0;breadth+NR_Breadth 0], [0 0;
height height], ...
 'FaceColor', 'texturemap');

% right
surface([NR_Length NR_Length;NR_Length NR_Length], [0
breadth+NR_Breadth;0 breadth+NR_Breadth], [0 0; height height], ...
 'FaceColor', 'texturemap');

alpha 0.5;
view(3);
axis equal;
axis tight;

else

disp('please enter proper input for Next_Room_Position');

end

Plain_ThreeD(Room,length,breadth,height)
view(3);
axis equal;
axis tight;

end

77

11. Single room 3d

function [output_args] = Single_Room_ThreeD(
wall1,wall2,wall3,wall4,height,Room)
%UNTITLED7 Summary of this function goes here
% Detailed explanation goes here

% height=2.27; %height in meters
Room_No=Room(1).Wall(1).RoomNumber;

Room(Room_No).Wall(1).Image=wall1; % wall 1
Room(Room_No).Wall(2).Image=wall2; % wall 2
Room(Room_No).Wall(3).Image=wall3; % wall 3
Room(Room_No).Wall(4).Image=wall4; % wall 4

i=1;
for j=1:4
Room(i).Wall(j).height=height;
end

s1=flip(wall1,1);
s2=flip(wall2,1);
s3=flip(wall3,1);
s4=flip(wall4,1);

length=Room(Room_No).Wall(1).Width;
breadth=Room(Room_No).Wall(2).Width;

% font
surface([0 length;0 length], [breadth breadth;breadth breadth], [0
0;height height], ...
 'FaceColor', 'texturemap', 'CData', s1);

% back
surface([0 length;0 length], [0 0; 0 0], [0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', s3);

% left
surface([0 0; 0 0], [breadth 0;breadth 0], [0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', s2);

% right
surface([length length;length length], [0 breadth;0 breadth], [0 0;
height height], ...
 'FaceColor', 'texturemap', 'CData', s4);

alpha 0.5;
view(3);
axis off;
axis tight;
axis equal;
end

78

12. Single room 3D vector map

function [Room1] =
Single_Room_Vector_Map(height,RoomNumber,Room_Position,Room,door1,door2
,door3,door4)

i=RoomNumber;
Room_No=RoomNumber;
Room(i).Wall(1).RoomNumber=RoomNumber;

for j=2:4
 Room(i).Wall(j).RoomNumber=RoomNumber;
end

Room(i).Wall(1).Room_Position=Room_Position;
for j=2:4
 Room(i).Wall(j).Room_Position=Room_Position;
end

for j=1:4
Room(i).Wall(j).height=height;
end

[Room]=Next_Room(Room,RoomNumber);
if door1==1
[door_found,x_meter]=Door_Detection(Room(i).Wall(1).Image,Room(i).Wall(
1).Pixel,Room(i).Wall(1).Width);

 if door_found==1
 d=[0 x_meter 0; 0 x_meter 2;0 x_meter+0.9 2; 0 x_meter+0.9 0;0 0
0;0 0 0;0 0 0;0 0 0];
 Room(i).Wall(1).Coordinates=[Room(i).Wall(1).Coordinates;d];
 Room(Room_No).Wall(1).door=d;

 elseif door_found==0
 d=[0 1.1 0; 0 1.1 2;0 2 2; 0 2 0;0 0 0;0 0 0;0 0 0;0 0 0];
 Room(i).Wall(1).Coordinates=[Room(i).Wall(1).Coordinates;d];

 Room(Room_No).Wall(1).door=d;
 end
 end

if door2==1
[door_found,x_meter]=Door_Detection(Room(i).Wall(2).Image,Room(i).Wall(
2).Pixel,Room(i).Wall(2).Width);
 z=Room(Room_No).Wall(2).Width;
 if door_found==1
 d=[x_meter+0.9 z 0;x_meter+0.9 z 2; x_meter z 2;x_meter z 0];
 Room(Room_No).Wall(2).door=d;
 Room(i).Wall(2).Coordinates=[Room(i).Wall(2).Coordinates;d];

 elseif door_found==0
 d=[2 z 0;2 z 2; 1.1 z 2;1.1 z 0]
 Room(Room_No).Wall(2).door=d;
 Room(i).Wall(2).Coordinates=[Room(i).Wall(2).Coordinates;d];
 end
end

79

if door3==1
[door_found,x_meter]=Door_Detection(Room(i).Wall(3).Image,Room(i).Wall(
3).Pixel,Room(i).Wall(3).Width);
 x=Room(Room_No).Wall(3).Width;
 if door_found==1
 d=[x x_meter 0; x x_meter 2;x x_meter+0.9 2; x x_meter+0.9 0];
 Room(i).Wall(3).Coordinates=[Room(i).Wall(3).Coordinates;d];
 Room(Room_No).Wall(3).door=d;

 elseif door_found==0

 d=[x 1.1 0; x 1.1 2;x 2 2; x 2 0];

 Room(i).Wall(3).Coordinates=[Room(i).Wall(3).Coordinates;d];

 Room(Room_No).Wall(3).door=d;
 end
end

if door4==1
[door_found,x_meter]=Door_Detection(Room(i).Wall(4).Image,Room(i).Wall(
4).Pixel,Room(i).Wall(4).Width);

 if door_found==1
 d=[x_meter+0.9 0 0;x_meter+0.9 0 2;x_meter 0 2;x_meter 0 0;];
 Room(i).Wall(4).Coordinates=[Room(i).Wall(4).Coordinates;d];
 Room(Room_No).Wall(4).door=d;

 elseif door_found==0

 d=[2 0 0;2 0 2;1.1 0 2;1.1 0 0];

 Room(i).Wall(4).Coordinates=[Room(i).Wall(4).Coordinates;d];
 Room(Room_No).Wall(4).door=d;
 end
 else
end

if RoomNumber==1
 Room1=Room;
else
Room1=Patch(Room,RoomNumber,door1,door2,door3,door4);
end

i=RoomNumber;
for j=1:4
w=Room(i).Wall(j).Coordinates;
patch(w(:,1),w(:,2),w(:,3),'b');
end

axis off;
axis equal;
axis tight;
alpha(0.5);

end

80

13. 3D Building

function [Room] = Threed_Building(Room)
%UNTITLED5 Summary of this function goes here
% Detailed explanation goes here

First_Wall_Direction='East'; % For reference initial wall direction is
set to East.
height=Room(1).Wall(1).height;

for Room_No=1:numel(Room)
length=Room(Room_No).Wall(1).Width;
breadth=Room(Room_No).Wall(2).Width;
Room=ThreeD_Vector_Map(length,breadth,height,Room,First_Wall_Direction,
Room_No);

alpha(0.5);
axis off;
hold on;
end

end

14. 3D vector map

function [Room] =
ThreeD_Vector_Map(length,breadth,height,Room,First_Wall_Direction,Room_
No)
%UNTITLED Summary of this function goes here
% Detailed explanation goes her
i=Room_No-1;
next_room=Room_No;

if Room_No==1
i=Room_No; %i=1 is room number

p1=flip(Room(Room_No).Wall(1).Image,1);
p2=flip(Room(Room_No).Wall(2).Image,1);
p3=flip(Room(Room_No).Wall(3).Image,1);
p4=flip(Room(Room_No).Wall(4).Image,1);

if strcmp(First_Wall_Direction,'North')==1
 s1=p1;s2=p2;s3=p3;s4=p4;
elseif strcmp(First_Wall_Direction,'West')==1
 s1=p4;s2=p1;s3=p2;s4=p3;
elseif strcmp(First_Wall_Direction,'South')==1
 s1=p3;s2=p4;s3=p1;s4=p2;
elseif strcmp(First_Wall_Direction,'East')==1
 s1=p2;s2=p3;s3=p4;s4=p1;
else
 disp('Please enter valid direction');
end
hold on;

length=(Room(1).Wall(1).Width+Room(1).Wall(3).Width)/2;
breadth=(Room(1).Wall(2).Width+Room(1).Wall(4).Width)/2;

% front

81

surf([0 length;0 length], [breadth breadth;breadth breadth], [0
0;height height], ...
 'FaceColor', 'texturemap', 'CData', s1);
% % back
surf([0 length;0 length], [0 0; 0 0], [0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', fliplr(s3));
% left
surf([0 0; 0 0], [breadth 0;breadth 0], [0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', fliplr(s4));
% right
surf([length length;length length], [0 breadth;0 breadth], [0 0; height
height], ...
 'FaceColor', 'texturemap', 'CData', fliplr(s2));
%alpha 0.5;
view(3);
axis equal;
axis tight;
hold on;

elseif next_room<=numel(Room)

q1=flip(Room(next_room).Wall(1).Image,1);
q2=flip(Room(next_room).Wall(2).Image,1);
q3=flip(Room(next_room).Wall(3).Image,1);
q4=flip(Room(next_room).Wall(4).Image,1);

length=(Room(i).Wall(1).Width+Room(i).Wall(3).Width)/2;
breadth=(Room(i).Wall(2).Width+Room(i).Wall(4).Width)/2;

NR_Length=(Room(next_room).Wall(1).Width+Room(next_room).Wall(3).Width)
/2;
NR_Breadth=(Room(next_room).Wall(2).Width+Room(next_room).Wall(4).Width
)/2;

Next_Room_Position=Room(next_room).Wall(1).Room_Position;

if strcmp(Next_Room_Position,'right')==1 %If room position is right.

r1=q2;r2=q3;r3=q4;r4=q1;
Room(next_room).Wall(2).Reference_Wall=Room(i).Wall(1);

%NR_front
surface([length length+NR_Length;length length+NR_Length], [NR_Breadth
NR_Breadth;NR_Breadth NR_Breadth], [0 0;height height], ...
 'FaceColor', 'texturemap', 'CData', r1);
%NR_back
surface([length length+NR_Length;length length+NR_Length], [0 0; 0 0],
[0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', r3);
%NR_left
surface([length length;length length], [0 NR_Breadth;0 NR_Breadth], [0
0; height height], ...
 'FaceColor', 'texturemap', 'CData', r2);
%NR_right
surface([length+NR_Length length+NR_Length;length+NR_Length
length+NR_Length], [0 NR_Breadth;0 NR_Breadth], [0 0; height height],
...
 'FaceColor', 'texturemap', 'CData', r4);

82

%alpha 0.5;
view(3);
axis equal;
axis tight;

elseif strcmp(Next_Room_Position,'left')==1 %If room position is left.

r1=q4;r2=q1;r3=q2;r4=q3;
Room(next_room).Wall(2).Reference_Wall=[1 3];

%front
surface([0 -NR_Length;0 -NR_Length], [NR_Breadth NR_Breadth;NR_Breadth
NR_Breadth], [0 0;height height], ...
 'FaceColor', 'texturemap', 'CData', fliplr(r1));
% back
surface([0 -NR_Length;0 -NR_Length], [0 0; 0 0], [0 0; height height],
...
 'FaceColor', 'texturemap', 'CData', r3);
% left
surface([0 0; 0 0], [NR_Breadth 0;NR_Breadth 0], [0 0; height height],
...
 'FaceColor', 'texturemap', 'CData',fliplr(r2));
% right
surface([-NR_Length -NR_Length;-NR_Length -NR_Length], [0 NR_Breadth;0
NR_Breadth], [0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', fliplr(r4));
%alpha 0.5;
view(3);
axis equal;
axis tight;

elseif strcmp(Next_Room_Position,'top')==1 %If room position is top.

r1=q1;r2=q2;r3=q3;r4=q4;

% font
surface([0 NR_Length;0 NR_Length], [breadth breadth;breadth breadth],
[height height;height+height height+height], ...
 'FaceColor', 'texturemap', 'CData', r1);
% back
surface([0 NR_Length;0 NR_Length], [0 0; 0 0], [height height;
height+height height+height], ...
 'FaceColor', 'texturemap', 'CData', r3);
% left
surface([0 0; 0 0], [breadth 0;breadth 0], [height height;
height+height height+height], ...
 'FaceColor', 'texturemap', 'CData', r2);
% right
surface([NR_Length NR_Length;NR_Length NR_Length], [0 breadth;0
breadth], [height height; height+height height+height], ...
 'FaceColor', 'texturemap', 'CData', r4);
%alpha 0.5;
view(3);
axis equal;
axis tight;

elseif strcmp(Next_Room_Position,'bottom')==1 %If room position is
bottom.

83

r1=q1;r2=q2;r3=q3;r4=q4;

% font
surface([0 NR_Length;0 NR_Length], [breadth breadth;breadth breadth],
[0 0;-height -height], ...
 'FaceColor', 'texturemap', 'CData', r1);
% back
surface([0 NR_Length;0 NR_Length], [0 0; 0 0], [0 0; -height -height],
...
 'FaceColor', 'texturemap', 'CData', r3);
% left
surface([0 0; 0 0], [breadth 0;breadth 0], [0 0; -height -height], ...
 'FaceColor', 'texturemap', 'CData', r2);
% right
surface([NR_Length NR_Length;NR_Length NR_Length], [0 breadth;0
breadth], [0 0; -height -height], ...
 'FaceColor', 'texturemap', 'CData', r4);
%alpha 0.5;
view(3);
axis equal;
axis tight;

elseif strcmp(Next_Room_Position,'front')==1 %If room position is
front.

r1=q3;r2=q2;r3=q1;r4=q4;
Room(i+1).Wall(2).Reference_Wall=Room(i).Wall(3);

%front
surface([0 NR_Length;0 NR_Length], [-breadth -breadth;-breadth -
breadth], [0 0;height height], ...
 'FaceColor', 'texturemap', 'CData', r1);
% back
surface([0 NR_Length;0 NR_Length], [0 0; 0 0], [0 0; height height],
...
 'FaceColor', 'texturemap', 'CData', r3);
% left
surface([0 0; 0 0], [-breadth 0;-breadth 0], [0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', r2);
% right
surface([NR_Length NR_Length;NR_Length NR_Length], [0 -breadth;0 -
breadth], [0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', r4);
%alpha 0.5;
view(3);
axis equal;
axis tight;

elseif strcmp(Next_Room_Position,'back')==1 %If room position is back.

r1=q3;r2=q2;r3=q1;r4=q4;
Room(i+1).Wall(2).Reference_Wall=Room(i).Wall(1);

% front
surface([0 NR_Length;0 NR_Length], [breadth+NR_Breadth
breadth+NR_Breadth;breadth+NR_Breadth breadth+NR_Breadth], [0 0;height
height], ...
 'FaceColor', 'texturemap', 'CData', r1);

84

% back
surface([0 NR_Length;0 NR_Length], [0 0; 0 0], [0 0; height height],
...
 'FaceColor', 'texturemap', 'CData', r3);
% left
surface([0 0; 0 0], [breadth+NR_Breadth 0;breadth+NR_Breadth 0], [0 0;
height height], ...
 'FaceColor', 'texturemap', 'CData', r2);
% right
surface([NR_Length NR_Length;NR_Length NR_Length], [0
breadth+NR_Breadth;0 breadth+NR_Breadth], [0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', r4);
%alpha 0.5;
%view(3);
axis equal;
axis tight;

else
disp('please enter proper input for Next_Room_Position');
end
else
end

85

15. 3D view

function [Room] = ThreeD(
Room,H_Length,H_Breadth,length,breadth,height,NR_Length,NR_Breadth,Hall
_Position)
%UNTITLED Summary of this function goes here
% Detailed explanation goes here
i=Room(2).Wall(1).Room_No;
t1=flip(Room(3).Wall(1).Image,1);
t2=flip(Room(3).Wall(2).Image,1);
t3=flip(Room(3).Wall(3).Image,1);
t4=flip(Room(3).Wall(4).Image,1);

if strcmp(Hall_Position,'left')==1

%IF ROOM IS IN RIGHT
h1=t4;h2=t1;h3=t2;h4=t3;
Room(i+1).Wall(2).Reference_Wall=Room(i).Wall(3);
%NR_front
surface([-NR_Length -(H_Length+NR_Length);-NR_Length -
(H_Length+NR_Length)], [H_Breadth H_Breadth;H_Breadth H_Breadth], [0
0;height height], ...
 'FaceColor', 'texturemap', 'CData', h1);

%NR_back
surface([-NR_Length -(H_Length+NR_Length);-NR_Length -
(H_Length+NR_Length)], [0 0; 0 0], [0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', h3);

%NR_left
surface([-NR_Length -NR_Length;-NR_Length -NR_Length], [0 H_Breadth;0
H_Breadth], [0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', h2);

%NR_right
surface([-(H_Length+NR_Length) -(H_Length+NR_Length);-
(H_Length+NR_Length) -(H_Length+NR_Length)], [0 H_Breadth;0 H_Breadth],
[0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', h4);

alpha 0.5;
view(3);
axis equal;
axis tight;

elseif strcmp(Hall_Position,'right')==1
%IF ROOM IS IN LEFT
h1=t2;h2=t3;h3=t4;h4=t1;
Room(i+1).Wall(2).Reference_Wall=Room(i).Wall(1);

86

surface([0 H_Length;0 H_Length], [H_Breadth H_Breadth;H_Breadth
H_Breadth], [0 0;height height], ...
 'FaceColor', 'texturemap', 'CData', h1);

% back
surface([0 H_Length;0 H_Length], [0 0; 0 0], [0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', h3);

% left
surface([0 0; 0 0], [H_Breadth 0;H_Breadth 0], [0 0; height height],
...
 'FaceColor', 'texturemap', 'CData', h2);
% right
surface([H_Length H_Length;H_Length H_Length], [0 H_Breadth;0
H_Breadth], [0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', h4);

alpha 0.5;
view(3);
axis equal;
axis tight;
elseif strcmp(Hall_Position,'top')==1
%IF ROOM IS IN TOP
h1=t3;h2=t2;h3=t1;h4=t4;
% font
surface([0 -H_Length;0 -H_Length], [H_Breadth H_Breadth;H_Breadth
H_Breadth], [height height;height+height height+height], ...
 'FaceColor', 'texturemap', 'CData', h1);

% back
surface([0 -H_Length;0 -H_Length], [0 0; 0 0], [height height;
height+height height+height], ...
 'FaceColor', 'texturemap', 'CData', h3);

% left
surface([0 0; 0 0], [H_Breadth 0;H_Breadth 0], [height height;
height+height height+height], ...
 'FaceColor', 'texturemap', 'CData', h2);
% right
surface([-H_Length -H_Length;-H_Length -H_Length], [0 H_Breadth;0
H_Breadth], [height height; height+height height+height], ...
 'FaceColor', 'texturemap', 'CData', h4);
alpha 0.5;
view(3);
axis equal;
axis tight;

elseif strcmp(Hall_Position,'bottom')==1
%IF ROOM IS IN BOTTOM
h1=t1;h2=t2;h3=t3;h4=t4;
% font
surface([0 -H_Length;0 -H_Length], [H_Breadth H_Breadth;H_Breadth
H_Breadth], [0 0;-height -height], ...
 'FaceColor', 'texturemap', 'CData', h1);

% back

87

surface([0 -H_Length;0 -H_Length], [0 0; 0 0], [0 0; -height -height],
...
 'FaceColor', 'texturemap', 'CData', h3);

% left
surface([0 0; 0 0], [H_Breadth 0;H_Breadth 0], [0 0; -height -height],
...
 'FaceColor', 'texturemap', 'CData', h2);
% right
surface([-H_Length -H_Length;-H_Length -H_Length], [0 H_Breadth;0
H_Breadth], [0 0; -height -height], ...
 'FaceColor', 'texturemap', 'CData', h4);
alpha 0.5;
view(3);
axis equal;
axis tight;

elseif strcmp(Hall_Position,'back')==1
%IF ROOM IS IN front
h1=t3;h2=t2;h3=t1;h4=t4;
Room(i+1).Wall(2).Reference_Wall=[1 2];
surface([0 -H_Length;0 -H_Length], [-H_Breadth -H_Breadth;-H_Breadth -
H_Breadth], [0 0;height height], ...
 'FaceColor', 'texturemap', 'CData', h1);

% back
surface([0 -H_Length;0 -H_Length], [0 0; 0 0], [0 0; height height],
...
 'FaceColor', 'texturemap', 'CData', fliplr(h3));

% left
surface([0 0; 0 0], [-H_Breadth 0;-H_Breadth 0], [0 0; height height],
...
 'FaceColor', 'texturemap', 'CData', fliplr(h2));

% right
surface([-H_Length -H_Length;-H_Length -H_Length], [0 -H_Breadth;0 -
H_Breadth], [0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', fliplr(h4));

alpha 0.5;
view(3);
axis equal;
axis tight;

elseif strcmp(Hall_Position,'front')==1
%IF ROOM IS IN front
h1=t3;h2=t2;h3=t1;h4=t4;
Room(i+1).Wall(2).Reference_Wall=Room(i).Wall(4);
surface([0 -H_Length;0 -H_Length], [H_Breadth+NR_Breadth
H_Breadth+NR_Breadth;H_Breadth+NR_Breadth H_Breadth+NR_Breadth], [0
0;height height], ...
 'FaceColor', 'texturemap', 'CData', h1);

% back

88

surface([0 -H_Length;0 -H_Length], [NR_Breadth NR_Breadth; NR_Breadth
NR_Breadth], [0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', h3);

% left
surface([0 0; 0 0], [H_Breadth+NR_Breadth
NR_Breadth;H_Breadth+NR_Breadth NR_Breadth], [0 0; height height], ...
 'FaceColor', 'texturemap', 'CData', h2);

% right
surface([-H_Length -H_Length;-H_Length -H_Length], [NR_Breadth
H_Breadth+NR_Breadth;NR_Breadth H_Breadth+NR_Breadth], [0 0; height
height], ...
 'FaceColor', 'texturemap', 'CData', h4);
alpha 0.5;
view(3);
axis equal;
axis tight;

else
disp('please enter proper input for Next_Room_Position');
end
end

89

16. wall enhancement

function [test,b,Pixel_Meter,height,rect_x1,rect_x2] =
Wall_Enhancement(Wall,Wall_Width,height)
%UNTITLED6 Summary of this function goes here
% Detailed explanation goes her
% b=imread('s1.jpg');
b=Wall;
% figure

% imshow(b);
a=rgb2gray(b);

% figure
% imshow(a);

no_of_rows=size(a,1); % to find number of rows in a image matrix.
%disp(0.5*no_of_rows);

no_of_columns=length(a); % to find number of columns in a mimage
matrix.
%disp(0.5*no_of_columns);

% figure
top_left_corner_image=a(1:0.25*no_of_rows,1:0.25*no_of_columns); % to
crop only top lIMG_20170113_113504eft corner from image.
% imshow(top_left_corner_image);

% figure
top_right_corner_image=a(1:0.25*no_of_rows,0.75*no_of_columns:no_of_col
umns); % to crop only right corner from image.
% imshow(top_right_corner_image);

top_left_corner_position=corner_detection(top_left_corner_image);
top_right_corner_position=corner_detection(top_right_corner_image);

[test,Pixel_Meter,height,rect_x1,rect_x2]=corners_match(top_left_corner
_position,top_right_corner_position,no_of_columns,b,no_of_rows,Wall_Wid
th,height);
% disp('width');
% disp(test);

end

90

17. wall measurement

function [Room,length,breadth,height] = Wall_Measurement(
Enhanced_Wall1,Enhanced_Wall2,Enhanced_Wall3,Enhanced_Wall4,s1,s2,s3,s4
,Pixel_Meter,height,Room_No,Room)
%UNTITLED4 Summary of this function goes here
% Detailed explanation goes here

if Enhanced_Wall1>Enhanced_Wall3
 length=Enhanced_Wall1;
else
 length=Enhanced_Wall3;
end

i=Room_No;
Room(i).Wall(1).Width=length;
Room(i).Wall(1).Pixel=length*Pixel_Meter;
Room(i).Wall(3).Width=length;
Room(i).Wall(3).Pixel=length*Pixel_Meter;

if Enhanced_Wall2>Enhanced_Wall4
 breadth=Enhanced_Wall2;
else
 breadth=Enhanced_Wall4;
end

Room(i).Wall(2).Width=breadth;
Room(i).Wall(2).Pixel=breadth*Pixel_Meter;
Room(i).Wall(4).Width=breadth;
Room(i).Wall(4).Pixel=breadth*Pixel_Meter;

disp('Width of wall 2 & wall 4 in meters:');
disp(breadth);

% coordinates are in x,z,y format
Room(i).Wall(1).Coordinates(1:4,1:3)=[0 0 0;0 0 height ;0 breadth
height ; 0 breadth 0];

Room(i).Wall(2).Coordinates(1:4,1:3)=[0 breadth 0;0 breadth height;
length breadth height ;length breadth 0];

Room(i).Wall(3).Coordinates(1:4,1:3)=[length breadth 0; length breadth
height ; length 0 height ;length 0 0];

Room(i).Wall(4).Coordinates(1:4,1:3)=[length 0 0; length 0 height ;0 0
height ;0 0 0];

end

91

18. Spatial mapping

x1=min(VRoom1.Object1);
x2=max(VRoom1.Object1);
y1=max(VRoom1.VarName3);
y2=min(VRoom1.VarName3);
z1=min(VRoom1.VarName4);
z2=max(VRoom1.VarName4);

l1=sqrt(x1^2+z1^2);
l2=sqrt(x2.^2+z2.^2);

b1=sqrt(x1.^2+z2.^2);
b2=sqrt(x2.^2+z1.^2);

disp('Length');
length=(abs(l1)+abs(l2))/2;
disp(length);

disp('height');
height=abs(y1)+abs(y2);
disp(height);

disp('breadth');
breadth=(abs(b1)+abs(b2))/2;
disp(breadth);

Room(1).Wall(1).Coordinates(1:4,1:3)=[0 0 0;0 0 height ;0 breadth
height ; 0 breadth 0];
Room(1).Wall(2).Coordinates(1:4,1:3)=[0 breadth 0;0 breadth height;
length breadth height ;length breadth 0];
Room(1).Wall(3).Coordinates(1:4,1:3)=[length breadth 0; length breadth
height ; length 0 height ;length 0 0];
Room(1).Wall(4).Coordinates(1:4,1:3)=[length 0 0; length 0 height ;0 0
height ;0 0 0];

figure;
surf(X,Y,Z,ReceivePower);
shading interp
colorbar

hold on;

for j=1:12
w=facet(j).position;
patch(w(:,1),w(:,2),w(:,3),'b');
axis equal;
axis tight;
axis off;
end

end

92

19. Minimum – Maximum Algorithm

a=RoomB;

j=1;
Object=struct([]);
for i=1:size(a,1)
 if a.o(i,1)~='f'
 if a.o(i,1)=='v'

 Object(j).Vertex(i,:)=(a(i:i,2:4));

 elseif a.o(i,1)=='vn'
 k=i-size(Object(j).Vertex,1);
 Object(j).normal(k,:)=(a(i:i,2:4));

 end
 else
 if i<size(a,1)
 if a.o(i+1,1)=='o'
 i=i+1;
 j=j+1;
 else
 continue;
 end
 end
 end
end

temp_object=struct([]);
for m=1:size(Object,2)
 Object(m).Vertex(~any(table2array(Object(m).Vertex),2),:)=[];
 temp_object(m).Vertex=Object(m).Vertex;
 for i=1:size(Object(m).normal,1)

 if lt(table2array(Object(m).normal(i,1)),0)
 temp_object(m).X_negative(i,:)=Object(m).normal(i,1);
% temp_object(m).X_Vert_Negative(i,:)=Object(m).Vertex;
% tem=max(temp_object(m).X_Vert_Positive),;
 else
 temp_object(m).X_positive(i,:)=Object(m).normal(i,1);
% temp_object(m).X_Vert_Positive(i,:)=Object(m).Vertex(i:i,1:3);
 end

 if lt(table2array(Object(m).normal(i,2)),0)
 temp_object(m).Y_negative(i,:)=Object(m).normal(i,2);
% temp_object(m).Y_Vert_Negative(i,:)=Object(m).Vertex(i:i,1:3);
 else
 temp_object(m).Y_positive(i,:)=Object(m).normal(i,2);
% temp_object(m).Y_Vert_Positive(i,:)=Object(m).Vertex(i:i,1:3);
 end

 if lt(table2array(Object(m).normal(i,3)),0)
 temp_object(m).Z_negative(i,:)=Object(m).normal(i,3);
% temp_object(m).Z_Vert_Negative(i,:)=Object(m).Vertex(i:i,1:3);

93

 else
 temp_object(m).Z_positive(i,:)=Object(m).normal(i,3);
% temp_object(m).Z_Vert_Positive(i,:)=Object(m).Vertex(i:i,1:3);
 end

 end

 if isempty(temp_object(m).X_positive)==0 &&
isempty(temp_object(m).X_negative)==0
 if
mean(table2array(temp_object(m).X_positive))>mean(abs(table2array(temp_
object(m).X_negative)))
 x=mean(table2array(temp_object(m).X_positive));
 temp_object(m).X_direction=('X_positive');

 else
 x=mean(abs(table2array(temp_object(m).X_negative)));
 temp_object(m).X_direction=('X_negative');
 end
 end

 if isempty(temp_object(m).Y_positive)==0 &&
isempty(temp_object(m).Y_negative)==0
 if
mean(table2array(temp_object(m).Y_positive))>mean(abs(table2array(temp_
object(m).Y_negative)))
 y=mean(table2array(temp_object(m).Y_positive));
 temp_object(m).Y_direction=('Y_positive');
 else
 y=mean(abs(table2array(temp_object(m).Y_negative)));
 temp_object(m).Y_direction=('Y_negative');
 end
 end

 if isempty(temp_object(m).Z_positive)==0 &&
isempty(temp_object(m).Z_negative)==0
 if
mean(table2array(temp_object(m).Z_positive))>mean(abs(table2array(temp_
object(m).Z_negative)))
 z=mean(table2array(temp_object(m).Z_positive));
 temp_object(m).Z_direction=('Z_positive');
 else
 z=mean(abs(table2array(temp_object(m).Z_negative)));
 temp_object(m).Z_direction=('Z_negative');
 end
 end

 if x>y
 if x>z
 temp_object(m).direction=temp_object(m).X_direction;
 disp(temp_object(m).X_direction);
 else
 disp(temp_object(m).Z_direction);
 temp_object(m).direction=temp_object(m).Z_direction;
 end
 else
 if y>z

94

 disp(temp_object(m).Y_direction);
 temp_object(m).direction=temp_object(m).Y_direction;
 else
 disp(temp_object(m).Z_direction);
 temp_object(m).direction=temp_object(m).Z_direction;
 end
 end

end

wall=struct([]);
p=0;q=0;r=0;s=0;
for n=1:size(temp_object,2)
 if isempty(temp_object(n).direction)==0
 if temp_object(n).direction=='X_positive'
 p=p+1;
 wall(1).X_Positive_wall(p).Vertex=temp_object(n).Vertex;
 elseif temp_object(n).direction=='X_negative'
 q=q+1;
 wall(2).X_Negative_wall(q).Vertex=temp_object(n).Vertex;

 elseif temp_object(n).direction=='Z_positive'
 r=r+1;
 wall(3).Z_Positive_wall(r).Vertex=temp_object(n).Vertex;
 elseif temp_object(n).direction=='Z_negative'
 s=s+1;
 wall(4).Z_Negative_wall(s).Vertex=temp_object(n).Vertex;
 end
 end

end

ceiling_floor=struct([]);
for n=1:size(temp_object,2)
 if isempty(temp_object(n).direction)==0
 if temp_object(n).direction=='Y_positive'
 p=p+1;
 ceiling_floor(1).Y_Positive_wall(p).Vertex=temp_object(n).Vertex;
 elseif temp_object(n).direction=='Y_negative'
 q=q+1;
 ceiling_floor(2).Y_Negative_wall(q).Vertex=temp_object(n).Vertex;
 end
 end

end

wall(1).wall1=[];
for t=1:size(wall(1).X_Positive_wall,2)
% find the (Xmax,Zmax), (Xmin,Zmin) & (Xmax,Zmin)|(Xmin,Zmin) TO FIND
THE ORIENTATION OF ROOM w.r.t X,Y,Z COORDINATE SYSTEM.
% [u,o]=max(table2array(wall(1).X_Positive_wall(t).Vertex));

wall(1).wall1=vertcat(wall(1).wall1,wall(1).X_Positive_wall(t).Vertex);
%
wall(1).X_Positive_wall(t).dimensions=array2table(max(table2array(wall(

95

1).X_Positive_wall(t).Vertex))+abs(min(table2array(wall(1).X_Positive_w
all(t).Vertex))));
% wall(1).dimensions(t,:)=wall(1).X_Positive_wall(t).dimensions;
end
 u=0;o=0;
% find maximum of x,y,z, and apply distance formula between 2 corner
points.
%wall(1).X_Positive_wall(t).dimensions=array2table(sqrt(max(table2array
(wall(1).X_Positive_wall(t).Vertex)).^2+min(table2array(wall(1).X_Posit
ive_wall(t).Vertex)).^2));
 [u,i]=max((wall(1).wall1.Object1(:,1)));
 u=(wall(1).wall1(i,:));
 [o,i]=min(((wall(1).wall1.Object1(:,1))));
 o=(wall(1).wall1(i,:));
 wall(1).Length=abs(u.Object1)+abs(o.Object1);
disp("length1");
disp(wall(1).Length);
figure
plot3(wall(1).wall1{:,1},wall(1).wall1{:,2},wall(1).wall1{:,3});

wall(2).wall2=[];
if isfield(wall(2),'X_Negative_wall')==0
 l2=0;
 wall(2).Length=0;
else
 for t=1:size(wall(2).X_Negative_wall,2)
%
wall(2).X_Negative_wall(t).dimensions=array2table(sqrt(max(table2array(
wall(2).X_Negative_wall(t).Vertex)).^2+min(table2array(wall(2).X_Negati
ve_wall(t).Vertex)).^2));
% %
wall(2).X_Negative_wall(t).dimensions=array2table(max(table2array(wall(
2).X_Negative_wall(t).Vertex))+abs(min(table2array(wall(2).X_Negative_w
all(t).Vertex))));
% wall(2).dimensions(t,:)=wall(2).X_Negative_wall(t).dimensions;

wall(2).wall2=vertcat(wall(2).wall2,wall(2).X_Negative_wall(t).Vertex);
 end
% l2=max(table2array(wall(2).dimensions(:,1)));
 [u,i]=max((wall(2).wall2.Object1(:,1)));
 u=(wall(2).wall2(i,:));
 [o,i]=min(((wall(2).wall2.Object1(:,1))));
 o=(wall(2).wall2(i,:));
 wall(2).Length=abs(u.Object1)+abs(o.Object1);
 disp("length2");
 disp(wall(2).Length);
 figure
 plot3(wall(2).wall2{:,1},wall(2).wall2{:,2},wall(2).wall2{:,3});

end

wall(3).wall3=[];
for t=1:size(wall(3).Z_Positive_wall,2)
%wall(3).Z_Positive_wall(t).dimensions=array2table(sqrt(max(table2array
(wall(3).Z_Positive_wall(t).Vertex)).^2+min(table2array(wall(3).Z_Posit
ive_wall(t).Vertex)).^2));
%
wall(3).Z_Positive_wall(t).dimensions=array2table(max(table2array(wall(

96

3).Z_Positive_wall(t).Vertex))+abs(min(table2array(wall(3).Z_Positive_w
all(t).Vertex))));
% wall(3).dimensions(t,:)=wall(3).Z_Positive_wall(t).dimensions;

wall(3).wall3=vertcat(wall(3).wall3,wall(3).Z_Positive_wall(t).Vertex);
end
[u,i]=max((wall(3).wall3.VarName4(:,1)));
u=(wall(3).wall3(i,:));
[o,i]=min(((wall(3).wall3.VarName4(:,1))));
o=(wall(3).wall3(i,:));
wall(3).Length=abs(u.VarName4)+abs(o.VarName4);
disp("length3");
disp(wall(3).Length);
figure
plot3(wall(3).wall3{:,1},wall(3).wall3{:,2},wall(3).wall3{:,3});

wall(4).wall4=[];
if isfield(wall(4),'Z_Negative_wall')==0
 b2=0;
else
 for t=1:size(wall(4).Z_Negative_wall,2)
%
wall(4).Z_Negative_wall(t).dimensions=array2table(sqrt(max(table2array(
wall(4).Z_Negative_wall(t).Vertex)).^2+min(table2array(wall(4).Z_Negati
ve_wall(t).Vertex)).^2));
 %
wall(4).Z_Negative_wall(t).dimensions=array2table(max(table2array(wall(
4).Z_Negative_wall(t).Vertex))+abs(min(table2array(wall(4).Z_Negative_w
all(t).Vertex))));
% wall(4).dimensions(t,:)=wall(4).Z_Negative_wall(t).dimensions;

wall(4).wall4=vertcat(wall(4).wall4,wall(4).Z_Negative_wall(t).Vertex);
 end
% b2=max(table2array(wall(4).dimensions(:,3)));
 [u,i]=max((wall(4).wall4.VarName4(:,1)));
 u=(wall(4).wall4(i,:));
 [o,i]=min(((wall(4).wall4.VarName4(:,1))));
 o=(wall(4).wall4(i,:));
 wall(4).Length=abs(u.VarName4)+abs(o.VarName4);
 disp("length4");
 disp(wall(4).Length);
 %figure
 plot3(wall(4).wall4{:,1},wall(4).wall4{:,2},wall(4).wall4{:,3});
end

 for t=1:size(ceiling_floor(2).Y_Negative_wall,2)
 %
idx=all(cellfun(@isempty,ceiling_floor(2).Y_Negative_wall(t).Vertex{:,:
}),2);
 % ceiling_floor(2).Y_Negative_wall(t).Vertex(idx,:)=[];
 if isempty(ceiling_floor(2).Y_Negative_wall(t).Vertex)==0

ceiling_floor(2).Y_Negative_wall(t).dimensions=array2table(max(table2ar

97

ray(ceiling_floor(2).Y_Negative_wall(t).Vertex))+abs(min(table2array(ce
iling_floor(2).Y_Negative_wall(t).Vertex))));
 %
wall(4).Z_Negative_wall(t).dimensions=array2table(max(table2array(wall(
4).Z_Negative_wall(t).Vertex))+abs(min(table2array(wall(4).Z_Negative_w
all(t).Vertex))));

ceiling_floor(2).dimensions(t,:)=ceiling_floor(2).Y_Negative_wall(t).di
mensions;
 end
 end

for t=1:size(ceiling_floor(1).Y_Positive_wall,2)
 if isempty(ceiling_floor(1).Y_Positive_wall(t).Vertex)==0

ceiling_floor(1).Y_Positive_wall(t).dimensions=array2table(max(table2ar
ray(ceiling_floor(1).Y_Positive_wall(t).Vertex))+abs(min(table2array(ce
iling_floor(1).Y_Positive_wall(t).Vertex))));
%
wall(4).Z_Negative_wall(t).dimensions=array2table(max(table2array(wall(
4).Z_Negative_wall(t).Vertex))+abs(min(table2array(wall(4).Z_Negative_w
all(t).Vertex))));

ceiling_floor(1).dimensions(t,:)=ceiling_floor(1).Y_Positive_wall(t).di
mensions;
 end
end

h1=max(table2array(ceiling_floor(1).dimensions(:,2)));
h2=max(table2array(ceiling_floor(2).dimensions(:,2)));

height=2.7;
length=mean(length1,length3);
breadth=mean(length2,length4);

%for creating data table
l1=wall(1).Length;
l2=wall(2).Length;
l3=wall(3).Length;
l4=wall(4).Length;

Room(1).Wall(1).Coordinates(1:4,1:3)=[0 0 0;0 0 height ;0 breadth
height ; 0 breadth 0];
Room(1).Wall(2).Coordinates(1:4,1:3)=[0 breadth 0;0 breadth height;
length breadth height ;length breadth 0];
Room(1).Wall(3).Coordinates(1:4,1:3)=[length breadth 0; length breadth
height ; length 0 height ;length 0 0];
Room(1).Wall(4).Coordinates(1:4,1:3)=[length 0 0; length 0 height ;0 0
height ;0 0 0];

figure;
hold on;
for i=1:numel(Room)
for j=1:4
w=Room(i).Wall(j).Coordinates;

98

patch(w(:,1),w(:,2),w(:,3),'b');
axis equal;
axis tight;

alpha(0.5);

end
end

figure;
plot(wall(1).wall1{:,1},wall(1).wall1{:,3});

newt=[];
size=size(Object);
for i=1:size(1,2)
 newt=vertcat(newt,Object(i).Vertex);
end
figure
plot(newt{:,1},newt{:,3});
plot3(newt{:,1},newt{:,2},newt{:,3});

for i=1:size(temp_object,2)
 figure;
 plot(temp_object(i).Vertex{:,1},temp_object(i).Vertex{:,3});
end

99

REFERENCES

[1] T. Gupta, and H. Li, "Indoor mapping for smart cities — An affordable approach:
Using Kinect Sensor, and ZED stereo camera," International Conference on Indoor
Positioning, and Indoor Navigation (IPIN), pp. 1-8, 2017.

[2] N. I. A. M. Nazri, and D. R. A. Rambli, "Current limitations, and opportunities in
mobile AR applications," International Conference on Computer, and Information
Sciences (ICCOINS), pp. 1-4, 2014.

[3] D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui, "Mobile AR Survey: From
Where We Are to Where We Go," IEEE Access, pp. 6917 - 6950, 2017.

[4] M. E. C. Santos, "AR Learning Experiences: Survey of Prototype Design, and
Evaluation," IEEE Transactions on Learning Technologies, vol. 7, pp. 38-56, 2014.

[5] L. C. Chen, N. V. Thai, and H. I. Lin, "Real-time 3-D feature detection, and
correspondence refinement for indoor environment-mapping using RGB-D cameras,"
IEEE International Symposium on Industrial Electronics, Taipei, Taiwan, pp. 1-6,
2013.

[6] X. Xu, and H. Fan, "Feature based simultaneous localization, and semi-dense mapping
with monocular camera,"Image, and Signal Processing, BioMedical Engineering, and
Informatics (CISP-BMEI), International Congress on, pp. 17-22, 2016.

[7] J. P. Collomosse, "Real-time environment mapping for stylised AR," The 3rd
European Conference on Visual Media Production (CVMP), pp. 184-184, 2006.

[8] S. Damodaran, A. P. Sudheer, and T. K. Sunil Kumar, "An evaluation of spatial
mapping of indoor environment based on point cloud registration using Kinect sensor,"
Control Communication & Computing India (ICCC), International Conference on, pp.
545-552, 2015.

[9] S. Singh, and R. Singh, "Comparison of various edge detection techniques," 2nd
International Conference on Computing for Sustainable Global Development
(INDIACom), New Delhi, pp. 393-396, 2015.

[10] X. Ge, "Multipath Cooperative Communications Networks for Augmented, and
Virtual Reality Transmission," IEEE Transactions on Multimedia, vol. 19, no. 10, pp
2345-2358, 2017.[14] X. C. He, and N. H. C. Yung, “Corner detector based on
global, and local curvature properties,” Optical Engineering 47, no. 5, pp. 1-4, 2017.

[11] P. Ram, and S. Padmavathi, "Analysis of Harris corner detection for color images,"
International Conference on Signal Processing, Communication, Power, and
Embedded System (SCOPES), pp. 405-410, 2016.

[12] Bastanlar, Yalin, and Y. Yardimci, “Corner validation based on extracted corner
properties”, Computer Vision, and Image Understanding, 112, pp. 243-261, 2008.

[13] X. Yang, and Y. Tian, "Robust door detection in unfamiliar environments by
combining edge, and corner features," IEEE Computer Society Conference on
Computer Vision, and Pattern Recognition - Workshops, San Francisco, CA, pp.
57-64, 2010

100

[14] X. C. He, and N. H. C. Yung, “Corner detector based on global, and local curvature
properties,” Optical Engineering 47, no. 5, pp. 1-4, 2017.

[15] P. Ram, and S. Padmavathi, "Analysis of Harris corner detection for color images,"
International Conference on Signal Processing, Communication, Power, and Embedded
System (SCOPES), pp. 405-410, 2016.

[16] Bastanlar, Yalin, and Y. Yardimci, “Corner validation based on extracted corner
properties”, Computer Vision, and Image Understanding, 112, pp. 243-261, 2008.

[17] X. Yang, and Y. Tian, "Robust door detection in unfamiliar environments by
combining edge, and corner features," IEEE Computer Society Conference on Computer
Vision, and Pattern Recognition - Workshops, San Francisco, CA, pp. 57-64, 2010.

[18] Spatial Mapping. Retrieved from https://docs.microsoft.com/enus/windows/mixed-
reality/spatial-mapping

[19] Microsoft HoloLens hardware details. Retrieved from https://docs.microsoft.com/en-
us/windows/mixed-reality/hololens-hardware-details

[20] Expanding the spatial mapping capabilities of HoloLens. Retrieved from https://
docs.microsoft.com/en-us/windows/mixed-reality/case-study-expanding-the-spatial-
mapping-capabilities-of-hololens.

[21] V. Siddaraju, and G. Koutitas, “An AR Facet Mapping Technique for Ray Tracing
Applications”, ICDT 2018: The Thirteenth International Conference on Digital
Telecommunications, Athens, Greece, pp 6-12, 2018.

[22] Microsoft mixed reality tool kit. Retrieved from https://github.com/Microsoft/
MixedRealityToolkit-Unity.

[23] Coordinate systems. Retrieved from https://docs.microsoft.com/en-us/windows/
mixed-reality/coordinate-systems

[24] Sean Ong. “Beginning of Windows Mixed Reality Programming”, Apress 2017.

[25] MR spatial 230: spatial mapping. Retrieved from https://docs.microsoft.com/en-us/
windows/mixed-reality/holograms-230

[26] Spatial mapping design. Retrieved from https://docs.microsoft.com/en-us/windows/
mixed-reality/spatial-mapping-design

[27] Spatial anchors. Retrieved from https://docs.microsoft.com/en-us/windows/mixed-
reality/spatial-anchors

[28] What’s inside Microsoft’s HoloLens, and How it works. Retrieved from https://
www.tomshardware.com/news/microsoft-hololens-components-hpu-28nm,32546.html

[29] D. H. Okulu, “3D spatial layout extraction of indoor images using RGB-D Data”,
IEEE Computer Society Conference on Computer Vision, and Pattern Recognition -
Workshops, San Francisco, CA, pp. 57-64, 2010.

	V4
	1
	Siddaraja, Varun Kumar- Thesis Revisions (2)-3
	1
	1
	Siddaraja, Varun Kumar- Thesis Revisions (2)-3
	Varun Siddaraju | Thesis Report
	29
	Thesis report v6.0

	47-48
	V4
	Siddaraja, Varun Kumar- Thesis Revisions (2)-3
	Varun Siddaraju | Thesis Report
	Thesis report v6.0
	2nd part

	Thesis report v6.0

	V4
	V4
	Siddaraja, Varun Kumar- Thesis Revisions (2)-3
	Varun Siddaraju | Thesis Report
	Thesis report v6.0

