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Introduction

In 2016, the World Health Organization 
and the Cambodian Ministry of Health 
concluded that “The health of the 
(Cambodian) population has improved 
significantly… However, challenges 
remain including high maternal, child 
and neonatal mortality that continues 
to occur despite recent progress; 
malnutrition, especially in children 
and women; limited access to safe 
water and sanitation; and a growing 
epidemic of noncommunicable diseases 
and communicable diseases.”1 Decades 
ago, more than 600,000 wells were 
dug in Cambodia to reduce diarrhea, 
cholera, and other diseases initiated by 
drinking water from surface sources.2 
Unfortunately, as in Bangladesh, wells 
in parts of Cambodia are contaminated 
by naturally occurring arsenic. In 1999, 
high concentrations of arsenic were 

found in Cambodian groundwater, and 
by 2006, the first cases of arsenicosis in 
Cambodia were reported.3 Drinking 
water had been the major source of 
arsenic. All rice passed the current 
Codex standards for arsenic.4 However 
the bioaccumulation of arsenic into rice 
via irrigation with groundwater could 
increase the probability of cancer.4,5 In 
areas of Bangladesh with clean drinking 
water, consumption of rice with more 

than 200 µg/kg of arsenic is associated 
with significantly higher levels of 
cancer, and some rice in Cambodia has 
more than double this threshold.4-6  

According to one report, arsenocosis 
develops faster in Cambodia than 
expected relative to other countries 
with similar arsenic exposure. Arsenic 
inductions include congenital birth 
defects, suppression of mental 
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development of children, cancer 
resulting in limb amputation, and 
death.5,7,8 It is thought that malnutrition 
might enhance arsenic toxicity in 
Cambodia.3 The leading candidate 
for the limiting micronutrient is zinc. 
Therefore, the availability of zinc should 
be considered in arsenic toxicity.   

It has been estimated that >40% 
of Cambodian children are at risk 
of zinc deficiency.9 Wieringa et al. 
proposed that zinc deficiency in 
Cambodia is partially responsible for 
anemia and stunting in children.10 

Greffeuille et al. estimated that 32% 
of Cambodian children were stunted 
in 2014 and proposed that zinc 
deficiency was a major contributing 
factor.11 This analysis is complicated 
by genetic hemoglobin disorders such 
as thalassemia which are commonly 
responsible for anemia and may 
also influence stunting.12 Zinc is 
an essential trace element required 
for normal growth, intellectual 
development, immune function, and 
sexual reproduction.13 Zinc nutrition 
warrants further analysis in Cambodia, 
especially in relation to infectious 
diseases, diarrheal disease, diabetes, 
malaria, pneumonia, linear growth 
retardation, and arsenic toxicity, 
including cancer.14-16 The importance 
of the relationship between zinc and 
cancer is illustrated by zinc deficiency 
restricting methylation and thus 
detoxication of arsenic.17 Zinc is also 
an essential component of superoxide 
dismutases. Superoxide dismutases are 
important in treating reactive oxygen 
species, which have a major role in 
cancer development.18,19

It has been estimated that one third of 
the population globally is deficient in 
zinc.20,21  “More than one billion people, 
particularly children and pregnant 
women suffer from zinc deficiency 
related health problems in Asia”.22 
Zinc deficiency in humans reflects the 
fact that half of the world’s soils are 

deficient in zinc.23,24 Zinc deficiency in 
soil results in decreased zinc content 
in crops, reduced productivity and 
enhanced plant disease.25 The cause 
of zinc deficiency is well understood. 
However, the management of zinc in 
rice cultivation is still evolving and 
does not exist in Cambodia and many 
other developing countries. In rural 
Cambodia children get most of their 
energy from rice which is inadequately 
supplemented with fish or meat. 
Fortified infant formula for children 
is only readily available in the large 
urban centers and there is no national 
fortification of rice with micronutrients. 
The presence of low levels of zinc in rice 
in areas rich in arsenic in Bangladesh 
and China has been previously 
detected, but unfortunately the concept 
is not yet widely recognized.26,27

The cultivation of rice has been 
optimized for centuries by empirical 
methods. Soil extraction and bioassay 
are commonly used tools requiring 
considerable evaluation time. There 
are no simple biogeochemical 
programs to optimize rice cultivation. 
Concentrations of total elements in 
the bulk phase of soils cannot be used 
to calculate bioavailable nutrients. 
Geochemists can measure dissolved 
ions, but this is expensive and 
technically difficult, especially in the 
developing world. The surface of rice 
roots (the rhizosphere) has a unique 
biogeochemical microzone. Rice plants 
extrude oxygen which increases the 
redox of this microenvironment. The 
transfer of oxygen from the roots to 
the soil varies between rice strains 
and likely reflects the microbial 
composition of the root surface.28 
Moreover, the microbiology of the 

rhizosphere is not well understood. It 
is thought that most of the initial steps 
of arsenic detoxification (methylation) 
are mediated by microbes in the 
rhizosphere.29 Similarly, the genetics 
of zinc bioaccumulation vary greatly, 
influences how rice varieties need to 
be fertilized and managed, and likely 
also involves microbial genetics in 
the rhizosphere.30 Moreover, many 
rice varieties have been developed to 
optimize production in different soils 
and climates. 

Genetic manipulation and plant 
breeding can produce rice plants 
with enhanced ability for zinc 
assimilation.22,31,32 Zinc enrichment is 
complicated, as optimal enhancement 
varies by rice variety, but has been 
successfully implemented in India to 
both enhance rice production and the 
zinc content of rice grain.30 Joy et al. 
reviewed the effective augmentation 
of soils in Pakistan with zinc.23 Soils 
in Pakistan have the same general 
derivation as in Cambodia, the runoff 
from the Himalayan Mountains. 
Attempts to enhance zinc availability 
by coating rice seeds with zinc were 
only effective in some treatments.33 
Moreover, reviews of the effectiveness 
of zinc fertilization are inconsistent 
and fertilization is at times insufficient 
to alleviate zinc deficiency.34,35 The 
exceptions suggest that there are 
important regional differences in soils, 
rice management, and geochemistry. 
Pilot-scale evaluations of zinc 
augmentation should be implemented 
prior to full-scale introduction of zinc 
fertilizers in Cambodia. 

The objective of this study is to provide 
a preliminary evaluation of the zinc 
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content in rice grain in Preak Russey, an 
area with elevated levels of arsenic. We 
also compare the zinc content of rice 
grain to the Codex standards for zinc 
in Infant and Follow-Up Formula and 
to zinc levels in countries with national 
programs for micronutrient fortification 
of rice. In part, it is an evaluation of a 
phenomenon of chlorotic rice observed 
in an earlier study in Preak Russey 
and is an extension of that study.4 The 
current study took advantage of the 
speed and simplicity of handheld X-ray 
fluorescence (XRF) analysis to monitor 
zinc concentrations in rice grain.36,37  
The rice had already been collected in 
the earlier study.4,38 

Methods

Figure 1 shows the study area. The 
arsenic content of groundwater varies 
from extreme highs in Preak Russey on 
the Bassac River to low levels of arsenic 
in groundwater near the Mekong River 
in a control site called Kandal. Both 
sites are in many ways very similar. 
The Bassac River is a distributary 
of the Mekong River. Both sites are 
mainly flood plains with farms with 
very similar agricultural techniques. 
Many of the rice samples in the present 
analysis were collected from farmers in 
2016 as part of an earlier International 
Development Research Center (IDRC/
CRDI)-funded project.4,38 Farmers in 
these areas hire combines to harvest 
their rice. The combines start at the 
outside of the field and make long 
loops around the edge, concentrically 
working towards the inside of the field. 
This provides partial integration of the 
rice. Single samples from farms Preak 
Russey-2 and Preak Russey-9 were 
collected by hand and the distances 
from the irrigation wells were recorded. 
For Preak Russey-1, Preak Russey-5 
and Kandal-9, nine samples per farm 
were collected in a grid, equal distance 
apart. The Preak Russey-1 farm was 
the only one with chlorotic rice. The 
rice in Preak Russey-5 was chosen as 

Figure 1 — Map of the study area

Figure 2 — Chlorotic and healthy rice plants. Chlorotic Preak Russey-1 
rice on the left and healthy Preak Russey-5 rice on the right 
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a control to Preak Russey-1 because 
the rice looked healthy (greener, taller, 
more productive) (Figure 2) and both 
fields had a similar history of limited 
irrigation with groundwater (less than 
three years). The Preak Russey-1 and 
Preak Russey-5 fields were 100 m apart, 
grew the same rice variety (IR 85), 
and had similar alluvial clay soils and 
arsenic level in their irrigation water 
(~1000 µg/L arsenic).4,38

The present study mainly sampled 
brown rice, i.e. dehusked but not yet 
polished. Brown rice can be stored 
much longer, so it is the most common 
rice consumed by farmers. Rice was 
air dried and dehusked by hand. For 
the XRF analysis, rice was ground 
with a generic Chinese food processor 
(Electrical Powder Grinder DE-200 
g). Between samples, tools were wiped 
first with a wet cloth and then with a 
dry cloth. Attempts to grind rice with 
a mortar and pestle were ineffective 
in producing a fine powder. The rice 
was ground for less than 30 seconds to 
avoid overheating the rice. For samples 
larger than 100 ml, this method worked 
well, but smaller samples required long 
delays to avoid heating the sample. We 
chose not to add water for grinding, 
but this option should be considered 
in the future. Adding water reduces 
the chance of an explosion, but would 
require the samples to be re-dried after 
grinding. Grinding freshly collected rice 
might be considered prior to drying. 
There are commercial grinders with 
either a centrifugal action to minimize 
grinding time and heating or that use 
liquid nitrogen to assist in grinding.39,40 
The risk of a major explosion with small 
samples is modest, but from 1970 to 
2010 there were 600 explosions in grain 
processing facilities in the USA with 
250 fatalities and >1000 injuries.41 

We used two different Niton XL3t 
GOLDD handheld XRF analyzers and 
a Bruker S1-600 Titan XRF analyzer 
for our analysis. Different XRF units 

were used in the present study due to 
availability issues. We used a two-
minute analysis time with Soil Mode. 
All samples were processed using the 
sample cup method recommended by 
Thermo Fisher Scientific with Mylar 
film (Figure 2 in Murphy et al.).42 For 
rice, the following certified reference 
materials (CRMs) were used: 180-
600 (soil), NIST 1568b (rice flour), 
CRM NIST 2710 (soil), and silica for 

a blank for quality assurance/quality 
control purposes (Table 1).4,38,43 The 
replication for all samples was very 
good, with a coefficient of variation of 
6.87±7.47% for 44 samples. For four 
rice samples, samples were ground to 
a fine powder with the food processor 
and the results were compared to the 
XRF analysis of the whole grain (Table 
2). The analysis of whole grains of rice 
was very consistent (average coefficient 

Table 1 — Certified Reference Material Analysis for Zinc

Table 2 — Effect of Sample Grinding on Zinc Analyses

Table 3 — Analysis of Soil and Rice for Zinc
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of variation 4.48±2.28%). However, 
analysis of the unground rice produced 
much higher zinc concentrations in 
all but one sample. The rice bran is 
partly a surface layer on rice grain and 
since the handheld XRF analyzer has 
weak x-rays, only the first few surface 
millimeters of the grain were analyzed. 

X-ray fluorescence analyzers have 
been used to measure the elemental 
composition of unground rice, but 
inductively coupled plasma optical 
emission spectrometry (ICP-OES) 
analysis was used to standardize the 
XRF analysis.36 An XRF apparatus was 
not available for a sufficient period 

of time to evaluate the variability of 
analysis of samples ground only with 
a mortar and pestle. The rice might 
not have needed to be ground to a fine 
powder. For soils, the measured mean 
and standard deviation of the XRF 
analysis of zinc in four soil CRMs (180-
600, 180-646, 180-649, 180-661) were 
9±12% of the certified values.38 The 
means were within 3% of the certified 
values for the two CRMs closest in 
concentration to the samples (Table 1 in 
Murphy et al.).38  

Arsenic speciation of rice was 
performed at the University of Ottawa 
by inductively coupled plasma – mass 
spectrometry according to the United 
States Environmental Protection 
Agency (USEPA) Method 200.8.44 
Arsenic species including arsenic(III), 
arsenic(V), monomethylarsonic 
acid and dimethylarsinic acid were 
quantified using the method developed 
by Agilent Technologies.45 Details can 
be found in earlier publications.4,42 An 
interview form was developed using 
preliminary visits to farms in the study 
areas in 2014 and 2015. The form 
was designed to quantify aspects of 
the farming methods and to facilitate 
communications and collaboration 
with the farmers. Details of these 
surveys conducted in an earlier study 
are reported in the Supplement to 
Appendix 2 of the IDRC/CRDI report 
and Murphy et al.4,46 Statistical analyses 
used Excel and VassarStats.47 

Results

There was a significant relationship 
between the zinc and total arsenic 
content of the brown rice grain 
(Figures 3 and 4). All data were 
used in Figure 4. In Figure 3, three 
samples were excluded that were 
purposefully collected to reflect either 
close proximity to the irrigation well 
(Preak Russey-2 farm, near well) or 
furthest distance from the irrigation 
wells (Preak Russey-2 farm, far from 

Figure 3 — Total arsenic vs total zinc in brown rice composite samples.
Squares represent farms with cows and triangles represent farms without 

cows. Samples represented by the larger-sized symbols (Preak Russey-1, KD-9 
and Preak Russey-5) were collected with a fixed grid of nine subsamples. The 

diamond represents Preak Russey-4, which had a treatment ditch.
Abbreviations: Kd9, Kandal-9 farm; PR5, Preak Russey-5 farm; PR4, Preak 

Russey-4 farm; PR1, Preak Russey-1 farm.

Figure 4 — Total arsenic vs total zinc in brown rice in all samples, including 
individual samples that had been purposefully collected. 

Abbreviations: Kd9, Kandal-9 farm; PR5, Preak Russey-5 farm; PR4, Preak 
Russey-4 farm; PR1, Preak Russey-1 farm; PR9, Preak Russey-9 farm; PR2, 

Preak Russey-2 farm; NW, near well; F, far from well.

Murphy et al
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well and Preak Russey-9 farm, far from 
well). In either case, (Figures 3 and 
4) the R2 values were significant, but 
better when only the integrated samples 
(mean of the fixed grid of 9 replicates or 
collected by combines) were included 
in the analysis. The total zinc content 
of soils was not significantly correlated 
to the zinc content of the rice (data not 
shown). The zinc and arsenic results 
for site Preak Russey-1 and site Preak 
Russey-5 best illustrate this relationship. 
In both of these fields, rice and soil was 
sampled at 9 sites located within a fixed 
grid. The mean total zinc content of soil 
from site Preak Russey-1 and site Preak 
Russey-5 was 93.8±7.6 and 92.8±8.8 
µg/g, respectively. By comparison, the 
mean total zinc of brown rice for Preak 
Russey-1 and Preak Russey-5 was 
10.1±0.4 and 23.2±0.6 µg/g respectively 
(Table 3). Although differences in the 
zinc content of the rice grain were 
significant (t test; α=0.05), there was 
no significant difference in total zinc 
content of the soil. The rice sample 
with the least zinc (5.7 µg/g) came 
from near the irrigation well of site 
Preak Russey-2 where the soil had 
95 µg/g of arsenic, which is about 
twice the arsenic level of the Dutch 
remediation guideline requiring 
consideration of intervention or 
remediation (55 mg/kg).48

There are other very important 
differences in the rice from Preak 
Russey-1 and Preak Russey-5. Table 4 
shows that the arsenite concentration of 
the rice from Preak Russey-1 was more 
than five times higher than equivalent 
rice in Preak Russey-5. The total arsenic 
of rice was higher in Preak Russey-1. 
Arsenite in rice from Preak Russey-1 
was 34.6% of the inorganic arsenic, 
whereas in Preak Russey-5, arsenite 
was only 10.6% of the inorganic arsenic 
(Table 2, Figures 5 and 6). 

It was observed that the rice plants of 
Preak Russey-1 were very different 
from those at the rest of the sample 

sites at one month prior to harvest. The 
leaves at Preak Russey-1 were chlorotic. 
The contrast to the healthy normal 
color of the leaves from Preak Russey-5 
can be seen in Figure 2. Preak Russey-1 
was the only farm with consistently 
chlorotic rice.  

The difference in the mean zinc content 
of the soils between the two main 
sampling areas, Kandal and Preak 
Russey, was modest, but significant 
(Mann-Whitney U test, α=0.05), 
Kandal 78±12 µg/g, n=75 vs. Preak 
Russey 85±9 µg/g, n=26. As shown 
in both Figures 3 and 4, there were 
significant differences in zinc levels in 
rice whether or not the farmers raised 
cows (Mann-Whitney U test, α=0.05). 
The more intensive sampling of Preak 
Russey-5 (with cows) and Kandal-9 
(no cows) supports this interpretation. 
Both of these farms were sampled with 
nine samples collected in a grid equal 

distance apart. Although cows are fed 
rice bran which is enriched in zinc 
(Table 5), the organic content of manure 
appears to be more important as a 
regulator of the zinc content of rice.

The mean content of zinc in 
groundwater irrigation water of Preak 
Russey farms was 3.9±4.0 µg/L. In 
Preak Russey, the average amount of 
applied irrigation water was 11,600 
cubic meters per hectare. The calculated 
loading of zinc from irrigation is 
about 1% of the zinc fertilization rate 
suggested by the Rice Institute of 
10−25 kg zinc sulfate water per ha.49 
This concentration of zinc was close 
to the detection level, but the influx of 
zinc from irrigation with groundwater 
to rice was inadequate to sustain rice 
growth. At times the groundwater 
smelled like sulfides, which would 
precipitate zinc in the aquifer. Similarly, 
from the XRF analysis of eleven 

Table 4 — Arsenite and Total Arsenic in Preak Russey-1  
and Preak Russey-5 Samples

Table 5 — Zinc Content of Rice in Preak Russey-1 and Preak Russey-5 Samples

Murphy et al
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inorganic fertilizers and interviews with 
farmers, the loading of zinc in Preak 
Russey was estimated to be 0.15 kg/ha 
as hydrated zinc sulfate, which is less 
than 2% of the suggested fertilization 
rate of the Rice Institute.49

The zinc content of Preak Russey-4 
rice was the 3rd highest observed in 
the present study (Figure 3 and 4). 
This farm used a treatment ditch that 
removed 99% of the arsenic and 92% of 
the iron prior to irrigation of the field. 
A 94% removal of arsenic and 99% 
removal of iron was also observed in a 
treatment ditch in Preak Russey-10.

Discussion

In Asia, rice is the principal nutritional 
source of dietary zinc.22,50 This reflects 
the fact that rice is the biggest dietary 
component and in many rural areas, 
and people cannot afford to eat food 
that is richer in zinc, such as meat and 
fish. As previously mentioned, rice fed 

to children typically is supplemented 
with some fish or meat, however this 
supplementation is inadequate.10,11 
Rice is generally believed to be the 
main source of zinc and it relevant to 
compare the zinc content of rice to 
major food guidelines.22,50 The current 
Codex standards for rice in Infant 
Formula or Follow-Up Formula and 
a similar standard proposed in 2015 
for Follow-Up Formula for children 
12-36 months are pertinent.51,52,53  
These standards are expressed as 1.5 
mg zinc per 100 kcal, 0.5 mg zinc per 
100 kcal and 0.6 mg zinc per 100 kcal, 
respectively. To convert these values to 
the same units as zinc in rice, values 
were adjusted using the average energy 
content of rice of 3.41 kcal/g.54 There 
are slightly different energy contents for 
different types of rice, especially white 
rice, but these calculations are intended 
to illustrate the health concerns for 
zinc in brown rice at the study sites.  
Revisions being considered would 
produce Follow-Up Formula standards 

for children ages 6-12 months and 
12-36 months. More zinc is required 
in infant food, but resolution must also 
consider the effect of additional zinc on 
other micronutrient absorption.

The farm that consistently had the 
lowest zinc content (Preak Russey-1, 
mean 10 µg/g, n=9) was lower than 
the current Codex standard for zinc 
in Infant Formula (44.1 µg/g), Follow-
Up Formula (14.7 µg/g Codex 1987) 
and some international agencies have 
recommended this Follow-Up Formula 
standard be increased to 17.6 µg/g 
(Table 6).53 Rice in this study contained 
zinc with ½ to ¼ of the 1987 Codex 
standard for rice in Infant Formula 
(Table 6). Three farm sites (Preak 
Russey-1, Preak Russey-2, Preak 
Russey-9) at times had rice with less 
zinc than the Codex standard for rice in 
Follow-Up Formula for young children. 
A higher proposed zinc standard for 
rice in Follow-Up Formula for young 
children would result in one additional 
farm in the arsenic contaminated zone 
(Preak Russey-7) and two farms in the 
control site (Kandal-4 and Kandal-9) 
failing evaluation.53 Farms Kandal-4 
and Kandal-7 had ≤10 µg/L of arsenic 
in their irrigation water, so although 
arsenic is a major factor influencing 
zinc bioaccumulation, it is not the only 
important variable, and may only be 
indirectly associated with the poor 
zinc content of rice grain. These results 
suggest that zinc levels in rice from 
outside of the arsenic zone may at times 
be inadequate for the development of 
healthy children. This is consistent with 
studies which have proposed that zinc 
deficiency is common in Cambodia.10 
Table 6 provides several examples of 
zinc levels in rice. 

In a major study of zinc in Bangladesh, 
Williams et al. found consistently 
lower levels of zinc than our limited 
evaluation.26 Bangladesh has a longer 
history of using groundwater irrigation 
than Cambodia and it often produces 

Table 6 — Zinc Across Studies of Brown Rice Evaluating Zinc Deficiency
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more crops per year than Cambodia, 
both of which may enhance zinc 
deficiency. In 2002, Prasad stated that 
the severity of problems caused by 
zinc deficiency is not well managed 
or understood.55 Assessments of 
zinc deficiency are complicated and 
regulators need better methods of 
evaluating deficiency and treatment.   

One of the first papers on zinc 
deficiency in rice stated that a rice 
disease in northern India was caused 
by zinc deficiency.56 Zinc deficiency 
reflects long periods of flooding of 
rice, alkaline conditions, use of high 
producing rice varieties, and fertilizers 
to boost production and multiple crops. 
If more irrigation water was available, a 
greater number of Cambodian farmers 
would grow a second crop and some 
farmers might grow a third crop. Better 
farm management of zinc is needed. 
Although improved fertilizers appear to 
be the most common recommendation 
to alleviate zinc deficiency, that is 
perhaps not the best solution for Preak 
Russey. Actual zinc demand reflects the 
specific field and can be higher with 
long periods of flooding, poor drainage, 
alkalinity, high arsenic or high iron, and 
these are all problems in Preak Russey. 
Reducing conditions caused by long 
periods of flooding inactivates zinc 
presumably by sulphide precipitation; 
thus, in reducing conditions little 
arsenic is required to inactivate what 
bioavailable zinc remains in solution.  

The total zinc content of the Preak 
Russey soils (85±9 µg/g, n=75) and 
Kandal soils (78±12 µg/g, n=26) was 
greater than the suggested critical 
zinc deficiency threshold of ~10 µg/g 
and the suggested baseline for good 
zinc nutrition of soils of 60 µg/g.26 
In addition, the zinc content of soils 
in the present study was similar to 
two areas in Bangladesh (74±17, 
and 97±24 zinc) where Williams et 
al. observed high concentrations of 
arsenic and low levels of zinc in rice 

grain.26 Both phosphate (an anion) and 
iron (a cation) can interfere with zinc 
bioavailability, and thus the interference 
is more complicated than just the 
ionic charge.57,58 The potential for iron 
interference in zinc assimilation cannot 
be disputed or confirmed by our study. 
The concentration of iron in irrigation 
wells in Preak Russey was 9600±6600 
µg/L, n=20).42 Initially this iron was 
in solution, but it readily precipitated 
in the fields.46 The potential toxicity 
of iron in environments like Preak 
Russey has been reviewed elsewhere.46 
However, there was no significant 
correlation between iron (or any other 

cation) in the irrigation wells and zinc 
in the rice grain. This sampling method 
may not be the most appropriate for 
resolving this issue. Furthermore, XRF 
analysis was not sensitive enough for 
iron in rice grain and another method 
of analysis should be used in future 
studies.  

Long periods of field flooding increase 
soluble arsenic and iron levels, produces 
sulfide and precipitates zinc. However, 
the content of arsenic and zinc in 
rice grain does not only reflect the 
geochemistry of soils. Arsenic interferes 
with several metabolic pathways and 

Figure 5 — Arsenic speciation in Preak Russey-1 rice.
Numbers 1-9 indicate samples collected in grid pattern equidistant from 

each sample. Abbreviations: As3, arsenite; DMA, dimethylarsenic acid; As5, 
arsenate; As, arsenic.

Figure 6 — Arsenic speciation in Preak Russey-5 rice.
Numbers 1-9 indicate samples collected in grid pattern equidistant from 

each sample. Abbreviations: As3, arsenite; DMA, dimethylarsenic acid; As5, 
arsenate; As, arsenic.
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zinc is an essential part of many of these 
same pathways in rice. The uptake, 
reactivity and transportation of arsenic 
and zinc are enhanced/mediated by 
metal transporters and chelators.59-61 
The production of chelators is induced 
both to enhance the availability of 
zinc and to reduce the toxicity of 
arsenic. The chelator nicotianamine is 
primarily produced to make zinc more 
bioavailable, but researchers stress that 
other chelators like phytochelatin are 
mainly produced to detoxify arsenic 
by helping sequester it in vacuoles.60 
Phytochelatin can also react with zinc 
and any imbalance in chelation created 
by attempts to reduce arsenic toxicity 
might reduce zinc availability. Raab 
et al. stated that the production of 
phytochelatin begins before obvious 
toxicity and might be a good signal of 
imminent suppression of productivity.62 
In addition, chelation of metals can 
suppress production of reactive oxygen 
species which is an important means 
of arsenic toxicity.63,64 Many reactions 
occur in synchrony and an imbalance 
caused by arsenic toxicity may result in 
lower levels of zinc in the rice grain.     

X-ray fluorescence analysis is currently 
the best protocol for monitoring 
zinc in rice grain in Cambodia. It 
is simple, fast, and inexpensive to 
operate. Handheld XRF units also are 
powered by rechargeable batteries. 
Unfortunately, the electrical supply in 
Cambodian laboratories is unreliable 
and damage to more complicated 
equipment is common and often 
cannot be repaired without external 
donor assistance.  

As shown in Figure 4, the two major 
outliers Preak Russey-2 farm, far 
from well and Preak Russey-9 farm, 
far from well demonstrated a normal 
zinc content because their exposure to 
arsenic contaminated irrigation water 
was mediated by their greater distance 
from the well (65 m and 120 m). As 
demonstrated in an earlier publication, 

most of the arsenic precipitated in 
the paddy fields near the irrigation 
pumps (Figures 3 and 4 in Murphy et 
al.).38 Avoiding the use of irrigation 
with groundwater rich in arsenic and 
iron water would by itself significantly 
enhance the concentration of zinc in 
rice. The treatment ditch that some 
farmers used to remove arsenic from 
irrigation water would also accomplish 
this objective.42 The zinc content of 
Preak Russey-4 rice was the third 
highest observed in the present study 
(Figure 3 and 4). This farm used a 
treatment ditch that removed 99% of 
the arsenic and 92% of the iron prior 
to irrigation of the field. The removal 
of arsenic was likely volatilization 
of trimethylarsine gas.42 The iron is 
thought to have precipitated. The 
removal of 94% of the arsenic and 
99% of the iron was also observed in 
a treatment ditch in Preak Russey-10, 
but no rice was able to be procured 
from that farm. At times, it was an 
advantage to monitor farms, not just 
potted rice, but some farmers were 
concerned about the possible negative 
impact to their sales and were reluctant 
to cooperate. Treatment ditches are a 
promising technique for irrigating rice 
with groundwater and further analysis 
is needed to substantiate and optimize 
that treatment process.  

Zinc in soils is made unavailable to 
rice by long durations of flooding, but 
drainage of rice paddies can enhance 
the bioavailability of zinc.65 The critical 
aspects of geochemistry and seepage 
are not yet adequately characterized to 
guide the frequency of drainage or the 
design of ditches required to enhance 
zinc availability. The Preak Russey-1 site 
had a ditch on one side of the paddy 
field only, whereas the farm Preak 
Russey-5 that produced rice with much 
greater zinc content had ditches on all 
four sides.  

There was considerable seepage from 
the paddy field of Preak Russey-2, but 

not Preak Russey-1. Preak Russey-2 
had the rice sample with the least 
zinc (5.7 µg/g), and this sample was 
collected near the irrigation well where 
the soil had the highest level of arsenic 
(95 µg/g). Perhaps because this farm 
was slightly elevated, it had sufficient 
drainage to improve the bioavailability 
of zinc in most of the field; the rice 
further away from the pump had more 
moderate levels of zinc. The apparent 
stagnation in Preak Russey-1 might 
have resulted in greater levels of arsenic 
in rice proportional to the arsenic in 
soil in all farms in the present study 
(Figure 2 in Murphy et al.).38 The most 
relevant reflection of the importance 
of redox on rice in the Preak Russey-1 
and Preak Russey-5 sites is the 3–4 
fold higher levels of arsenite, either as a 
proportion of inorganic or total arsenic, 
respectively (Table 4, Figures 5 and 6 
in this current study, and Table 2 in the 
IDRC/CRDI Report).46 Arsenite is more 
toxic than arsenate, but for the zinc 
geochemistry, the change in redox is the 
important issue. 

Bhuiyan and Undan reported that 
the management of drainage in their 
study sites was mostly empirical.65 
This also applies to Cambodia. For 
simple empirical management such 
as mid-season drainage in Cambodia, 
farmers need good irrigation and water 
storage facilities in order to assure an 
adequate water supply after they have 
drained their fields. In theory, wetlands 
within 5 km of Preak Russey could be 
used to store flood waters.42 Currently, 
farmers are unprepared to drain their 
fields and lose water that they may later 
need. Roberts and Slaton stated that in 
Arkansas, the only solution for severe 
zinc deficiency was first draining the 
field for two weeks, then fertilizing with 
zinc and nitrogen; the latter reflects 
the loss of nitrogen from draining 
the field.66 Applying zinc without the 
oxidation mediated by drainage is 
ineffective.66 Prevention is required or 
the cost of treatment is higher.  
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There are several reports of successful 
augmentation of soils with zinc.23,30 
However, not all enrichments have 
been effective in both enhancing rice 
productivity and the zinc content 
of grain.34,35 Phosphorus fertilizers 
are known to interfere with zinc 
bioavailability.58 The apparent 
enhancement of zinc content of rice 
grain by cow manure illustrated in 
Figures 3 and 4 should be confirmed 
in a more controlled experiment. 
Furthermore, cow manure can both 
block arsenic bioaccumulation and 
enhance zinc bioavailability.67 Similarly, 
cow manure is known to enhance the 
bioavailability of refractory zinc in 
soils.68 This effect of organic matter is 
likely very dependent on the duration 
of flooding, drainage, and effect of 
organic matter on iron solubility and in 
turn on zinc solubility/adsorption.  

The following analysis indicates that 
the manure enhancement of zinc in 
Preak Russey grain does not seem to 
reflect effective recycling of zinc. Most 
farms with cows had at least two adult 
cows and usually at least one younger 
animal. The typical feeding rate of rice 
bran was 2 kg/d per adult cow. The 
typical cow farmer would use about 5 
kg/d of rice bran or 5 x 34.9 µg/g (bran 
zinc content) = 174.5 mg/d of zinc 
or 63692 mg zinc/year or converted 
to zinc sulphate (x 2.74) is 175 g zinc 
sulphate per year for one hectare, a 
typical farm size. This is less than 2% of 
the lowest recommended zinc dose.49 
Unfortunately, farm productivity was 
not measured in the current study. The 
greater productivity of Preak Russey-5 
relative to Preak Russey-1 is obvious 
in Figure 3 and future studies should 
evaluate the effect of enhanced zinc 
fertilization and any other aspect of rice 
management that would enhance zinc 
availability.   

Direct fortification of rice with zinc is 
now commonly performed in several 
countries.69,70 De Pee (United Nations 

World Food Programme) argued that 
the standard for zinc in rice should be 
60 µg/g, and 70 µg/g for individuals 
with zinc deficiency.69 Rice samples in 
our study had 28% of the recommended 
standard of 60 µg/g for augmented rice 
for the general public.69 Tacsan found 
that fortified rice in Costa Rica contains 
19 µg/g of zinc.71 This variation likely 
reflects different targets of concern; 
small children and pregnant women 
require more micronutrients. Moreover, 
other micronutrients might be added; 
for example, all rice consumed in 
Costa Rica is fortified with folic acid, 
vitamins B1 (thiamin), B3 (niacin), B12 
(cobalamin), E, selenium, and zinc. 
Folic acid would be especially relevant 
for parts of Cambodia where excessive 
amounts of arsenic are found, as folic 
acid is able to reduce the toxicity of 
arsenic.72  

Evaluations of zinc deficiency 
in farmers and the effect of zinc 
supplementation in individuals would 
be complicated. Sampson found that 
in some farms, family members with 
the same food and water developed 
arsenicosis, but others in the same 
family did not.3 The observations 
of keratosis and hyperpigmentation 
or hypopigmentation of the skin 
of farmers were noteworthy in that 
previous analysis and in the current 
study.3 The apparent changes in 
sensitivity to arsenic warrant further 
analysis and might reflect genetic 
variation. Sickle cell anemia can 
enhance zinc deficiency and individuals 
with sickle cell anemia appear to 
benefit from zinc supplementation.55 
Zinc deficiency might enhance arsenic 
toxicity. Genetic hemoglobin disease 
might explain some observations of 
arsenic toxicity in Cambodia. Sickle cell 
anemia is not common in Cambodia, 
but other forms of genetic anemia 
are much more common.73 Beta 
thalassemia major does not apparently 
enhance zinc deficiency.74 However, 
there does not appear to have been 

any evaluation of the effect of other 
common forms of genetic anemia on 
zinc and thus indirectly on arsenic. 
Hemoglobin E and alpha thalassemia 
are common in Cambodia. Ideally, 
hemoglobin genetic abnormalities 
should be further evaluated in a study 
of zinc and arsenic in Preak Russey.  

Augmentation of the diet in farms can 
be improved, but this is complicated by 
zinc bioavailability in plants, including 
rice and beans which are often 
suppressed by phytates. One current 
practice at the best managed farm site 
warrants replication elsewhere. First, 
cows are fed rice bran. The phytase 
in cows’ stomachs inactivates phytate 
and enhances zinc availability. Cow 
manure is then sprayed onto a fish 
pond that is designed to flood into the 
rice field. Esomus fish species (flying 
Mekong barb) have about 200 mg/kg 
of bioavailable zinc.75 Other fish species 
are rich in zinc, but Esomus species 
are especially zinc rich (>x2 beef) and 
warrant improved cultivation as they 
are currently popular and expensive. 
The bioavailability of zinc in other local 
foods rich in zinc such as guava leaves 
warrants analysis for treatment of zinc 
deficiency in poor rural populations.  

Zinc deficiency is common globally, 
especially in Asia.20,22 In 2018, Wang 
et al. reported that in China, almost 
half of the male population was at 
risk of zinc deficiency, reflecting the 
fact that poorer populations in China 
getting most of their zinc from grains, 
including rice.76 Zinc deficiency in 
Cambodia is not unusual, but the 
Cambodian focus on zinc has primarily 
been in children.9,10 The proposed 
standards for zinc in children’s food are 
three to nine times that for adults and 
reflects the greater zinc demand for 
growing children (Table 6). The present 
study of Preak Russey demonstrates 
that zinc deficiency seems to be 
associated with arsenic contamination. 
Children are also more susceptible 
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to arsenic toxicity than adults. The 
potential for an additive effect of 
arsenic toxicity and zinc deficiency is 
high. Moreover, treating zinc deficiency 
might lessen arsenic toxicity. It is 
therefore crucial to expand upon this 
evaluation of zinc deficiency in areas 
contaminated with arsenic.  

It will require several years to improve 
the zinc content of Cambodian rice. 
While agriculture is being improved, 
zinc supplements could correct zinc 
deficiency in the Cambodian diet.

Conclusions

Handheld XRF spectrometers appear 
to be useful tools for detecting zinc 
deficiency in rice and the potential 
for zinc deficiency in farmers in areas 
of Cambodia with arsenic toxicity is 
high. The concentration of zinc in rice 
should be further evaluated in other 
areas of Cambodia, especially in the 
arsenic-contaminated zone. Empirical 
approaches such as irrigation with 
surface water (low in arsenic), soil 
drainage and fertilization (especially 
manure) should be upgraded to 
improve the zinc content of rice. The 
geochemical factors regulating the 
bioavailability of zinc in soils need to 
be better understood to guide farm 
management and improve the zinc 
content of rice. Sampling should be 
done with geochemical and biological 
measurements with reference to the 
distance to the source of irrigation 
water. Zinc deficiency in farmers, 
especially in the arsenic zone should 
be evaluated, and if confirmed, treated 
by improved rice cultivation, zinc 
fortification of rice or encouraging 
use of zinc sulphate supplements by 
farmers.  
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