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I.  INTRODUCTION 

Coccidioidomycosis, commonly referred to as “valley fever” or “cocci” has been 

a well-known endemic fungal disease to the southwestern United States since the early 

1900s (Hirschmann 2007).  Recent dramatic increases in disease incidents since the 

1990s however, have initiated a reemergence in interest surrounding the disease’s cause 

as well as its effects on the population (Kirkland and Fierer 1996).  Modern 

epidemiological studies on coccidioidomycosis seek to understand the environmental 

effects on the growth and dispersal of the fungus that causes the disease, but their results 

tend to reveal that the factors contributing to the escalation of disease incidents are 

complex and difficult to isolate (Kolivras and Comrie 2003; Comrie 2005; Park et al. 

2005; Baptista-Rosas, Hinojosa, and Riquelme 2007; Comrie and Glueck 2007; Fisher et 

al. 2007; Talamantes, Behseta, and Zender 2007; Tamerius and Comrie 2011).   

Coccidioidomycosis impacts on the human population are profound and range 

from long-term interruptions in the ability to perform daily activities to severe symptoms 

that can increase healthcare costs and may be deadly (Kirkland and Fierer 1996; Chiller, 

Galgiani, and Stevens 2003; Galgiani et al. 2005; Tsang et al. 2010; Tsang et al. 2013).  

With so little known about the ecological niche of the coccidioidomycosis-causing 

fungus, it is important to continue conducting research on the environmental determinants 

of this niche to better understand how the presence of the fungus might contribute to the 

prevalence of the disease (Fisher et al. 2007; Talamantes, Behseta, and Zender 2007). 
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II.  BACKGROUND, RESEARCH PROBLEM, AND SIGNIFICANCE 

Background 

Coccidioidomycosis is caused by Coccidioides immitis and Coccidioides 

posadasii (Fisher et al. 2002), two species of pathogenic fungi predominantly found in 

the fine, loamy, sandy soils of the arid southwestern United States, northern Mexico, and 

parts of Central and South America (Figure 1) (Stevens 1995; Fisher et al. 2007).  When 

these soils are disturbed, either by natural causes or by human activity, the fungal spores 

are aerosolized and often inhaled by humans, causing infection (Chiller, Galgiani, and 

Stevens 2003; Arizona Department of Health Services 2012). 

 

 

  Figure 1.   Areas endemic for coccidioidomycosis in the United States.   

  Source: Centers for Disease Control and Prevention (CDC) 2014. 

 

According to Galgiani et al. (2005), approximately 150,000 people in the United 

States are infected with coccidioidomycosis each year, and of this infected population, 

approximately 40 percent experience clinical symptoms that range from common cold or 
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flu-like symptoms to severe pulmonary distress.  In a small percentage of the population, 

the disease can disseminate to other parts of the body including the skin, bones, joints, 

and brain, which can be fatal (Kirkland and Fierer 1996; Chiller, Galgiani, and Stevens 

2003; Galgiani et al. 2005).  Studies have shown that 75 percent of those who experience 

symptoms report that the disease significantly impacts their abilities to carry out daily 

activities like attending school or work, and approximately 40 percent require 

hospitalization (Tsang et al. 2010). 

 

Research Problem 

Because of its prevalence and impact on the human population, 

coccidioidomycosis has been a nationally notifiable disease since 1995.  Both Arizona 

and California have mandated reporting of all incidents of the disease since 1997 and 

2010, respectively, and this has greatly contributed to the accuracy in tracking its 

occurrence (Hector et al. 2011; Arizona Department of Health Services 2012; Tsang et al. 

2013).  Since the 1990s, coccidioidomycosis cases have increased dramatically (Kirkland 

and Fierer 1996), and although this is due in part to the improvement in reporting, there is 

no definitive explanation for the continued upward trend in incidents since 1997 (Park et 

al. 2005; Sunenshine et al. 2007; Tsang et al. 2013; Arizona Department of Health 

Services 2013).  Researchers (Kolviras and Comrie 2003; Komatsu et al. 2003; Comrie 

2005; Park et al. 2005) attribute much of this increase in prevalence to climatic factors, 

but they also recognize the need for more research on the environmental and human-

induced influences on Coccidioides growth and dispersal (Kolivras and Comrie 2003; 

Comrie 2005; Scott, Robbins, and Comrie 2012). 
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For this study, a quantitative spatial analysis was conducted on 

coccidioidomycosis to determine high risk areas for the disease in Texas.  Using county 

level, seasonally aggregated, population normalized, reported cases of the disease in 

California from 2003-2012 as a proxy for the Coccidioides fungus, a model was 

constructed to predict the influence of predetermined environmental and anthropogenic 

variables on its growth and dispersal.  Using geographic information systems (GIS), the 

model was applied to similar environments in Texas to determine the areas at high risk 

for the presence of Coccidioides and consequently, a high risk for coccidioidomycosis. 

 

Significance and Broader Impact 

Texas was chosen as the study area because despite the fact that it is an endemic 

state for coccidioidomycosis (Centers for Disease Control and Prevention 2012), very 

little research has been conducted regarding the disease there.  The currently accepted 

delineation of Texas as an endemic state is based upon dated and often incomplete reports 

of the disease (Gautam et al. 2013).  It is possible that since Texas does not mandate the 

reporting of coccidioidomycosis incidents, many cases go undiagnosed or misdiagnosed, 

which can lead to an exacerbation in the disease, increased healthcare costs, and in some 

cases death (Tsang et al. 2010; Tsang et al. 2013).   With the increase in disease incidence 

in other states, it is reasonable to infer that there will be a likely increase in occurrence in 

Texas as well, and as the population in Texas grows, so too will the risk of exposure to 

the disease (Galgiani 1999).  

The conclusions of this research will potentially provide healthcare professionals 

and state health officials with new information to better diagnose and manage 

coccidioidomycosis in Texas.  This improvement in diagnosis is likely to lead to more 
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timely management of the disease, thereby potentially alleviating the complications that 

arise when it is left untreated.  Also, by identifying areas in Texas where Coccidioides is 

likely to occur at higher than normal levels, the conclusions of this study will potentially 

assist researchers in their attempts to isolate fungal samples in the field for further 

ecological and biological studies of Coccidioides habitat. 
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III.  LITERATURE REVIEW 

Understanding the Differences between Medical Geography and Epidemiology and 

the Contributions of Each 

 

There is much debate in the literature regarding the degree of difference that 

exists between epidemiology and medical geography and the value that each field 

contributes to the other.  Glass (2000) identifies key differences between the two fields, 

stating that although the focus of epidemiology lies predominantly in the etiologic (or 

causal) explanations for disease processes as well as disease diffusion among the human 

population, medical geography focuses on both the ecological determinants of health as 

well as disease outcomes among the population. 

Alternatively stated, medical geography emphasizes the importance of the human-

environment interaction as determinants of many diseases while also focusing on spatial 

patterns of disease distribution (especially disease clusters), something which 

epidemiology recognizes but does not explicitly focus upon (Meade, Florin and Gesler 

1988).  Glass (2000) proposes that the solution for bridging this cross-disciplinary gap 

lies in the field of environmental epidemiology.  He asserts that environmental 

epidemiology emphasizes the importance of environmental factors as well as the spatial 

relationships among variables as key components in the etiology of many disease 

processes, but the methodology remains epidemiologic in nature. 

Many researchers, however, consider environmental epidemiology (also referred 

to as landscape epidemiology or even geographical epidemiology) to be a sub-discipline 

within the field of medical geography, rather than a distinct field, because of its focus on 

ecological analysis, or the analysis of spatial relationships between environmental factors 

and disease (Mayer 1982; Meade, Florin, and Gesler 1988; Kistemann, Dangendorf, and 
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Schweikart 2002; Young, Tulls, and Cothren 2013).  This is especially true for 

environmentally driven diseases like West Nile virus, Lyme disease, and 

coccidioidomycosis, to name a few (Young, Tullis, and Cothren 2013).   

Regardless of these nuanced interpretations, O’Dwyer and Burton (1998) argue 

for the cross-disciplinary cooperation between the fields of medical geography and 

epidemiology because of the value each can contribute to the other.  Medical geographers 

are highly skilled in understanding complex spatial relationships and interactions, 

especially between humans and the environmental determinants of disease.  They are also 

adept at analyzing these relationships and interactions through the utilization of 

geospatial technologies like GIS and remote sensing (Meade, Florin, and Gesler 1988; 

O’Dwyer and Burton 1998; Meade and Earickson 2000; Kistemann, Dangendorf, and 

Schweikart 2002; Schröder 2006; Young, Tullis, and Cothren 2013).  In contrast, 

epidemiologists possess medical knowledge that geographers may lack but that is 

necessary to accurately and comprehensively analyze many disease processes (O’Dwyer 

and Burton 1998). 

 A prominent example of these commonalities between the two disciplines, and 

further justification for the need for cross-disciplinary collaboration, is John Snow’s 

famous Broad Street Map (Figure 2), depicting the locations of cholera cases in South 

London in order to determine the source of the 1853 cholera outbreak.  Although John 

Snow is commonly considered a pioneer in the field of modern epidemiology (Frerichs 

2014), it is reasonable to argue that because of his utilization of spatial analysis to 

determine the source of the disease, he is, as well, a pioneer in the field of modern 

medical geography. 
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 Figure 2.  John Snow’s map of the locations of cholera incidents in South London, 1853. 

 Source: Matrix 2013. 

 

The Object-Centered and Human-Pathogen Coevolution Theories of Medical 

Geography 

 

To add to this distinction between medical geography and epidemiology, while 

also emphasizing the need for cross-disciplinary collaboration, Scott, Robbins, and 

Comrie (2012) assert the importance of object-centered and human-pathogen coevolution 

theories as foundations of medical geography.  An object-centered approach entails 

directing the primary research focus on a specific object in the broader context of human 

and environmental interactions.  This directed focus on the object of interest encourages 
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interdisciplinary and cross-disciplinary cooperation because it breaks down the 

propensity of researchers to strictly adhere to their field-specific methodologies, as this 

often hinders cooperative efforts among researchers from different fields (Meade, Florin, 

and Gesler 1988, Scott, Robbins, and Comrie 2012).   

A human-pathogen coevolution approach suggests that humans and pathogens 

will always coexist and will therefore coevolve to adapt to each other (Woolhouse et al. 

2002).  Although traditional studies incorporating this theory stress the literal (genetic) 

evolution of humans and pathogens as a result of one another (Woolhouse et al. 2002; 

Zaneveld et al. 2008; Rehermann 2009), Scott, Robbins, and Comrie (2012) introduce an 

alternative view of the human-pathogen coevolution theory as it pertains to the human-

environment interaction tradition of geography.  The cycle begins when humans initially 

cause or encourage their own exposure to pathogens through institutionally driven 

actions, i.e. land-use changes, policy guidelines, and waste management practices.  The 

resulting disease outbreaks then spur reactionary human responses, which eventually lead 

to institutional modifications designed to discourage further exposure.  Examples of these 

include increased education, more aggressive disease monitoring, and the development of 

new treatments.  This theory very closely aligns with Meade, Florin, and Gesler’s (1988) 

concept of the triangle of human ecology in which habitat, population, and behavior are 

affected by, and therefore systematically respond to, disease within society. 

To emphasize how these theories, inherent to medical geography, differ from 

those of epidemiology, Scott, Robbins, and Comrie (2012) discuss the theoretical 

approaches commonly applied to epidemiological studies: ecological/evolutionary 

models and population models.  Ecological/evolutionary models are often used to 
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understand the growth and development of pathogens, while population models are used 

to assess disease exposure.  According to the authors, these traditional epidemiological 

theories fail to sufficiently incorporate the complex and dynamic human-environmental 

interactions that result in—and react to—pathogen exposure.   

Because of this, the human-pathogen coevolution theory provides an appropriate 

alternative for studying environmentally determined diseases like coccidioidomycosis.  In 

addition to being environmentally driven, coccidioidomycosis incidents are increasing 

(Park et al. 2005; Sunenshine et al. 2007; Arizona Department of Health Services 2012; 

Tsang et al. 2013), and it is likely that human factors such as migration to endemic areas 

and changes to the landscape play a role in these increased incidents (Meade, Florin, and 

Gesler 1988; Galgiani 1999).  As a result, the human-pathogen coevolution theory 

provides the most comprehensive means for analyzing and understanding both the 

disease’s prevalence among the population and the institutional changes that will come 

about as a result of its prevalence (Meade, Florin, and Gesler 1988; Scott Robbins, and 

Comrie 2012).   

The fact that researchers have a very limited understanding of Coccidioides niche 

requirements necessitates an object-centered approach to garner a better understanding of 

those requirements (Kolivras and Comrie 2003; Comrie 2005; Scott, Robbins, and 

Comrie 2012).  In order to predict the areas of highest exposure risk, it is first necessary 

to identify where Coccidioides is most likely to occur, and this requires a more 

comprehensive understanding of the environmental factors that support its growth and 

dispersal (Baptista-Rosas, Hinojosa, and Riquelme 2007; Fisher et al. 2007).  The object 

of interest, in this case, is the Coccidioides fungus, and to understand its habitat requires 
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cross-disciplinary collaboration.  The idea is that by focusing on this specific object of 

interest, researchers can overcome the interdisciplinary rifts that tend to occur as the 

result of methodology-focused research (Meade, Florin, and Gesler 1988; Scott, Robbins, 

and Comrie 2012).  It is therefore evident that both the object-centered and human-

pathogen coevolution theories form the fundamental foundations necessary for the 

success of this research.   

 

Debates within the Field of Medical Geography 

The epistemological debate that exists between medical geography and 

epidemiology unfortunately continues even within the field of medical geography itself.  

However, researchers mostly agree that medical geography should be broken down into 

two traditions: geographical epidemiology (also called landscape epidemiology or 

ecological analysis) and health systems planning (Mayer 1982; Meade, Florin, and Gesler 

1988; Boulos, Roudsari, and Carson 2001; Kistemann, Dangendorf, and Schweikart 

2002).  Geographical epidemiology involves studying the spatial distribution of diseases 

as well as the ecological (including human-induced) influences on disease processes.  

Alternatively, the health systems planning tradition analyzes the spatial perspectives on 

the access to/delivery of healthcare services planning (Mayer 1982; Meade, Florin, and 

Gesler 1988; Boulos, Roudsari, and Carson 2001; Kistemann, Dangendorf, and 

Schweikart 2002).   

Some researchers argue that the field of medical geography does not fully account 

for all geographic perspectives on health and disease and that the field should be further 

sub-divided.  Kearns (1993) proposed, and Cutchin (2007) later supported the need for a 

new and distinct discipline, which he termed the geography of health.  In contrast to 
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traditional medical geography, which is objective and analytical in nature—a result of its 

emphasis on the environmental determinants of disease—health geography (as the 

geography of health is often called) critically analyzes the social, place-based 

determinants on the overall health of the population (Kearns 1993; Cutchin 2007).  These 

determinants are often measured by the quality of available healthcare services and by the 

equality of access to those services (Perry and Gesler 2000; Hawthorne and Kwan 2012).  

In this sense, health geography is similar to the health services planning tradition of 

medical geography, but it is more critical in nature and has a stronger emphasis on the 

characteristics of place (Kearns 1993).   

Mayer (1994) quickly criticized this perspective as being too narrow in scope and 

unnecessary.  He argued that medical geography is sufficient as a stand-alone discipline 

because of its flexibility in encompassing social, place-based factors as part of the overall 

environmental determinants of health.  Although this epistemological debate appears to 

needlessly divide researchers who should otherwise cooperate for the benefit of what 

each has to offer to the field, it continues to be a noteworthy and ongoing debate 

(Rosenberg 1998; Kearns and Moon 2002; Kwan 2004; Cutchin 2007). 

 

A Geographical Epidemiology Approach to Coccidioidomycosis Research 

Recognizing the debates and the epistemological differences that exist within the 

fields of epidemiology and medical geography, it is important to emphasize that this 

study will fall within the ecological analysis, or geographical epidemiology tradition of 

medical geography, due to the inherent nature of coccidioidomycosis as an 

environmentally determined disease.  Because coccidioidomycosis is caused by the direct 

inhalation of fungal spores from the surrounding environment, rather than by person-to-
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person contact (Chiller, Galgiani, and Stevens 2003; Arizona Department of Health 

Services 2013), research that focuses on the environmental determinants of the disease 

must be conducted in order to understand its spatial distribution and associated risk to the 

human population.  This justifies geographical epidemiology as the most appropriate 

discipline through which to study this disease.   

Within this discipline, the literature identifies two common approaches to 

studying coccidioidomycosis, its spatial distribution, and both its effects on and risks to 

the population.  The first approach entails a direct ecological analysis of the fungus that 

causes the disease.  This involves analyzing the environmental conditions of the sites at 

which actual Coccidioides samples have been isolated to better understand the 

organism’s ecological niche (Baptista-Rosas, Hinojosa, and Riquelme 2007; Fisher et al. 

2007).  Although many researchers recognize this to be the most accurate method for 

determining the environmental factors necessary for the growth and survival of 

Coccidioides, they are well aware of its limitations. Chief among these is that in order to 

conduct this type of analysis, it is first necessary to ascertain the locations of 

Coccidioides in the environment (Kolivras and Comrie 2003; Comrie 2005).  

This presents a common problem: although ubiquitous, Coccidioides is very 

elusive, and although multiple sites in endemic areas have been sampled in attempts to 

isolate colonies of the fungus, very few of those attempts have proven successful 

(Baptista-Rosas, Hinojosa, and Riquelme 2007).  Due to the insufficient number of 

positively identified samples of Coccidioides, it is difficult to make authoritative 

conclusions about the ecological requirements of the population as a whole.  Fisher et al. 

(2007) found this to be the case when they tested soil samples from the few sites known 
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to harbor Coccidioides in an effort to establish its niche parameters.  Their only definitive 

conclusions were that Coccidioides resides in loamy, sandy soils and requires 

temperatures below 55 degrees Celsius (°C).  Had they had a larger sample to study, 

Fisher et al. (2007) might have been able to present stronger conclusions.   

The second, and more common, approach to studying coccidioidomycosis 

involves an indirect ecological analysis.  This type of research uses reported cases of 

coccidioidomycosis to determine the environmental factors that are associated with the 

disease exposure (Kolivras and Comrie 2003; Comrie 2005; Park et al. 2005; Comrie and 

Glueck 2007; Talamantes, Behseta, and Zender 2007; Tamerius and Comrie 2011).  This 

approach focuses less on the spatial distribution of the fungus itself and more on 

determining the environmental patterns in known endemic areas that have the greatest 

influence on the increase in coccidioidomycosis incidence.  Much of this research 

involves the use of statistical modeling to predict future outbreaks, and it tends to 

concentrate heavily on the use of climatic factors as independent variables.   

For example, Comrie (2005) developed a multivariate regression model to 

analyze the effects of seasonal climate patterns of alternating wet and dry periods on 

coccidioidomycosis exposures in Pima County, Arizona.  This study concluded that the 

most important factor influencing exposure rates was the incidence of precipitation 

during the typically arid spring in the preceding 1.5-2 years before exposure.   

Kolivras and Comrie (2003) developed a regression model to predict future 

coccidioidomycosis outbreaks.  Their results revealed that temperature and precipitation 

were statistically significant predictors of coccidioidomycosis incidents.  Specifically, 

they concluded that periods of precipitation followed by periods of hot, dry conditions 
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were associated with the highest incidence of the disease; that winter seasonal climate 

patterns appeared to have the most significant impact on future outbreaks; and that the 

months with the highest numbers of reported cases produced the best models for 

prediction.   

Park et al. (2005) developed a Poisson regression model to analyze the association 

between climatic factors (wind, dust, temperature and precipitation) and 

coccidioidomycosis incidents.  Their results revealed that the most statistically significant 

variables associated with disease rates were temperatures during the three months prior to 

reported incidents, average dust levels, and precipitation during the seven months prior to 

the reported cases.   

Although these early studies were successful in explaining coccidioidomycosis 

incidents with climatic data alone, recent climate-only based studies have failed to 

explain fully the continued upward trends in reported cases, leading researchers to 

recognize the need to incorporate non-climatic data such as soil conditions as well as the 

anthropogenic factors of migration and development into their models (Comrie and 

Glueck 2007; Talamantes, Behseta, and Zender 2007; Tamerius and Comrie 2011). 

No studies have been conducted on the spatial distribution of coccidioidomycosis 

in places that mandate incidence reporting for the purpose of determining disease risk 

areas in places that do not.  Additionally, there have been no studies incorporating GIS in 

the analyses of environmental factors that contribute to the growth and dispersal of 

Coccidioides in order to determine high risk areas for coccidioidomycosis.  Only one 

study has systematically attempted to determine current coccidioidomycosis risk areas in 

Texas, rather than relying on dated and incomplete historical delineations of endemic 



 

16 

 

areas in the state (Gautam et al. 2013).  That study however, used seropositive dogs in 

Texas as the proxy for Coccidioides occurrence, not human cases in other endemic areas. 
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IV.  RESEARCH METHODS 

In an attempt to build upon the direct and indirect ecological analysis foundations 

mentioned in the previous chapter, this study combined aspects from both in order to 

capitalize on the strengths of each.  Although the literature stressing the importance of 

determining the ecological niche of Coccidioides is very convincing, equally convincing 

is the infeasibility of using isolated samples to do so.  Because of this, it was apparent 

that the geographic locations of reported cases of coccidioidomycosis were required as a 

proxy for the spatial distribution of Coccidioides in the absence of actual samples.  The 

inherent assumptions in doing so were that individuals remained in the same counties in 

which they were infected from spore exposure to symptom onset, and therefore, incidents 

of the disease were reported in the same counties in which the disease was contracted 

(Meade and Earickson 2000).  

 These locations were then used to determine the environmental conditions 

common to the areas where Coccidioides is highly likely to be present and cause 

outbreaks of coccidioidomycosis.  The environmental variables were combined with the 

anthropogenic variable of economic development to construct a statistical model that 

determined the conditions most likely to contribute to the growth, dispersal, and exposure 

to the disease-causing fungal spores and consequently, a high risk of coccidioidomycosis.  

The statistical model was built combining logistic regression with weighted linear 

combination in GIS to determine areas in selected counties within California with a high 

likelihood for the presence of Coccidioides to cause an outbreak of coccidioidomycosis.  

This model used coccidioidomycosis cases reported in California as the dependent 

variable and environmental and anthropogenic factors (discussed in detail later) as the 



 

18 

 

independent variables.  The model was then applied to areas in Texas with similar 

environmental and anthropogenic characteristics to predict where Coccidioides would be 

most likely to occur at outbreak levels there. 

Similar geographical epidemiological studies have utilized logistic regression 

techniques to predict high risk areas for diseases such as malaria and Lyme disease 

(Kleinschmidt et al. 2000; Brownstein, Holford and Fish 2003; de Oliveira et al. 2013).  

Like coccidioidomycosis, malaria and Lyme disease are environmentally communicable.  

Both diseases are contracted through contact with infectious organisms from the 

environment (mosquitoes and ticks, respectively), rather than contact with infected 

humans, and logistic regression has been successful in determining the relative 

importance of environmental influences on mosquito and tick proliferation as well as 

human contact risk (Kleinschmidt et al. 2000; Brownstein, Holford and Fish 2003, de 

Oliveira et al. 2013).  As a result, it was presumed that logistic regression would be an 

appropriate method for predicting the relative environmental and anthropogenic 

influences on Coccidioides growth, dispersal, and contact with humans as well. 

Weighted linear combination is a commonly used suitability analysis technique in 

GIS in which individual criterion layers are assigned weights and overlaid using map 

algebra (Bolstad 2008; Drobne and Lisec 2009).  The result is a final output layer 

representing those combined relative weights, which can be used to describe place 

“suitability” in a risk assessment context.  For this study, each of the independent 

variables was represented in GIS as an individual criterion layer.  The final outputs were 

layers (one for each season of study) illustrating the results of their weighted combination 

as the dependent variable of where Coccidioides would likely occur at outbreak levels.  
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Although there exist varying techniques for assigning weights to each criterion layer, 

including arbitrary value assignment and expert opinion (Malczewski 2000; Drobne and 

Lisec 2009), logistic regression offered an objective and statistical method for doing so 

and was therefore, the most appropriate for this study (Gaines, Boring, and Porter 2005). 

 

Study Area 

The research study area was comprised of two locations: southern California 

(used to build the statistical model) and West Texas (the target area for determining 

coccidioidomycosis outbreak risk)  

The California study area was comprised of eight counties in California, all of 

which either fall on, or are located south of the 37 degrees north latitude line (Figure 3).  

This area was chosen for three reasons.  First, the vast majority of reported cases occur in 

the southern portion of the state.  Second, California aggressively monitors and reports all 

cases of the disease (California Department of Public Health 2011).  Finally, the eight 

counties selected were the only counties for which complete data sets were available.  

Incomplete data sets were those lacking values for either the environmental or 

anthropogenic independent variables or coccidioidomycosis cases, during the time period 

to be studied. 
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 Figure 3. California study area. 

 

 

The Texas study area was comprised of fifteen counties in Texas, all of which 

either fall on, or are located west of the 100 degrees west longitude line (Figure 4).  Like 

the California study area, these fifteen counties were the only counties for which a 

complete data set was available.   
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 Figure 4. Texas study area. 

 

The West Texas study area was chosen because of its previous delineation as an 

endemic risk area and its relatively similar climate to southern California.  Both West 

Texas and large parts of southern California fall primarily within the arid (B) Köppen 

climate zones, the climate in which Coccidioides is found (Stevens 1995; Fisher et al. 

2007), with some areas located partially within the subtropical mid-latitude (C) Köppen 

climate zones (Figure 5) (National Weather Service 2011).  The fact that both study areas 
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fall mostly within the same climate zones allows the potential to extrapolate climate-

based results from one study area to the other. 

 

 
     Figure 5.  Map of Köppen climate zones for the U.S.  [A) Tropical Climates;   

      B) Arid Climates;  C) Subtropical Mid-Latitude Climates;  

      D) Continental Mid-Latitude Climates;  H) Highland Climates].   

     Source: National Weather Service 2011. 

 

Dependent Variable  

The dependent variable, presence of Coccidioides at outbreak levels, was a binary 

variable coded “1” for “outbreak level,” and “0” for “non-outbreak level.”  In the model, 

this was represented by the proxy variable, seasonally aggregated, county level, 

population normalized, rates of coccidioidomycosis in the California study area from 

2003-2012.  The monthly coccidioidomycosis cases at the county level were obtained 

directly from individual California county health departments and required seasonal 

aggregation and population normalization (discussed below).   
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Disease cases were delivered in varying forms of report dates, such as date of 

exposure, date of diagnosis, or date of report.  Occasionally all three report dates 

occurred in the same county data set with no explanation of which date type belonged to 

which value.  To account for this, each rate was time-lagged by one month to allow for at 

least thirty days to occur between spore exposure and diagnosis/report date.  Also, 

because the reported months were aggregated seasonally, it was reasonable to presume 

that most of the exposure-to-report time would be captured within the ninety days 

comprising each season, especially when including the one month time lag (Comrie 

2005; Tamerius and Comrie 2011). 

The World Health Organization (2014) defines disease outbreak as the 

“occurrence of cases of disease in excess of what would normally be expected in a 

defined community, geographical area or season.”  Thus outbreak, for the purpose of this 

study, referred to seasonally aggregated cases that exceeded the 65th percentile of the 

combined monthly rates in all counties within the study area from 2003-2012.  In view of 

the absence of an explanation for what constituted a higher than expected occurrence of a 

disease, the 65th percentile reasonably represented this value, as it accounted for incidents 

that were at least 15 percent higher than the median.  

 

Determination of Seasons and Rates 

Seasons throughout the analysis were aggregated as follows: December-February 

(winter); March-May (spring); June-August (summer); and September-November (fall).  

In addition, the time period for all variables, unless otherwise stated, was from 2003-

2012. 
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All rates throughout the analysis were population normalized per 100,000 people 

according to the 2000 U.S. Census county population data for all dates prior to 2010, and 

the 2010 U.S. Census county population data for all dates after 2010 (U.S. Census Bureau 

2000, 2010). 

 

Independent Variables 

Environmental 

The environmental independent variables included the average seasonal 

temperature deviations from the 30-year seasonal normal, in °C and total seasonal 

precipitation deviations from the 30-year seasonal normal, in millimeters for each 

California study area county.  The actual climate values were obtained from the U.S. 

National Climatic Data Center (NCDC) (2014), while the 30-year (1981-2010) normal 

values were obtained from a list compiled by Golden Gate Weather Services (2011).  

Climographs of the 30-year normal values for each study area county are included in 

Appendix B. 

Temperature and precipitation deviations from normal were used, rather than their 

absolute values, to allow for extrapolation of the results to Texas, as absolute values 

would have prevented the possibility of a reference point for comparison between the two 

study areas.  Additionally, because the literature suggests that the increase in 

coccidioidomycosis incidents is potentially due to climatic changes (Kolviaras and 

Comrie 2003; Komatsu et al. 2003; Comrie 2005; Park et al. 2005), analyzing the 

deviations from normal captured the possibility for the change in climate as an 

influencing factor for Coccidioides growth and dispersal, whereas including absolute 

temperature and precipitation values did not.   
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 Because Coccidioides growth is dependent on climatic factors, and because the 

fungus requires time to develop infectious spores (although there is debate among 

researchers on the amount of time this process requires) (Fisher et al. 2007), it was 

imperative to account for the time lag between the climatic influences on the initial 

growth of Coccidioides and the later dispersal of its mature spores.  In order to account 

for this, for each season of disease outbreaks, the temperature and precipitation data were 

analyzed for the three seasons prior to it.  Each of the seasonal independent variables was 

analyzed for its effect on the dependent variable at time zero (T0), the actual season of 

study, as well as at each consecutively time-lagged season preceding T0.  This accounted 

for climatic influences on Coccidioides growth and dispersal up to a year prior to human 

spore exposure.  

 

Anthropogenic   

 The anthropogenic independent variable of seasonal human-induced soil 

disturbance was represented by county level, population normalized, seasonally 

aggregated, rates of building permits issued by each California study area county.  These 

data were obtained from the U.S. Census Bureau (2014) and from individual California 

county permit departments.  According to the U.S. Census Bureau (2013), the average 

length of time between permit issuance and construction initiation was one to three 

months.  Therefore, this variable was analyzed at T0, as well as time-lagged by one 

season, to account for the possibility of this time lapse (Park et al. 2005). 

 Both groups of independent variables (environmental and anthropogenic) were 

continuous variables in the analysis. 
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Analysis 

 The variables were initially tested for multicollinearity by conducting a 

correlation analysis using IBM SPSS software (IBM Corporation 2012).  The time-lagged 

temperature variables were highly correlated with each other, and therefore collinear.  

These results were anticipated, however, as the values were expected to trend together 

due to the short time span between seasons.  Time lagged building permit rates were also 

highly correlated with each other, but these results were anticipated as well and for the 

same reasons as the temperature variables.  It was therefore concluded that 

multicollinearity did not negatively affect this study. 

A binary logistic regression analysis was then conducted to build seasonal 

predictive models for coccidioidomycosis outbreak risk.  The enter method was used to 

determine which independent variables significantly predicted the dependent variable.  In 

this method, all variables were entered into the model in single step and included in the 

output with their respective results.  Significant variables were determined to be only 

those with p < 0.05.  An Omnibus Test of Model Coefficients, or Chi Square analysis, 

tested the model’s overall significance; the Nagelkerke pseudo R2 assessed the amount of 

variance explained by the independent variables in the model; and the Hosmer and 

Lemeshow test assessed how well the predicted probabilities matched the observed 

probabilities (Meyers, Gamst, and Guarino 2013).   

The results of the analysis provided an equation representing the dependent 

variable as the predicted log odds that any observed case belonged to the “1,” or 

“presence of Coccidioides at outbreak levels” category given any change in the 
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independent variables according to their relative predictive strengths, or coefficients 

(Meyers, Gamst, and Guarino 2013).   

These resulting significant independent variable coefficients were used as the 

relative weights for weighted linear combination in ArcGIS 10.1 (Esri 2012).  Using map 

algebra, these coefficients were multiplied by their corresponding independent variable 

(criterion) layers, resulting in a layer that represented the log odds of a predicted 

outbreak.  This layer was then transformed by map algebra into a layer representing the 

probability of the presence of Coccidioides at outbreak levels.  This analysis was repeated 

for each season of study to obtain seasonal Coccidioides exposure probabilities (Figure 

6).   
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      Figure 6.  Conceptual model of data analysis. 

 

 

The results were verified in California using mapped locations of actual outbreaks 

to compare to areas of high outbreak probability, according to the model results.  The 

model was then applied to the Texas study area by applying weighted linear combination 

in GIS to the corresponding Texas criterion layers.   
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V.  RESULTS 

Winter 

 The winter season model resulted in a Chi Square (df = 10, N = 80) value of 

25.87, p = 0.004, indicating that the model provided a statistically significant prediction 

of success.  The Nagelkerke pseudo R2 indicated that the model accounted for 

approximately 36 percent of the total variance.  The Hosmer and Lemeshow Test 

indicated an overall prediction success rate of 76.3 percent and correct prediction rates of 

50 percent for the “outbreak” group and 88.9 percent for the “no outbreak group.”  The 

classification cutoff value for predicting membership in the successful groups was 0.5.  

Table 1 displays the results of the winter season outbreak model.  

 

Table 1. Winter season model results 

Winter Model B Wald Sig. Exp (B) 
95% C.I. for 

EXP (B) 
      

Win T0 Precip. Dev. (mm) -0.008 4.037 0.045 0.992 0.985 - 1 

Win T-1 Precip. Dev. (mm) (Fall) 0.011 1.315 0.252 1.011 0.992 - 1.03 

Win T-2 Precip. Dev. (mm) (Sum) 0.042 0.803 0.37 1.043 0.951 - 1.144 

Win T-3 Precip. Dev. (mm) (Spr) -0.003 0.191 0.662 0.997 0.985 - 1.01 

Win T0 Temp. Dev. (C)  -0.004 0 0.991 0.996 0.469 - 2.116 

Win T-1 Temp. Dev. (C) (Fall) 0.801 2.783 0.095 2.228 0.869 - 5.713 

Win T-2 Temp. Dev. (C) (Sum) -0.638 2.153 0.142 0.528 0.225 - 1.239 

Win T-3 Temp. Dev. (C) (Spr) 0.087 0.087 0.767 1.091 0.614 - 1.939 

Win T0 Bldg. Permits -0.041 4.671 0.031 0.96 0.925 - 0.996 

Win T-1 Bldg. Permits (Fall) 0.046 7.048 0.008 1.047 1.012 - 1.084 

Constant -1.517 11.233 0.001 0.219  

 

Explanations of variable meanings included in Appendix A 

 

 

 Although winter precipitation deviation from normal (Win T0 Precip. Dev. (mm)) 

and winter building permit rates (Win T0 Bldg. Permits) were significant variables in the 
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model (p = 0.045, p = 0.031, respectively), their coefficients were negative, resulting in 

odds ratios less than one.  This means that for winter precipitation deviation from normal, 

for example, every one unit change in that variable resulted in a  -0.008 unit change in the 

log of the odds for a winter outbreak, or a less than one times (0.992) greater likelihood 

of an outbreak occurring.  Therefore, despite its significance (p = 0.045) in the model, it 

is unlikely that winter temperature deviation from normal has much predictive influence 

on winter outbreaks (Meyers, Gamst, and Guarino 2013).  The winter building permit 

rates variable can be interpreted in the same manner.   

The fall building permit rates variable (Win T-1 Bldg. Permits (Fall)), however, 

was predictive.  Not only was it significant (p = 0.008), but also it contained a positive 

coefficient and an odds ratio greater than one.  For every one unit increase in fall building 

permit rates, there was a 0.046 increase in the log of the odds for a winter outbreak, or a 

1.047 times (CI = 1.012 - 1.084) greater likelihood of a winter outbreak occurring, 

controlling for all other variables (Meyers, Gamst, and Guarino 2013).   

This may mean that when building permits are issued in the fall, construction (a 

likely cause of soil disturbance and subsequent spore aerosolizing) often does not begin 

until the winter season.  These results align with Park et al.’s (2005) study, which 

concluded that although building permits at T0 were not significant predictors of 

coccidioidomycosis cases, it was possible that this was due to the time lapse between 

permit issuance and construction initiation (U.S. Census Bureau 2013). 

These results may also indicate that permit issuance and construction initiation 

occur in the same season, but the time lapse between spore exposure and seeking medical 

care spans an entire season. 
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Verification    

Verification for the winter model was conducted on four randomly selected years 

of the study time period, 2004, 2008, 2011, and 2012. The results of the model were 

mapped using weighted linear combination in GIS and compared to the mapped locations 

of actual reported winter outbreaks during those years (Figures 7 – 10). 

 

 
  Figure 7.  California winter 2004 outbreak probabilities, based on model results,  

  compared to actual outbreaks. 
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  Figure 8.  California winter 2008 outbreak probabilities, based on model results,  

  compared to actual outbreaks. 

 

 
  Figure 9.  California winter 2011 outbreak probabilities, based on model results,  

  compared to actual outbreaks. 
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  Figure 10.  California winter 2012 outbreak probabilities, based on model results,  

  compared to actual outbreaks. 

 

 Model-based winter probabilities revealed moderate accuracy when compared to 

the actual reported outbreaks, especially in the northwestern portion of the study area 

during 2004, 2008, and 2012.  The poor results apparent in 2011 were appropriate when 

considering that the highest probability of any value was only 28 percent.  The overall 

mediocre results of the verification were expected, considering that although three 

variables were significant in the model (winter precipitation deviations from normal, 

winter building permit rates, and fall building permit rates), only one variable (fall 

building permit rates) displayed predictive power.  It is evident from these results that its 

predictive strength as a standalone variable was rather weak. 
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Spring   

The spring season, model resulted in a Chi Square (df = 10, N = 80) value of 

11.835, p = 0.296, indicating that the model did not provide a statistically significant 

prediction of success.  This model was therefore discarded, and no results could be 

gathered nor any predictions made for the spring season. 

 

Summer 

 The summer season model resulted in a Chi Square (df = 10, N = 80) value of 

24.158, p = 0.007, indicating that the model provided a statistically significant prediction 

of success.  The Nagelkerke pseudo R2 indicated that the model accounted for 

approximately 37 percent of the total variance.  The Hosmer and Lemeshow Test 

indicated an overall prediction success rate of 75 percent and correct prediction rates of 

41.7 percent for the “outbreak” group and 89.3 percent for the “no outbreak group.”  The 

classification cutoff value for predicting membership in the successful groups was 0.5.  

Table 2 displays the results of the summer season outbreak model.  
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Table 2. Summer season model results 

Summer Model B Wald Sig. 
Exp 

(B) 

95% C.I. for 

 EXP (B) 
      

Sum T0 Precip. Dev. (mm) 0.010 .057 0.811 1.010 0.929 – 1.099 

Sum T-1 Precip. Dev. (mm) (Spr) -0.014 2.633 0.105 0.986 0.969 – 1.003 

Sum T-2 Precip. Dev. (mm) (Win) -0.007 4.395 0.036 

 

0.993 0.986 – 1 

Sum T-3 Precip. Dev. (mm) (Fall) 0.017 2.118 0.146 1.017 0.994 – 1.041 

Sum T0 Temp. Dev. (C)  -0.445 1.535 0.215 0.641 0.317 – 1.295 

Sum T-1 Temp. Dev. (C) (Spr) -0.295 .710 0.399 0.744 0.375 – 1.479 

Sum T-2 Temp. Dev. (C) (Win) 0.586 1.648 0.199 1.796 0.735 – 4.393 

Sum T-3 Temp. Dev. (C) (Fall) 0.442 1.547 0.214 1.556 0.775 – 3.122 

Sum T0 Bldg. Permits 0.055 6.426 0.011 1.057 1.013 – 1.103 

Sum T-1 Bldg. Permits (Spr) -0.047 5.410 0.020 0.954 0.917 - .993 

Constant -1.669 12.608 < 0.001 0.188  

 

Explanations of variable meanings included in Appendix A 

 

 Similar to the winter model, the summer model revealed three variables to be 

significant, but only one to have predictive power.  Winter precipitation deviation from 

normal (Sum T-2 Precip. Dev. (mm) (Win)) and spring building permit rates (Sum T-1 

Bldg. Permits (Spr)) both contained negative coefficients and odds ratios less than one, 

meaning that despite their significance in the model (p = 0.036, p = 0.02, respectively), it 

is unlikely that either variable had much predictive influence on summer outbreaks 

(Meyers, Gamst, and Guarino 2013).   

The summer building permit rates variable (Sum T0 Bldg. Permits), however, was 

significant (p = 0.011) and contained a positive coefficient and an odds ratio greater than 

one.  For every one unit increase in summer building permit rates, there was a 0.055 

increase in the log of the odds for a summer outbreak, or a 1.057 times (CI = 1.013 – 

1.103) greater likelihood of winter outbreak occurring, controlling for all other variables 

(Meyers, Gamst, and Guarino 2013). 
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These results counter the winter results in that they indicate that either 

construction begins in the same season of permit issuance during the summer, or that 

there is less of a time lapse between spore exposure and seeking medical care during the 

summer.  It may be possible that people expect to be sick more during the winter and may 

not seek medical attention right away.  This may be especially true considering 

coccidioidomycosis can mimic symptoms of the common cold (Kirkland and Fierer 

1996; Chiller, Galgiani, and Stevens 2003; Galgiani et al. 2005), an illness for which 

many people do not seek medical care at all.  It is generally considered far less common 

to become sick in the summer, however, leading people to possibly seek medical 

attention more rapidly if they do develop symptoms.  Although merely speculation, this 

explanation does account for the discrepancy in the results between the winter and 

summer seasons. 

The increased rate of soil desiccation in the dry summer offers another 

explanation for the discrepancy in results.  Because of southern California’s 

predominantly wetter winters, it is possible that the soil requires longer to dry out than it 

does in the summer.  Soil disturbance in the winter may not generate the same volume of 

aerosolized dust as it would in the summer, so even the immediate initiation of 

construction upon the receipt of building permits would not necessarily lead to the same 

rates of spore exposure in the winter as it would in the summer.     

 

Verification 

Verification for the summer model was conducted using the same weighted linear 

combination in GIS technique on the same four years as the winter model (Figures 11 – 

14).   
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  Figure 11.  California summer 2004 outbreak probabilities, based on model results,  

  compared to actual outbreaks. 

 

 
  Figure 12.  California summer 2008 outbreak probabilities, based on model results,  

  compared to actual outbreaks. 
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  Figure 13.  California summer 2011 outbreak probabilities, based on model results,  

  compared to actual outbreaks. 

 

 
  Figure 14.  California summer 2012 outbreak probabilities, based on model results,  

  compared to actual outbreaks. 
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 The model-based summer probabilities were relatively inaccurate when compared 

to the actual reported outbreaks, especially when compared to the results from the winter 

model verification.  The overall high probability values are lower as well; the high values 

for 2008 and 2011 were 50 percent and 30 percent, respectively.  This indicates a rather 

weak model overall and offers partial explanation for the poor results.  Kern County 

appears to be the most consistently, accurately predicted county for outbreak risk, while 

all other study area counties vary in both accuracy and consistency.  

 Similar to the winter model, the poor results of the summer verification can likely 

also be explained by the fact that only one variable (summer building permit rates) 

displayed predictive power and that its predictive strength as a standalone variable was 

rather weak. 

 

Fall 

The fall season model resulted in a Chi Square (df = 10, N = 80) value of 25.699, 

p = 0.004, indicating that the model provided a statistically significant prediction of 

success.  The Nagelkerke pseudo R2 indicated that the model accounted for 

approximately 37 percent of the total variance.  The Hosmer and Lemeshow Test 

indicated an overall prediction success rate of 73.8 percent and correct prediction rates of 

66.7 percent for the “outbreak” group and 79.5 percent for the “no outbreak group.”  The 

classification cutoff value for predicting membership in the successful groups was 0.5.  

Table 3 displays the results of the fall season outbreak model. 
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Table 3.  Fall season model results 

Fall Model B Wald Sig. Exp (B) 
95% C.I. for 

EXP (B) 
      

Fall T0 Precip. Dev. (mm) -0.012 1.930 0.165 0.988 0.971 – 1.005 

 Fall T-1 Precip. Dev. (mm) (Sum) -0.005 0.014 0.907 0.995 0.920 – 1.077 

Fall T-2 Precip. Dev. (mm) (Spr) -0.003 0.300 0.584 0.997 0.985 – 1.009 

Fall T-3 Precip. Dev. (mm) (Win) -0.002 0.630 0.427 0.998 0.994 – 1.003 

Fall T0 Temp. Dev. (C)  0.435 1.375 0.241 1.545 0.747 – 3.195 

Fall T-1 Temp. Dev. (C) (Sum) -1.050 5.496 0.019 0.350 0.146 – 0.842 

Fall T-2 Temp. Dev. (C) (Spr) 0.365 1.272 0.259 1.440 0.764 – 2.714 

Fall T-3 Temp. Dev. (C) (Win) 0.438 1.296 0.255 1.549 0.729 – 3.292 

Fall T0 Bldg. Permits 0.003 0.047 0.828 1.003 0.974 – 1.034 

Fall T-1 Bldg. Permits (Sum) 0.010 0.624 0.430 1.011 0.985 – 1.037 

Constant -1.427 9.301 0.002 0.240  

 

Explanations of variable meanings included in Appendix A 

  

 The fall model revealed poor results overall.  The only significant variable, 

summer temperature deviation from normal (p = 0.019), too contained a negative 

coefficient and odds ratio less than one.  This indicates that it did not have much 

predictive influence on fall outbreaks.   

 

Verification 

Because it was significant, however, it was still verified using the same technique 

and years as the previous verifications (Figures 15 – 18). 
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  Figure 15.  California fall 2004 outbreak probabilities, based on model results,  

  compared to actual outbreaks. 

 

 
  Figure 16.  California fall 2008 outbreak probabilities, based on model results,  

  compared to actual outbreaks. 
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  Figure 17.  California fall 2011 outbreak probabilities, based on model results,  

  compared to actual outbreaks. 

 

 
  Figure 18.  California fall 2012 outbreak probabilities, based on model results,  

  compared to actual outbreaks. 
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The model-based results of the fall verification were poor, as expected, 

considering the general weakness of the model.  The overall high probability values are 

low for 2011 and 2012 (37 percent and 34 percent, respectively), and although 

exceptionally high for 2004 and 2008 (99 percent for both), they were highly inaccurate.  

No counties were consistently, accurately predicted for outbreak risk, but these results 

were expected due to the fact that the model contained no strongly predictive variables. 

 

Texas 

 The seasonal model built from the California study area data was then applied to 

West Texas using weighted linear combination in GIS to map predicted risk areas for 

Coccidioides at outbreak levels there.  All Texas county data were obtained from the 

same sources as the California data, and their values were seasonally aggregated and 

population normalized using the same methods previously defined (Figures 19 – 21). 
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  Figure 19.  Texas winter 2014 outbreak probabilities, based on model results. 
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  Figure 20.  Texas summer 2014 outbreak probabilities, based on model results. 
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  Figure 21.  Texas fall 2014 outbreak probabilities, based on model results. 

 

 

 Based on the results of the California verifications, it is reasonable to conclude 

that the winter Texas risk map is likely the most accurate, followed by the summer map.  

The fall map is likely very poor, and its results cannot be considered accurate nor can any 

meaningful information be gathered from them.  The spatial distribution of risk appears 
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sporadic, resulting in difficulty analyzing true high risk areas.  This is likely due to the 

scattered spatial distribution of the counties for which data were available.  Had data been 

available from more, or even spatially clustered counties, the results would likely have 

been easier to interpret.  In addition, the fact that seasonal building permit rates were the 

only predictive variables in both the winter and summer models, presents difficulty in 

analyzing risk areas because some of the Texas counties reported no building permits at 

all. 

When compared to the map of known and suspected endemic areas in Texas 

(Figure 1), the model-based high risk areas correspond with previously established high 

risk areas.  These areas include Ector and Midland Counties, which had both the highest 

populations and the highest numbers of building permits of all the counties in the study 

area (U.S. Census Bureau 2010, 2014).  These higher populated, higher developed areas 

fit the factors necessary for contracting coccidioidomycosis: soil disturbance and a 

human population to inhale the fungal spores (Chiller, Galgiani, and Stevens 2003; 

Arizona Department of Health Services 2012).   

Kinney County reported its highest number of building permits in the summer of 

2014 (U.S. Census Bureau 2014), which would explain it being a high risk area in the 

summer and low risk in the winter, when it reported no building permits the fall prior to it 

(its predictor variable). 

Potter County displayed particularly high winter risk, likely due to its high 

population growth and development patterns (Galgiani 1999, U.S. Census Bureau 2010, 

2014), as it is the location of a major university.  This county location is not included in 

even the suspected coccidioidomycosis risk areas in the original endemic area map.  This 
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may mean that either healthcare professionals are unaware of the potential risk there, 

causing the disease to go underdiagnosed, or that since disease cases are not reported in 

Texas, the map is simply out of date.  The endemic area may have expanded because of 

population changes since the last establishment of Texas risk areas, and this may warrant 

an updated map.  Further research will need to be conducted in this area, however, to 

establish whether coccidioidomycosis risk is as high as the model predicts. 

 

Limitations 

 There were a number of limitations that likely negatively affected the accuracy of 

the results of this study.  First, the availability of data for research was very poor.  This 

study originally intended to include California counties south of the 37 degrees north 

latitude line, all Arizona counties, Texas counties west of the 100 degrees west longitude 

line as the study area, as well as aerial dust concentrations and soil types and independent 

variables in the model.  Incomplete and imprecise data sets (or lack of data altogether), 

however, necessitated the removal of over half of the original study area and two 

variables from the study.  This likely resulted in a substantial decline in quality of results. 

 The availability of coccidioidomycosis cases in varying forms of report dates 

presented difficulty in determining the appropriate season in which to aggregate the cases 

to ensure accuracy of results.  In many cases, it was impossible to determine with any 

certainty the date of exposure, and this likely had a profound negative effect on the 

quality of results.  Without knowing the actual dates of exposure to Coccidioides spores, 

it is very difficult to assess with any certainty the environmental and anthropogenic 

factors with the highest contributions to that exposure. 
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 The climate differences between the California and Texas study areas limited the 

ability to extrapolate the results from one location to another.  Although both climates are 

considered mostly arid, southern California experiences Mediterranean climate patterns, 

which result in wet winters and dry summers, whereas West Texas has much drier 

winters and is wetter in the spring through fall seasons (National Weather Service 2011) 

(Appendix B).  Ideally, identical climates, or at least more-similar climates, would be 

analyzed and compared with one another, likely producing superior results.  However, of 

the two states that mandate reporting (Arizona and California), only California would 

release its coccidioidomycosis data for research. 

Finally, and most importantly, both the coccidioidomycosis data and climate data 

were aggregated to the county scale, an exceptionally coarse scale (especially in 

California) created by human delineated political boundaries that ignore the naturally 

occurring climate patterns and landscape changes that have significant impacts on disease 

patterns.  These unnatural lines of demarcation inaccurately group data into false 

aggregates and likely distort the results (Brooker, Hay, and Bundy 2002; Brownstein, 

Holford and Fish 2003).   

A potentially more accurate method for determining disease risk areas would be 

to determine the influence of climate patterns, interpolated from weather stations across a 

continuous landscape, on individually reported coccidioidomycosis cases that have been 

geocoded to actual sites of contamination.  This would also create the potential to include 

additional environmental independent variables, such as slope and aspect, which are 

inappropriate at the county scale because of their high spatial variability. 
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Unfortunately, due to healthcare laws like the Health Insurance Portability and 

Accountability Act of 1996 as well as state policy guidelines, it is often impossible to 

obtain reported disease cases at the individual level (U.S. Department of Health and 

Human Services 2014).  Therefore, the only available option is to obtain rates that have 

been aggregated to scales delineated by political boundaries. 
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VI.  CONCLUSION 

 Despite its limitations, this study established that building permits are significant 

predictors of seasonal disease risk in the winter and summer seasons.  It also identified 

the area around Potter County as a potentially new area of risk for coccidioidomycosis.  

This presents an opportunity for further research that includes attempting to isolate 

Coccidioides in the environment at this location in order to further study its niche 

requirements, as well as an assessment of whether people reporting coccidioidomycosis 

symptoms are being tested for the disease, and if so, how frequently those tests are 

returning positive results.   

This study also successfully utilized GIS to analyze and model 

coccidioidomycosis risk—an approach, which until now, had not been attempted.  With 

higher quality data that include a more comprehensive study area, a standardized method 

of reporting the date of disease exposure, a complete climate data set, building permit 

data set, and aerial dust concentration data set, and a more precise soil data set, it is likely 

that an accurate and predictive model could be constructed to determine disease risk in 

the future.   

This could potentially assist in the enhanced diagnosis and management of 

coccidioidomycosis in West Texas endemic areas, which in turn, could aid in alleviating 

complications that commonly arise when the disease is left untreated, thereby saving 

money and even lives (Kirkland and Fierer 1996; Chiller, Galgiani, and Stevens 2003; 

Galgiani et al. 2005; Tsang et al. 2010; Tsang et al. 2013). 
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APPENDIX A: LIST OF VARIABLE NAMES WITH EXPLANATIONS 

 

Win T0 Precip. Dev. (mm) – Winter precipitation deviation from 30-year normal, at 

time-zero (T0), in millimeters. 

 

Win T-1 Precip. Dev. (mm) (Fall) – Winter precipitation deviation from 30-year 

normal, time-lagged by one season, in millimeters. 

 

Win T-2 Precip. Dev. (mm) (Sum) – Winter precipitation deviation from 30-year 

normal, time-lagged by two seasons, in millimeters. 

 

Win T-3 Precip. Dev. (mm) (Spr) – Winter precipitation deviation from 30-year normal, 

time-lagged by three seasons, in millimeters. 

 

Win T0 Temp. Dev. (C) – Winter temperature deviation from 30-year normal, at T0, in 

°C. 

  

Win T-1 Temp. Dev. (C) (Fall) – Winter temperature deviation from 30-year normal, 

time-lagged by one season, in °C. 

 

Win T-2 Temp. Dev. (C) (Sum) – Winter temperature deviation from 30-year normal, 

time-lagged by two seasons, in °C. 

 

Win T-3 Temp. Dev. (C) (Spr) – Winter temperature deviation from 30-year normal, 

time-lagged by three seasons, in °C. 

 

Win T0 Bldg. Permits – Winter building permit rates, at T0. 

 

Win T-1 Bldg. Permits (Fall) – Winter building permit rates, time-lagged by one season. 

 

Sum T0 Precip. Dev. (mm) – Summer precipitation deviation from 30-year normal, at 

T0, in millimeters. 

 

Sum T-1 Precip. Dev. (mm) (Spr) – Summer precipitation deviation from 30-year 

normal, time-lagged by one season, in millimeters. 

 

Sum T-2 Precip. Dev. (mm) (Win) – Summer precipitation deviation from 30-year 

normal, time-lagged by two seasons, in millimeters. 

 

Sum T-3 Precip. Dev. (mm) (Fall) – Summer precipitation deviation from 30-year 

normal, time-lagged by three seasons, in millimeters. 

 

Sum T0 Temp. Dev. (C) – Summer temperature deviation from 30-year normal, at T0, in 

°C. 
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Sum T-1 Temp. Dev. (C) (Spr) – Summer temperature deviation from 30-year normal, 

time-lagged by one season, in °C. 

 

Sum T-2 Temp. Dev. (C) (Win) – Summer temperature deviation from 30-year normal, 

time-lagged by two seasons, in °C. 

 

Sum T-3 Temp. Dev. (C) (Fall) – Summer temperature deviation from 30-year normal, 

time-lagged by three seasons, in °C. 

 

Sum T0 Bldg. Permits – Summer building permit rates, at T0. 

 

Sum T-1 Bldg. Permits (Spr) – Summer building permit rates, time-lagged by one 

season. 

 

Fall T0 Precip. Dev. (mm) – Fall precipitation deviation from 30-year normal, at T0, in 

millimeters. 

 

Fall T-1 Precip. Dev. (mm) (Sum) – Fall precipitation deviation from 30-year normal, 

time-lagged by one season, in millimeters. 

 

Fall T-2 Precip. Dev. (mm) (Spr) – Fall precipitation deviation from 30-year normal, 

time-lagged by two seasons, in millimeters. 

 

Fall T-3 Precip. Dev. (mm) (Win) – Fall precipitation deviation from 30-year normal, 

time-lagged by three seasons, in millimeters. 

 

Fall T0 Temp. Dev. (C) – Fall temperature deviation from 30-year normal, at T0, in °C. 

 

Fall T-1 Temp. Dev. (C) (Sum) – Fall temperature deviation from 30-year normal, time-

lagged by one season, in °C. 

 

Fall T-2 Temp. Dev. (C) (Spr) – Fall temperature deviation from 30-year normal, time-

lagged by two seasons, in °C. 

 

Fall T-3 Temp. Dev. (C) (Win) – Fall temperature deviation from 30-year normal, time-

lagged by three seasons, in °C. 

 

Fall T0 Bldg. Permits – Fall building permit rates, at T0. 

 

Fall T-1 Bldg. Permits (Sum) – Fall building permit rates, time-lagged by one season. 
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APPENDIX B: CLIMOGRAPHS OF 30-YEAR MONTHLY NORMALS FOR EACH 

STATION IN STUDY  
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California (Golden Gate Weather Services 2011): 
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Texas (Golden Gate Weather Services 2011): 
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