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ABSTRACT

My thesis aims at designing a computational model to analyze gene

expression data to improve cancer diagnosis, specifically Acute Myeloid

Leukemia (AML), which is a type of aggressive blood cancer. As part of a team

of researchers in the Oncinfo Lab, I used Bayesian networks (BN) to model gene

expression data. A BN is a probabilistic graphical model where a set of random

variables represent nodes of a Directed Acyclic Graph (DAG). The edges of the

DAG model the conditional dependencies between the random variables. We

used established clustering methods to cluster data and group similar genes

together. Specifically, we applied Weighted Gene Co-Expression Network

Analysis (WGCNA) as a clustering mechanism to cluster our gene expression

data. For each cluster of genes, we used principal component analysis (PCA) to

compute a single value, called an eigengene. Eigengenes were represented by

nodes in the BN and dependency among those eigengenes were modeled by the

edges of the BN. The rational for using a BN in this framework is that it can

model gene expressions and dependencies, enabling us to use probability theory

to make scientific predictions. The application of our BN model is to identify

AML patients from another type of hematological malignancy. I performed the

classification of patients using a cross-validation technique and tested the

performance on an independent dataset. Moreover, I trained my model on a

training dataset with 366 samples and evaluated the performance on a test

dataset with 74 samples. The accuracy of predictions on train and test datasets

were 93.5% and 84%, respectively. Further improvements to the methodology are

required to improve its accuracy and make it appropriate for clinical use.
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I. INTRODUCTION

Acute Myeloid Leukemia (AML) is a cancer of the myeloid line of blood

cells in which bone marrow produces abnormal white blood cells, red blood cells,

or platelets. AML is the most common acute leukemia affecting adults, and its

incidence increases with age. It is a rare and aggressive type of blood cancer,

accounting for about 1.2% of total cancer deaths in the USA (Jemal et al., 2002).

Myelodysplastic Syndromes (MDS) is a disease that affects bone marrow

and blood. MDS is characterized by ineffective hematopoiesis, the ineffective

production of blood cells and platelets in the bone marrow (Albitar et al., 2002).

MDS is relatively mild and easily managed, but it can grow more severe over

time and even turn into AML. MDS has a high risk of developing into AML,

either gradually or rapidly (Shi et al., 2004). “Approximately 30% of patients

with MDS will progress and develop into AML” (Wang et al., 2011). MDS can be

argued to be preleukemia (Shi et al., 2004) or pre-AML but studies show that

MDS is a discrete entity, that is different from AML, and thus cannot be simply

said to be preleukemia (Albitar et al., 2002). This behavior makes it important

to analyze and compare the two diseases to gain a better biological insight.

This study is inspired by, and builds upon the co-expression network

analysis and Bayesian Network (BN). To perform co-expression network analysis,

we used Weighted Gene Co-expression Network Analysis (WGCNA) (Langfelder

& Horvath, 2008). WGCNA is a technique that can be used to perform various

operations including data reduction, feature selection, clustering, and data

exploration (Horvath, 2011). We used WGCNA, specifically, as a clustering

mechanism that groups similar genes together into same groups (clusters) based

on their coexpression values. The results of coexpression analysis are the gene

modules that contain genes with similar expression.

We summarize the biological information of each gene module in one

eigengene using Principal Component Analysis (PCA) (Jolliffe, 2002). PCA is a
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statistical procedure that uses an orthogonal transformation to convert a set of

observations of possibly correlated variables into a set of values of linearly

uncorrelated variables called principal components (Baker et al., 1993). We used

these eigengenes to train a Bayesian network (BN) that could be used as a

predictive model. BNs represent a set of random variables and their conditional

dependencies via a Directed Acyclic Graph (DAG)(Christofides & Theo-ry, 1975;

Jensen, 1996).

A BN consists of a Directed Acyclic Graph (DAG) and either a set of

conditional probability tables for discrete data or probability density functions

for continuous data. The structure of a DAG is defined by two sets: the set of

nodes (vertices) and the set of directed edges. The nodes represent random

variables and are drawn as circles labeled by the variable names. The edges

represent direct dependency among the variables and are drawn by arrows

between nodes (Ben-Gal, 2007). In a DAG, if there is a directed edge coming

from node ‘X’ to another node ‘Y’ then X is called a “parent node” of Y and Y

becomes a “child node” of X. In this study, each node is an observed variable

modeling the expression value of an eigengene. Figure I.1 shows the schematic

diagram explaining the methodology for computing a BN model using the MILE

study data.

It is important to determine how well our predictive model predicts the

type of disease of a given patient. Cross validation (CV) is a model validation

technique used to assess how the results of a statistical analysis will generalize to

an independent data set (Refaeilzadeh et al., 2009; Kohavi et al., 1995). I used

5-fold Cross Validation (CV) that performs five rounds of CV to validate the

model. After getting the individual predictions performed by the 5-fold CV, I

took majority vote on the results to determine consensus predictive capability of

the model. The consensus predictive model was used to perform prediction on

train (MILE) and test (BCCA) datasets. We performed all our statistical

analysis using R programming Language.
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Figure I.1: Schematic view of the methodology. The input is the gene expres-
sion profile (matrix), gathered and processed from MILE study. We Applied
WGCNA for clustering, to find the coexpression network built according to
the correlation between gene pairs. We summarized the biological informa-
tion of each module of genes into an eigengene vector. A BN is fitted to the
eigengenes to delineate the relationships between modules.
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II. METHODOLOGY

We downloaded expression profiles from Gene Expression Omnibus

(GEO) repository (series accession number GSE15061)(Mills et al., 2009). The

dataset is part of the expression MIcroarray analysis for diagnosis of LEukemia

(MILE) series and consists of 202 AML, 164 MDS, and 69 non-leukemia samples.

We selected only the AML and MDS samples for computing the predictive model.

Apart from the MILE study dataset, we also have access to RNA sequencing

(RNA-Seq) data from peripheral blood cells or bone marrow blast from British

Columbia Cancer Agency (BCCA) (Ozsolak & Milos, 2011). The BCCA dataset

contains 133 AML and 22 MDS samples for 51,019 transcripts of genes.

We have clinical data for both MILE and BCCA datasets. Clinical data

contains information about the actual disease type of each of the samples. For

BCCA samples, we also have information such as age, gender, and disease

sub-type. In this study, clinical information was used as the gold standard to

validate our BN model..

Pre-processing of Data

Data preprocessing is a data mining concept that involves eliminating

unwanted information or noise from the input data, and transforming the data

into a format that is more relevant and informative. We used R script to retrieve

Differentially Expressed (DE) data from GEO repository by eliminating

irrelevant samples and transforming it using logarithm base 2 to improve its

interpretability. To refine the large dataset downloaded from GEO repository, we

asked for the top 18,250 differentially expressed probes of genes corresponding to

relatively large sample size of 202 AML and 164 MDS cases.

The downloaded dataset consisted of probes that mapped to one or more

genes, which means that there was a many-to-many relationship among the
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probes and genes. We filtered the 18,250 DE probes so that each of the probes

were mapped to a single Entrez gene. We ended up with 13,294 probes mapping

to 9,178 Entrez genes. In this processed dataset, each probe maps to exactly one

gene, but for some genes, there can be several such probes. Althogh we reduced

the size of data, its behavior and pattern was kept intact, which allowed us to

study and perform our analysis easily and in a more manageable fashion.

We processed the BCCA dataset by keeping only the samples that had

same disease type as MILE dataset samples. The processed BCCA dataset

contains 52 AML and 22 MDS samples.

Clustering

Clustering is one of the most widely used unsupervised learning

techniques for data mining (Jain et al., 1999). We used established clustering

technique, Weighted Gene Co-expression Network Analysis (WGCNA), to

identify gene modules in the data based on co-expression analysis. In this

project, we applied WGCNA only on the AML samples of the MILE dataset.

Genes with relatively higher correlation with other genes for the 202 AML

samples were clustered together into one cluster (Langfelder & Horvath, 2008). A

gene module is defined as a set of co-expressed genes to which the same set of

transcription factors binds (Bar-Joseph et al., 2003). Here, gene modules are the

clusters that contain a set of co-expressed genes. The co-expression among the

genes is calculated using Pearson correlation (Benesty et al., 2009). Pearson

correlation is a measure of linear correlation between two variables X and Y,

giving a value between +1 and -1 inclusive, where +1 is total positive

correlation, 0 is no correlation, and -1 is total negative correlation. It is widely

used as a measure of the degree of linear dependence between two variables.
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Finding interesting modules and genes

After clustering MILE data using WGCNA, we ended up with 33 gene

modules (Figure III.2), which we wanted to use for learning our BN. Before

moving forward, we also wanted to find the modules that were most interesting

to us, which meant that we had to determine the modules and genes that show

high dependency and/or are shown to be related with AML/MDS in various

studies. This process involved two major steps.

Finding hub genes

A hub gene is a node/gene that has the highest intra-modular

connectivity within a module. Since hub nodes have been found to play an

important role in many networks, highly connected hub genes are expected to

play an important role in biology as well (Langfelder et al., 2013). In this

process, we used Pearson correlation (Benesty et al., 2009) to calculate

intra-modular connectivity within the gene modules (i.e. the connectivity of

nodes to other nodes within the same module).

Calculating miller scores

A way to identify modules that are interesting to our study is to find out

how frequently genes within the module were reported by other studies. For this,

we used data from Miller & Stamatoyannopoulos (2010) study that

systematically surveyed 25 published reports of gene expression profiling in AML

(Miller & Stamatoyannopoulos, 2010). We used this survey to score the modules

based on their known association with AML. Figure II.1 shows the enrichment of

modules in genes associated with AML that is reported in the Miller &

Stamatoyannopoulos (2010) study. For instance, in the figure, the red bar reports

the number and percentage of genes in each module that were reported to be

related to AML in at least two studies.
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Figure II.1: Miller scores. The 33 modules identified using MILE dataset are sorted on
the x-axis based on their sizes. The y-axis shows the percentage of genes in
each module that were reported to be related to AML in at least 2 (red),
3 (green), 4 (blue), and 5 (purple) studies according to Miller et al. survey
(Miller & Stamatoyannopoulos, 2010).
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Computing module eigengenes

Our strategy for computing a computational network is to use the

modules of genes as nodes of BN. Because the nodes of BN can only be

represented by a single random variable, we cannot use the whole module of

genes as a node. To overcome this, we summarized the biological information of

each module in one eigengene using Principal Component Analysis

(PCA)(Jolliffe, 2002).

An eigengene of a module is a weighted average of expressions of all

genes in that module. The weights are adjusted so that the loss in the biological

information is minimized (Jolliffe, 2002; Oldham et al., 2006). Computation of

eigengenes transformed expression data from “sample × genes” space to “sample

× eigengenes” space (Alter et al., 2000), which can be used for further analysis.

Figure II.2 shows a graphical representation of the steps we followed to compute

module eigengenes from our gene expression dataset.

Data processing for BN learning

Our data was continuous and needed to be processed before we could use

it for BN learning. First, our data needed to be discretized. Discrete data allows

us to model complex non-linear interactions between genes without resorting to

computationally prohibitive calculations over continuous distributions (Yu et al.,

2002). We used 3-interval discretization, because it has been found to be optimal

for BN learning (Yu et al., 2002).

After processing the existing expression data, we needed a marker node

in our network that can show the correlation between nodes with AML. To map

the correlation between nodes and the disease, we introduced a marker node

“Effect” whose expression value is “1” for AML disease samples and “0” for MDS

disease samples. We used clinical data to determine the samples belonging to

either AML or MDS disease.
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Figure II.2: Graphical presentation of the steps for data processing. MILE data
is downloaded and cleaned through noise elimination and transformation.
WGCNA is used as a clustering technique to compute gene modules. Final
outcome is the module eigengene vector which will be used for BN learning.
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To find out the nodes that are correlated with AML, we used Markov

blanket concept of BN. A Markov blanket for a node is a set of nodes composed

of the parents of the node, children of the node and the parents of children of

that node (Pearl, 2014). Markov blanket of a node is the only knowledge needed

to predict the behavior of that node (Pearl, 2014). We blacklisted the children of

Effect node by eliminating all the edges coming from it. This way, the Markov

blanket for Effect node consists only its parent nodes. Our assumption was that

the parent nodes of the marker node could be the modules enriched with genes

that are associated with AML.

Learning the bayesian network

We used the discretized processed data to learn the BN. A study by Yu

et al. (2002) suggests that a greedy search method with random restarts,

employing Bayesian Dirichlet equivalent (BDe) scoring metric (Heckerman et al.,

1995), and being given data discretized with 3-interval discretization is best BN

inference algorithm for recovering the simulated genetic pathways. We learned

our BN from 500 networks with BDe scoring and called the resulting networks as

candidate networks. The BDe scores were used as a measure of the goodness of

the network. We took an average of the one third candidate networks with the

best score and created a consensus network that maps the overall behavior of the

individual networks.

Figure II.3 shows the steps we followed to compute the consensus network.

Cross validation

A single round of cross validation involves partitioning the data into

complementary subsets, performing the analysis on one subset (training set), and

validating the analysis on the other subset (validation set or testing set)

(Refaeilzadeh et al., 2009). In typical cross-validation, the training and validation

sets must cross-over in successive rounds such that each data point has a chance

10



Figure II.3: Graphical presentation of the steps for BN learning. Input data is
received in the form of eigengene values. After processing individual BNs
are learned for 500 random restarts and corresponding scores are calculated.
Finally, consensus network is computed based on the top third individual
networks with best BDe scores.
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of being validated against (Refaeilzadeh et al., 2009). To reduce variability,

multiple rounds of cross-validation are performed using different random

partitions and the validation results are averaged over the rounds. In this study,

we used five rounds of CV, called the 5-fold CV, to validate our model. In each

round of 5-fold CV, 1/5th of the dataset were considered as “testing/validation”

set and 4/5th of the dataset were considered as “training” set.

Average voting and performance measurement

In 5-fold CV, we computed BN model on the “training” sets and used

them to predict disease type on the “validation”/“testing” sets. We ended up with

five different models for classification. We used confusion matrix, also known as

error matrix, to find other statistical performance measurements such as

accuracy, sensitivity, and precision (Stehman, 1997; Fawcett, 2006). Accuracy is

the proportion or percentage of correcly predicted labels over all predictions.

Sensitivity, alson known as recall, measures the proportion of positive samples

that are correctly identified as such. Precision, also known as positive predictive

value, measures the proportion of actual positive samples in the population

being tested (Bishop, 2007; James et al., 2013). Positive samples are the samples

that we want to identify in our study. We considered “AML” samples as positives

and “MDS” samples as negatives. Figure II.4 shows the steps we followed to

perform the CV and measure the performances.
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Figure II.4: Steps for 5-Fold CV and performance measurement. We partitioned
the eigengene matrix into five sets of training and testing subsamples. For
each partition, we use training samples to learn the BN and testing samples
to measure the performance. Final outcome is the confusion matrix along
with performance measures.
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III. RESULTS

Data processing and clustering

We used MILE dataset to compute the predictive model. The MILE

dataset consists of 366 samples. We applied WGCNA on AML samples and

identified 33 gene modules as clusters of genes that have high correlation in the

202 AML cases. The cluster dendrogram (Figure III.1) shows the module

assignments of the 33 gene modules where each color represents exactly one

module. WGCNA could not confidently assign 4,125 genes to any module

because they hardly correlate with any other gene. We grouped those 4,125 genes

in “module 0” and considered them as outliers for this study. The genes in

module 0 are represented by “gray” color in figure III.1. Table III.1 lists the

module assignments and their sizes. We plotted the distribution of modules and

sizes (Figure III.2) ignoring the outliers.

Computing eigengenes and learning BN structure

We computed eigengene values for each of the modules. The resulting

eigengene matrix contains 366 × 33 elements for the 33 modules obtained from

WGCNA analysis. The rows of the eigengene matrix corresponds to the data

samples and columns correspond to modules. We plotted heatmap for the

expression of all eigengenes in MILE dataset (Figure III.3). In the heatmap,

eigengenes show significantly different patterns in the samples (rows) for the two

disease types. We hypothesized that the eigengenes are important biological

signatures that can predict the disease type solely based on gene expression. To

validate this hypothesis, we computed a predictive model that can use

eigengenes expression to predict the disease type.

We processed data by applying 3-interval discretization and then adding

“Effect” marker node to it. We used the processed data to learn the BN

14



Figure III.1: Cluster dendrogram for AML.WGCNA assigned genes into 33 different
modules. Each module assignment is represented by a color. The module
color “gray” represents the genes that did not correlate to any other gene
properly.
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Figure III.2: The distribution of module sizes. The 33 modules are sorted on the
x-axis based on their size (i.e. the number of genes they contain).
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Table III.1: Modules and sizes
Table lists the modules and the number of genes they contain (size of the module).
“Module 0” contains 4,125 outlier genes that were ignored in this study.

Module Size Module Size Module Size
0 4125 1 888 2 655
3 363 4 333 5 296
6 255 7 251 8 234
9 217 10 136 11 119
12 113 13 94 14 87
15 83 16 75 17 75
18 74 19 67 20 67
21 62 22 56 23 54
24 52 25 45 26 44
27 43 28 42 29 39
30 37 31 35 32 29
33 21

structure. As suggested by the Yu et al. (2002) study, we learned multiple BN

structures to get networks using random restarts.

To decide the number of networks needed for this study, we

experimented with various number of networks including 10, 50, 100, 200, and

500 networks. The BNs learned from lower number of networks (below 500) did

not converge well and had ample room for improvement (Figure III.4). BN

learning from 500 networks converged well with very little room for improvement

(Figure III.5). Because the BN structure with 500 random networks converged

well, repeating the experiment for a higher number of networks may not result

into a different predictive model. Figures III.6 and III.7 shows the consensus BN

structures learned from 500 and 5,000 random networks, respectively. The two

models have similar structure including ‘module 6’ and ‘module 12’ being the

parent nodes of ‘Effect’ node in both the networks which suggests that these two

modules could contain genes that are related with AML. We chose 500 networks

for our experiment.
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Figure III.3: Expression of eigengenes in MILE dataset. Eigengenes show different
pattern in the samples (rows) for the two disease. Modules (columns) are
clustered together based on the similarity of expression in MILE dataset.
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Figure III.4: Plot for improvement of score from 50 random networks. The plot
shows the improvement of score for learning BN on MILE data from 50
random networks. There is ample room for improvement.

Fitting parameters and 5-fold cross validation

BNs can handle uncertainty using the theory of probability. To make a

predictive BN model, we needed to fit the conditional dependency tables for the

nodes of BN. We used bn.fit() function of bnlearn package (Nagarajan et al.,

2013) to fit BN parameters. The resulting network with fitted parameters is

called predictive model and we can use it for predicting the disease type of patients.

To validate our strategy, we used 5-fold CV. We partitioned the processed

input data into five random partitions keeping 1/5th of data as “validation” set

and 4/5th of the data as “training” set. Iteratively, we learned BN structure and

fitted the parameters on “training” samples of each of the partitions. As a result,

we computed five different predictive models and used them to predict the

disease types on their respective “validation” samples. The (a) sections of

Appendix A show five BN structures computed while performing 5-fold CV.
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Figure III.5: Plot for improvement of score from 500 random networks. The plot
shows the improvement of score for learning BN on MILE data from 500
random networks. The model converged well and thus chose 500 networks
for learning our predictive BN model.
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Figure III.6: Consensus BN structure for 500 random networks. This consensus
BN was computed on MILE data for 500 networks computed using ran-
dom restarts. Modules are represented as nodes and the edges denote the
dependency between connected nodes. Effect is the marker node for AML
disease.

21



Figure III.7: Consensus BN structure for 5,000 random networks. This consensus
BN was computed on MILE data for 5,000 networks computed using ran-
dom restarts. Modules are represented as nodes and the edges denote the
dependency between connected nodes. Effect is the marker node for AML
disease.
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Measuring performance and average voting

As a result of the validation performed using five predictive models, we

got five confusion matrices along with accuracy, sensitivity, precision (positive

predictive value), and other statistical measures. The (b) sections of Appendix A

show individual confusion matrices and the performance measures for all the

partitions computed while performing 5-fold CV. The range of accuracy on the

validation set of 5-fold CV was 78.5%-94.6% with an average accuracy of 88%,

while the range of accuracy on the training set of the 5-fold CV was 88%-97%

with an average accuracy of 93.2% (Table III.2).

I performed majority voting of the five individual predictions to get

consensus prediction for 366 samples of MILE data. After taking the majority

vote, we found out that 24 samples were misclassified. The confusion matrix and

statistical measurements for the majority voting, summarized over the results of

five predictive models computed using 5-fold CV (Figure III.8), shows that the

accuracy of the consensus prediction is 93.4%. The recall (sensitivity) and

precision were 90.1% and 97.85%, respectively. Table III.2 lists the performance

of individual predictive models, and their mean on both training and validation

data sets. There was not a considerable difference between the mean accuracies

for training and validation sets; however, we found that the consensus accuracy

(93.4%) was slightly better than the mean accuracies on training (93.2%) and

validation (88%) sets of MILE dataset. Also, the consensus accuracy was better

than the mean accuracy of the models (92.2%) on the complete MILE dataset

(Table III.3). This shows that taking an average vote of the predictions could

result in a better predictive model. Appendix B contains a table of all the

individual model predictions, and majority vote of individual predictions on

MILE dataset.
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Figure III.8: Performance measurements for the average vote. The confusion ma-
trix shows that 20 MDS samples were misclassified as AML and 4 AML
samples were misclassified as MDS. Consensus accuracy is 93.4% along with
97.85% recall (sensitivity) and 90.1% precision (positive predictive value).

Prediction using the model on BCCA data

One of the most intriguing facts about BNs is that they can handle

uncertainty using probability theory. MILE data is a microarray data which was

used to train the predictive model in this study. We have access to 155 samples

of RNA Sequence (RNA-Seq) data (BCCA dataset). The technologies used for

calculating the differential expressions in MILE and BCCA dataset are different.

We validated our model on BCCA data to see how well it predicts the patients.

BCCA dataset contains 155 samples of data with various disease types, including

74 samples of gene expressions with the same disease type as MILE dataset. For

this experiment, we kept only the samples with disease type same as MILE

dataset and thus, we ended up with 54 AML samples and 22 MDS samples of

BCCA data.

We used the five predictive models to predict the disease type on 74

samples of BCCA dataset and computed five different results. After taking a

majority vote on the individual predictions, we found out that our consensus
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model misclassified 12 samples. The confusion matrix and statistical measures

calculated for the prediction results on BCCA data (Figure III.9) shows that our

model predicted the patients with 83.8% accuracy, 84.5% precision, and 94.3%

recall. Table III.4 lists the performance of individual predictive models, mean of

the performances, and the performance of average vote on BCCA dataset. The

mean accuracy of the predictive models was 77% while the consensus accuracy

was 83.8%. Consensus network allows us to make our model safe from noise or

accidental predictions and testing on both MILE and BCCA data shows that the

performance of the consensus predictive model is better than the mean of five

individual predictive models. Appendix C contains a table of all the individual

predictions, and majority vote of individual predictions on BCCA dataset.

We computed five predictive models as a result of 5-fold CV and tested

BCCA dataset on each of those models. The predictions by consensus is better

than the individual models predictions (Table III.4). Figures in Appendix D show

the performances of each of the individual predictive models on BCCA dataset.

Table III.2: Statistical measures on training and test subsets of MILE dataset.
Table lists the statistical performance measurements computed as result of 5-fold
CV predictive models on the training (4/5) samples and testing (1/5) samples of
MILE dataset.

Training Set Testing Set
Model Accuracy Precision Recall Accuracy Precision Recall
Model 1 96.9 95.7 98.7 78.4 71.8 84.8
Model 2 92.8 89.6 97.3 89.2 84.2 94.1
Model 3 91.5 88.8 87.4 86.5 80.1 94.5
Model 4 88 83.1 94.3 94.6 95.2 95.2
Model 5 96.6 96.9 96.9 91.5 95.1 90.1
Mean 93.2 90.8 94.9 88 85.2 91.8

Comparing prediction results

Our consensus predictive BN model performed prediction on the MILE

dataset with an accuracy of 93.5%. The model misclassified 20 AML samples and
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Table III.3: Statistical measures on overall MILE dataset.
Table lists the statistical performance measurements by all the predictive models
on 366 samples of MILE dataset. The performance of our study is better than the
predictive performance of Mills et al. (2009) study on MILE dataset (Table III.5).

Model Accuracy Precision Recall
Model 1 93.2 96.3 91.1
Model 2 92.1 96.8 88.6
Model 3 90.4 95.1 87.1
Model 4 89.4 94.5 85.6
Model 5 95.6 95.6 96.5
Mean 92.2 95.7 89.8

Consensus 93.5 97.9 90.1
Mills et al. (2009) study 73.8 93.1 69.6

Table III.4: Statistical measures on BCCA dataset.
Table lists the statistical performance measurements by all the predictive models
on 74 samples of BCCA dataset.

Model Accuracy Precision Recall
Model 1 81.1 85.2 88.5
Model 2 68.9 83.7 69.2
Model 3 81.1 82.8 92.3
Model 4 79.7 80.3 94.2
Model 5 74.3 79 86.5
Mean 77 82.2 86.2

Consensus 83.8 84.5 94.2
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Figure III.9: Performance measurements for the average vote on BCCA data.
The confusion matrix shows that all the 3 MDS cases were misclassified
to be AML and 9 AML cases were misclassified to be MDS. Consensus
accuracy is 83.8% along with 84.5% recall (sensitivity) and 94.2% precision
(positive predictive value).

4 MDS samples, making a total of 24 misclassified samples. The accuracy of the

consensus model on only AML samples was 90.1% and on only MDS samples

was 97.6%.

A study by Mills et al. (2009) was conducted on MILE dataset and it

performed classification with an approximate accuracy of 93% on AML samples

and 50% on MDS samples. Table III.5 shows the confusion matrix for the actual

and predicted samples by Mills et al. (2009) study. The accuracy, precision, and

recall for that study was 73.8%, 93.1% and 69.6%, respectively (Table III.3). The

study uses a diagnostic classification (DC) model, developed for the MILE study,

to distinguish leukemia from MDS and from nonleukemic conditions (Mills et al.,

2009). DC model was based on a margin tree graph that was generated following

a method previously established in the use of high-dimensional classification of

cancer microarray data (Haferlach et al., 2010; Tibshirani & Hastie, 2007).

Margin tree classifiers such as DC model choose the number of classes required,

seek the line that partitions the classes into groups, calculate the maximum
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margin1 for the classes, and then use approaches such as greedy (Cormen et al.,

2001), single linkage, or complete linkage (Manning et al., 2008, p. 350) to group

the samples into chosen classes (Tibshirani & Hastie, 2007).

Table III.5: Confusion matrix for Mills et al. (2009) study.
Table shows the confusion matrix for Mills et al. (2009) study. “AML” samples are
considered positive.

Actual
AML MDS

Predicted AML 188 82
MDS 14 82

Mills et al. (2009) study predicted AML and MDS samples of MILE data

with an accuracy of 93% and 50%, respectively, while our study predicted AML

and MDS samples of MILE data with an accuracy of 90.1% and 97.6%. Our

predictive model has slightly less accuracy on AML samples of MILE data but

the performance of our model on MDS samples of MILE data is exceptional.

Also, the overall performance of our model is better than Mills et al. (2009)

study (Table III.3).

Apart from MILE data predictions, we also used the predictive BN

models to predict disease type on BCCA dataset and computed a consensus

model based on the individual results. On BCCA dataset the consensus accuracy

was 83.8% along with 94.3% accuracy on only AML and 60% accuracy on only

MDS samples. The accuracy on MDS samples of BCCA dataset are not as good

as the accuracy on MILE dataset MDS samples but still its better than the MDS

sample accuracy of Mills et al. (2009) study. The accuracy on AML samples of

BCCA dataset (94.3%) is better than the accuracy on AML samples of MILE

dataset (90.1%) and accuracy on AML samples of Mills et al. (2009) study (93%).

The DC model or the margin tree graph used for classifying the diseases

in Mills et al. (2009) study compare the performance of the “margin tree” to the

closely related “all-pairs” (one versus one) support vector machine, and nearest
1The margin is the minimum distance of the data points to the decision line.
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centroids on a number of cancer microarray data sets. They found that the

margin tree has accuracy that is competitive with other methods and offers

additional interpretability in its putative grouping of the classes (Tibshirani &

Hastie, 2007). Because our model performs better predictions, we can conclude

that our model is better than “margin tree graph”, “support vector machine”, and

“nearest centroids” in predicting AML/MDS disease type of samples.

Analyzing predictive model structures

We computed five predictive models as a result of 5-fold CV. “Effect”

node in the predictive model shows the correlation of the modules with AML

disease. Table III.6 lists the parent nodes of Effect for each of the models. The

most common modules that are parent of Effect node are modules 1, 4, 12, 28,

and 30 (Table III.7).

As per the BN structure learned from 500 networks (Figure III.6),

modules 6 and 12 are the modules that could be enriched with the genes that

correlate with AML. Module 6 contains genes that are related to “Cell cycle”

pathway and Module 12 contains genes that are related to “Extra cellular

Matrix” pathway. A biological pathway is a series of actions among molecules in

a cell that leads to a certain product or a change in a cell (Schuster et al., 1999).

Further experiments could be conducted to study the genes that could be related

to AML.
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Table III.6: Parent nodes of Effect node.
Table lists the parent nodes of “Effect” node, as predicted by five predictive models
as a result of 5-fold CV. “ME” stands for “Module Eigengenes” and it denotes the
“gene modules”.

Model Parent nodes of Effect
Model 1 ME1, ME4, ME12, ME28, ME30
Model 2 ME1, ME3, ME4, ME21
Model 3 ME1, ME4, ME12
Model 4 ME4, ME12
Model 5 ME6, ME12, ME14, ME28, ME30

Table III.7: Frequency of parent nodes of Effect node.
The table shows the frequency of the parent nodes of “Effect” node in table III.6.
Module 1, 4, and 12 were modules that were chosen as parent of Effect node by
majority of the predictive models.

Module 4 12 1 28 30 3 6 14 21
Frequency 4 4 3 2 2 1 1 1 1
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IV. DISCUSSION

Biological processes in a cell often require coordination between multiple

genes. We used gene network analysis to model the interaction between genes

(Langfelder et al., 2013). Using network analysis, we can examine the differences

in gene expression profiles of samples affected by AML or MDS diseases

(Figure III.3). Our study shows how a Bayesian network learned on module

eigengenes can be used as a predictive model to predict the disease type of

patients solely based on their gene expression data.

We built a predictive model based on MILE data and validated it on

BCCA data. On the training dataset, our model was able to predict the disease

type of MILE samples with 93.5% accuracy. However, when used on the test

dataset, it predicted disease type of BCCA samples with an accuracy of 83.8%.

The experiments show that, training a BN on microarray data (MILE) and

testing it on RNA-Seq data (BCCA) gives comparatively less accurate

predictions, however, the predictions are better than other studies (Mills et al.

(2009)).

Our BN modeled MILE and BCCA dataset that were generated using

different technologies, therefore, we believe that BNs are capable of modeling

heterogeneous data. Further studies could use this capability of BNs in analyzing

data acquired using different sources or technologies. A suggestion for future

experiments would be to reverse the process and see how well a predictive model

based on BCCA data can predict samples of MILE data. It is also interesting to

test the results of using a smaller dataset for training and a larger dataset for

validation.

This study has the potential to scale to experiments that study large

network of genes by analyzing co-expressions or BNs to identify causal

relationships between genes. The results of such experiments could be useful in

pinpointing the cause and origin of diseases and can potentially aim to find out
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novel treatment plans.

Novelty

An eigengene summarizes the biological information in a module with a

single value. In this study, they were the features to compute our model.

Eigengenes can map thousands of genes with small number of features which

allows us to study large number of genes in a single model. In contrast, the

studies that tried to use BNs to study interaction between genes, had a

restriction on the number of genes (Yu et al., 2002). Those studies could use only

few genes as features, but our model can use thousands of genes as

features (Zhang et al., 2013; Friedman & Koller, 2003).

Applications

This study also finds out the module of genes that could be related to

the AML. We found out that the genes within modules 1, 3, 4, 6, 12, 14, 21, 28,

and 30 (Table III.6, III.7, and figure III.6) could be related to AML. This

information narrows down the search space for the studies that try to find out

the genes that cause of the disease.
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APPENDIX SECTION

APPENDIX A

(a) BN structure.

(b) Statistical measures.

BN structure and statistical measures for partition 1 of 5-fold CV.
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(a) BN structure.

(b) Statistical measures.

BN structure and statistical measures for partition 2 of 5-fold CV.
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(a) BN structure.

(b) Statistical measures.

BN structure and statistical measures for partition 3 of 5-fold CV.
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(a) BN structure.

(b) Statistical measures.

BN structure and statistical measures for partition 4 of 5-fold CV.
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(a) BN structure.

(b) Statistical measures.

BN structure and statistical measures for partition 5 of 5-fold CV.
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APPENDIX B

Average vote results on MILE dataset

Sample Actual Part 1 Part 2 Part 3 Part 4 Part 5 Vote Accuracy

GSM376265 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376379 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376187 AML AML AML AML AML AML AML TRUE

GSM376274 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376060 AML AML MDS AML AML AML AML TRUE

GSM376311 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376138 AML AML AML AML AML AML AML TRUE

GSM376290 MDS MDS MDS MDS MDS AML MDS TRUE

GSM376189 AML AML AML AML AML AML AML TRUE

GSM376071 AML AML MDS AML AML AML AML TRUE

GSM376070 AML AML AML AML AML AML AML TRUE

GSM376141 AML AML AML AML AML AML AML TRUE

GSM376364 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376409 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376142 AML AML AML MDS AML AML AML TRUE

GSM376114 AML AML AML AML AML AML AML TRUE

GSM376321 MDS AML MDS MDS MDS MDS MDS TRUE

GSM376348 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376215 AML AML AML AML AML AML AML TRUE

GSM376305 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376157 AML AML AML AML AML AML AML TRUE

GSM376163 AML AML AML AML AML AML AML TRUE

GSM376394 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376241 AML AML AML AML AML AML AML TRUE

GSM376410 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376386 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376292 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376094 AML AML AML AML AML AML AML TRUE

GSM376411 MDS MDS MDS MDS MDS MDS MDS TRUE

Continued on next page

38



Table – continued from previous page

Sample Actual Part 1 Part 2 Part 3 Part 4 Part 5 Vote Accuracy

GSM376051 AML MDS AML MDS MDS MDS MDS FALSE

GSM376283 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376174 AML AML AML AML AML AML AML TRUE

GSM376186 AML AML MDS MDS MDS AML MDS FALSE

GSM376120 AML AML AML AML AML AML AML TRUE

GSM376273 MDS MDS AML AML AML MDS AML FALSE

GSM376498 AML AML AML AML AML AML AML TRUE

GSM376067 AML AML AML AML AML AML AML TRUE

GSM376092 AML MDS MDS MDS MDS AML MDS FALSE

GSM376072 AML AML AML AML AML AML AML TRUE

GSM376408 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376315 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376123 AML AML AML AML AML AML AML TRUE

GSM376254 AML AML AML MDS MDS AML AML TRUE

GSM376126 AML AML AML AML AML AML AML TRUE

GSM376340 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376151 AML AML AML AML AML AML AML TRUE

GSM376357 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376414 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376423 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376168 AML AML AML AML AML AML AML TRUE

GSM376256 AML AML MDS AML AML AML AML TRUE

GSM376136 AML AML AML AML AML AML AML TRUE

GSM376372 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376260 AML AML AML AML AML AML AML TRUE

GSM376329 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376058 AML AML AML AML AML AML AML TRUE

GSM376183 AML AML AML AML AML AML AML TRUE

GSM376235 AML AML AML AML AML AML AML TRUE

GSM376418 MDS MDS MDS MDS MDS MDS MDS TRUE

Continued on next page
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Table – continued from previous page

Sample Actual Part 1 Part 2 Part 3 Part 4 Part 5 Vote Accuracy

GSM376095 AML AML AML AML AML AML AML TRUE

GSM376359 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376402 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376360 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376185 AML AML AML AML AML AML AML TRUE

GSM376266 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376358 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376213 AML AML AML AML AML AML AML TRUE

GSM376374 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376375 MDS MDS MDS MDS AML MDS MDS TRUE

GSM376193 AML AML MDS MDS MDS AML MDS FALSE

GSM376316 MDS MDS AML MDS MDS MDS MDS TRUE

GSM376342 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376052 AML AML AML AML AML AML AML TRUE

GSM376399 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376267 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376272 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376393 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376086 AML AML AML AML AML AML AML TRUE

GSM376066 AML AML AML AML AML AML AML TRUE

GSM376326 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376257 AML AML AML AML AML AML AML TRUE

GSM376074 AML AML AML AML AML AML AML TRUE

GSM376279 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376137 AML AML MDS MDS MDS AML MDS FALSE

GSM376361 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376276 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376236 AML AML AML AML AML AML AML TRUE

GSM376188 AML MDS MDS MDS MDS AML MDS FALSE

GSM376178 AML AML AML AML AML AML AML TRUE

Continued on next page
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Table – continued from previous page

Sample Actual Part 1 Part 2 Part 3 Part 4 Part 5 Vote Accuracy

GSM376330 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376325 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376209 AML AML AML AML AML AML AML TRUE

GSM376155 AML AML AML AML AML AML AML TRUE

GSM376242 AML AML AML AML AML AML AML TRUE

GSM376110 AML AML AML AML AML AML AML TRUE

GSM376378 MDS MDS MDS MDS MDS AML MDS TRUE

GSM376199 AML AML AML AML AML AML AML TRUE

GSM376366 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376149 AML AML AML AML AML AML AML TRUE

GSM376291 MDS MDS MDS AML MDS MDS MDS TRUE

GSM376207 AML AML AML AML AML AML AML TRUE

GSM376109 AML AML AML MDS AML AML AML TRUE

GSM376054 AML AML AML AML AML AML AML TRUE

GSM376262 AML AML AML AML MDS AML AML TRUE

GSM376062 AML AML AML AML AML AML AML TRUE

GSM376134 AML AML AML AML AML AML AML TRUE

GSM376415 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376407 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376308 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376204 AML AML AML AML AML AML AML TRUE

GSM376196 AML AML AML AML AML AML AML TRUE

GSM376080 AML AML AML AML AML AML AML TRUE

GSM376239 AML MDS MDS MDS MDS AML MDS FALSE

GSM376313 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376338 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376173 AML AML AML AML AML AML AML TRUE

GSM376144 AML AML MDS MDS MDS AML MDS FALSE

GSM376404 MDS MDS MDS AML AML MDS MDS TRUE

GSM376400 MDS MDS MDS MDS MDS MDS MDS TRUE

Continued on next page
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Table – continued from previous page

Sample Actual Part 1 Part 2 Part 3 Part 4 Part 5 Vote Accuracy

GSM376268 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376057 AML MDS MDS MDS MDS AML MDS FALSE

GSM376050 AML AML AML AML AML AML AML TRUE

GSM376076 AML AML AML AML AML AML AML TRUE

GSM376210 AML AML AML AML MDS MDS AML TRUE

GSM376113 AML MDS MDS MDS MDS AML MDS FALSE

GSM376049 AML AML AML AML AML AML AML TRUE

GSM376063 AML AML AML AML AML AML AML TRUE

GSM376169 AML AML AML AML AML AML AML TRUE

GSM376293 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376282 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376425 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376323 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376322 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376307 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376365 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376250 AML AML MDS MDS MDS AML MDS FALSE

GSM376264 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376089 AML AML AML AML AML AML AML TRUE

GSM376426 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376331 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376143 AML AML AML AML AML AML AML TRUE

GSM376085 AML AML AML AML AML AML AML TRUE

GSM376055 AML AML AML AML AML AML AML TRUE

GSM376205 AML AML AML AML AML AML AML TRUE

GSM376312 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376097 AML AML AML AML AML AML AML TRUE

GSM376339 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376059 AML AML AML AML AML AML AML TRUE

GSM376107 AML AML AML AML AML AML AML TRUE

Continued on next page
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Table – continued from previous page

Sample Actual Part 1 Part 2 Part 3 Part 4 Part 5 Vote Accuracy

GSM376401 MDS MDS MDS MDS MDS AML MDS TRUE

GSM376093 AML AML AML AML AML AML AML TRUE

GSM376380 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376077 AML AML AML AML AML AML AML TRUE

GSM376277 MDS MDS MDS AML AML MDS MDS TRUE

GSM376195 AML AML AML AML AML AML AML TRUE

GSM376111 AML AML AML AML AML AML AML TRUE

GSM376167 AML AML AML AML AML AML AML TRUE

GSM376309 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376353 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376296 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376192 AML AML AML AML AML AML AML TRUE

GSM376354 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376385 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376162 AML AML AML AML MDS AML AML TRUE

GSM376384 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376299 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376153 AML AML AML AML AML AML AML TRUE

GSM376346 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376146 AML AML AML AML AML AML AML TRUE

GSM376119 AML AML AML AML AML AML AML TRUE

GSM376125 AML AML AML AML AML AML AML TRUE

GSM376159 AML AML AML AML AML AML AML TRUE

GSM376334 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376218 AML AML AML AML AML AML AML TRUE

GSM376135 AML AML AML AML AML AML AML TRUE

GSM376271 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376310 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376075 AML AML AML AML AML AML AML TRUE

GSM376497 AML AML AML AML AML AML AML TRUE

Continued on next page
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Table – continued from previous page

Sample Actual Part 1 Part 2 Part 3 Part 4 Part 5 Vote Accuracy

GSM376203 AML AML AML AML AML AML AML TRUE

GSM376412 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376172 AML AML AML AML AML AML AML TRUE

GSM376381 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376324 MDS MDS AML MDS MDS MDS MDS TRUE

GSM376166 AML AML AML AML AML AML AML TRUE

GSM376201 AML AML AML AML AML AML AML TRUE

GSM376270 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376251 AML AML AML AML AML AML AML TRUE

GSM376336 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376087 AML AML AML AML AML AML AML TRUE

GSM376295 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376333 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376180 AML AML AML AML AML AML AML TRUE

GSM376341 MDS MDS MDS MDS AML MDS MDS TRUE

GSM376191 AML AML AML AML AML AML AML TRUE

GSM376300 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376212 AML AML AML AML AML AML AML TRUE

GSM376261 AML AML AML AML AML AML AML TRUE

GSM376128 AML AML AML AML AML AML AML TRUE

GSM376140 AML AML AML AML AML AML AML TRUE

GSM376287 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376171 AML AML AML AML AML AML AML TRUE

GSM376100 AML AML AML AML AML AML AML TRUE

GSM376388 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376053 AML AML AML AML AML AML AML TRUE

GSM376238 AML AML AML AML AML AML AML TRUE

GSM376317 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376289 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376373 MDS MDS MDS MDS MDS MDS MDS TRUE
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GSM376301 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376245 AML AML AML MDS MDS AML AML TRUE

GSM376129 AML AML AML AML AML AML AML TRUE

GSM376098 AML AML AML AML AML AML AML TRUE

GSM376344 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376165 AML AML AML AML AML AML AML TRUE

GSM376337 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376068 AML AML AML AML AML AML AML TRUE

GSM376347 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376499 AML AML AML AML AML AML AML TRUE

GSM376170 AML AML AML AML AML AML AML TRUE

GSM376208 AML AML AML AML AML AML AML TRUE

GSM376106 AML AML AML AML AML AML AML TRUE

GSM376345 MDS MDS MDS MDS MDS AML MDS TRUE

GSM376416 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376421 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376150 AML AML AML AML AML AML AML TRUE

GSM376198 AML AML AML AML AML AML AML TRUE

GSM376078 AML MDS MDS MDS MDS AML MDS FALSE

GSM376395 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376184 AML AML MDS AML AML AML AML TRUE

GSM376088 AML AML AML AML AML AML AML TRUE

GSM376145 AML AML AML AML AML AML AML TRUE

GSM376352 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376117 AML AML AML AML AML AML AML TRUE

GSM376389 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376104 AML AML AML AML AML AML AML TRUE

GSM376083 AML AML AML AML AML AML AML TRUE

GSM376211 AML AML AML AML MDS MDS AML TRUE

GSM376156 AML AML AML AML AML AML AML TRUE
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GSM376244 AML AML AML AML AML AML AML TRUE

GSM376318 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376139 AML AML AML AML AML AML AML TRUE

GSM376417 MDS AML AML AML AML AML AML FALSE

GSM376064 AML AML AML AML AML AML AML TRUE

GSM376383 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376275 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376099 AML AML AML AML AML AML AML TRUE

GSM376133 AML AML AML AML AML AML AML TRUE

GSM376124 AML AML AML AML AML AML AML TRUE

GSM376367 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376420 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376090 AML AML AML AML AML AML AML TRUE

GSM376406 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376382 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376319 MDS MDS MDS AML AML MDS MDS TRUE

GSM376403 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376278 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376084 AML AML AML AML AML AML AML TRUE

GSM376368 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376154 AML AML AML AML AML AML AML TRUE

GSM376101 AML AML AML MDS MDS AML AML TRUE

GSM376255 AML AML AML AML AML AML AML TRUE

GSM376132 AML AML AML AML AML AML AML TRUE

GSM376246 AML AML AML AML AML AML AML TRUE

GSM376148 AML AML MDS MDS MDS AML MDS FALSE

GSM376306 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376065 AML AML AML AML AML AML AML TRUE

GSM376269 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376387 MDS MDS MDS AML AML MDS MDS TRUE
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GSM376200 AML AML AML AML AML AML AML TRUE

GSM376096 AML AML AML AML AML AML AML TRUE

GSM376391 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376237 AML AML AML AML AML AML AML TRUE

GSM376243 AML AML AML AML AML AML AML TRUE

GSM376351 MDS MDS MDS MDS MDS AML MDS TRUE

GSM376320 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376392 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376130 AML AML AML AML AML AML AML TRUE

GSM376073 AML AML AML AML AML AML AML TRUE

GSM376103 AML AML AML AML AML AML AML TRUE

GSM376355 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376161 AML AML AML MDS MDS AML AML TRUE

GSM376335 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376056 AML AML AML AML AML AML AML TRUE

GSM376121 AML AML AML AML AML AML AML TRUE

GSM376115 AML AML AML AML AML AML AML TRUE

GSM376363 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376362 MDS MDS MDS MDS MDS AML MDS TRUE

GSM376102 AML AML AML AML AML AML AML TRUE

GSM376147 AML AML AML AML AML AML AML TRUE

GSM376127 AML AML AML AML AML MDS AML TRUE

GSM376253 AML AML MDS MDS MDS AML MDS FALSE

GSM376152 AML MDS MDS MDS MDS AML MDS FALSE

GSM376286 MDS MDS MDS MDS MDS AML MDS TRUE

GSM376122 AML AML AML AML AML AML AML TRUE

GSM376176 AML AML AML AML AML AML AML TRUE

GSM376179 AML MDS AML AML AML AML AML TRUE

GSM376328 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376079 AML AML AML AML AML AML AML TRUE
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GSM376350 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376247 AML MDS MDS MDS MDS AML MDS FALSE

GSM376248 AML MDS AML AML AML MDS AML TRUE

GSM376298 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376281 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376302 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376164 AML AML AML AML AML AML AML TRUE

GSM376332 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376427 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376197 AML AML AML AML AML AML AML TRUE

GSM376182 AML AML AML AML AML AML AML TRUE

GSM376252 AML AML AML AML AML AML AML TRUE

GSM376240 AML MDS AML AML AML AML AML TRUE

GSM376349 MDS AML MDS MDS MDS MDS MDS TRUE

GSM376419 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376327 MDS MDS AML MDS MDS MDS MDS TRUE

GSM376061 AML AML AML AML AML AML AML TRUE

GSM376116 AML AML AML AML AML AML AML TRUE

GSM376158 AML AML AML AML AML AML AML TRUE

GSM376397 MDS AML AML AML AML MDS AML FALSE

GSM376202 AML AML AML AML AML AML AML TRUE

GSM376376 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376216 AML MDS MDS MDS MDS AML MDS FALSE

GSM376112 AML MDS AML AML AML MDS AML TRUE

GSM376314 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376285 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376294 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376263 AML AML AML AML AML MDS AML TRUE

GSM376396 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376206 AML AML AML AML AML AML AML TRUE
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GSM376091 AML AML AML AML AML AML AML TRUE

GSM376249 AML MDS AML AML MDS AML AML TRUE

GSM376303 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376190 AML AML AML AML AML AML AML TRUE

GSM376082 AML MDS AML AML AML AML AML TRUE

GSM376105 AML MDS MDS MDS MDS AML MDS FALSE

GSM376398 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376370 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376118 AML AML AML AML AML AML AML TRUE

GSM376405 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376413 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376284 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376280 MDS AML MDS AML AML AML AML FALSE

GSM376081 AML MDS MDS MDS MDS AML MDS FALSE

GSM376217 AML AML AML AML AML AML AML TRUE

GSM376214 AML AML AML AML AML AML AML TRUE

GSM376422 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376369 MDS AML MDS MDS MDS MDS MDS TRUE

GSM376424 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376343 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376194 AML AML MDS MDS MDS AML MDS FALSE

GSM376288 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376131 AML AML AML AML AML AML AML TRUE

GSM376177 AML AML AML AML AML AML AML TRUE

GSM376297 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376175 AML AML AML AML AML AML AML TRUE

GSM376160 AML AML AML AML AML AML AML TRUE

GSM376108 AML AML AML AML AML AML AML TRUE

GSM376371 MDS AML MDS MDS MDS MDS MDS TRUE

GSM376377 MDS MDS MDS MDS MDS MDS MDS TRUE
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GSM376258 AML AML AML AML AML AML AML TRUE

GSM376390 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376259 AML AML AML AML AML AML AML TRUE

GSM376069 AML AML AML AML AML AML AML TRUE

GSM376356 MDS MDS MDS MDS MDS MDS MDS TRUE

GSM376181 AML AML AML AML AML AML AML TRUE

GSM376304 MDS MDS MDS MDS MDS MDS MDS TRUE
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APPENDIX C

Average vote results on BCCA dataset

Sample Actual Part 1 Part 2 Part 3 Part 4 Part 5 Vote Accuracy

A08838 AML AML AML AML AML AML AML TRUE

A08843 AML AML AML AML AML AML AML TRUE

A08852 AML AML AML AML AML AML AML TRUE

A08853 AML AML AML AML AML MDS AML TRUE

A08855 AML AML MDS AML AML AML AML TRUE

A08856 AML AML AML AML AML AML AML TRUE

A08858 AML AML AML AML AML AML AML TRUE

A08860 AML AML AML AML AML AML AML TRUE

A08861 AML AML AML AML AML MDS AML TRUE

A08862 AML AML AML AML AML AML AML TRUE

A08863 AML MDS MDS AML AML AML AML TRUE

A08864 AML AML AML AML AML AML AML TRUE

A08865 AML AML AML AML AML AML AML TRUE

A08866 AML AML AML AML AML AML AML TRUE

A08867 AML AML MDS AML AML AML AML TRUE

A08868 AML AML AML AML AML MDS AML TRUE

A08869 AML AML AML AML AML AML AML TRUE

A08870 AML AML MDS AML AML AML AML TRUE

A08871 AML AML MDS AML AML AML AML TRUE

A08873 AML AML AML AML AML AML AML TRUE

A08874 AML AML MDS AML AML AML AML TRUE

A08876 AML AML AML AML AML AML AML TRUE

A08877 AML AML AML AML AML AML AML TRUE

A08878 AML AML AML AML AML AML AML TRUE

A08879 AML AML AML AML AML AML AML TRUE

A08880 AML AML MDS AML AML AML AML TRUE

A08881 AML AML MDS AML AML AML AML TRUE

A08883 AML AML AML AML AML AML AML TRUE

A08884 AML AML AML AML AML AML AML TRUE
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A08885 AML AML AML AML AML AML AML TRUE

A08886 AML AML AML AML AML AML AML TRUE

A08887 AML AML AML AML AML AML AML TRUE

A08888 AML AML AML AML AML AML AML TRUE

A08890 AML AML MDS AML AML AML AML TRUE

A08891 AML AML AML AML AML AML AML TRUE

A08892 AML AML MDS AML AML AML AML TRUE

A08893 AML AML AML AML AML AML AML TRUE

A08894 AML AML AML AML AML AML AML TRUE

A08895 AML AML AML AML AML AML AML TRUE

A08896 AML AML MDS MDS AML AML AML TRUE

A08897 AML MDS MDS AML AML AML AML TRUE

A08898 AML AML AML AML AML AML AML TRUE

A08899 AML AML AML AML AML AML AML TRUE

A08900 AML AML AML AML AML MDS AML TRUE

A08901 AML AML AML AML AML AML AML TRUE

A08902 AML MDS AML AML AML AML AML TRUE

A08912 AML AML AML AML AML AML AML TRUE

A15343 MDS AML MDS AML AML AML AML FALSE

A15344 MDS AML AML AML AML AML AML FALSE

A15346 MDS AML AML AML AML AML AML FALSE

A15348 MDS AML AML AML AML AML AML FALSE

A15353 MDS MDS MDS MDS AML AML MDS TRUE

A15302 MDS MDS MDS MDS MDS MDS MDS TRUE

A15308 MDS AML AML AML AML AML AML FALSE

A15311 MDS MDS MDS MDS MDS MDS MDS TRUE

A15317 MDS MDS MDS MDS AML AML MDS TRUE

A15321 MDS AML MDS AML AML AML AML FALSE

A15328 MDS MDS MDS MDS MDS MDS MDS TRUE

A15336 AML AML MDS AML AML AML AML TRUE
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A15337 AML MDS MDS MDS MDS MDS MDS FALSE

A15338 AML MDS MDS MDS MDS MDS MDS FALSE

A15340 AML AML MDS AML AML AML AML TRUE

A15341 AML MDS AML MDS MDS MDS MDS FALSE

A15362 MDS MDS MDS MDS MDS MDS MDS TRUE

A15365 MDS MDS MDS MDS MDS MDS MDS TRUE

A15367 MDS MDS MDS MDS MDS MDS MDS TRUE

A15372 MDS AML AML AML AML AML AML FALSE

A15376 MDS MDS MDS MDS MDS AML MDS TRUE

A15378 MDS MDS MDS MDS MDS AML MDS TRUE

A15381 MDS MDS MDS MDS MDS MDS MDS TRUE

A15384 MDS AML AML AML AML AML AML FALSE

A15388 MDS MDS MDS AML AML MDS MDS TRUE

A15389 MDS MDS AML AML AML MDS AML FALSE

A15390 MDS MDS MDS MDS MDS MDS MDS TRUE
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APPENDIX D

Performance measures on BCCA data for first partition of 5-fold CV.

Performance measures on BCCA data for second partition of 5-fold CV.
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Performance measures on BCCA data for third partition of 5-fold CV.

Performance measures on BCCA data for fourth partition of 5-fold CV.
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Performance measures on BCCA data for fifth partition of 5-fold CV.
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