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ABSTRACT 

 

SINGING BEHAVIOR LEADS TO DETECTION  

BIAS IN A TERRITORIAL SONGBIRD 

 

by 

 

Christopher C. Warren, B. A. 

 

Texas State University-San Marcos 

December 2011 

 

SUPERVISING PROFESSORS: JAMES R. OTT AND FLOYD W. WECKERLY 

The development of models to account for variation in the probability of detection, 

such as N–mixture models, have advanced methods of estimating wildlife abundance and 

resource use. A core assumption of these models is that the detection of individuals is not 

influenced by conspecific density. A recent study of the Golden-cheeked Warbler, 

Setophaga chrysoparia, compared N–mixture model estimates of abundance to estimates 

of territory density based on spot mapping in each of six populations and demonstrated a 

negative density-dependent bias in N–mixture model estimates of abundance. Here we 

provide an indirect test of the assumption that detection of individuals is not influence
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by conspecific density by investigating the singing behavior of male GCWA as a function 

of territory density within the same populations previously studied. Using automated 

recording units placed at randomly selected survey stations throughout the six study sites 

we found evidence of a significant positive effect of territory density on the average song 

rate per unit bird, measured as the number of songs recorded per 5 min, recorded per 

survey station. This pattern indicates that the number of opportunities to detect an 

individual (i.e. number of songs) within a survey interval is influenced by local territory 

density and documents a violation in this species of the implicit assumption of N–mixture 

models that the probability of detecting an individual is independent of the conspecific 

density. Failure to account for a density-detectability bias within the N–mixture model 

framework may result in biased estimates of occupancy or abundance.
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INTRODUCTION 

Reliable population estimates are fundamentally important in developing effective 

monitoring, management, and conservation programs. Although raw counts reliably 

estimate population size in some instances, unbiased and accurate population estimates 

often require accounting for imperfect detection (Johnson 1995). Both occupancy 

(MacKenzie et al. 2002) and N–mixture models (Royle and Nichols 2003) (henceforth 

OBMs) use presence–absence or count data, respectively, to estimate population size 

while accounting for imperfect detection. Increasingly these models are employed to 

assess within- and among-population variation in distribution and abundance across a 

range of geographic scales (MacKenzie et al. 2002, MacKenzie 2006, MacKenzie et al. 

2009). 

A significant source of potential bias associated with population estimation 

techniques, including OBMs, is spatial heterogeneity in the probability of detection of the 

individual or species among sample units (Royle and Nichols 2003, Royle 2006). A 

major advantage of OBMs is the ability to incorporate covariates to account for 

heterogeneity in detection among sample units. For example, factors such as distance 

from observer (Alldredge et al. 2007a), vegetation (Pacifici et al. 2008), and variation 

among observers (Diefenbach et al. 2003) can be included as parameters upon which 

probability of detection can be conditioned within the OBM framework (MacKenzie et 

al. 2002, MacKenzie 2006). However variation in detectability among sample units that 

is related to variation in the density of the organisms whose population size is to be
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estimated presents an intriguing challenge within the OBM framework. This is because 

an a priori density covariate for probability of detection is not possible given that an 

estimate of occupancy or abundance per sample unit and (or) total abundance per study 

site is the desired output of the model. In their N–mixture model Royle and Nichols 

(2003) included a mixture distribution as a measure of possible population states into the 

estimate of probability of detection (of the individual) as a means of modeling variation 

in density (Royle 2006). OBMs are predicated on there being no relationship between the 

probability of detecting an individual and conspecific density. Royle and Nichols (2003) 

express the probability of detecting occupancy (pi) conditional on the number of 

individuals at a sample unit (Ni) as: 

 

where r is the binomial probability that a given individual is detected. Two key 

assumptions of this model are (1) all individuals at a sample unit are equally detectable 

and (2) the detection of one animal is independent of the detection of other animals at a 

sample unit (Royle and Nichols 2003). Thus any positive or negative relationship 

between the probability of detecting an individual (r) and conspecific density could lead 

to biased estimates of occupancy or abundance. To understand density-associated 

detection bias the ecological and (or) behavioral mechanisms behind such biases must be 

explored. N–mixture models have been applied to a wide variety of taxa (e.g. reptiles: 

Dore et al. 2011, birds: Schlossberg et al. 2010, mammals: Rytwinski and Fahrig 2011). 

As a result of inherent differences between taxa and differences in survey protocols both 

the possible direction and mechanisms underlying density-detectability bias may vary 

between studies and study systems. 

! 

pi =1" (1" r)
Ni
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N–mixture models have been employed to provide population estimates for a 

number of passerine species (Kéry 2008, Chandler et al. 2009, Joseph et al. 2009, 

Schlossberg et al. 2010, Chandler et al. 2011, Hunt et al. In press). However, in some 

instances N–mixture models have led to biased estimates of abundance (Kéry et al. 2005, 

Joseph et al. 2009, Chandler et al. 2011, Hunt et al. In press). Both Kéry et al. (2005) and 

Joseph et al. (2009) hypothesized that biased estimates resulted from inappropriate use of 

the negative binomial distribution in the application of N–mixture models. However, 

ecological and (or) behavioral mechanisms, related to conspecific density that may have 

contributed to the biased estimates were not considered. More recently, Hunt et al. (In 

press) used N–mixture models to estimate abundance of six populations of the Golden-

cheeked Warbler, Setophaga chrysoparia (GCWA) and concluded that the abundance 

estimates produced by N–mixture models were biased high and at times were biologically 

unrealistic in comparison to abundance estimates independently derived from spot 

mapping. Importantly, the magnitude of the difference between N–mixture model and 

spot mapping estimates of abundance was significantly greater at lower density study 

sites (Fig. 1). This systematic, density-associated bias in population estimation using N–

mixture models suggests the possibility of a relationship between conspecific density and 

detectability (r) for these GCWA populations. In the research reported herein we test for  
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Figure 1. Comparison of abundance estimates in relation to male warbler density. Magnitude 

of difference between estimated abundance of male Golden-cheeked Warblers at six study sites  

(two study sites were estimated to have the same abundance) using N–mixture models (Hunt et al. 

In press) and estimates of territory density using spot mapping in 2009 (City of Austin 2010) in 

relation to territory density. 
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and examine the ecological and behavioral basis of detection (r) bias in these same 

populations. 

Understanding the relationship between density and detectability (p or r) is 

facilitated by examination of the components of detection. Marsh and Sinclair (1989) and 

Johnson (2008) divided detection into elements that affect “perceptibility” versus 

“availability.” Perceptibility is influenced by factors affecting an observer’s ability to 

detect an animal, such as habitat attributes (Richards 1981) or weather conditions 

(Anderson and Ohmart 1977). In contrast, availability is largely determined by the 

behavior of the animal under study. An animal’s pattern of movement is a key component 

of availability as an animal must be present at a survey station while an observer is also 

present to be detected. Factors affecting perceptibility and availability have been 

investigated and techniques have been proposed to account for variability in many of 

these factors for selected taxa (summarized by Johnson 2008). However, our 

understanding of the mechanisms that underlie variation in availability and perceptibility 

and, importantly, the relationship between these components of detection, detection bias, 

and density remains underdeveloped for many taxa. 

Behaviors linked to conspecific density are likely to affect the availability 

component of detection for passerine birds (Diel 1981, Bart and Schoultz 1984, Verner 

1985). For instance, when present, a relationship between territory size and density 

(Morse 1976) affects the number of individuals available to be detected at a sample unit. 

Furthermore, as singing is vital to detection of many passerine species (Ralph et al. 

1995), the presence of an individual at a sample unit may not be sufficient for the species 

or individual to be detected. In this sense availability may also be contingent on 
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behaviors that advertise presence, such as singing in birds. Thus to the extent that 

behaviors linked to availability are influenced by conspecific density, variation in density 

among sample units may lead to a density-detectability bias (Howell et al. 2004, Johnson 

2008) in avian surveys. Such behaviors have the potential to bias estimates of density 

either through over- or underestimation by observers in the field (Howell et al. 2004) or 

through biased estimates of probability of detection (p or r) (Alldredge et al. 2007b).  

Passerine birds are primarily enumerated by sound-based surveys (Mayfield 1981, 

Ralph et al. 1995). Thus, availability for detection of the species or individuals is 

dependent on song rate (i.e., the number of songs produced per unit time per individual 

bird or per survey unit), which translates into the number of opportunities for observers to 

detect an individual or a species at a sample unit during a point count. Not surprisingly, 

song rate has been shown to positively influence detection probabilities (p) (Mayfield 

1981, Wilson and Bart 1985, McShea and Rappole 1997, Alldredge et al. 2007b) and 

many passerine species increase singing rates in response to an increase in conspecific 

density (Penteriani et al. 2002, Sillett et al. 2004, Chelén et al. 2005, Sexton et al. 2007, 

Laiolo and Tella 2008). 

Herein we tested the key assumption of the Royle and Nichols (2003) model—that 

detection of one animal is independent of the detection of other animals at a sample unit 

(Royle and Nichols 2003). We also explored the ecological and behavioral basis of the 

relationship between density estimated both by spot mapping and N–mixture models and 

detectability of GCWA within the six GCWA populations examined by Hunt et al. (In 

press). Our goal was to understand the mechanisms behind the systematic bias in the 
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estimates of abundance for this endangered passerine species produced by N–mixture 

models.
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METHODS 

Study system.–We assessed the relationship between conspecific density and 

probability of detection in natural populations of the Golden-cheeked Warbler (GCWA), 

Setophaga chrysoparia. Conservation concern for this endangered species, endemic to 

south-central Texas (Pulich 1976) has led to strong interest in reliable population 

monitoring (City of Austin 1999, Anders and Dearborn 2004, Peak 2007, Watson et al. 

2008, Collier et al. 2010, Morrison et al. 2010, Peak 2011, Hunt et al. In press, Weckerly 

and Ott unpublished). Variation in GCWA density across the study sites examined herein 

(City of Austin 2010, Hunt et al. In press) and across the species range (Wahl et al. 1990, 

Morrison et al. 2010) in conjunction with known relationships between song rate and 

conspecific density in other passerine species (Penteriani et al. 2002, Sillett et al. 2004, 

Laiolo 2008, Laiolo and Tella 2008) suggests the possibility that singing behavior and 

hence probability of detection (p or r) may be influenced by conspecific density in the 

GCWA.  

The six study sites at which we examined the singing behavior of the GCWA are 

distributed throughout the Balcones Canyonlands Preserve (BCP) located in Travis 

County, Texas, USA. The BCP consists of 5,365 ha of discontinuous land interspersed 

with residential and mixed-use properties and is managed by multiple agencies for the 

GCWA and other endangered species (City of Austin and Travis County 1996). 

Descriptions of the six study sites are found in (City of Austin 1999, Hunt et al. In press).
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Estimates of density.–We tested the hypothesis that the probability of detection for 

the GCWA is related to conspecific density using estimates of density independently 

derived from spot mapping and N–mixture models. The City of Austin (COA) has 

estimated the density of territorial male GCWAs within a 40.5 ha plot at each of the six 

study sites from 1998 through 2011 (City of Austin 1999, 2011) using the spot mapping 

technique (Bibby et al. 1992). In 2009, the season in which we examined the relationship 

of singing rate and density, COA estimates of territory density ranged from 2.5 to 18 per 

40.5 ha across study sites (City of Austin 2010). Because both N–mixture model 

estimates of abundance and estimates of singing rate were based on a 113 ha grid (see 

below) we scaled the 40.5 ha spot-mapping estimates of territory number to 113 ha to 

assess the effect of territory density on song rate and to compare the relationship of 

singing rate and density among the two density estimation techniques. 

N–mixture model estimates of the abundance of GCWAs per study site were 

estimated by Hunt et al. (In press). In 2008 Hunt et al. (In press) established a 1 km
2
 

point-count grid consisting of 36 survey stations equally spaced at 200 m intervals 

positioned to overlay the COA 40.5 ha spot-mapping plot on each of seven BCP 

properties (including the six sites examined herein). Detections of GCWAs were 

restricted to ! 100 m from the center of each survey station and thus, accounting for the 

area sampled on the outside rows of grids, each point-count grid surveyed 113 ha. Point-

count surveys (N = 4), conducted at approximately weekly intervals, based on a 5 min 

survey period per survey station provided the data that Hunt et al. (In press) used to 

estimate the abundance of male GCWA per 113 ha at each study site using N–mixture 

models (Royle and Nichols 2003). Hunt et al. (In press) showed spot mapping-derived 
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territory densities to be more biologically realistic in comparison to abundance estimates 

derived through N–mixture models. Spot mapping has often been used as a standard 

method of estimating abundance with which to compare other methods (Verner and Ritter 

1988, Verner and Milne 1990, Bibby et al. 1992, Buckland 2006, Chandler et al. 2011, 

Peak 2011, Hunt et al. In press). As such we compared the effect of the N–mixture 

model-derived abundance estimates and spot mapping-derived territory density estimates 

on GCWA song rate as a means of further testing the performance of N–mixture models.  

The primary assumption of the Royle and Nichols (2003) model assessed here—the 

detection of one animal is independent of the detection of other animals at a sample 

unit—relates to the detection of an individual at a given sample unit, i.e. a survey station. 

Therefore we also compared song rate sampled per survey station to estimated local 

territory density. Just as at the level of the study site we did this using abundance 

estimates derived through spot mapping as well as N–mixture models. Using the COA 

spot mapping data from 2009 we estimated local territory density per survey station as 

the number of mapped territories overlapping a 100 m detection radius of each survey 

station. Specific information on the spatial relationships of GCWA territories was 

available for the subset of survey stations at each study site (range 3 to 6, total N = 28) 

that fell within the 40.5 ha COA spot mapping plot at each study site. This measure 

approximated the number of singing males available to be detected from each survey 

station given that Hunt et al. (In press) restricted detections to those made within 100 m. 

We also reanalyzed the count data collected by Hunt et al. (In press) to produce an 

estimate of the abundance (!) of male GCWA per survey station (Ni) at each study site 

using N–mixture models in PRESENCE 3.1 (MacKenzie et al. 2002, Hines 2006). To do 
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this we replaced the “study site” ! covariate used by Hunt et al. (In press) to estimate ! 

per study site with a covariate for “survey station” to estimate ! per survey station. This 

approach required that individual models be run for each study site. Average ! estimates 

per survey station per study site obtained in this way were similar to those estimated by 

Hunt et al. (In press). Estimating local abundance in this way also allowed us to then test 

the significance of the correlation between ! per survey station and the number of 

territories that overlapped a 100 m radius of survey stations. A strong correlation may 

indicate the N–mixture models assessed here adequately estimated abundance of male 

GCWAs in comparison to spot mapping estimates. 

Estimates of song rate.–To record the singing behavior of male GCWAs we 

deployed “SM1 Song Meter” autonomous recording units (ARU) (Wildlife Acoustics, 

Inc) at each of 14 randomly selected survey stations within each of the six 1 km
2
 point-

count grids established by Hunt et al. (In press). We had no previous knowledge of spot-

mapping estimates of territory density at the level of the study site or survey station prior 

to placement of ARUs at survey stations. Therefore “blind” selection of the survey 

stations at which ARUs were positioned and the data subsequently collected mimics the 

random selection of survey stations and the data produced by point count surveys. 

Recordings were collected from 15 March through 3 May 2009 corresponding to the 

GCWA breeding season. At each survey station ARUs were attached at breast height to a 

small tree to allow ! 360° recording and were programmed to record for 5 min intervals 

with a one-minute pause between recordings from approximate sunrise to approximate 

sunset (! 14 hrs/day) for two consecutive days. The 5 min recording intervals 

corresponded to the 5 min survey interval typically used in passerine point-count surveys 
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(Lynch 1995, Ralph and Droege 1995, Watson et al. 2008) and concurrently used at these 

same study sites and survey stations by Hunt et al. (In press). “Song Scope” software 

(Wildlife Acoustics, Inc.) provided a sonogram of avian vocalizations that was inspected 

to verify and count GCWA songs. This procedure provided an accurate, time-stamped 

record of GCWA vocalizations within the detection radius (see below) of the ARU at 

each survey station throughout each day during the seven-week study season. 

For both Hunt et al. (In press) and this study we considered a song to be a discrete 

vocalization typically no longer than two seconds in duration. Two measures of song rate 

per survey station were computed based on the ARU recordings: the average number of 

individual songs per 5 min survey interval and the proportion of 5 min survey intervals 

containing ! 1 song. Importantly, the ARUs recorded the total number of songs produced 

by all male GCWAs vocalizing within the detection radius of each ARU. While 

recordings often distinctly showed that at least two males were singing at a survey 

station, individual songs could not be attributed to specific males. As a result, the total 

number of males contributing to the recordings at each station cannot be known due to 

the nature of the method. Thus to examine the relationship between song rate and warbler 

density, we measured song rate as the total number of songs available to a surveyor to 

detect the species or an individual at a survey station. We combined “A”– and “B”–type 

songs (Pulich 1976, Bolsinger 2000, Leonard et al. 2010) to estimate both measures of 

song rate since preliminary analyses found no difference in the ability of ARUs to detect 

A– and B–songs as a function of distance and no relationship between the density of 

GCWA and the ratio of A– and B–songs (Warren and Ott unpublished). Across all sites 

8% of 5 min recordings were excluded due to weather exceeding USFWS survey 
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parameters (City of Austin 1999) or non-GCWA zoogenic or anthropogenic noise. After 

excluding these recordings we analyzed an average of 3,188 5 min samples from a 

minimum of 13 survey stations per study site. In total we analyzed 19,127 5 min samples 

across all survey stations and study sites. 

Detection radii of ARUs.–The estimates of abundance computed at the level of the 

study site presented in Hunt et al. (In press) and the estimates of abundance computed at 

the level of the survey station within each study site developed here (see above) used 

only those aural detections of GCWA estimated by human observers to have been within 

100 m from the center of each survey station. As the tests of hypotheses we conducted 

here involved variables based on the data gathered by human observers (Hunt et al. In 

press) and the ARUs employed in the current study, we estimated the detection radius of 

each ARU in a preliminary study to determine whether the area sampled per survey 

station was comparable between humans and ARUs. To estimate the maximum detection 

distance and verify consistency of ARUs we suspended the six ARUs side by side 1.5 m 

above the ground in an open field. We then played a one-minute recording of A– and B–

songs calibrated to 55 dB at 6 m for both song types (the average volume of ten male 

GCWA singing in the wild on BCP properties at an average of 6 m) in calm weather 

conditions at distances of 5, 10, 30, 50, 75, 100, and 150 m. Based on inspection of 

sonograms both A– and B–songs were routinely detected at 75 m but, with the exception 

of a single A–song, no songs were detected at 100 m. Thus under ideal circumstances, the 

detection radius of ARUs was ! 100 m and data collected by ARUs were comparable 

with data collected by human observers (figure 2 in Hunt et al. 2011). We found no 

variation among ARUs in their ability to detect GCWA songs. 
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Study site-level warbler density and song rate.–Song rate data were collected per 

survey station, thus there were two ways in which the mean song rate per study site could 

be calculated; using data from all recorded survey stations and using only recorded 

survey stations wherein ! 1 GCWA song was recorded. Preliminary analysis showed that 

the relationship between mean song rate and territory density per study site did not differ 

between the two methods of calculating song rate thus we present results for all analyses 

using all recorded stations. To determine if significant variation existed in the song rate 

(the mean number of songs per 5 min and the proportion of 5 min recordings with ! 1 

song) among study sites we used an ANOVA.  

To test the hypothesis that average conspecific density assessed at the level of the 

study site influences song rate we first regressed the mean number of songs recorded per 

5 min period on estimates of territory density per study site produced by spot mapping by 

means of linear mixed effects regression. Five linear mixed effects models were assessed 

(Table 1). Covariates included territory density, day of season, time of day (linear) and 

time of day (quadratic). Day of season and time of day were included as covariates to 

account for the possible confounding effect of these temporal factors. We assessed the 

full model as well as reduced models that included territory density and one of each 

temporal covariate.  

We next tested the hypothesis that territory density per study site influences singing 

rate using the proportion of 5 min with ! 1 song as the response variable. We again used 

linear mixed effects regression and assessed two models wherein the full model included 

covariates for territory density and day of season and the reduced model included only 

territory density as a covariate. All models included study site as a random blocking 
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factor to account for unspecified site effects. Models were evaluated using the 

information-theoretical approach (Akaike 1973), with Akaike Information Criterion 

corrected for small sample size (AICc) (Sugiura 1978). We then regressed both measures 

of song rate on the estimates of density per study site produced by N–mixture models 

(Hunt et al. In press). We did not repeat the AIC analysis investigating the potential role 

of temporal factors using the N–mixture model derived estimates of density because these 

estimates are known to be biased. In addition, we found the estimate of abundance for 

one study site to be particularly erroneous. Therefore, we assessed the effect of N–

mixture model-derived density on song rate both with and without the outlier site 

estimate. 

Survey station-level warbler density and song rate.–To test the hypothesis that 

variation in the estimated density of male GCWAs per survey station influenced song rate 

we first regressed both the mean number of songs per 5 min and the proportion of 5 min 

recordings with ! 1 song recorded per survey station on the number of territories 

estimated to overlap each survey station. We then repeated this analysis using the 

estimates of density per survey station produced using N–mixture models calculated in 

the present study. Data were pooled across all study sites for this analysis.  

An increase in the number of songs available to be detected at a survey station in 

response to an increase in local territory density per survey station alone does not indicate 

an effect of density on the detection of an individual at a sample unit. A significant effect 

of local territory density, either positive or negative, on average song rate per unit male 

GCWA, on the other hand, would indicate an effect of density on singing rate at the 

individual level. Thus we also conducted a test of the hypothesis that the detection of 
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individual male GCWAs at a survey station is dependent on the number of territories 

overlapping the detection radius of a survey station. To test this hypothesis we used linear 

regression to test for an effect of local territory density on the average song rate (both 

measures) divided by the number of territorial males with a 100 m radius of each survey 

station. This analysis was repeated using the N–mixture model-derived estimates of 

abundance (!) per survey station. All analyses were conducted in R 2.9.2 (R 

Development Core Team 2009
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RESULTS 

Variation in song rate.–Male GCWAs were detected by ARUs at all sampled survey 

stations sampled at three of the six study sites and at 76%, 85%, and 92% of survey 

stations at the other three study sites. The two study sites with the fewest number of 

stations at which the species was recorded also had the lowest estimated territory 

densities. Both the mean number of songs per 5 min (F = 5.98, p < 0.001) and the 

proportion of 5 min intervals with ! 1 song (F = 11.997, p < 0.001) varied significantly 

between study sites. The percent of 5 min intervals with ! 1 song per survey station at the 

study site with the lowest territory density (7 territories / 113 ha) ranged from 0.8% to 

32% with a mean of 8.8% across all survey stations. This contrasts to the study site with 

the highest territory density (50 territories / 113 ha) where the percent of 5 min intervals 

with ! 1 song per survey station ranged from 12% to 80% with a mean of 51% across all 

survey stations. We recorded an average of 0.49 (± 0.17 SE) songs per 5 min at the study 

site with the lowest estimated territory density. In contrast at the highest density study 

site an average of 7.51 (± 1.8 SE) songs were detected per 5 min. 

Study site-level warbler density and song rate.–The model assessing the mean 

number of songs detected per 5 min at each survey station as the dependent variable 

including territory density per study site and time of day (quadratic) was selected based 

on the lowest AICC value (Table 1). We also found a significant interaction between
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Table 1. Test for a relationship between conspecific density, time of day, date and song rate using 

model selection of linear mixed effects models. Model selection statistics shown are Akaike Information 

Criterion corrected for small sample size (AICc), AICc weight (W), number of parameters (N.par) and twice 

the log likelihood (-2LL). Variables included territory density (Density), time of day (linear) (Time), time 

of day (quadratic) (Time
2
), and date. Selected models are presented in bold.  

 

 

 

Model AICc W N.par "-2LL" 

Mean number of songs / 5-min     

    Density X Time
2
 12253.71 0.53 6 12241.67 

    Density X Time 12260.28 0.38 6 12248.23 

    Density X Date 12290.87 0.08 6 12278.83 

    Density X Date X Time X Time
2
  12345.05 < 0.001 18 12308.67 

    Density 12387.39 < 0.001 4 12379.37 

Proportion of 5-min with ! 1 song     

    Density X Date -31.44845 0.73 4 -39.71 

    Density -11.46926 0.37 6 -24.02 
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territory density and time of day (quadratic) on the mean number of songs detected per 5 

min per survey station (t = -6.98, p < 0.0001). The mean number of songs detected per 5 

min per survey station was greatest at higher territory density study sites at or near 

sunrise at all study sites. The effect of territory density on the mean number of songs 

detected per 5 min was greater later in the day. The selected model assessing the 

proportion of 5 min intervals with ! 1 song (included covariates for territory density and 

day of season) (Table 1) revealed a significant interaction between the effect of territory 

density and day of season (t = -2.5, p = 0.013) indicating that the effect of territory 

density was not uniform throughout the season and was greatest later in the season. The 

proportion of 5 min intervals with ! 1 song was greatest at higher territory density study 

sites early in the season at all study sites.  

We found a significant effect of N–mixture model-derived abundance on the mean 

number of songs per 5 min per study site both with (t = 9.99, p < 0.001) and without the 

outlier site estimate (t = 16.49, p < 0.001) (Fig. 2 A). We also found a significant effect of 

N–mixture model-derived abundance on the proportion of 5 min intervals with ! 1 song 

per study site both with (t = 6.52, p < 0.001) and without the outlier site estimate (t = 

10.44, p < 0.001) (Fig. 2 B). The relationship between song rate and territory density 

estimated by spot mapping was similar to that of song rate and N–mixture model-derived 

abundance only when the outlier site estimate was removed. 

Survey station-level warbler density and song rate.–As expected both the mean 

number of songs detected per 5 min per survey station (t = 8.72, p < 0.001) and the  
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!"#$%&'()'Mean song rate per survey station in relation to the number of male warblers per study 

site. Relationship of the (A) mean number of songs per 5 min (± SE) and the number of male GCWA 

per 113 ha and (B) the proportion of 5 min survey intervals with ! 1 song and the number of male 

GCWA per 113 ha. Song rate estimates based on a minimum of 2,874 5 min surveys across ! 13 survey 

stations per study site. Closed circles and solid line indicate mean song rate as a function of territory 

density estimated by spot mapping: [(A) ! = 0.142, r
2
 = 0.96; (B) ! = 0.0095, r

2
 = 0.99]. Open circles 

indicate mean song rate as a function of estimated abundance derived through N–mixture models (Hunt 

et al. In press). The ‘"’ value indicates song rate at an erroneous N–mixture model-derived estimated 

abundance at a single study site. The dashed line indicates the slope of mean song rate versus N–

mixture model-derived estimated abundance without the erroneous site estimate [(A) ! = 0.159, r
2
 = 

0.88; (B) ! = 0.011, r
2
 = 0.95], while the stippled line indicates the slope with all estimates of 

abundance per study site [(A) ! = 0.065, r
2
 = 0.38; (B) ! = 0.005, r

2
 = 0.51].!
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!igure 3. Mean song rate per male GCWA in relation to the number of spot mapped male 

warblers per survey station. Relationship between the mean number of songs per 5 min (± SE) / 

territorial male GCWA and the number of territories estimated through spot mapping to be within 

100 m of each survey station (A) and (B) as the proportion of 5 min surveys intervals with ! 1 song 

/ territorial male GCWA and the number of territories within 100 m of a survey station. An asterisk 

indicates a significant slope.!
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proportion of 5 min with ! 1 song per survey station (t = 7.81, p < 0.001) significantly 

increased with increasing number of territories within a 100 m radius of a survey station. 

Importantly, we found a significant effect of local territory density on the mean number 

of songs detected per 5 min per unit male (t = 2.68, p = 0.013) (Fig. 3 A). However, we 

did not find an effect of local density on the proportion of 5 min with ! 1 song per unit 

male (t = -0.01, p = 0.995) (Fig. 3 B). 

Similarly, the mean number of songs detected per 5 min per survey station (t = 5.97, 

p < 0.001) and the proportion of 5 min with ! 1 song per survey station (t = 6.59, p < 

0.001) significantly increased with increasing estimated ! (derived through N–mixture 

models) per survey station. Similar to the results found using local territory density as the 

independent variable, we also found a significant effect of estimated ! on the mean 

number of songs detected per 5 min per unit male (t = 2.08, p = 0.041) (Fig. 4 A) but no 

effect of estimated ! on the proportion of 5 min with ! 1 song per unit male (t = 0.965, p 

= 0.338) (Fig. 4 B). 

Territory density and ! per survey station.–A comparison of the number of 

territories within 100 m and estimated ! per survey station revealed only a moderate 

correlation (r = 0.398) (Fig. 5). Further inspection of these data reveal that ! was 

underestimated at most survey stations in comparison to local territory density estimated 

through spot-mapping (indicated by values below the 1:1 line in Fig. 5). Interestingly, 

survey stations that were overestimated (indicated by values above the 1:1 line in Fig. 5) 

were limited to survey stations with less than four territories within 100 m. 
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Figure 4. Mean song rate per male GCWA (!) in relation to the number of estimated male 

warblers per survey station (!). Relationship between the mean number of songs per 5 min (± 

SE) / estimated male GCWA (!) (A) and (B) the proportion of 5 min recording intervals with ! 1 

song / estimated male GCWA (!) and estimated ! per survey station. Survey stations with 

estimated an ! = 0 and a y > 0 were possible because ! was estimated from four 5 min point counts 

(Hunt et al. In press) while song rate data estimated by extensive ARU sampling. An asterisk 

indicates a significant slope.!
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Figure 5. Correlation between estimated !  per survey station (using point count data from Hunt et 

al. In press) and the number of territories within 100 m of a survey station. (r = 0.398) Values 

above 1:1 slope (solid line) represent survey stations whose abundance (!) was overestimated by N–

mixture models while those below the line represent survey station underestimated by N–mixture 

models. Survey stations with a y-value = 0 and an x-value > 0 represent stations estimated to be absent 

by N–mixture models but within the detection radius of more than one male territory. 
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DISCUSSION 

Since most detections of passerine birds are by sound during point count surveys 

(Ralph et al. 1995) song rate represents the number of opportunities available to detect a 

species of interest or an individual of the species at survey stations within a survey period 

(Alldredge et al. 2007b, Johnson 2008). We recorded the singing of all male GCWAs 

within the detection radius (max. < 100 m) of 80 survey stations distributed across six 

study populations that varied dramatically in the number of territorial males per hectare. 

We then asked if the song rate component of detectability is influenced by conspecific 

density in the GCWA. A significant effect of territory density per study site on song rate 

would indicate that territory density has an effect on the detection availability of this 

species. The results presented here indicate that indeed higher territory densities yield 

higher song rates at survey stations. However, an increase in the number of songs 

recorded per survey station is the expected outcome of an increase in the number of 

males at each survey station or study site. This pattern illustrates one obvious way in 

which territory density may influence the detection of the GCWA at the species level. 

This result indicates that the probability of detecting the species at a survey station is not 

independent of conspecific density. This adds to the growing body of evidence 

highlighting the need for accounting for imperfect detection when estimating abundance 

of passerines. 

Because we designed our sampling scheme to mimic the standard 5 min point count 

survey interval we had the opportunity to inspect the true availability of a single species
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to be detected audibly in all potential survey intervals across two days at a number of 

survey stations. Both measures of song rate considered here were influenced by territory 

density but may relate to detection availability in point count surveys differently. Given 

that a 5 min survey interval is standard among point count surveys for passerines (Ralph 

et al. 1995), the proportion of 5 min intervals with ! 1 song can be thought of as the 

availability of the species to be detected audibly using the standard survey interval 

throughout a day. Our results indicate that, as expected, the availability of the species to 

be recorded as present at a survey station during any given survey interval increases as 

conspecific density increases. At the study site with the lowest estimated territory density 

only 9% of 5 min intervals contained ! 1 GCWA song. This translates to the species 

being available to be detected on average during only 9 out of every 100 potential survey 

intervals. This provides a stark contrast to this same measure of song rate at the highest 

density study site where the species was available to be detected on average during 50% 

of potential survey intervals. Intriguingly the increase in the proportion of 5 min intervals 

with ! 1 song with territory density found here (! = 0.008) is similar to the increase in 

detection probabilities of the species with increasing abundance found by Hunt et al. (In 

press) (! = 0.012) during the same time period based on five–minute surveys per survey 

station sampled four times per season. 

While the proportion of 5 min with ! 1 song may be considered the detection 

availability of the species in survey intervals throughout the day, the mean number of 

songs per 5 min may be considered the detection availability of the species within an 

average survey interval. Certainly, an average rate of ! 1 song per 5 min indicates that an 

observer has the opportunity to detect the species (i.e. available) during a survey interval 
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subject to perceptibility (i.e. the observer recognizes and records the species). Given 

imperfect detection perceptibility, e.g. observers may not always detect a species from a 

single opportunity (e.g. one song), an increase in the number of detection opportunities 

per survey interval, as shown here, likely would result in increased probability of 

detection (Mayfield 1981, Wilson and Bart 1985, McShea and Rappole 1997, Alldredge 

et al. 2007b). We recorded an average of less than one song per 5 min at the two study 

sites with lowest estimated territory densities. Thus, at these low-density study sites less 

than one song is available to be detected within an average survey interval. In contrast, 

higher density study sites yielded averages greater than four songs per 5 min indicating 

that the detection availability of the species may be more than four times greater within 

an average survey interval at these higher density study sites.  

Higher song rates recorded per survey station in response to an increase in 

conspecific density alone do not indicate bias in detection of the individual within the 

model framework of OBMs. Bias in detection of individuals as a function of density 

would only come from a violation of one of the two implicit assumptions of OBMs; (1) 

all individuals are equally detectable and (2) the detection of one individual is 

independent of other individuals. In this study we examined the relationship between the 

number of GCWA territories overlapping a 100 m radius of a survey station (hereafter 

local territory density) and song rate measured as the mean number of songs per 5 min 

and the proportion of 5 min intervals with ! 1 song as a means of assessing the relative 

detection availability of the individual per survey station. We tested the hypothesis that if 

conspecific density affects the singing of individual male GCWAs we would see a 

significant effect of local territory density on the average song rate per unit bird (song 
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rate per survey station / local territory density). By selecting those 28 survey stations 

across the six study sites for which we had independent estimates of territory maps we 

formed a pool of 28 observations that allowed us to test this hypothesis with two 

measures of song rate. We found no effect of local territory density on the proportion of 5 

min intervals with ! 1 song per unit bird. However, our results also indicated that the 

number of songs recorded per 5 min was significantly affected by local territory density. 

This provides indirect evidence that males contributed a greater number of songs to the 

mean captured by ARUs in response to increased local territory density. If so, the 

detection availability of individuals, as measured by the number of songs each male 

exhibits per 5 min, may not be independent of the detection of other individuals violating 

one of the implicit assumptions of OBMs. A violation of this assumption may lead to 

biased estimates of abundance as in Hunt et al. (In press). This is particularly troubling 

for species of concern such as the GCWA. 

As a further test of the assumptions of OBMs we compared N–mixture model 

estimated abundance per survey station (!) to the number territories within 100 m of a 

survey station, which we treat as a record of the number of known individuals (at some 

point within the breeding season) within the detection radius of a survey station. The fact 

that the correlation between estimated ! and the number of surrounding territories per 

survey station was weak (r = 0.398) appears to be largely the result of a systematic 

underestimation of abundance per survey station by N–mixture models (Fig. 5). 

Interestingly, the only survey stations whose abundance was overestimated were survey 

stations with few surrounding territories (i.e. 1-3). Such stations also fall primarily within 

low-density study sites and overestimation at the survey station level may translate to 
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overestimation per study site. Thus, it is possible that the systematic density associated 

bias at the population level shown in Figure 1 is the result of overestimation at low-

densities as well as underestimation at high-densities.  

We also assessed the effect of local density (per survey station) on song rate using 

estimated ! per survey station to further investigate the performance of N–mixture 

models in relation to spot mapping. Using the number of territories surrounding survey 

stations we saw that the detection of individuals is not independent of conspecific density 

as evidenced by a significant effect of local territory density on the mean number of 

songs per 5 min per unit bird. If N–mixture models produced unbiased estimates of 

abundance one would predict that the effect of ! per survey station on song rate would be 

similar to that of local territory density on song rate. Somewhat surprisingly, we found 

the same pattern using ! per survey station as the dependent variable as we found using 

local territory density as the dependent variable in that we saw a significant effect of local 

density on the mean number of songs per 5 min per unit bird but no effect on the 

proportion of 5 min intervals with ! 1 song per unit bird. In this respect, though the N–

mixture model-derived estimates of abundance may be biased high, the model appears to 

perform adequately. 

Our primary conclusion that detection availability of male GCWAs by song is 

dependent on conspecific density is in part dependent on both the accuracy of the COA 

(2009) territory density estimates and assumptions inherent in scaling territory density 

estimates up to 113 ha. The COA enumerates the number of territories per 40.5 ha but in 

order to make these estimates comparable to the ARU data and Hunt et al. (In press) 

abundance estimates collected within 1 km
2
 grids we scaled up these estimates to 113 ha. 



!

!

"#!

This assumes that the GCWA densities were homogenous within the 113 ha area 

subsuming each 40.5 ha plot. The COA selected the tracts for the placement of 40.5 ha 

plots in part because they represented some of the best habitat for GCWA (City of Austin 

1999). In some cases the habitat immediately surrounding the COA spot-mapping plots is 

very similar to the habitat within, while others are surrounded by less suitable GCWA 

habitat.  

Using the mean song rate across each study site to estimate detection availability per 

study site assumes that GCWA males are homogenously distributed and that singing rate 

is homogenous across survey stations within each study site. However, low-density sites 

may support a limited number of birds due to a limited amount of suitable habitat that 

may also be heterogeneously distributed throughout a site. Such patchiness of suitable 

habitat may mean that the biologically relevant area sampled for the GCWA may not 

have been homogenous across study sites. To account for this we also examined the 

relationship between conspecific density and GCWA singing excluding data from 

stations that did not record any GCWA songs during the two-day recording period. 

Stations excluded on this basis, with one exception, were only within the two lowest 

density study sites. Excluding these survey stations ensured that stations placed in areas 

unoccupied by GCWAs did not bias estimates of average song rate per study site, 

particularly at low densities. However, excluding these survey stations did not alter the 

relationship between mean song rate and territory density appreciably thus we chose to 

present only the results of analyses including all recorded stations. In addition, though 

each of the six study sites was adequately sampled to estimate song rate, estimates of rate 

for only six study sites meant we could not reasonably assess potential nonlinear effects 
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in a regression of song rate versus territory density at the level of the study site. However, 

the range of territory density estimates among the study sites recorded in the current 

study represents the range of densities available within the BCP and these estimates are 

of wild populations.  

Part of using ARUs in this capacity is that one cannot know if a bird was present at a 

station and not vocalizing or if was simply not present. Thus, the observed effect of 

territory density on the song rate found here could be explained by the singing behavior, 

average movements, singing, or combination of these behaviors at the level of each 

individual male GCWA. In a territorial bird the probability that an individual at a survey 

station is detected may be a function of the proportion of their territory that overlaps with 

the detection radius of a survey station in addition to their rate of singing. Thus the 

assumption that all individuals are equally detectable from a survey station may be 

violated if heterogeneity exists in the area that individual territories overlap the detection 

radius of a survey station. The assumption that the detection of individuals is independent 

of that of other individuals may be violated if the number of other males present at a 

survey station affects the singing behavior of other individuals. Moreover, the number of 

neighboring territorial males has been shown to affect individual male song rate in 

several passerines species (Chelén et al. 2005, Sexton et al. 2007, Laiolo et al. 2008) 

including one species of wood warbler (Sillett et al. 2004). 

Because one of the main functions of passerine song is territorial defense (Morton 

1977, Catchpole 1981, Searcy and Andersson 1986) an increase in the density of 

neighboring males may result in an increase in the rate of singing of individual males. 

However, the singing behavior of individual males alone may not explain the effect of 
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territory density on song rate per survey station. In territorial wood warblers, like the 

GCWA, resource availability or defensibility may limit the size of breeding territories or 

home ranges (Smith and Schulgart 1987, Anich et al. 2010). In this way conspecific 

density may influence the size of breeding territories (Morse 1976). By measuring the 

mean maximum distance between any two spot mapped observations per male estimated 

by the COA (2009) as a measure of territory size we found that territory size is negatively 

(albeit weakly) influenced by density (t = -3.6, p < 0.001, r
2
 = 0.12), as has been seen in 

other wood warblers (Morse 1976). Thus, males in lower density areas may have larger 

territories and may spend less time on average at any given point within his territory, 

such as within the detection radius of a survey station. This effect could potentially 

translate to decreased song rates recorded per survey station and therefore lower detection 

availability of the species or of an individual at lower densities even without an effect of 

conspecific density on individual male song rate. We propose two, non-mutually 

exclusive hypotheses to explain the effect of territory density we observed on song rate. 

(1) An increase in the number of neighboring territorial males increases the stimulus for 

singing at the level of each individual male. (2) An increase in territory density results in 

smaller territories that overlap to a greater extent resulting in an increase in the potential 

for an observer to be within the detection radius of multiple individual males. These 

hypotheses are the focus of on-going research. 

In conclusion, this study was designed to mimic the typical survey interval used in 

point count surveys for passerines (Ralph et al. 1995) with the main difference being that, 

through the use of ARUs, we expanded the survey effort to include all potential survey 

intervals throughout a day (130 5 min intervals / day). We then replicated this effort for 
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two days at each of 80 point count survey stations within six study sites known to vary in 

GCWA territory densities. This allowed us to examine the relationship between actual 

detection availability, as measured by song rate, and conspecific density. As expected we 

found a significant positive effect of territory density on song rate indicating that the 

detection availability of the species is influenced by density and underlining the need for 

abundance estimators that account for imperfect detection. Further, by looking at average 

song rate per unit bird as it relates to territory density we found indirect evidence that the 

detection availability of individual male GCWAs may be influenced by conspecific 

density. This violates the implicit assumption of OBMs that the detection of one 

individual is independent of the detection of other individuals at a sample unit. As such 

this study illustrates how the behavior of a territorial passerine may violate model 

assumptions and potentially lead to biased estimates of abundance. With this study we 

focused on a general issue with the N–mixture model using a particular case study 

focused on a single passerine species. However, the GCWA is certainly not alone in its 

territorial nature nor are the methods of detecting the species (by song) unique. Thus, the 

results of this study are likely to translate to other passerine species, particularly other 

wood warblers. Model-based abundance estimators, like the N–mixture model, that 

correct for imperfect detection are powerful tools that will continue to play a part in 

improving our ability to efficiently and accurately estimate population size. Nonetheless 

we urge careful attention to model assumptions particularly in relation to the biology and 

behavior of the species of interest. 
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