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ABSTRACT 

Human activity research is rooted in the study of modeling the patterns of human 

activities in space and time. Previous studies have made prevalent progress in the theories, 

methods, and applications of human activity analysis. Among these studies, human activity 

space modeling has been a crucial topic in studying the spatial distribution of individual 

behaviors. Human activity space modeling aims to understand and solve various problems 

driven by human activities, such as urban expansion and traffic congestion in the process 

of urbanization. Many commonly used activity models in computational physics and 

computer science are constructed at an abstract and generic level. However, individual 

activities vary over space and time; it is therefore imperative to account for spatial-temporal 

dynamics and variations for activity space modeling at an individual-level. 

Compared to traditional data sources that are costly and time-consuming to collect, 

the development of location-based social media (LBSM) has provided more flexibility for 

researchers regarding where, when, and how to collect information about human activity 

behaviors. Studies utilizing LBSM to analyze human activity patterns have grown rapidly. 

However, there is a lack of understanding about the morphology and the internal structure 

of activity space extracted from LBSM datasets. In addition, many studies lack 

effectiveness tests about how reliable LBSM data can be used to explain human activity 

space. To this end, this study explores the effectiveness of representing activity space from 

an individual perspective when using LBSM data from three Chinese cities (i.e., Beijing, 
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Shanghai, and Guangzhou). The two objectives of this dissertation are summarized as 

follows: 

First, due to the lack of effectiveness testing in deriving human movement from 

LBSM data, this study tests the effectiveness of intra-individual indicators in modeling 

activity spaces from LBSM data. We evaluate how data collection durations and the choice 

of indicators affect the reliability of intra-individual activity space modeling. We use a 

linear regression model with the logarithmic transformation to approximate how the 

magnitude of four external morphology features and three internal structure characteristics 

changes with different data collection durations – from 1 month to 12 months. The results 

demonstrate that as the data collection duration increases, the magnitude of all defined 

indicators approaches a steady point; however, there are also outlier users who exhibit 

distinct patterns. It provides a useful reference to explore the balance point between data 

effectiveness and appropriate sample size from the LBSM database on empirical analysis. 

Second, little research was conducted to test the effectiveness of inter-individual 

models in comparing the internal structure of individual activity spaces based on unevenly 

distributed data. To fill this gap, this dissertation investigated how different models 

perform in identifying inter-individual similarities between LBSM users. We first clustered 

LBSM check-ins based on the density-based spatial clustering of applications with noise 

(DBSCAN). Appropriate clustering parameters are chosen with the help of the elbow 

method. We then import those clustered activities into a vector space model (VSM) and a 

spatial-temporal vector space model (ST-VSM). The former only considers the spatial 
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locations of the check-ins, whereas the latter is also determined by the time period (i.e., 

morning, afternoon, and night) of the check-ins. We then measure LBSM user activity 

similarities by applying an extended cosine similarity analysis. The results successfully 

captured spatial-temporal activity similarities between LBSM users. 

In conclusion, this study evaluated the effectiveness of LBSM for activity space 

modeling. Here we define “effectiveness” as the stability of activity space indicators with 

different amounts of data used. There are two contributions to the study of activity space 

modeling. On the one hand, this study explores the effectiveness of LBSM in modeling 

intra-individual activity space. The results of the effectiveness test demonstrated how data 

collection duration impacts the magnitude of different activity space indicators. As the data 

size increases, the magnitude of four external and three internal indicators all approach a 

steady point in three cities. It provided a useful reference to explore a balance point between 

effective indicators and the appropriate sample sizes from LBSM data. The indicators and 

methods used in this study can also be applied to other social media platforms to test their 

stability and extensibility. On the other hand, it provides a robust method to measure 

individuals’ spatial-temporal similarities based on LBSM data. We conducted an analysis 

to evaluate the effectiveness of different models in measuring the inter-individual similarity 

between LBSM users based on their unevenly distributed check-ins. The results indicated 

that the similarity measurement is effective in discovering the spatial-temporal similarity 

between LBSM users. This extended similarity measurement provided a more robust 

method to measure users’ activity similarities based on low-resolution LBSM data.  
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To sum up, this study generated valuable results in evaluating the effectiveness of 

LBSM for activity space modeling. The effectiveness tests on both intra-individual 

indicators and inter-individual similarity measures offer a new perspective on examining 

the performance of LBSM data in human activity space modeling. In addition, we also 

explored the activity patterns of the three largest cities in a rapidly developing country. The 

extracted activity patterns and outliers provided valuable input for urban planners and 

policy makers to understand the dynamics of urban residents in three densely populated 

Chinese cities. We foresee that this research will enhance the understanding of applying 

LBSM data to human activity studies and other widely applicable areas of geography, such 

as transportation, urban planning, and location-based services. 
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1. INTRODUCTION 

1.1 Background 

Jones, Koppelman and Orfueil (1990) defined activity analysis as a framework for 

analyzing daily or multi-day travel behaviors and deriving differences in lifestyles and 

activity between people. Among all the activity analysis research, activity space modeling 

has been a crucial topic in studying the spatial distribution of individuals’ activity behaviors 

(Yuan, Raubal and Liu 2012). Previous studies have defined activity space as local areas 

within which people travel during their daily activities (Golledge and Stimson 1997). 

Activity spaces consist of locations and areas visited to satisfy the basic needs of people’s 

everyday life. More specifically, individuals often visit a subset of a limited number of 

activity locations repeatedly (Schönfelder and Axhausen 2004, Gonzalez, Hidalgo and 

Barabasi 2008) - these locations as well as the travels between and around these locations 

form an individual activity space. Researchers have focused on both the morphology and 

the internal structure of human activity space. The former measures its basic characteristics 

(e.g., size, shape, etc.), and the latter emphasizes the reasons for which an activity space 

forms (e.g., regularly visited locations) (Golledge and Stimson 1997, Schönfelder and 

Axhausen 2002). 

Traditional human activity space analysis often relies on travel surveys and 

questionnaires as data sources. However, collecting such data can be costly, time-

consuming, and it is hard to acquire a sufficient sample set in a large spatial environment 

(Yuan and Wang 2018, Axhausen et al. 2002, Hasan, Zhan and Ukkusuri 2013). 

Meanwhile, the past few decades have witnessed the increasing availability of mobile 

devices with location sensors (e.g., the Global Positioning System (GPS)) and the booming 
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of user-friendly client-side social networking applications (apps) (Hasan et al. 2013, Lane 

et al. 2010, Sakaki, Okazaki and Matsuo 2010, Stefanidis, Crooks and Radzikowski 2013). 

These new technologies have provided more flexibility regarding where, when, and how 

people connected to each other (Carrasco et al. 2008, Eagle, Pentland and Lazer 2009, 

Liben-Nowell et al. 2005). In the meantime, they also generate valuable datasets for 

researchers in the field of activity studies (Ahas et al. 2015, Doran et al. 2016, Lee et al. 

2016, Resch 2013, Wu et al. 2014, Xu et al. 2015). Among these datasets, location-based 

social media (LBSM) is a popular and effective data source that attracts individuals to share 

their daily activities, whereabouts, and therefore provides abundant information about 

individuals’ daily activities. The origins of the term “LBSM” is from the term “locative 

media”, which uses geographical location through mobile devices in the social network 

(GSM Association 2003, Quercia et al. 2010, Steiniger et al. 2008, Wang, Min and Yi 

2008). Compared to other types of data, LBSM not only provides non-spatial information, 

such as individuals’ thoughts and emotions, but also generates geo-referenced data like 

users’ locations, which can be related back to the points of interest (POIs). LBSM records 

social activities and interactions that happened in real locations (Varnelis and Friedberg 

2008, Tuters and Varnelis 2006, Thielmann 2010, Sui and Goodchild 2011, Hemment 

2006). It also strengthens the role of social media as a proxy for understanding human 

behaviors and complex social dynamics in geographic spaces (Cao et al. 2015). Hence, 

LBSM data offers various opportunities for researchers to explore and understand human 

activity patterns from both the urban and the individual perspectives (Liben-Nowell et al. 

2005, Yuan and Medel 2016). From the urban perspective, researchers focused on how 

user activities exhibit universal properties and interact with urban structure and activities 
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(Bawa-Cavia 2011, Cranshaw et al. 2012, Mohammady and Culotta 2014, 

Phithakkitnukoon et al. 2010, Cho, Myers and Leskovec 2011, Hasan et al. 2013, Malleson 

and Birkin 2014, Wu et al. 2014). From the individual perspective, LBSM is particularly 

suitable for modeling individual-level patterns, such as activity scheduling, social network 

structure, and location prediction (Cho et al. 2011, Hasan et al. 2013, Malleson and Birkin 

2014, Bawa-Cavia 2011, Calabrese et al. 2013, Gonzalez et al. 2008, Wu et al. 2014).  

1.2 Problem Statement and Research Aims 

Although human activity space modeling has been extensively studied, there are 

some limitations in the literature on analyzing human activity space from LBSM. In 

general, modeling human activity space based on LBSM data is helpful for understanding 

our socioeconomic environments (Chapin 1974, Liu et al. 2015, Aggarwal and Ryoo 2011). 

Although many studies have attempted to classify neighborhoods (Cranshaw et al. 2012) 

or extract activity anchor points (e.g., “home”, “work”) (Qu and Zhang 2013) from LBSM, 

there is a lack of understanding about the morphology and the internal structure of activity 

space from LBSM datasets (Malleson and Birkin 2014). In addition, many studies lack 

effectiveness tests to determine how reliable LBSM data can be utilized for presenting 

human activity space features (Brockmann, Hufnagel and Geisel 2006, Gonzalez et al. 

2008). Here we use “effectiveness” as the stability of activity space indicators and 

measurements with different data input and algorithms in quantitative analysis. 

Effectiveness analysis is necessary for exploring human activity because it can test whether 

the modeling of activity space is robust with respect to various factors such as data quality, 

selected indicators, measurements, etc. Previously, there has not been sufficient research 

to evaluate the effectiveness of LBSM data sampling in deriving active space indicators or 
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testing the effectiveness of identifying user similarities based on highly dispersed check-

ins in LBSM-based studies. These two aspects are the main components of this dissertation. 

Therefore, the effectiveness analysis in this dissertation can be conducted from the 

following two perspectives: intra-individual studies and inter-individual studies 

(Schönfelder and Axhausen 2003, Lee et al. 2016). The former evaluates the effectiveness 

of intra-individual activity space variability by using LBSM data. The latter focuses on 

addressing inter-individual activity space differences by comparing LBSM users’ activity 

similarities. The specific research aims are listed as follows: 

Research Aim 1: Test the effectiveness of intra-individual indicators in 

modeling activity space from LBSM data. This research aims to test the effectiveness of 

representing human activity space from both the indicator/measurement and the data input 

perspectives. This study evaluates how the choice of intra-individual indicators affects the 

effectiveness of modeling the external morphology and internal structures of individual 

activity spaces. We also test how LBSM data issues, such as low sampling resolution and 

uneven check-in frequency, may impact the effectiveness of different activity space 

indicators and the choice of data collection duration in the experiment design. This research 

task not only reviews the robustness of activity space indicators when applied to LBSM 

data, but also proposes a data processing strategy that can be extended to other datasets and 

activity space measures to help researchers optimize their research design. 

Research Aim 2: Test the effectiveness of inter-individual models and 

measurements in comparing activity space patterns. In addition to intra-individual 

indicators, this research also evaluates the effectiveness of inter-individual models in 

presenting the similarities among activity spaces. First, we partition user locations into 
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clusters according to their geographic coordinates and timestamps based on a density-based 

clustering method and vector-based method. Second, we measure the similarity of spatial 

activities between LBSM users based on the partitioned density surface. We then 

investigate their temporal activity patterns at different times of the day according to their 

check-in timestamps (i.e., morning, afternoon and night). This study explores the 

differences between similarity measures when applied to low resolution LBSM data. 

1.3 Significance 

The main contribution of this research is to test the effectiveness of LBSM data in 

modeling individual activity spaces. Activity space modeling is beneficial for discovering 

human activity characteristics.  

First, this study measures the characteristics of each LBSM user’s activity space 

derived from LBSM data. More specifically, it reveals the effectiveness of four external 

and three internal activity space indicators in measuring user activity spaces based on 

LBSM data. Moreover, this study tests how different amounts of check-in data affect the 

calculation of these activity space indicators in three Chinese cities. The results provide a 

useful reference for future experimental design in human activity modeling. 

Second, this study detects inter-individual similarities based on low-resolution 

LBSM data. To understand the distinctions between individual activity spaces, it is 

important to explore the differences in the point patterns that form the activity spaces. In 

addition to location data, LBSM check-ins also provide the temporal signature of user 

activities. We then proposed similarity measurements for discovering similar users in 

social media datasets by taking into account both check-in locations and timestamps.  
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This study offers a data processing strategy to understand human activity spaces 

and patterns by analyzing their posts on LBSM. The findings will provide a better 

understanding of the effectiveness of using LBSM data for both intra-individuals’ activity 

space analysis and inter-individuals’ pattern detection. The proposed models have 

important implications for many activity space-related applications such as land-use 

planning, transportation design, and community detection, etc. In addition, discovering 

similar social media users is beneficial for many applications based on social media 

analytics, such as social community detection, friendship analysis, anomaly behavior 

detection and so on.  

The remainder of this dissertation is organized as follows: Chapter 2 describes the 

data and study areas used in activity space modeling; Chapter 3 tests the effectiveness of 

activity space indicators and data collection durations for intra-individual activity space 

modeling; and Chapter 4 tests the effectiveness of models in measuring inter-individual 

activity space similarities. We conclude this dissertation and present directions for future 

work in Chapter 5. 

  



7 

 

2. DATA AND STUDY AREA  

2.1 Data Collection 

China provides an ideal data environment for studying an individual’s activity 

space through social media data. The social media market has developed rapidly in China 

and attracts more and more users. Sina Weibo is a Chinese microblogging website launched 

by Sina Corporation on August 14th, 2009. Its monthly active users (“MAUs”) reached 

431 million in June 2018 according to its unaudited financial report from June 30, 2018 

(CIW 2018). Such rapid expansion indicates that Weibo users can easily access the internet 

to post information about their activities. 

For this study, we demonstrated the use of an inexpensive and easy-to-collect long-

term Sina Weibo dataset to address the effectiveness in activity space modeling research. 

Our social media data have been obtained from April 2015 to March 2016 through the 

official Weibo application programming interface (API). We only utilized a few fields 

related to this study, such as the unique identifier (i.e., user account ID), the coordinates of 

check-in locations, and the timestamp of check-ins as our data attributes among all the 

fields extracted from LBSM data. Table 2.1 lists the field example we use in further 

research. We implemented the research by using individuals’ check-in data in Beijing, 

Shanghai, and Guangzhou. 

Table 2.1 Sample Records of Sina Weibo Check-ins. 

User ID Timestamp Longitude Latitude 

187811****** 2015-06-25 05:51:53 116.599239 39.908899 

520391****** 2015-11-11 11:27:09 116.419662 40.090118 

 



8 

 

We grouped Weibo check-ins by counting the number of unique users and their 

total posting in monthly growth. It provides information about the activeness of users who 

uses the website on a monthly basis. Aside from a monthly basis, active users can be 

measured daily and weekly. However, daily or weekly frequency is not sufficient in 

quantity usage in this study due to the low-frequency check-ins for most social media users. 

The monthly period allows a longer and reasonable time collection period for most types 

of LBSM users. 

2.2 Study Area 

This dissertation uses the three most populated cities in China as the study areas. 

These three cities are Beijing, Shanghai, and Guangzhou. All of them are highly developed 

and populated cities in northern, eastern and southern metropolitan areas of China 

respectively.  

Beijing, the capital of China, is located in the northern part of China. It is a densely-

populated megacity with a total population of 21.73 million and an area of 16,810 km2 in 

2016 (National Bureau of Statistics of China 2017). Beijing currently comprises 16 

administrative county-level subdivisions including one inner municipality area (i.e., the 

central area, defined as “Shixiaqu” in China) and ten outer urban districts (i.e., within the 

administrative boundary of the city but outside of the “Shixiaqu” area) (Figure 2.1). Hence, 

we separate the study areas into two parts for future analysis: the inner municipality area 

and the urban districts outside of the central municipality area but still within the 

administrative boundary (i.e., the outer urban districts) (Faber 2014).  
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Figure 2.1 Beijing Administrative Divisions. 

 

Shanghai, the financial center of China, is located in the eastern part of China. 

Shanghai is one of the four municipalities directly under the control of the central 

government of China. It is one of the most populous cities in the world, with a population 

of more than 24.2 million within an area of 6,340 km2 as of 2016 (National Bureau of 

Statistics of China 2017). It is also a transport hub, with the world's busiest container port. 

Here we focus on the Shanghai metropolitan area excluding the Chongming island, because 

the Chongming area is isolated from the rest of Shanghai and consists of three low-lying 

inhabited islands. Shanghai is divided into one inner municipality area and nine outer urban 

districts (Figure 2.2). 
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Figure 2.2 Shanghai Administrative Divisions. 

 

Guangzhou is the capital and most populous city of the Guangdong Province. It has 

a total population of 14.04 million within an area of 7,434 km2 in 2016 (Guangzhou 

International 2016). It is located at the heart of the metropolitan area in southern China - 

an area that extends into the neighboring cities of Foshan, Dongguan, and Shenzhen, 

forming one of the largest urban agglomerations in the world. Guangzhou is a sub-

provincial city. It has direct jurisdiction over one inner municipality area and five outer 

urban districts (Figure 2.3). 
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Figure 2.3 Guangzhou Administrative Divisions. 

 

We extracted Beijing, Shanghai, and Guangzhou administrative boundaries’ data 

from the GADM database (GADM 2018) of version 2.8, November 2015. Note that we 

only included the population within the city limit instead of the entire metropolitan area. 

2.3 Data Pre-processing 

This study used the Sina Weibo check-ins to model individuals’ activity spaces. 

Three datasets collected from Sina Weibo in Beijing, Shanghai, and Guangzhou are used 

to derive LBSM users’ activity space indicators. Figure 2.4 illustrates the details of the data 

pre-processing procedure. We extracted 1.18 million geo-referenced Weibo posts (i.e., 

check-ins) for all three cities from April 2015 to March 2016 through the official Weibo 

API. Figure 2.5 shows Weibo check-in data’s distribution, we can see the highest density 

of check-ins located in the center of the city in Beijing, Shanghai, and Guangzhou, China. 
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Figure 2 4 Workflow of Data Collection and Preparation. 

 

Table 2.2 Data Summary before Filtering  

Check-ins 

City 

Total check-ins Total users Average posting 

per user 

Beijing 533,733 327,340 1.6 

Shanghai 354,286 219,296 1.6 

Guangzhou 293,737 181,207 1.6 

 

We calculated the average posting per Weibo user in three study areas respectively. 

Based on the number of check-ins and users we collected from the Weibo streaming API, 

the result shows that the average posting per user is fewer than 2 check-ins, which is too 

sparse to show individual activity patterns (Table 2.2). In addition, in order to see the 

detailed patterns of check-in frequency of LBSM users, we summarized the frequency 

distribution of Weibo users in Figure 2.6. For each city, the left sub-figure shows the 

distribution of all the data, and the right sub-figure shows a “zoom-in” view of users with 
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fewer than 50 check-ins from April 2015 to March 2016. The Y-axis counts the number of 

users who share the same check-in frequency, and the X-axis denotes the usage frequencies 

of LBSM.  

 

(a)                                                            (b) 

 

(c) 

Figure 2.5 The Frequency Distribution of Weibo Check-in Data: 

(a) Beijing; (b) Shanghai; and (c) Guangzhou. 

Figure 2.5 shows a power-law distribution in which a few users post a lot and most 

posts are contributed by users who seldomly use Weibo. Due to the power law nature of 

social media usage, many of these posts are from inactive users. Considering the sparseness 

issue of LBSM data, this research focuses on the LBSM users who are active to ensure that 
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we have reliable information to extract individual users’ activity patterns. We eliminated 

users with fewer than 10 check-ins during the data collection period, as their activity spaces 

may be sensitive to outlier points. We choose 10 check-ins as a pre-defined threshold for 

this case study. This allows us to mitigate the data sparseness issue by removing potential 

short-term visitors and/or inactive LBSM users during the study period. The goal of this 

study is to demonstrate the feasibility of the methodology, and future research can explore 

how different thresholds may impact the results based on different LBSM sample data. 

Table 2.3 shows that the average posting per user after filtering reaches 18, which better 

describes individual user patterns.  

Table 2.3 Data Summary after Filtering Process 

Check-ins 

City 

Check-ins after 

filtering 

Users (whose 

check-ins>=10) 

Average posting 

per user 

Beijing 50,355 2,800 18 

Shanghai 33,122 1,776 19 

Guangzhou 30,608 1,639 19 

 

 

 

(a)                                          (b)                                           (c) 

Figure 2.6 Weibo Check-in Data Distribution and Density: 

(a) Beijing; (b) Shanghai; and (c) Guangzhou. 
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Table 2.4 shows the percentage of check-ins in the inner municipality area and the 

outer urban districts. The check-ins within the municipality areas of Beijing and 

Guangzhou occupied more than 70% over the total check-ins in the areas. Meanwhile, in 

megacities like Beijing or Shanghai, many local residents live in outer urban districts and 

work in the municipality area, so their activity space goes beyond the inner municipality 

area (Na, Yanwei and Mei-Po 2015, Xu et al. 2015). This is particularly important for cities 

like Shanghai, where only 39% of check-ins are from the inner municipality area since 

Shanghai has a small urban center. 

Table 2.4 Amount and Percentage of Check-ins in Inner and Outer Areas. 

 Check-ins in inner area Check-ins in outer areas 

Amount Percentage Amount Percentage 

Beijing 36,014 71.52% 14,341 28.48% 

Shanghai 12,927 39.03% 20,195 60.97% 

Guangzhou 21,827 71.31% 8,781 28.69% 

 

 

Figure 2.7 Monthly Check-in Data after Data Filtering. 

Figure 2.7 shows the number of check-ins after data cleaning by removing inactive 

users who posts fewer than 10 times. From the monthly check-in summary, Weibo check-
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ins indicate a strong seasonal pattern in all three cities, where October and November are 

the most active months. This is potentially due to the 9-day national holiday (the National 

Day) in China towards the beginning of October, during which Chinese residents often 

spend leisure time with their family.  

Table 2.5 Data Summary of Accumulated Check-ins. 

Number of months 

(1-12) 

Beijing Shanghai Guangzhou 

1 2388 1709 1258 

2 4430 3228 2462 

3 7975 5335 4304 

4 12942 8410 7136 

5 18448 11858 10586 

6 23839 15544 14250 

7 30077 19533 18354 

8 36189 23604 22152 

9 41512 27048 25591 

10 46512 30388 28625 

11 48190 31593 29435 

12 50355 33122 30608 

 

 

Figure 2.8 Accumulated Weibo Data in Study Areas. 
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Also, we display the magnitude of accumulated data collection (Table 2.5 and 

Figure 2.8). We aggregated data into 12 different sizes, from 1-month to 12-month data 

collection durations for each study area, to facilitate the effectiveness test on data collection 

durations (c.f., Section 3.3.2). 
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3. TEST THE EFFECTIVENESS OF INTRA-INDIVIDUAL ACTIVITY SPACE 

MODELING 

3.1 Introduction 

In the big data era, LBSM has been widely utilized as a supplement to traditional 

surveys in modeling human activity patterns (Sui and Goodchild 2011). However, there 

has not been sufficient studies to assess the reliability of these data in deriving human 

movement. Hence, determining the appropriate data size, duration, and sampling resolution 

are crucial for designing a statistically sound study. In fact, these factors are often 

determined arbitrarily when using LBSM to analyze activity patterns, and there has yet to 

be a systematic study of how users’ activity spaces change with different sample sizes from 

LBSM. This chapter addresses evaluating appropriate activity space indicators and data 

sizes to achieve a balance between the details of information and computation 

efficiency/data collection costs. 

This chapter evaluates how data collection duration and the choice of indicators 

affect the reliability of LBSM data in intra-individual activity space modeling. The 

effectiveness test is conducted based on the measurement of 7 activity space indicators and 

12 LBSM data collection durations. Four of the activity space indicators are external 

morphology indicators which are minimum convex hull, alpha shape, standard deviational 

ellipse (SDE), and radius of gyration (ROG). The remaining three are internal structure 

indicators which are entropy, kernel density, and the minimum spanning trees (MST).  

We use Weibo data as an example to illustrate how the magnitude of each activity 

space indicator changes with different LBSM data sizes. Besides, we estimate an optimal 

data size by applying a linear regression model with logarithmic transformation. It reflects 
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the correlation between the change of indicator values and the amount of data used, and to 

approximate the limit values of indicators. This case study focuses on three Chinese cities 

(Beijing, Shanghai, and Guangzhou) and provides a useful reference to explore the balance 

point between data effectiveness and appropriate sample size from LBSM data. 

3.2 Previous Work on Activity Space Modeling 

Our understanding of human activity behaviors can be deeply enriched through 

observing and analyzing their activity spaces. Activity space is defined as the local areas 

that people travel within while performing their daily activities (Becker et al. 2013, Mazey 

1981, Yuan and Raubal 2016). The components of an individual activity space include 

their travel trajectories, POIs, and the interactions with the environment (Golledge 1997, 

Lewin 1951). 

As Golledge and Stimson (1997) pointed out, there are three determinants of 

activity space for a given individual: 1) the position of the individual home location; 2) 

regularly visited activity locations such as the work location, grocery stores, park, cinemas, 

etc.; and 3) travel between and around the pegs, such as the accessibility of public transport 

to regularly visited locations. Schönfelder and Axhausen (2016) extended this definition 

and identified six elements of activity space: home location, duration of residence, number 

of activity locations in the vicinity of home, trips within the neighborhood, mobility to and 

from frequently visited activity locations, and travels between the centers of daily life. Järv, 

Ahas and Witlox (2014) found modest monthly variation in the number of activity locations 

by observing individual activities for 12 consecutive months, whereas there were great 

variations in the sizes of individual activity spaces. Schönfelder and Axhausen (2003) 

discovered that the main factor deciding the scale of the activity spaces is the overall 



20 

 

number of unique locations visited by individuals. Therefore, many previous studies 

concentrated on extracting activity anchor points and individual differences of visiting 

these points, as well as understanding the formation of activity spaces (Ahas et al. 2015, 

Long and Nelson 2013, Malleson and Birkin 2014, Phithakkitnukoon et al. 2010, Silm and 

Ahas 2014, Xu et al. 2015, Xu et al. 2016). 

3.2.1 Usage of LBSM in Activity Space Studies 

Traditional travel records are difficult to collect in the long term for a large group 

of participants (Dijst 1999, Fan and Khattak 2008, Kim and Ulfarsson 2015). Unlike 

traditional survey or individually-collected GPS data, LBSM datasets cover a large sample 

size and can easily be accessed by APIs, therefore they provide a rich resource for 

researchers to analyze human activity patterns. Nowadays, LBSM like Twitter and Weibo 

become particularly promising data sources because of their widespread popularity and the 

ease of data collection (Akcora, Carminati and Ferrari 2013, Celik and Dokuz 2018, Li, 

Goodchild and Xu 2013, Yuan, Jiang and Gidófalvi 2013). Yuan and Wang (2018) 

explored how data collection duration and sample size affect the effectiveness of using 

LBSM data to calculate two factivity space indicators. It showed that for the majority of 

users, their ROG and entropy (activity regularity/diversity) values grow as the data 

collection duration becomes longer. Lee et al. (2016) used 17-week long Twitter data to 

identify the differences between weekday and weekend activity spaces in southern Santa 

Barbara County, CA. Cheng et al. (2011) investigated 22 million Twitter check-ins across 

220,000 users and found that users follow the “Levy Flight” mobility pattern and adopt 

periodic behaviors. Li et al. (2013) explored the spatial and temporal distributions of social 
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media users in California and explored the socioeconomic characteristics of these users by 

using geo-referenced tweets collected from Twitter and Flickr. 

In general, LBSM data can provide abundant individual activity records for little 

cost compared to traditional travel surveys. In addition, the location data collected from the 

built-in GPS of mobile phones provides a higher spatial accuracy. However, a series of 

potential data issues from LBSM data can also affect the effectiveness of analysis results 

when deriving human activity patterns from these datasets (Kaisler et al. 2013). Spatial 

data quality, such as low resolution, completeness, and consistency (Veregin 1999), plays 

a fundamental role in geographic analysis, therefore it is crucial to assess the effectiveness 

of LBSM data for human activity studies (Spielman 2014). In this study, we mainly focused 

on the data quality issues caused by the  sparseness and low resolution of LBSM data in 

activity space stuides. 

3.2.2 External Activity Space Indicators 

Most of activity space studies differentiated the external and the internal 

characteristics of an activity space – the former measures its basic external morphology 

and the latter emphasizes the internal structure of an activity space. Various indicators have 

been developed to measure the external morphology of human activity space, such as the 

size, shape, and orientation of activity space.  

Some studies showed that activity space can be represented as the minimum shape 

that includes all individual visited places within a minimum bounding geometry - minimum 

convex hulls (Fan and Khattak 2008, Lee et al. 2016). The minimum convex hull is a 

straightforward method to compute the region occupied by visited locations. However, they 

are not appropriate to use when the activity space is highly dispersed. An improved method 
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called alpha shape method was developed to address the shortcomings of minimum convex 

hulls. It was firstly introduced in Edelsbrunner (1983) as a generalization of minimum 

convex hulls (Edelsbrunner, Kirkpatrick and Seidel 1983). Many examples proved that the 

alpha shape method represents the activity spaces more accurately than minimum convex 

hulls, and it was applied in many fields like pattern recognition, bio-informatics and sensor 

networks (Duckham et al. 2008, Fayed and Mouftah 2009).  

In addition, historically, ellipse-based measures, such as the SDE and confidence 

ellipse, were also used to approximate activity spaces (Lefever 1926, Schönfelder and 

Axhausen 2003, Shannon and Spurlock 1976, Yuill 1971). Activity ellipses are generated 

based on distances and directions of an individual visited locations from the activity center 

(Gesler and Albert 2000).  

Since ellipse-based representations were originally designed to exclude outlier 

locations, they are less affected by outliers than convex hulls. However, the main limitation 

of SDE is that it is an abstract representation of the area covered by a person rather than a 

full description of all the locations a person visited. Furthermore, the ROG has been widely 

used to represent the spatial dispersion and activity range of individuals’ daily activities 

(Cheng et al. 2011, Song et al. 2010). As mentioned in Gonzalez et al. (2008), ROG is 

considered a robust indicator of activity scale and a measurement of the external 

morphology, which is less sensitive to outlier points. 

3.2.3 Internal Activity Space Indicators 

In addition to external characteristics, researchers also applied various measures to 

quantify the internal structure of individuals’ activity spaces. Schönfelder and Axhausen 

(2003) calculated the shortest-path distance for each location visited by the travelers as an 
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approximation of the actual paths based on individual origin-destination matrix and road 

network. Other network-based measures like standard travel time polygon and shortest-

path spanning tree were applied to reveal the travel network structures of activity spaces 

(Sherman et al. 2005).  

A branch of density-based measures is used to generate activity density surfaces for 

representing the intensity of activities in various spaces. Susilo and Kitamura (2005) and 

Kwan (2000) applied density-based surfaces to examine the spatial relationships between 

these density patterns by showing the spatial intensity of the locations. Schönfelder and 

Axhausen (2003) mapped the weighted activity space to show the distribution of frequently 

visited locations using kernel density estimation. Li, Li and Shan (2017) found that higher 

tweets’ density areas are surrounded by commercial and institutional places.  

Moreover, entropy is often used to indicate the randomness of activity patterns, 

which is invaluable in determining the likelihood of users returning to previously-visited 

locations and predicting future trips. It is used to show the movement among the most 

frequently visited locations (i.e., POIs) and quantify the probabilistic distribution of 

visiting different locations. It proved to be less impacted by outlier points (Song et al. 2010, 

Yuan and Raubal 2012, Yuan and Wang 2018). Similarly, Gong et al. (2016) inferred trip 

purposes by analyzing their visit probability based on POIs and drop-off points distribution 

and uncovered travel patterns from taxi trajectory data. Some studies identified activities 

by combining human activities with POIs. Xie, Deng and Zhou (2009) assigned the POI 

type as the activity purpose of a person. Huang, Li and Yue (2010) extracted a person’s 

potential activity sub-trajectories from their entire travel route by defining the 
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spatiotemporal attractiveness of POIs. Phithakkitnukoon et al. (2010) found a strong 

correlation of activity patterns within people who work in the same area. 

3.3 Methodology 

As discussed in the introduction chapter, this study evaluates the effectiveness of 

measuring intra-individual activity spaces indicators from LBSM data. 

 

Figure 3.1 Workflow of Effectiveness Analysis on Intra-individual Indicators. 

 

We chose four external indicators to calculate the LBSM user’s activity space size 

and three internal indicators to represent activity space structures and regularity among 

various kinds of intra-individual activity space indicators (see Figure 3.1). 
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3.3.1 Define Activity space indicators 

Generally, human activity space can be interpreted by two aspects, external 

morphology and internal structures (e.g., regularly visited locations, network structure, 

etc.). We chose the most frequently used indicators from previous activity studies (Lee et 

al. 2016, Schönfelder and Axhausen 2004, Golledge and Stimson 1997, Schönfelder and 

Axhausen 2002, Song et al. 2010, Sherman et al. 2005, Yuan et al. 2012, Kwan 2000). 

(1) External activity space indicators 

• Minimum convex hull: In mathematics, the minimum convex geometry is defined 

as a polygon that contains all points and has no internal angles greater than 180 

degrees on a 2-dimensional plane (Fan and Khattak 2008, Lee et al. 2016, Andrew 

1979). In this research, it shows a unique activity space which contains all check-

in locations from an LBSM user (Figure 3.2). The minimum convex hull is 

straightforward to compute, but it is imperfect if the person’s activity space is 

irregularly shaped, because the check-in outliers make activity space inaccurate. 

 

Figure 3.2 A Sample of Minimum Convex Hull. 
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• Alpha shape: The alpha-shape associated with a set of points is a generalization of 

the minimum convex hull. It is a family of piecewise linear simple curves in the 

Euclidean plane associated with the shape of a finite set of points (Edelsbrunner et 

al. 1983, Akkiraju et al. 1995, Barbosa, da Fontoura Costa and de Sousa Bernardes 

2003, Duckham et al. 2008). However, unlike the minimum convex hull, alpha 

shape is constructed as a non-convex enclosure on a set of points (Figure 3.3). 

Hence, it provides a more accurate boundary than the convex hull and is less 

affected by outliers (Fayed and Mouftah 2009). 

 

Figure 3.3 A Sample of Alpha Shape. 

 

• Standard Deviational Ellipse (SDE): this indicator calculates the standard deviation 

of x coordinates and y coordinates from the mean center of an individual’s check-

ins to define the axes of the ellipse (Lefever 1926, Shannon and Spurlock 1976, 

Yuill 1971, Schönfelder and Axhausen 2003). The ellipse allows us to see the shape 

and the orientation of a user’s activity space. In this case, this study calculates the 

standard distance separately in the x and y dimensions by measuring the trend for a 
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set of check-ins of an LBSM user. These two measures define the major and minor 

axes of an ellipse. This ellipse is referred to as the standard deviational ellipse, since 

the method calculates the standard deviation of the x coordinates and y coordinates 

from the mean center to define the axes of the ellipse (Figure 3.4). 
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where xi and yi are the coordinates for check-in, X and Y represents the 

mean center for the check-ins of one LBSM user, and n is the total number 

of check-ins from this user. 

 

Figure 3.4 A Sample of SDE. 

 

• Radius of Gyration (ROG): it is considered an indicator of activity scale and a 

measurement of the external morphology. ROG represents the activity range of 

individual activity space around their center check-in footprint (Cheng et al. 2011, 
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Song et al. 2010, Xu et al. 2015). Compared to SDE, it only calculates one 

parameter (i.e., radius) to represent the scale of activity spaces (Figure 3.5). ROG 

has been widely used to represent the spatial dispersion of individual daily 

activities. It is defined as: 
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where n refers to the number of check-in locations of a given user; ri is the 

geographical coordinate of each check-in location; rm refers to the centroid 

of all check-in points of a given user. 

 

Figure 3.5 A Sample of ROG. 

 

According to the definition of ROG, there is an advantage of ROG over the other 

three intra-indicators. Only the ROG indicator can capture a user’s activity space when the 

check-in locations are located along a straight line (Figure 3.6). In this case, although the 

user moved in different locations, there is no 2-dimensional activity space formed. Convex 
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hull, alpha shape, and SDE methods are not able to detect the 2-dimensional activity space 

of this user. However, ROG calculates the centroid of the check-in locations and a mean 

distance among all check-ins to the centroid location, therefore the activity space of one 

user is represented within the distance (i.e. ROG value) from the centroid location. 

 

Figure 3.6 A Line-Shaped Check-in Distribution. 

 

(2) Internal activity space indicators 

• Entropy: it is often used to indicate the randomness of activity patterns, which is 

invaluable for determining the likelihood of users returning to previously-visited 

locations and predicting future trips (Song et al. 2010, Yuan and Raubal 2012, Yuan 

and Wang 2018). Entropy is defined as: 
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where pi refers to the probability of a given user checking in at the same 

place i, and N stands for the total number of places where this user checked 

in. It is considered an indicator of the internal structure and randomness of 

activity spaces.  
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As can be seen from Figure 3.7, user A visited more disperse locations in the 

neighborhood while user B preferred to visit particular locations instead. It can be 

considered that activity diversity of user A is higher than B. Entropy indicator is used to 

quantify the degree of the regularity of an individual. Higher entropy value represents 

higher randomness of a pattern (e.g., the entropy of user A is higher than user B). 

 

Figure 3.7 A Sample of Different Entropy Patterns. 

 

 

• Minimum Spanning Trees (MST): it reveals the movement network among 

regularly visited locations (Schönfelder and Axhausen 2002, Sherman et al. 2005, 

Gower and Ross 1969). An MST is a subset of the edges of a connected, 

(un)directed graph that connects all the locations together without any cycles. It is 

a spanning tree whose sum of edge weights is the smallest. In this study, we 

calculate all possible connections among all check-in locations for each user and 

select the minimum route (black lines) as the MST distance (Figure 3.8). This 

indicator shows the minimum connections distance of all the check-in locations. It 

generates the spanning tree whose sum of connection cost is the smallest. This 
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indicator quantifies the connection complexity of an LBSM user’s visiting locations 

in his/her activity space based on the structure among his/her check-in locations. 

 

Figure 3.8 A Sample of Minimum Spanning Trees. 

 

• Kernel density: it shows the density distribution of activity locations. The basic 

process of a kernel density analysis is to transform a point pattern (such as the set 

of activity locations visited) into a continuous representation of density in space 

(Kwan 2000, Schönfelder and Axhausen 2003, Susilo and Kitamura 2005). The 

more check-ins in an area means the more often the neighborhood is visited. The 

highest density of activity location occurs in the most frequently visited areas and 

the lowest exists within the least visited ones. In this case, we calculate the location 

with the highest check-in density between 8 pm to 5 am (i.e., possible home 

location) for each LBSM user to see how this location changes with an increasing 

data collection duration. Figure 3.9 shows a sample of highest density (red points) 

displacement by accumulating data amount. 
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Figure 3.9 Displacement of the Highest Density Check-in Location. 

 

3.3.2 Test Effectiveness of Activity Space on Different Indicators and Data Sizes 

This chapter tested the effectiveness of LBSM data in modeling intra-individual 

activity space. We calculated four external activity space indicators to represent the size 

and shape of activity spaces as defined in 3.3.1, which are convex hull, alpha shape, SDE, 

and the ROG. We compared the results of these four different indicators in modeling 

LBSM activity spaces. Besides the external indicators, this study also employed three 

internal indicators to model activity spaces: entropy to show the probabilistic distribution 

of visiting different POIs; minimum spanning trees to reveal the network among visited 

locations, and kernel densities to show the most checked-in locations. These indicators 

were used to represent the internal structure of activity spaces and the regularity of visited 

locations. 

This study also tested how data quantity affects the magnitude of activity space 

indicators. We investigated how an individual activity space changes when applying 

different data collection durations to activity space indicators. In this study, “data quantity” 

and “data collection duration” were used interchangeably. We chose data collection 

duration (e.g., 1 month, 2 months) instead of the exact number of check‐ins (e.g., 1,000 
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records, 2,000 records) for two reasons: (1) to be consistent with other social media 

analysis, as most data collection campaigns are conducted based on a chronological circle 

(e.g., weeks or months); and (2) to collect our user data under the same study period so that 

they are comparable. In other words, we tested how LBSM data collection duration affects 

the computation of activity space indicators. In details, we applied different LBSM data 

sizes to the seven intra-individual indicators respectively.  

First, we calculated the magnitude of 7 activity space indicators based on 12 

different data collection durations – from 1 month to 12 months. Then, we used a linear 

regression model with logarithmic transformation to approximate how the magnitude of 

each indicator changes with different data collection durations. We are interested in 

exploring whether an indicator approaches a steady point as the number of months 

increases, and if so, how to approximate this limit using a mathematical model. For 

example, the indicator may increase, decrease, or fluctuate as the number of data increases. 

At last, we conducted a model fitting to approximate the limit of activity space indicators 

in Beijing, Shanghai, and Guangzhou. Understanding how the indicators change can 

provide useful insights for choosing an appropriate data collection duration in future 

studies. 

3.4 Results 

3.4.1 Results of Activity Space Indicators 

We calculated four external and three internal indicators for each Weibo user using 

the data collected from April 2015 to March 2016. As mentioned in Chapter 2, to ensure 

that we have adequate information to extract individual users’ activity patterns, we only 

considered users with at least 10 check-ins during the study time span from April 2015 to 
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March 2016. After data pre-processing, we obtained 6,215 users over three cities. The 

summary of the data is listed in Table 3.1. 

Table 3.1 Data Summary for Indicator Calculation. 

April 2016-March 2016 Amount of check-ins Amount of users 

Beijing 50,355 2,800 

Shanghai 33,122 1,776 

Guangzhou 30,608 1,639 

 

After converting the longitude and latitude coordinates of check-in locations to a 

planar coordinate system (i.e., Pseudo-Mercator -- Spherical Mercator), we compared four 

external activity space indicators for each Weibo user by grouping their check-ins through 

their unique user IDs. We used the average value (Table 3.1 and Table 3.2) for each 

indicator to see how the scale of activity spaces was different based on different indicators 

(Figure 3.10). 

Table 3.2 Average Value of 4 External Indicators. 

Average ROG area(km2) SDE(km2) Convex hull(km2) Alpha shape(km2) 

Beijing 295.0612 186.7965 125.7324 115.0579 

Shanghai 151.3380 81.1435 70.3178 64.0062 

Guangzhou 112.4128 48.7173 46.8779 41.6438 

 

 

Figure 3.10 Scale of Activity Space based on Different External Indicators. 
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Figure 3.10 shows a radar chart of activity space of three study areas. Each axis 

represents one of the external activity space indicators, which are convex hull, alpha shape, 

SDE and ROG area. The radii range from 0 km2 to 300 km2 and the data points show the 

scale of the magnitude of the activity space. The overall magnitude of the average activity 

space of Beijing users is the largest among all three cities, followed by Shanghai users, and 

Guangzhou users have the smallest average activity space. It shows that an individual’s 

activity space is possibly related to the size of the city. In this study, the bigger the city, the 

larger the individual average activity space is.  

While comparing the performance of four external activity space indicators, it is 

clear that the average activity spaces represented by ROG areas are larger than the other 

three indicators in all three study areas. The possible reason is that the ROG method is less 

sensitive to outliers and covers the most possible activity spaces of the LBSM user. The 

areas from convex hull and SDE are similar for Shanghai and Guangzhou, but not for 

Beijing. The average activity space calculated by SDE is 61 km2 larger than convex hull in 

Beijing, 11 km2 larger in Shanghai, and 2 km2 larger in Guangzhou. From the tabular data 

in Table 3.2, it seems the bigger the city, the larger the difference between the convex hull 

and SDE indicators in this case. It also shows that alpha shape is less capable to 

differentiate the three cities. The differences of activity spaces represented by convex hull 

and alpha shape are the least among all the indicators. Moreover, the average space sizes 

represented by alpha shape are slightly smaller than the convex hull in all three study areas. 

It proves that the alpha shape indicator describes a more accurate boundary and is less 

affected by outliers. 
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(a) 

 

(b) 

 

(c) 

Figure 3.11 Distribution of 4 External Indicators: (a) Beijing; (b) Shanghai; and 

(c) Guangzhou. 
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Besides showing the average values of four indicators in three cities, we also plotted 

the histograms to show the distribution of each indicator. As can be seen from Figure 3.11, 

all four indicators show power law distribution with high values on the left-hand side and 

a long tail of outliers on the right-hand side of the distribution. Activity space sizes of 80% 

LBSM users are within 50 km2 in all three cities. The results also follow the “80/20” rule 

(Jiang, Yin and Zhao 2009) where the majority of Weibo users (more than 80%) have their 

activity space sizes within 50 km2 and only a few users (less than 20%) have extremely 

large activity space sizes. Activity spaces with more outliers (e.g., check-ins far away from 

the most frequently visited locations) are more sensitive to the different activity space 

indicators because their activity scales are highly affected by the outliers.  

In addition, we are interested in the disparity of individuals’ activity spaces 

represented by different indicators. We selected the ROG area as a base indicator to 

evaluate the absolute differences between ROG and the other three external activity space 

indicators. Figure 3.12 shows the absolute value of the difference between the base 

indicator (i.e., ROG) and the other three indicators respectively.  

 

Figure 3.12 The Differences among Four External Indicators in Beijing. 
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As presented in Figure 3.12, the absolute difference between each pair of the 

external indicators follows a power law distribution. The number of users whose activity 

space differences were less than 100 km2 occupied almost 70% of all the users in Beijing. 

It shows that the activity space of the majority of users did not change much although 

presented by different indicators, and only a few users have huge differences in activity 

space scales. Specifically, only less than 5% of the Beijing users show substantial 

differences (i.e. absolute difference greater than 1,000 km2) when applying different 

activity space indicators.  

 

Figure 3.13. Comparison of Convex Hull and Alpha Shape. 

 

As can be seen from Figure 3.13, the difference between convex hull and alpha 

shape is even smaller. 45% of Beijing users’ activity space size differences are within 0.1 

km2. As can be seen from Figure 3.14(a)-(b), alpha shape is less affected by outliers and 

can measure activity space more accurately than convex hull. In summary, alpha shape, as 

an improved method of the convex hull, resulted in a more accurate and smaller activity 

space than the convex hull. We also chose an example to show why some users’ activity 

space sizes changed dramatically with different indicators (Figure 3.14 and Table 3.3). 
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(a)                                                     (b) 

 

(c)                                                  (d) 

Figure 3.14 A Sample to Illustrate Activity Space Difference by Different 

Indicators: (a) convex hull; (b) alpha shape; (c) SDE; and (d) ROG area. 
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Table 3.3 Activity Space Sizes of the User. 

 

As indicated by Figure 3.14, most of the places this user visited are located in 

central Beijing, however, there is one located far away from the others. The result shows 

that the activity space represented by alpha shape is the smallest (see Figure 3.14(b) and 

Table 3.3). In this case, different from the convex hull, alpha shape accurately reduced the 

biases affected by the outlier point located in northeast Beijing; however, SDE is also 

highly affected by the outlier point. Figure 3.14(c) shows that the direction of the long axis 

of the SDE is toward the outlier in northeast Beijing while most of the check-ins are not in 

that direction. Figure 3.14 (d) shows that the ROG area can approximate an activity space 

that is not sensitive to the outlier. 

We also calculated three internal activity space indicators for Weibo users to 

describe the travel diversity, network structures among those check-in locations, and the 

movement pattern within the activity space. We plotted the distribution for each indicator 

in three study areas. 

Figure 3.15 shows the histograms of entropy values in three cities. Our analysis 

shows similar distributions for three cities, with the mean entropy value of 3.2546 for 

Beijing, 3.2852 for Shanghai, and 3.2136 for Guangzhou. The results revealed that the 

average values of entropy seem not to vary across three cities, indicating that the size and 

structure of the cities have little impact on the randomness of an individual’s activity space. 

There is a notable pattern of entropy values in Guangzhou that is different than the patterns 

in Beijing or Shanghai: As can be seen from Figure 3.15(c), a total of 95 users have their 

Indicators(km2) 

User ID 
ROG area SDE Convex hull Alpha shape 

268874**** 1,632 1,457 2,170 400 
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entropy value equal to 0, which means that these users posted from the same location during 

the entire data collection duration. It suggests that 1) these users stayed in the same place 

when they posted, (2) these users are more likely to be residents rather than visitors in 

Guangzhou, (3) their activity space sizes were calculated as zero because there was no 

movement detected. 

 

(a)                                                                (b) 

 

(c) 

Figure 3.15 The Distribution of the Number of Users and Entropy Values: (a) 

Entropy distribution of Beijing; (b) Entropy distribution of Shanghai; and (c) Entropy 

distribution of Guangzhou. 

 

For the MST, our analysis results are shown in Figure 3.16. 
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(a)                                                       (b) 

  

(c) 

Figure 3.16 The Distribution of the Number of Users and MST Distances: 

(a) Beijing; (b) Shanghai; and (c) Guangzhou. 

 

We calculated and compared the MST distance for the users in three cities. Figure 

3.16 shows that majority of LBSM users have a short network connecting distance among 

their check-in locations in all three cities. In brief, the MST method connects all the check-

in locations together using the shortest path. The MST distance describes the shortest 

connection path among the check-in locations. The further the MST distance, the more 

connection complexity among user visited locations. It showed that a large proportion of 

LBSM users tend to use a small set of locations for their daily activities. The average MST 



43 

 

distance of Beijing is the longest for 41.58 km, and then of Shanghai for 28.06 km, while 

Guangzhou is the least for 18.03 km. The results of the MST indicator demonstrated that 

the average MST distance of Beijing users is much further than that of Shanghai and 

Guangzhou. This is potentially determined by the city’s size, planning, and infrastructure. 

From the MST indicator, we can infer that Beijing has a more complex environment and a 

larger activity space extent than Shanghai or Guangzhou.  

The analysis of kernel density was conducted by calculating the movement of 

locations with the highest check-in density between 8 pm to 5 am (i.e., possible home 

location) for each LBSM user. We tested how this most visited location changes with an 

increasing data collection duration in chapter 3.4.2.  

3.4.2 Results of Activity Space on Different LBSM Data Sizes 

As an effectiveness test to explore the correlation between activity space indicators 

and the amount of data utilized, we calculated the average values for all intra-individual 

indicators based on different data collection durations (from 1 month’s data up to 12 

months’ data) in three cities. 

(1) External activity space indicators 
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(a)                                           (b) 

 

(c) 

Figure 3.17 Scale of Activity Space based on Different Collection Durations 

(a) Beijing; (b) Shanghai; (c) Guangzhou. 

 

Figure 3.17 shows how convex hull, alpha shape, SDE and ROG values change 

with the different amount of data used. As can be seen, in all three cities, all four indicators 

show an increasing trend with a longer data collection period; however, the increasing trend 

slows down and the indicator approaches a limit value as the amount of data continues to 

grow. To further quantify the change of activity space indicators with different data 

collection durations, we plotted the percentage of increase (pi) of the indicator (Figure 

3.18), defined as: 
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where xi stands for the value of indicator x calculated using i months’ worth of data. 

As shown in Figure 3.18,the increase rate of all indicator values in three cities decreases 

when the amount of data increases. Since the correlation does not appear to be linear, we 

apply a logarithmic transformation on pi and construct the following regression model: 

log( )
i

p am b= +                                                        (7) 

where m is the number of months of data used in the analysis, and a and b are the 

coefficient and intercept of the fitted regression model. 

Figure 3.18 shows that the increasing trend slows down and approaches zero as the 

data collection duration increases to 12 months. It indicates that these indicators reach a 

limit value as the amount of data continues to grow. When the data collection duration 

reaches 9 months, the increasing rates of all indicators are less than 0.1. This result is 

consistent with the assumption of time geography (Hägerstrand, 1970), where an 

individual’s daily activity space is restricted to a certain spatial range due to physical 

constraints (e.g., moving speed), administrative boundaries, lifestyles, and so on. 
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(a)                                                              (b) 

    

(c)                                                           (d) 

    

(e)                                                            (f) 

Figure 3.18 Increasing Rate of 4 Indicators based on Different Collection 

Durations: (a) ROG vs. SDE in Beijing; (b) Convex hull vs. alpha shape in Beijing; (c) 

ROG vs. SDE in Shanghai; (d) Convex hull vs. alpha shape in Shanghai; (e) ROG vs. 

SDE in Guangzhou; and (f) Convex hull vs. alpha shape in Guangzhou. 
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Table 3.4 Comparison of Observed Indicators and the Simulated Limit (Beijing). 

Beijing average value simulated limit value value/simulated (%) 

ROG 295.0612 298.083 98.99% 

SDE 186.7965 194.5516 96.01% 

Convex hull 125.7324 138.9209 90.51% 

Alpha shape 115.0579 125.8575 91.42% 

 

Table 3.5 Comparison of Observed Indicators and the Simulated Limit (Shanghai). 

Shanghai average value simulated limit value value/simulated (%) 

ROG 151.3381 157.0538 96.36% 

SDE 81.14359 87.48515 92.75% 

Convex hull 70.31781 81.55756 86.22% 

Alpha shape 64.00625 74.23715 86.22% 

 

Table 3.6 Comparison of Observed Indicators and the Simulated Limit (Guangzhou). 

Guangzhou average value simulated limit value value/simulated (%) 

ROG 112.4129 114.1602 98.47% 

SDE 48.71733 50.72552 96.04% 

Convex hull 46.87795 51.81313 90.48% 

Alpha shape 41.64381 45.24414 92.04% 

 

As can be seen from Tables 3.4-3.6, when using 12-month average data, the 

calculated data is very close to the approximated limit value. ROG has the largest at 96% 

of the observed value in all three cities. This shows that ROG as an indicator for describing 

external activity space is not sensitive to the outlier. This result can be interpreted from 

multiple perspectives. 

On the one hand, the simulated ROG and other indicators’ limits provide 

quantitative evidence to interpret users’ activity scale in a certain city. For example, in 

Beijing, the average ROG area is approximately 295 km2, which is larger than the limits in 

Shanghai (151 km2) or Guangzhou (112 km2). This is potentially determined by the city’s 

boundary, planning, and structure. The same analysis can be extended to different cities to 

study the impact of urban setting on activity space. On the other hand, we further confirmed 

that one-year’s data is capable of capturing at least over 86% of the variability of all 
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external indicators in three study areas. Future studies can adopt a similar methodology to 

determine a balance point between data quantity and analytical precision. In addition, the 

differences among ROG, SDE, convex hull and alpha shape are worth noting. For example, 

with 12 months’ worth of data in Shanghai (Table 3.4), the calculated ROG is able to reflect 

over 96% of the limit value; however, for convex hull and alpha shape, this proportion 

drops to 86%, suggesting that various indicators may have a different level of sensitivity 

toward data quantity. Similar patterns exist for Shanghai and Guangzhou, indicating that 

convex hull and alpha shape values require a longer data collection period to stabilize. 

(2) Internal activity space indicators 

The previous chapter addressed the effectiveness of external indicators and data 

sizes in modeling activity space. Here, we illustrate the effectiveness of indicators in 

modeling the internal structure of activity spaces.  

 

Figure 3.19 The Average Entropy Value of Users in Three Study Areas. 

 

As can be seen from Figure 3.19, it follows the pattern that the average entropy 

values increase as the amount of data increases. The increasing trend slows down and 

approaches zero as the data collection duration increases to 12 months. It indicates that the 
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average entropy value reaches a limit as the amount of data continues to grow in all three 

study areas. However, different from the external activity space indicators, our result shows 

similar distributions of entropy in three study areas, indicating that the size and structure 

of the cities have little impact on the randomness of individuals’ activity spaces. 

  

Figure 3.20 The Average MST Distance of LBSM users in Beijing, Shanghai, and 

Guangzhou. 

 

Figure 3.20 shows how the MST distances change with the different amount of data 

used in three study areas. It also follows the same pattern that the average MST values 

increase as the amount of data increases. However, the increasing trend slows down and 

the indicator approaches a limit value as the amount of data continues to grow. The average 

MST distances of users in three cities are very different from each other. The average MST 

distance of Beijing users is 23 km larger than Guangzhou users. Although the MST 

indicator quantifies the shortest connection distance of check-in locations in activity space, 

it is also limited by the scale of a city as well as the size of the activity space. 
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Figure 3.21 Average Displacement of the Highest Density Check-in Location. 

 

In addition, we defined the most frequently visited location place as the highest 

density location of a given LBSM user. We calculated the highest density locations for 

each user by creating the kernel density surface of each user. We selected check-in points 

between 8 pm to 5 am to estimate the possible home location of LBSM users. Similar to 

external indicators, we applied 12 different data sizes to see how the most frequently visited 

location (i.e., the potental “home location”) changes with different data collection durations 

under the same density surface prameter settings. Figure 3.20 shows that as the amount of 

data increases, the average displacement of the estimated home location in all three study 

areas decreases. In other words, when the data collection duration increases, the highest 

density location tends to stablize. Figure 3.22 shows an example of the displacement of the 

highest density location (red points) with different amounts of data. 
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(a)                                                      (b)                                                      (c) 

 

(d)                                               (e) 

Figure 3.22 Analysis Procedure of Displacement of One Weibo User: 

(a) 1 month’s data; (b) 2 months’ data; (c) 3 months’ data; (d) 4 months’ data; and (e) 

Displacement of the highest density locations. 

 

3.5 Conclusion and Discussion 

This study examined the effectiveness of LBSM on calculating intra-individual 

activity space indicators. More specifically, the results revealed how different indicators 

affect the magnitude of seven intra-individual activity space indicators in three Chinese 

cities.  
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First, we uncovered the inherent regularities of individuals’ frequently visited 

locations, network structure among those check-in locations, and possible home locations 

based on LBSM data. Although individual activity spaces are mainly determined by their 

frequently visited locations, LBSM users’ activity spaces are also affected by the size, 

spatial distribution, and spatial structures of a city. Moreover, activity space is also 

influenced by how activity space is conceptualized and measured. There is also a noticeable 

difference between SDE and convex hull, and it seems that the bigger the city, the larger 

the size difference is between convex hull and SDE. While comparing the sizes measured 

by the four external activity space indicators, it is clear that the activity space represented 

by ROG areas are more stable than the other three indicators in all three study areas. In 

summary, the ROG method is less sensitive to outliers and covers the most possible activity 

spaces of LBSM users than SDE. It also proves that the alpha shape indicator describes a 

more accurate boundary and is less affected by outliers than convex hull.  

Second, we discovered the correlation between the change of indicator values and 

the amount of data used in modeling activity space. The results revealed that all four 

external and two internal activity space indicators (i.e., entropy and MST) increase when 

the amount of data increases, eventually, their proportion of increase slows down and 

approaches zero. However, the home location indicator (i.e., Kernel density) implies that 

when the data collection duration increases, the displacement of highest density location 

tends to decrease until it reaches a stable point. Although the displacement decreases when 

the amount of data increases, the displacement still follows the same pattern as the other 

indicators which results in stabilization over time. The effectiveness test of LBSM data in 
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modeling human activity space helps to select an appropriate data size in future human 

activity related studies.  

In summary, the results indicated that LBSM users’ activity spaces can be presented 

and measured by different activity space indicators at an individual-level. As the data size 

increases, the magnitude of defined indicators approaches a steady point. Each of the seven 

measures represent a methodological variation on evaluating the effectiveness of LBSM 

data usage in modeling individual activity space.  

These intra-individual related indicators together can capture a comprehensive 

view of individual activity patterns, such as the spatial extent of activity space, the 

regularity of daily activities, the diversity of movements among POIs, and the structure of 

movements among their check-in locations. Through the effectiveness test, we can select 

more effective and reliable activity indicators and data sizes in activity space studies. The 

choice of appropriate indicators and data sizes to represent individual activity space ensures 

the integrity, accuracy, and reliability of the activity space modeling. We foresee that the 

broader impact of this research will yield an enhanced understanding of applying LBSM 

data in human activity studies and other widely applicable areas of geography, such as 

transportation and urban planning. 
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4 TEST THE EFFECTIVENESS OF INTER-INDIVIDUAL ACTIVITY SPACE 

MODELING 

4.1 Introduction 

Measuring the similarity between individual activities is an effective way to reveal 

human dynamics and understand inter-individual variability. The study of activity 

similarities can identify the relation and commonality of the activity patterns between 

individuals (Wang et al. 2011, Liu et al. 2014). Traditional human similarity measurements 

are limited by the difficulty of acquiring enough data sets at an individual-level in a large 

spatial environment (Yuan and Wang 2018). With the development of location-based 

technologies, measuring individuals’ similarities based on their movements has attracted a 

lot of attention. Location-based technologies, such as GPS-equipped smart phones, have 

provided a more flexible way to collect where and when people interact with the 

environment (Scholz 2018, Carrasco et al. 2008, Liben-Nowell et al. 2005, Eagle et al. 

2009). Therefore, these technologies generated valuable datasets for researchers in the field 

of activity studies (Ahas et al. 2015, Doran et al. 2016, Lee et al. 2016, Resch 2013, Wu et 

al. 2014, Xu et al. 2015). Among these platforms, LBSM attracts users to share their daily 

activities with their friends and followers, and provides abundant information of 

individual-level daily activities (Hemment 2006, Sui and Goodchild 2011, Thielmann 

2010, Tuters and Varnelis 2006, Varnelis and Friedberg 2008), and therefore strengthens 

the role of social media as a proxy to understand human behaviors and complex social 

dynamics in geographic spaces (Cao et al. 2015). Therefore, LBSM data offers various 

opportunities for researchers to explore and understand human activity similarities. 
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However, discovering similar LBSM users’ activity patterns is challenging. First, 

dealing with big datasets like LBSM data is computationally complex. Efficient methods 

and algorithms are required to undertake the analysis of mining valuable information. 

Second, it is difficult to accurately model LBSM user behaviors due to data variety and 

complexity. For example, it is challenging to integrate spatial-temporal data from different 

LBSM platforms at different levels of completeness. Third, the low-resolution spatial and 

temporal information from LBSM data brings extra challenges to similarity analysis. In 

other words, the variability in individual activity patterns makes human activity 

measurement a challenging task, especially when individual activities differ in both space 

and time dimensions. Most importantly, unlike sequential GPS data with a high spatial 

resolution, the sparseness of check-in locations increases the difficulty of discovering 

similar LBSM user patterns.  

Human activity similarity detection relies on analyzing movement patterns. The 

key for human activity similarity analysis is to find out how to measure the similarities 

between two activities (Liu and Schneider 2012). Although many studies have analyzed 

the similarity of user pairs’ trajectories (Lv, Chen and Chen 2013, Tiakas et al. 2009, 

Scholz 2018), there is not sufficient research to analyze and compare the activity similarity 

of individual activity patterns based on sparse datasets. The main characteristics of point-

based LBSM data are the nonsequential and sparse nature of the check-in points, which are 

very different from the trajectory data. Hence, unlike traditional trajectory similarity 

studies, this chapter measures LBSM users’ activity similarities based on their check-in 

locations. Chapter 3 explored LBSM activity space by computing and comparing different 

indicators. However, as discussed by Golledge and Stimson (1997), regularly visited 
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activity locations as well as the travels between and around these locations form an 

individual activity space. Therefore, it is equally important to conduct activity space studies 

by comparing the specific point patterns that form the activity space. 

To address this problem, there are three steps in this analysis to reach this goal. 

First, we clustered all LBSM check-ins based on the density-based spatial clustering of 

applications with noise (DBSCAN) by their geographic coordinates. After clustering, each 

check-in is assigned with a cluster identifier (i.e., Cluster ID) which shows the spatial group 

of the check-ins. Second, we summarized the number of check-ins in different clusters for 

each LBSM user and organize it into a vector space model (VSM) to represent user activity 

patterns in each cluster. Third, we extended VSM to a spatial-temporal vector space model 

(ST-VSM) by taking into account their check-in time (i.e., morning, afternoon, and night). 

We then calculated LBSM users’ activity similarities by applying an extended cosine 

similarity function and evaluated our approach from both spatial and temporal 

perspectives. 

The remainder of this chapter is organized as follows: Chapter 4.2 discusses related 

work in the areas of inter-individual study and a review of existing activity similarity 

measurements. Chapter 4.3 introduces the fundamental research design, including the 

research framework and the main steps of the similarity measurement. Chapter 4.4 presents 

the experimental results based on LBSM data for three study areas. Chapter 4.5 concludes 

the research and discusses future directions for studies. 

4.2 Measure the Similarity of Activity Patterns  

Nowadays, people use LBSM to share their daily life and LBSM platforms provide 

a larger volume of spatial-temporal data. These location-based data can be acquired 
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through streaming APIs. It brings new possibilities for researchers to analyze human 

activity patterns from both individual (Musolesi, Hailes and Mascolo 2004) and aggregated 

perspectives (Bawa-Cavia 2011, Kwan 2000, Mazey 1981). Exploring human activity 

patterns plays a crucial role in understanding and predicting individual patterns such as 

activity scheduling, social network structure, and location prediction (Batty 2009, Cullen 

and Godson 1975). Cho et al. (2011) studied how social constraints such as friendship 

influence individuals’ movements. However, most of these studies haven’t considered the 

spatial-temporal relationship between different LBSM users’ patterns. 

Both space and time dimensions play an important role in shaping people’s access 

to certain locations. Therefore, space and time are two essential elements that contribute to 

LBSM user activities (Li et al. 2013). An active area of research in recent years focuses on 

the influence of space-time constraints on accessibility (Kwan et al. 2003, Ahas et al. 2015, 

Li et al. 2013, Schönfelder and Axhausen 2016). Individual activity spaces also differ in 

time because individuals’ spatial movements are confined by their daily activity 

scheduling. It is a complex process that cannot be fully depicted by static spatial 

information. Many studies of activity similarities focus on static spatial information, 

without looking into how the understanding of the issues can be enriched through the lenses 

of time and mobility (Jones and Pebley 2014, Ren, Tong and Kwan 2014, Wong and Shaw 

2011). On LBSM platforms, each individual has their unique behaviors in space and time. 

Therefore, detecting their similarities can be useful for identifying different type of LBSM 

users’ spatial-temporal activities (Kwan 2000). Hence, this study examines the similarity 

of individual activity spaces from a spatial-temporal perspective. 
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4.2.1 Similarity Measurements of Trajectory-based Data 

As discussed in Section 4.1, activity space studies not only focused on the 

morphology of the activity space but also the specific point patterns of visited locations—

the former measures its basic characteristics and the latter depicts the internal structure of 

how an activity space forms. This chapter focuses on testing the effectiveness of inter-

individual similarity measurements in modeling the activity space by mining similar point 

patterns that form activity spaces. 

One basic type of similarity measurement is the distance-based measurement 

(Wang et al. 2013), where the distance between trajectories reflects the underlying 

similarities between the two items. The most commonly used measurement is Euclidean 

distance (Joh et al. 2002, Joh, Arentze and Timmermans 2001, Liu and Schneider 2012, 

Buliung and Kanaroglou 2006). It measures the average distance between the 

corresponding points of two trajectories of the same length. However, the main problem of 

Euclidean distance is that it is very sensitive to outliers and can not compare the trajectories 

of different lengths. The dynamic time warping (DTW) method is a robust distance 

measurement to match stretched or distorted time series (Myers, Rabiner and Rosenberg 

1980). It has been used to measure the similarities between individual activity curves in 

the clustering analysis (Senin 2008, Keogh and Ratanamahatana 2005, Kim, Park and Chu 

2004). Levenshtein distance, referred to as the edit distance, is one of the most popular 

string matching methods for measuring the difference between two sequences (Levenshtein 

1966). The edit distance method is used to calculate how dissimilar two trajectories are by 

counting the minimum number of steps required to transform one trajectory into the other 

(Chen and Ng 2004, Chen, Özsu and Oria 2005, Scholz 2018). The biggest advantage of 
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the edit distance is that it does not require the two sequences to have the same length. Celik 

and Dokuz (2018) proposed a similarity measurement based on Levenshtein distance which 

calculates users’ similarities by taking into account both location similarity and the order 

of locations visited by LBSM users. Yuan and Raubal (2014) extended the edit distance 

method by incorporating the spatial distribution of cell towers, and applied the developed 

spatiotemporal edit distance to compare trajectories. The Fréchet distance is a similarity 

measurement which considers the location and the order of points on trajectory curves 

(Buchin and Purves 2013). Buchin and Purves (2013) employed equal time distance and 

Fréchet distance to explore the influence of speed on trajectory similarities. They used 

space-time prisms to model trajectories and calculated the similarities of these prisms based 

on Fréchet distance. 

Although many studies have analyzed trajectory similarities in various ways, there 

is not sufficient research to measure the similarities of LBSM users’ check-in patterns with 

low sampling resolution.  

4.2.2 Similarity Measurements of Point-based (Nonsequential) Data 

Different from high-resolution trajectory data, LBSM check-ins are event-driven 

data with uneven sampling rates (Wan, Zhou and Pei 2017). LBSM check-in data contains 

semantic information when a user posts in certain locations. However, they are sparse in 

space and time. We should employ appropriate methods to process such types of data. 

Clustering analysis is a primary method to categorize discrete and unordered points. It 

provides insight regarding the spatial distribution of a dataset and generates unique 

identifiers for each detected cluster. However, most clustering algorithms like partition-

based methods require a predefined number of clusters before conducting the analysis. 
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Moreover, the parameter settings have a significant influence on the clustering results, so 

it is necessary to determine appropriate parameters for the algorithm. To sum up, an 

effectiveness analysis is necessary to demonstrate how sensitive the results are to different 

algorithm parameters. 

Most clustering algorithms belong to two categories: partitioning-based methods 

and hierarchical-based methods. Partitioning-based clustering simply divides the set of 

data into non-overlapping clusters. These algorithms iterate until finding the satisfying 

parameters which properly partition the inner cluster from the outer cluster. Each partition 

contains a subset of the dataset. Partitioning-based algorithms often contain two steps: (1) 

predefine the number of clusters (record as k), and (2) assign the closest point to a cluster. 

For example, the classic k-means clustering algorithm belongs to the category of the 

partitioning-based method. The basic idea is to calculate and find a point that represents 

the gravity center of one cluster. A hierarchical-based clustering method identifies a set of 

nested clusters organized as a tree. It does not need to define the number of clusters k as in 

most partitioning-based clustering methods There are two types of hierarchical-based 

clustering algorithms: agglomerative (i.e., bottom-up) and divisive (i.e., top-down). The 

agglomerative approach starts with each point as an individual cluster and then merges the 

closest pair of clusters together at each step. The key operation of agglomerative clustering 

is the computation of proximity between two clusters. The divisive approach starts with 

one big cluster which splits into several clusters, and then it continues splitting until only 

singleton clusters with individual points remain. However, how to choose the appropriate 

termination condition is a widely discussed research question in hierarchical-based 

clustering algorithms.  
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Different from partitioning-based or hierarchical-based methods, density-based 

methods do not need a predetermined number of clusters or termination conditions. Given 

a set of locations, DBSCAN algorithm, one of the most commonly used density-based 

clustering algorithms, can group locations that are close and isolate outlier points in low-

density regions (Ester et al. 1996). Moreover, density-based clustering methods can find 

arbitrarily shaped geographic clusters (Ankerst et al. 1999, Ester et al. 1996, Sander et al. 

1998). Hence, it is an appropriate solution to measure individuals’ activity similarities 

based on low-resolution LBSM data. Yuan et al. (2013) proposed a DBSCAN-based 

clustering method to discover similar users by taking into account both the spatial and 

temporal dimensions. Moreover, Ankerst et al. (1999) extended the DBSCAN algorithm 

to process multiple distance parameters at the same time. They constructed the density-

based clustering process with respect to different densities to show the clustering structure 

of the entire dataset. 

Another commonly used measurement of inter-individual similarity is vector-based 

methods such as VSM (Manning, Raghavan and Schütze 2008, McDonald 2000). VSM 

represents a set of points as vectors in a vector space. A VSM matrix is able to detect user's 

activity similarities by transforming spatial points into vector format (Mitchell and Lapata 

2008). Each vector in a VSM matrix represents a user’s activity pattern. The similarity 

between two users can be calculated by comparing the deviation of angles between these 

vectors. One important advantage of VSM is that it can compute the similarity between 

two users even though their trajectories are partially different. Fundamentally, check-ins 

within the same cluster share the same vector direction. However, this measure suffers 

from a drawback: two users with very similar patterns can have a big difference based on 
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this calculation simply because one vector is much longer than the other. A standard way 

to mitigate this problem is to compute the cosine similarity of the two vectors. 

4.3 Methodology 

As mentioned in Chapter 1, in addition to intra-individual indicators, we are also 

interested in evaluating the effectiveness of measuring inter-individual activity similarities 

based on different models. We conduct an effectiveness analysis by comparing a spatial 

and a spatial-temporal method based on the same 12-month check-in dataset (Figure 4.1). 

 

Figure 4.1 Workflow of Effectiveness Analysis on the Inter-individual Method. 

 

We measured an individual’s spatial-temporal activity similarities from LBSM in 

the following two steps: First, we clustered user locations based on a density-based 

clustering algorithm to group similar check-ins. The clustering method used here is the 

DBSCAN algorithm. This research chose density-based clustering methods for LBSM 



63 

 

data, because it has been proven effective on clustering sparse trajectory data with low 

sampling resolution (Yuan et al. 2013). A lot of partitioning-based or hierarchical-based 

clustering algorithms are highly sensitive to the number of clusters. Density-based 

clustering methods like DBSCAN can avoid these issues because they do not need to 

provide a predetermined number of clusters. Moreover, an advantage of DBSCAN over 

many other clustering methods is that it can find arbitrarily shaped clusters.  

Second, we measured the similarity of individual activities between LBSM users 

based on the partitioned density surface from spatial and temporal perspectives. After 

partitioning the points into clusters based on DBSCAN, we measured users’ similarity 

patterns based on the distribution of their check-ins in each cluster. VSM is used to model 

the spatial clustering distribution of each user. However, ST-VSM considers both spatial 

and temporal information as two factors to determine the spatial-temporal activity 

similarity of LBSM users. The experimental results demonstrate the effectiveness of these 

algorithms in measuring LBSM users’ similarity patterns.  

4.3.1 Partitioning User Locations into Clusters 

(1) The DBSCAN algorithm  

The basic idea of DBSCAN is to find clusters based on the density value of spatial 

locations: the closer the check-ins, the more likely they are in the same cluster. DBSCAN 

identifies points in high-density neighborhoods as clusters but label points in low-density 

neighborhoods as outliers.  
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DBSCAN is an efficient spatial clustering algorithm, which can discover clusters 

of any arbitrary shape and effectively detect noise points. Another advantage of DBSCAN 

over other spatial clustering techniques is that it does not require a prior number of clusters. 

 

(a)                             (b)                            (c)                              (d) 

Figure 4.2 Clustering Analysis Based on DBSCAN (search radius: R; minPts:3) 

(a) step1; (b) step 2; (c) step 3; and (d) step 4. 

 

There are two crucial parameters needed in the algorithm: (a) search radius (i.e., r) 

of the neighborhood, and (b) number of minimum points (i.e., MinPts) inside of a 

neighborhood to form a cluster. The DBSCAN clustering algorithm consists of four steps. 

First, it checks the neighborhood within the search radius of each point. If the neighborhood 

of the center point C contains more than MinPts points, a new cluster is created. The center 

point C is called a core point. Second, it iteratively checks whether some of the clusters are 

density-connected or density-reachable to ensure that all the points that should be in the 

same cluster are included in that cluster. Any two adjacent clusters sharing one or more 

points are considered to be density-connected, and any cluster in a sequence of density-

connected clusters is defined as density-reachable with respect to any other cluster in this 

sequence of clusters. Third, the algorithm merges clusters that are density-connected or 

density-reachable, creating unified clusters with arbitrary shapes. Fourth, the algorithm 
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terminates when no points can be included into a cluster, and there are no connected or 

reachable clusters. Following this rule, all points within the search radius are added to a 

cluster and the others are considered as noises (Figure 4.2). 

 

(a)                             (b)                            (c)                              (d) 

Figure 4.3 Clustering Analysis based on DBSCAN (search radius: r; minPts:3)  

(a) step1; (b) step 2; (c) step 3; and (d) step 4. 

 

(2) Reachability distance and clustering structure 

As can be seen from the clustering process in Figures 4.2 and 4.3, DBSCAN is 

highly sensitive to two input parameters that may impact the clustering results. 

 

Figure 4.4 Different Densities of Clustering Results by Different Search Radius. 
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As shown in Figure 4.4, cluster A, B, and C are detected using a set of parameters 

(R,3). However, cluster C1 and C2 can be better identified if we apply parameters (r,3) to 

the dataset. If we apply r as the search radius, we are unable to detect low-density clusters 

such as A and B. Similarly, high-density clusters C1 and C2 inside of C are overlooked if 

we apply R as the search radius. The main drawback of the DBSCAN method is that the 

parameter setting of DBSCAN only contributes to one type of results without considering 

both low-density areas and high-density areas.  

In order to overcome this issue, we generated the reachability distance of clusters 

to explore the clustering structure of the dataset. It creates an ordering of the reachability 

distance between data points, which identifies high-density clusters first and then continues 

identifying clusters with lower density (Ankerst et al. 1999). Thus, this method shows the 

density-based clustering structure of the data. Reachability distance plots can show the 

relation between clusters of varying densities and corresponding search radiuses. We 

introduce two definitions to better understand the structure of clusters based on reachability 

distance: 

(a) Core-distance 

Here is the definition of the core distance: if point c belongs to the dataset, and the 

point number inside of the nearest neighborhood of c meets the Minpts requirement, then 

the core-distance of c is the distance from c to the nearest neighborhood (red line in Figure 

4.5). The range of the core-distance is [0, search radius]. 
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(b) Reachability-distance 



67 

 

If point p is density-reachable from another point c, then the reachability-distance 

is the larger one between the distance of points c and p and the core-distance. The range of 

the reachability-distance is [core-distance, search radius]. 

( )( ),   

  

,  ,
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points in neighborhood Minpts
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 (9) 

 

Figure 4.5 Explanation of Core-distance and Reachability-distance. 

 

Based on the definitions of core-distance and reachability-distance, we can retrieve 

more information about the clustering structure of a dataset. 

 

Figure 4.6 A Sample of Reachability-distance. 
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Figure 4.6 shows several characteristics of the clusters: 1) Points belonging to a 

higher density cluster have lower reachability distance than their neighbors; 2) Each valley 

represents one cluster; 3) The deeper the valley, the denser the cluster; and 4) Mountain 

areas represent the outliers. The higher the mountain, the sparser the points’ neighborhood.  

(3) Parameter setting 

Although density-based clustering methods like DBSCAN do not need to set the 

number of clusters, it is sensitive to parameters. For example, changing the required 

minimum number of points in a search neighborhood may unexpectedly affect the 

clustering results. The reachability distance only provides a generic visualization of the 

cluster structure; however, we still need to accurately define the size of the search radius. 

Similar to the measured ratio of between-groups variance against the within-groups 

variance (Tibshirani, Walther and Hastie 2001), we calculate Ws, which is the average 

distance between points inside of a cluster, defined as 
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Where s is the search radius, nr is the number of points in cluster r and Dr is the 

sum of distances between all points in a cluster. We want to see how Ws changes as the 

search radius changes. 

We use the elbow method to find the appropriate size of the search radius for each 

study area. We plot the Ws versus the size of the search radiuses to find a visual “elbow” 

which is the “turning point” of search radiuses. The elbow graph shows what happens to 
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the Ws as the size of search radiuses changes. Moreover, we also calculate the first and 

second derivative of Ws for each search radius to help choose the appropriate search radius. 

Specifically, the first derivative represents the changing rate of the indicator Ws and the 

second derivative represents the rate values of the slope change of Ws. The turning point is 

when the second derivative reaches a maximum.  

4.3.2 Measure Activity Pattern Similarity based on VSM  

Based on the clustering results from the previous step, we labeled each individual 

user’s check-in locations based on the clusters they belong to or as outliers. VSM is 

originally an algebraic model that measures the relevancy of text documents in information 

retrieval. In this study, we use it to convert a set of points to vectors in a vector space. It 

transfers each user's activities into a vector, which is composed of how frequently the 

check-in points appear in different clusters．  

(1) Calculate spatial activity similarity by VSM 

The VSM used in this chapter stores the frequency of how many times a user’s 

check-ins appear in each cluster, so each vector represents how a user visits different spatial 

and temporal clusters.  

Figure 4.7 illustrates an example of how VSM works. After applying the clustering 

method to a dataset, the check-in points of users a, b, and c are assigned to four different 

clusters. We then calculate the number of check-ins each user has in different clusters and 

summarize them into a table (Tables 4.1 and 4.2). 
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(a)                                         (b) 

Figure 4.7 (a) Example of User Check-ins; (b) The Clustered User Check-ins. 

 

Table 4.1 The Visiting Frequency of Each User in Different Clusters. 

Clusters 

Users 

G Y O S 

a 2 2 3 0 

b 1 1 1 1 

c 0 0 2 2 

 

Table 4.2 The VSM Structure of User a, User b, and User c. 

2 2 3 0

1 1 1 1

0 0 2 2

VSM =

 
 
 
 
 

 

(2) Calculate spatial-temporal activity similarity using ST-VSM 

As discussed before, it is necessary to combine both space and time when 

measuring activity similarity between users. However, it is not an easy task to calculate 

spatial and temporal similarities simultaneously. The main challenge in this activity space 

study is to compute the spatial-temporal similarities of internal point patterns that form the 

activity space for LBSM users. 

In order to capture temporal similarity patterns, we employed an improved VSM 

algorithm, ST-VSM, which combines both the spatial and temporal dimensions of user 
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activities. ST-VSM is an extended VSM model to arrange LBSM check-ins into a spatial-

temporal vector matrix. 

Table 4.3 illustrates an example of how ST-VSM works. We divided user check-

ins in each cluster into three groups based on their timestamps (4am-12pm as the morning, 

12pm-8pm as afternoon, and 8pm-4am as night). Table 3.5 shows an example structure of 

ST-VSM. We then investigated the differences of user similarity measurements using the 

aforementioned methods: density-based clustering methods with VSM and density-based 

clustering methods with ST-VSM. 

 

Figure 4.8 The Idea of Create ST-VSM by Timestamp. 

 

Table 4.3 Visiting Frequency of Three Sample Users in Spatial-temporal Clusters. 

 

 

 

Table 4.4 STVSM Records of User a, User b, and User c. 

1 0 1 1 0 1 1 2 0 0 0 0

0 1 0 0 1 0 0 1 0 1 0 0

0 0 0 0 0 0 2 0 0 0 1 1

a

b

c

v

ST VSM v

v

   
   

− = =   
  
  

 

Clusters 

Users 

G Y O S 

Morning

(M) 

Afternoon 

(A) 

Night

(N) 

M A N M A N M A N 

a 1 0 1 1 0 1 1 2 0 0 0 0 

b 0 1 0 0 1 0 0 1 0 1 0 0 

c 0 0 0 0 0 0 2 0 0 0 1 1 
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The cosine similarity between two vectors is a measure calculating the cosine of 

the angle between two vectors. This value is ranged between [-1,1]. Here we used the 

cosine similarity to measure the similarity of activity patterns for each pair of LBSM users 

in our sample. In other words, we calculated the cosine similarity based on the spatial and 

temporal distribution of two users, and the similarity value is between [0,1]. The cosine 

similarity is defined as follows: 
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Table 4.5 Similarity of Each Pair of Users. 

 User a User b User c 

User a 1 0.3333 0.2722 

User b 0.3333 1 0 

User c 0.2722 0 1 

 

Table 4.6 Similarity Matrix of Each Pair of LBSM Users. 

 

 

At last, we calculated the cosine similarity for each pair of users and generated a 

similarity matrix. 

 

 

0.3333 0.2722

0.3333 0

0.2722

1

10

1

Similarity

 
 

=  
 
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4.4 Results 

4.4.1 DBSCAN Clustering Results 

As mentioned in Chapter 4.3, DBSCAN clustering method requires two parameters: 

a search radius and the minimum number of points required to form a neighborhood. We 

use R script to implement the reachability distance for three study areas. The argument 

minPts is the minimum number of core points in the search neighborhood, which is often 

set as the dataset’s dimension plus one. Since our point data is two-dimensional, we set our 

minPts to 3 for all three study areas. In this study, because the density of check-ins vary in 

each study area, we first generated a reachability distance plot for each city to visually 

inspect the clustering structure (c.f., Figure 4.9).  

According to the reachability-distance plots in Figure 4.9, we can see a very 

different reachability distance distribution within the three cities. Points belonging to a 

higher density cluster have a lower reachability distance than their neighbors. The density 

of check-ins in city centers are much higher than other districts in all three study areas. 

Hence, we separate the study areas into two parts to better capture the clustering structure: 

the inner municipality area (i.e., the central urban area) and the urban districts outside of 

the central municipality area but still within the administrative division (i.e., the outer area).  
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(a)                                                     (b) 

 

(c)                                                  (d) 

 

(e)                                                   (f) 

 

Figure 4.9 Reachability-distance Results:(a) Check-ins in Beijing; (b) Reachability 

distance of Beijing; (c) Check-ins in Shanghai; (d) Reachability distance of Shanghai; (e) 

Check-ins in Guangzhou; and (f) Reachability distance of Guangzhou. 
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Table 2.2 in Chapter 2.3 shows a summary of the total number of check-ins located 

in the inner municipality areas and outer urban districts in three cities. Beijing and 

Guangzhou have more than 70% of the check-ins located in their inner areas, while 

Shanghai only has about 40% of the total check-ins in its inner area. If we apply the same 

clustering search radius to cluster the entire dataset, it is difficult to detect clustering 

patterns in the inner and outer areas at the same time. Also, considering the different check-

in densities in the inner areas and outer areas, we applied different searching radiuses to 

them respectively.  

Figures 4.10(a), 4.10(c), and 4.10(e) show that most check-ins located in the inner 

areas are reachable to each other within 1000 meters. And if we choose 500 meters as the 

search radius, at least 80% of the check-ins belong to the same cluster. Different from 

Beijing and Guangzhou, the reachability distance of the inner area in Shanghai shrinks to 

500 meters. The small size of the inner municipality area in Shanghai is the potential reason 

why the reachability distance of this region is smaller than the other two cities. The 

reachability distances between check-ins located in the inner areas are much shorter than 

the ones in the outer areas (see Figure 4.10). Hence, we chose to use smaller search radiuses 

for check-ins within the inner municipality areas and larger search radiuses for the outer 

districts.  
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(a)                                                                (b) 

 

(c)                                                     (d) 

 

(e)                                                   (f) 

 

Figure 4.10 Reachability Distance of: (a) The inner area of Beijing, (b) The outer 

area of Beijing, (c) The inner area of Shanghai, (d) The outer area of Shanghai, (e) The 

inner area of Guangzhou, and (f) The outer area of Guangzhou. 
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As a comparison, we plotted the reachability distances of the outer areas for three 

cities. As can be seen from Figure 4.10(b), 4.10(d), and 4.10(f), a clear clustering pattern 

appears when we set the search radius around 1,000 meters. There are many "valleys" and 

"peaks" in the plot. By definition, each valley in a reachability distance plot represents one 

cluster. The deeper the valley is, the denser the cluster. The outer area of Shanghai shows 

a different pattern from Beijing. The check-in density decreases from the city center to the 

outer areas. The further the check-ins are away from each other, the further the reachability 

distance of the check-ins in the neighborhood are from each other. Guangzhou also shows 

a different reachability distance plot because of its city morphology. The outer area of 

Guangzhou is separated into three parts by rivers and hills. As can be seen from Figure 

4.10(f), three big clusters are shown around the 400-meter search radius of the outer area 

in Guangzhou. 

According to the previous results of reachability distance in three study areas, we 

applied different search radiuses for the inner and outer areas respectively using the 

DBSCAN algorithm. We plotted Ws values with the help of the elbow method (see Figure 

4.11) to accurately choose the appropriate search radius for each region.  

(1) Parameters Setting of the Inner Municipality Areas 

Here is the procedure to deduct the optimal search radius in the inner areas: There 

are multiple possible turning points in Figure 4.11 and the elbow point (turning point) of 

Ws occurred between 200 meters and 400 meters for inner areas in all three cities. First, we 

narrowed down the range manually to select a unique point - because Beijing shows a clear 

turning point around 350 meters, Shanghai and Guangzhou should have a smaller radius 

than Beijing because of their city scale.  
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(a) 

 

(b) 

 

(c) 

Figure 4.11 Relations between Search Radius and Ws Values in the Inner Areas:  

(a) Beijing, (b) Shanghai, and (c) Guangzhou  
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(a)                                     (b) 

 

(c)                                    (d) 

 

(e)                                      (f) 

Figure 4.12 Results of the Inner Municipality Area: (a) Reachability distance of 

Beijing; (b) Clusters of Beijing; (c) Reachability distance of Shanghai; (d) Clusters of 

Shanghai; (e) Reachability distance of Guangzhou; and (f) Clusters of Guangzhou. 
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Second, we calculated the first and second derivative of each search radius. The 

first derivative represented the percentage of increase of the indicator Ws. We calculated 

the second derivative as the rate of slope change of Ws values. Third, we found the point 

with the largest second derivative value when r located within the range between 200 

meters and 400 meters. In this case, we chose rinner_BJ=350 meters, rinner_SH=240 meters, 

rinner_GZ=330 meters.  

Third, in order to verify the results, we plotted the clusters to inspect them visually 

(Figures 4.12 and 4.13). To further validate choice of clustering parameters (i.e., search 

radius) in the inner municipality area for the three study areas, we plotted the clusters based 

on other potential turning points in Figure 4.11. As can be seen from Figure 4.13, using a 

larger search radius can potentially lead to over-clustering and underestimate smaller 

clusters in low-density areas. 
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(a)                                        (b)                                      (c) 

 

(d)                                        (e)                                      (f) 

 

(g)                                        (h)                                      (i) 

 

Figure 4.13 Clustering Results of the Inner Municipality Area with Different 

Search Radiuses: (a) r=480m in Beijing; (b) r=420m in Beijing; (c) r=350m in Beijing; 

(d) r=440m in Shanghai; (e) r=360m in Shanghai; (f) r=240m in Shanghai; (g) r=450m in 

Guangzhou; (h) r=430m in Guangzhou; and (i) r=330m in Guangzhou. 

 



82 

 

(2) Parameters Setting of the Outer Urban Districts 

We followed the same steps to deduct the optimal radius in the outer areas. We 

plotted the changing of Ws values in Figure 4.14. 

 

(a) 

 

(b) 

 

(c) 

Figure 4.14 Relations between Search Radius and Ws Values in the Outer Areas 

within: (a) Beijing, (b)Shanghai, and (c) Guangzhou.  
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Based on Figure 4.14, the elbow point (turning point) of Ws occurs where search 

radiuses are between 800 meters and 1200 meters for urban districts in all three cities. We 

then calculated the first and second derivative of Ws and found the point with the largest 

second derivative value. In this case, we choose Router_BJ=1100 meters, Router_SH=900 

meters, Router_GZ=1000 meters. In order to verify the clustering results, we plotted the 

clusters to verify what they looked like (Figure 4.15-4.16). The clustering results of 

different search radiuses show that our choice of clustering parameters is appropriate. 

In summary, we chose appropriate search radiuses for the inner areas and outer 

areas for each city respectively by analyzing the relation between Ws and the search radius. 

According to different check-in densities and search radius values in three study areas, we 

conducted DBSCAN clustering and the results are shown in Table 4.7. 

Table 4 7 Summary of DBSCAN Clustering Results of Study Areas. 

Cities 

Summary 

Beijing Shanghai Guangzhou 

the inner the outer the inner the outer the inner the outer 

number of check-ins 36,014 14,341 12,927 20,195 21,827 8,781 

search radius 350 1,100 240 900 330 1,000 

number of clusters 211 68 63 86 86 35 

 

We conducted DBSCAN clustering for three study areas based on the optimized 

search radiuses. The number of check-ins and the clustering results show that the number 

of clusters in both Beijing and Guangzhou’s inner areas are more than double the amount 

compared to their outer areas. However, Shanghai shows a different pattern. The number 

of check-ins and clusters in Shanghai’s inner area is less than the outer area. It implies that 

the small size of the Shanghai inner area limits the number of POIs and check-ins in the 

region. After this, we calculated the similarities between LBSM users based on the 

DBSCAN clustering results. 
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(a)                                        (b) 

 

(c)                                       (d) 

 

(e)                                    (f) 

Figure 4.15 Results of the Outer Urban Districts: (a) Reachability distance of 

Beijing; (b) Clusters of Beijing; (c) Reachability distance of Shanghai; (d) Clusters of 

Shanghai; (e) Reachability distance of Guangzhou; and (f) Clusters of Guangzhou. 
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(a)                                        (b)                                      (c) 

 

(d)                                        (e)                                      (f) 

 

(g)                                        (h)                                      (i) 

 

Figure 4.16 Clustering Results of the Outer Urban Districts with Different Search 

Radiuses: (a) r=1500m in Beijing; (b) r=1100m in Beijing; (c) r=800m in Beijing; (d) 

r=1600m in Shanghai; (e) r=1300m in Shanghai; (f) r=900m in Shanghai; (g) r=1600m in 

Guangzhou; (h) r=1400m in Guangzhou; and (i) r=1000m in Guangzhou. 
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4.4.2 Activity Similarity Results 

Based on the clustering results from the previous step, we labeled each individual’s 

check-in points based on the clusters and time slots they belong to (see Figure 4.17).  

 

Figure 4.17 Spatial-temporal Structure of Beijing Check-ins. 

 

We used both VSM and ST-VSM to measure the similarities between the 

individuals’ activity patterns as a comparison (Table 4.8). In Beijing, there are over 3.7 

million Weibo user pairs that fall into the similarity range [0,0.1], which makes up more 

than 90% of all user pairs in Beijing. Moreover, it can be noticed that the number of 

similarity values less than 0.1 occupied more than 84% in all three cities calculated by both 

VSM and ST-VSM methods. Activity similarity of zero indicates that none of the check-

ins from the two users belong to the same cluster. Since ST-VSM further divided check-

ins into three different temporal durations, the similarity pattern between two LBSM users 

was captured at a finer scale. For example, activity patterns happen at the same location 
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but during different times cannot be considered as located in the same cluster. Hence, the 

number of unsimilar user pairs detected by the ST-VSM clustering method was more than 

the amount calculated by VSM. 

Table 4.8 A Summary of Activity Similarity: (a) Weibo user pairs and (b) 

Percentage. 

Similarity 

value 

Weibo User Pairs 

Beijing (entire city) Shanghai (entire city) Guangzhou (entire city) 

VSM ST-VSM VSM ST-VSM VSM ST-VSM 

0 3,633,534 3,707,703 1,355,529 1,399,429 1,140,759 1,167,798 

(0,0.1) 107,939 81,397 68,427 59,567 54,696 49,228 

(0.1,0.2) 53,375 46,210 34,812 34,524 28,623 27,938 

(0.2,0.3) 29,966 25,390 23,264 21,864 14,627 17,280 

(0.3,0.4) 20,846 15,812 16,581 14,849 11,119 13,775 

(0.4,0.5) 16,168 11,723 13,809 11,126 10,710 12,578 

(0.5,0.6) 10,694 8,086 10,340 9,010 8,152 10,965 

(0.6,0.7) 8,380 6,766 8,833 7,294 8,065 10,789 

(0.7,0.8) 8,117 5,694 9,726 6,698 10,499 10,184 

(0.8,0.9) 7,741 5,450 8,465 6,318 9,575 10,713 

(0.9,1) 21,840 4,369 26,414 5,521 45,516 11,093 

(a) 

Similarity value 

Percentage Over Total User Pairs 

Beijing (entire city) Shanghai (entire city) Guangzhou (entire city) 

VSM ST-VSM VSM ST-VSM VSM ST-VSM 

0 92.7253% 94.6181% 85.9998% 88.7850% 84.9828% 86.9971% 

(0-1) 7.2747% 5.3819% 14.0002% 11.2150% 15.0172% 13.0029% 

(b) 
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(a) 

 

(b) 

Figure 4.18 Similarity Comparison Among Study Areas by: (a) VSM; (b) ST-

VSM. 

 

After excluding the zero values in Figure 4.18, the results can be interpreted from 

multiple perspectives. On the one hand, both the VSM and ST-VSM models used in the 

study show a power law pattern of similarity distribution in general. The majority of users’ 

activity similarities are lower than 0.1, and only a few users have a higher similarity. On 

the other hand, the number of similarity values larger than 0.9 calculated by VSM are much 
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higher than the ones from ST-VSM, indicating that although some individuals show a very 

similar spatial pattern, they have little temporal similarities in their activities. The same 

analysis can be extended to different cities and different social media platforms to study 

the impact of spatial and temporal factors on users’ activity similarities.  

Figure 4.19 shows the spatial and spatial-temporal check-in distribution of two 

examples users A and B. After applying DBSCAN clustering to their check-in points, we 

displayed the results from VSM and ST-VSM in Tables 4.9 and 4.10. 

 

(a)                                                         (b) 

Figure 4.19 Check-in Distribution of Two Users (a) Spatial distribution of check-

ins; (b) Spatial-temporal check-ins. 

 

Table 4.9 VSM Structure of User A and User B. 

            Cluster ID 

User ID 

2 23 43 4 16 22 … 

A (127016****) 4 4 1 0 0 0 … 

B (263933****) 6 6 4 1 1 2 … 

 

Table 4.10 ST-VSM Structure of User A and User B. 

         Cluster ID 

User ID 

2 23 43 4 16 22 … 

A (127016****) 1 0 3 2 0 2 0 0 1 0 0 0 0 0 0 0 0 0 … 

B (263933****) 0 1 5 2 2 2 0 0 4 1 0 0 0 0 1 1 0 1 … 
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As can be seen from Table 4.9 and Table 4.10, 43 check-ins of user A and user B 

are located in three common clusters - clusters 2, 23, and 43. Other check-ins were either 

located in non-shared clusters or treated as outliers. According to the clustering results, we 

calculated the spatial and spatial-temporal similarity for this pair of users. The spatial-

temporal similarity of user A and B is 0.707, which is lower than their spatial similarity 

0.8389. The result demonstrates that though these two users show a very similar pattern in 

space, they are less similar when we consider the timestamps of their check-in points as 

they visited the same locations at different times. Therefore, it is necessary to combine both 

space and time dimensions when measuring individuals’ activity similarities. 

4.5 Conclusion and Discussion 

In this study, we conducted an effectiveness test to measure inter-individual 

similarities of LBSM users by taking into account both the spatial and the temporal 

dimensions. We first clustered LBSM users’ check-ins by their spatial distribution using 

DBSCAN clustering method and VSM to describe the inter-individual variables.  

The main contribution of this study is to test the feasibility of measuring spatial-

temporal similarities of user activities based on sparse LBSM data, as space and time are 

important aspects to activity space studies. The similarity measurement between 

individuals allows researchers to discover regular and outlier patterns from LBSM data. 

The findings indicate that VSM is capable of measuring users’ activity similarities in space 
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while the ST-VSM model is effective in describing the spatial-temporal similarities 

considering both the spatial and temporal dimensions. Note that it is not always necessary 

to include a temporal component when measuring users’ similarities, and researchers can 

balance the weight of spatial and temporal components based on their practical needs.  

The method developed in this study offers an effective approach for assessing 

activity pattern similarities considering the complexity and multidimensional 

characteristics of human activities and provides a strategy to identify individuals with 

similar activity patterns in both the spatial and temporal dimensions.  
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5 CONCLUSIONS 

This chapter provides a summary of the major findings for this dissertation. It also 

discusses the limitations of this study and topics for future research. 

5.1 Summary of Findings and Contributions 

Using LBSM data to model human activity spaces has become increasingly popular 

in the field of human mobility analysis. This dissertation provided a new perspective of 

applying LBSM check-in data into individual activity space modeling. First, we tested the 

effectiveness of models in measuring individual activity spaces. Chapter 3 measured intra-

individual activity spaces by calculating different external and internal activity space 

indicators. Second, we tested the effectiveness of models in discovering similar inter-

individual activity patterns in Chapter 4. We detected the spatial and spatial-temporal 

activity patterns by comparing the VSM and ST-VSM methods. 

Specifically, Chapter 3 conducted an analysis to evaluate the effectiveness of 

LBSM data for measuring intra-individual activity space indicators. We obtained internal 

and external activity space indicators based on different LBSM data sizes from 1 month to 

12 months. We demonstrated the differences of using various intra-individual indicators to 

represent the activity spaces of LBSM users. The results of Beijing, Guangzhou, and 

Shanghai revealed how these indicators are related to the morphology of the cities. The 

findings from Chapter 3 indicate that different activity space indicators show different 

levels of effectiveness in approximating activity spaces based on low-resolution LBSM 

check-in data. The calculated ROG values were the closest to the approximated limit 

activity space sizes. It has more than 96% of the observed value over the approximated 

limit activity space sizes in all three cities using 12-month LBSM data. Moreover, ROG 
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has proved to be a robust external indicator not sensitive to outlier points, which is a 

common problem of check-in data from LBSM platforms. The findings in Chapter 3 also 

demonstrated how data collection duration impacts the magnitude of different activity 

space indicators. As the data size increases, the magnitude of four external and three 

internal indicators all approach a steady point in three cities. It provided a useful reference 

to explore a balance point between LBSM data quantity and the accuracy of the analysis. 

In chapter 4, we conducted an analysis to evaluate the effectiveness of different 

models in measuring the inter-individual similarities between LBSM users based on their 

unevenly distributed check-ins. We clustered check-ins based on the DBSCAN clustering 

method and compared users’ similarities based on both VSM and ST-VSM. We also 

revealed LBSM users’ spatial-temporal activity similarities by considering both the spatial 

distribution and the timestamps of their check-ins. The results indicate that the ST-VSM 

method is effective in discovering the spatial-temporal similarities between LBSM users. 

This extended similarity measurement provided a more robust method to measure user 

activity similarities based on low-resolution LBSM data. We tested the proposed methods 

using Sina Weibo dataset in three Chinese cities.  

To sum up, the contributions of this dissertation are listed as follows: 

This study provided a multilayered research framework to evaluate the 

effectiveness of LBSM data for activity space modeling from data source, data sampling 

strategy, and data analytics/modelling perspectives. In other words, the basic structure of 

this framework is constructed upon modeling human activity spaces using various activity 

space indicators and models based on different data collection durations from 

miscellaneous LBSM platforms. Although different LBSM platforms provide different 
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types of information on user activities, this framework helps to extract the most relevant 

spatial and temporal data to activity space studies and integrate different data structures 

through the proposed data pre-processing and filtering procedures. 

 

Figure 5.1 Framework for Activity Space Modeling 

 

Furthermore, we also proposed a data sampling strategy which aggregates data 

collected in different data collection durations. This method can be generalized to discover 

the correlation among the amount of data used, the stability of activity space indicators, 

and similarity measurements from different big geo-data, such as mobile phone data and 
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taxi trajectories. Moreover, we applied different indicators to measure the morphology and 

the internal structure of human activity spaces, as well as the similarity measurement of 

activity patterns. According to our current framework, researchers can follow the structure 

and process to conduct their activity space study by customizing the LBSM dataset used, 

the study areas, the data sampling duration, and activity space indicators and 

measurements.  

In addition to the research framework, this dissertation also contributed to the field 

from a methodological perspective. Measuring activity space based on LBSM data is 

computationally intensive due to the complexity and multi-dimensional characteristics of 

human activities. From a methodological standpoint, this study assessed the effectiveness 

of low-resolution LBSM data and different activity space indicators in modeling individual 

activity spaces and measuring activity similarities. The results of this study demonstrate 

that there is no such thing as "the best indicator" to describe individual activity spaces, 

because different indicators capture different features of activity spaces (e.g., SDE 

emphasizes the activity direction and ROG focuses on the distance to the activity center 

point). Results indicate that the ROG method is more robust and less sensitive to outliers; 

however, it is not capable of capturing the detailed shape of an activity space like convex 

hulls or alpha shapes. We demonstrated that these indicators can complement each other 

to achieve a more complete understanding of individual activity spaces. The ST-VSM 

method developed in Chapter 4 offers an effective approach for assessing activity pattern 

similarities considering the complexity and multidimensional characteristics of human 

activities and provides a strategy to identify individuals with similar activity patterns in 

both the spatial and temporal dimensions. Our findings proved that testing the effectiveness 
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of LBSM data in modeling activity space provides new insights into the methodological 

design of activity space studies base on big geo-data, especially for sparse LBSM data with 

a low spatial-temporal resolution. 

The third contribution consists of the various empirical results from the case studies 

in Chapters 3 and 4. In the intra-individual activity space studies, each of the seven 

indicators represents diverse characteristic on evaluating the effectiveness of LBSM data 

usage in modeling individual activity space. As the LBSM data size increases, the 

magnitude of the defined indicators approaches a steady point. This result demonstrates 

that all activity space indicators eventually stabilize over time when the data collection 

duration increases (i.e., amount of data increases). In the inter-individual activity space 

studies, the results of users’ similarities distribution show a power law pattern in all three 

study areas, where the majority of users show dissimilar patterns and only a few users have 

a high similarity in their movement. Furthermore, the number of similarity values larger 

than 0.9 calculated by VSM are much higher than the ones from ST-VSM, indicating that 

although some individuals show a very similar spatial pattern, they have little temporal 

similarities in their activities.  

To sum up, the case study on three Chinese cities provides a useful reference to 

explore the balance point between data effectiveness and appropriate sample size from 

LBSM data. The aggregated activity patterns can provide valuable input for urban planners 

and policymakers to understand the dynamics of urban residents in three densely populated 

Chinese cities. The results can be used to optimize the data collection process and to choose 

indicators in future studies. We foresee that the broader impact of this research will yield 

an enhanced understanding of applying LBSM data in human activity studies and other 
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widely applicable areas of geography, such as transportation and urban planning. LBSM 

data also provides valuable information for analyzing inter-personal relations in social 

sciences, such as community detection, friendship analysis, and anomaly users’ behavior 

detection.  

5.2 Limitations 

There are several limitations to this study that are worth further investigation.  

LBSM data quality issues were not the focus of this study; instead, we focus on the 

impact of data quantity and data collection durations on activity space modeling. In 

practice, data quality is an inevitable issue that affects the effectiveness of activity pattern 

analysis. In fact, the experimental data used in this study is limited because Sina Weibo’s 

platform only provides limited sampling check-ins for all their data to third-party 

developers (Wang 2015). Moreover, due to the demographic biases of social media users, 

most active LBSM users are young people who are enthusiastic about new technologies, 

so the data used in this study is not a randomly selected sample of the entire urban 

population. It is also possible that computer algorithms instead of real users automatically 

generate certain Weibo posts. In addition, this study extracts geotagged posts directly based 

on check-in locations, so we did not differentiate between residents and travelers. Since the 

scope of this study focuses on introducing a methodology strategy instead of explaining 

the pattern of residents in a particular city, we did not eliminate users who are potentially 

travelers.  

When discussing how different data sizes affect the results of activity space sizes 

in Chapter 3.4.2, this study did not consider how data collecting starting time may impact 

the activity space sizes. For example, in China most people go back home to see their 
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families during the Spring Festival around February each year. It means that people may 

travel more in February while their activity spaces shrink to a normal size after the holiday. 

We need a longer data collection duration to test the effect of the starting time point, and 

future studies can extend this analysis when the data is available.  

This study only focused on the spatial and temporal perspectives of human activity 

patterns not on semantic patterns of human activities. This study did not consider the 

semantic analysis in modeling human activity space. What people post in certain places 

and during certain times is highly related to the functionalities of different locations. 

Understanding the semantics of LBSM posts can further enrich the modeling and analysis 

of activity patterns.  

There was a lack of validation with ground truth data or other LBSM platforms in 

this study. Even though human activity patterns can be predictable, randomness is still an 

inevitable component of human mobility (Song et al., 2010), which leads to the difficulties 

and challenges in ground-truthing human activity studies. The methods and analysis 

proposed in this study can also be applied to other social media platforms to test their 

robustness.  

In our approach, temporal activities are combined with the spatial dimension in the 

VSM model. We aggregated timestamps into durations (e.g., mornings, afternoons and 

nights), which reduced the granularity of the temporal information in the analysis. 

However, it is possible to treat spatial and temporal dimensions as two independent 

dimensions in future studies and assign weights accordingly. This allows researchers to 

gain more insights into human spatial-temporal behavior by prioritizing time or space 
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based on their own practical needs. However, it is computationally heavy to test the weight 

allocations in different scenarios. 

5.3 Future Work 

Future studies can explore more activity indicators and combine them with social-

economic data, such as the movement direction of activity spaces, networks between home 

locations and workplaces, accessibility of home location to certain POIs (e.g. hospital, 

subway station, and school), and relate POIs with land use type. etc.  

Another future research direction is generating a more systematic analysis to deal 

with the uncertainty issues of modeling user activity patterns from LBSM. The methods 

and analysis proposed in this study can be applied to other social media platforms to test 

their robustness and extensibility. Although it is challenging to validate activity analysis 

results with ground truth, future research can take one further step to compare the 

effectiveness of models in analyzing activity space by making use of the datasets from 

other LBSM platforms.  

Future research can also explore the semantic aspect of LBSM user activities, such 

as thoughts, emotions, and attitudes expressed on social media. Considering the semantics 

of check-ins beyond the spatial and temporal perspectives is useful for understanding the 

purpose of individual activities. Future research can apply the methodology to more 

application domains of LBSM data, such as breaking news diffusion and criminal 

detection, etc. The methodology can also be used for more data mining applications such 

as social network analysis. Extracting users who have a high degree of similarity can be 

useful for friend recommendation, location recommendation, unusual activity patterns 

detection, and so on. 
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Moreover, due to the limitation of data sizes in less developed areas in China, we 

did not investigate the patterns in smaller cities or rural areas. Future studies can also 

explore the similarity/dissimilarity between cities in various stages of development when 

the data becomes available. 
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