
Electronic Journal of Differential Equations, Vol. 2007(2007), No. 141, pp. 1–9.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

REGULARITY OF WEAK SOLUTIONS TO THE
LANDAU-LIFSHITZ SYSTEM IN BOUNDED

REGULAR DOMAINS

KÉVIN SANTUGINI-REPIQUET

Abstract. In this paper, we study the regularity, on the boundary, of weak

solutions to the Landau-Lifshitz system in the framework of the micromagnetic

model in the quasi-static approximation. We establish the existence of global
weak solutions to the Landau-Lifshitz system whose tangential space gradient

on the boundary is square integrable.

1. Introduction

The Landau-Lifshitz equation models the behavior of ferromagnetic materials,
and it is used in crystallography. This nonlinear systems of partial differential
equations is

∂m
∂t

= −m ∧ h− αm ∧ (m ∧ h). (1.1)

with h (magnetic excitation) depending on m (magnetization), and α ∈ R+
∗ (damp-

ening parameter).
Existence of global weak solutions to the Landau-Lifshitz equation have been

proved in [14, 1, 9]. However, these solutions are only required to belong to
L∞(R+; H1(O)) and to H1(O × (0, T )) for all time T > 0. Besides, they are not
unique. There are existence results for of more regular solutions in the case when
h = ∆m, see [10, 11]. For 3D and a full characterization of the unique “good” solu-
tion in 2D has been obtained by Harpes[8]. These results are not easily generalized
to more complicated forms of h as they often rely on harmonic analysis. Some
authors have studied the regularity of stationary maps when the excitation h has
a more complicated form: Critical points of the energy are regular away from a set
of zero two-dimensional Hausdorff measure; see Carbou [3] and Hardt and Kinder-
lehrer [7]. Using standard analysis, one can easily prove that any weak solution
m belongs to C([0,+∞); H1

w(O)), and to the Nikol’skii space L2(0, T ; (B2
1,∞(O))3),

and satisfy ∆m ∈ L2(0, T ; L1(O)), see [13, §6.2].
In this paper, we establish that for any initial condition, at least one weak

solution to the Landau-Lifshitz system has a trace that belongs to L2(0, T ; H1(∂O)).
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This result is not limited to the case h = A∆m and can be generalized to a wide
range of forms of h.

In section 1, we introduce a common notation used throughout this paper. Then,
in section 2, we recall briefly the micromagnetic model. We recall known results
concerning the existence of weak solutions in section 3. We state and prove our
main theorem in section 4.

Notation. Given an open set O, we denote by Lp(O) the set of all measurable
functions u over O such that

∫
O
|u|p dx < +∞. This is a Banach space for the norm

‖u‖Lp(O) =
( ∫

O

|u|p dx
)1/p

.

For any integer m ≥ 0, we denote by Hm(O), the space of all measurable functions
u over O such that for any multi-indices α, |α| < m, Dαu belongs to L2(O). This
is an Hilbert space for the norm

‖u‖Hm(O) =
( ∑
|α|≤m

‖Dαu‖2
L2(O)

)1/2

.

We set Hm(O) = (Hm(O))3 and Lp(O) = (Lp(O))3. By |O|, we denote the Lebesgue
measure of set O.

Given a smooth surface ∂O, ν represents the unit outward normal vector to the
surface, ∂u

∂ν the normal trace of u on ∂O, and ∇Tu the tangential gradient of u on
∂O.

In all this paper, Ω is a bounded open set of R3 with a smooth boundary. We
also define ΩT = Ω× (0, T ).

2. The micromagnetic model

In this section, we recall briefly the micromagnetic model. We begin by intro-
ducing the more common energies and excitations that model completely the static
behavior, then we introduce the nonlinear PDE that models the evolution problem.
From now on, Ω represents the domain filled with a ferromagnetic material.

2.1. The static problem. The magnetic state of a ferromagnetic material is rep-
resented by two vector fields: the magnetization m and the magnetic excitation h.
In the micromagnetic model the magnetization must verify a non convex constraint:
|m| = 1 in Ω and be null outside Ω. The excitation h depends on m.

To each interaction p is associated an energy Ep(m) and an operator Hp related
by:

DEp(m) · v = −
∫

Ω

Hp(m) · v dx, Ep(0) = 0.

The excitation contributed by p is hp = Hp(m) and the total excitation is h =∑
p hp. In this paper we consider three interactions, see Brown [2] for details:

Exchange: The exchange energy and its associated excitation are given by:

Ee(m) =
A

2

∫
Ω

|∇m|2 dx, He(m) = A∆m,

where A > 0.
Anisotropy:

Ea(m) =
1
2

∫
Ω

m ·Km dx, Ha(m) = −Km,
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where K is a symmetric positive quadratic form.
Demagnetization field:

Ed(m) =
1
2

∫
R3
|Hd(m)|2 dx, Hd(m) = hd,

where hd is the only solution in L2(R3) to the magnetostatic system

div(hd + m) = 0, curl(hd) = 0,

in the sense of distributions.

The demagnetization field operator has been extensively studied by Friedman
[4, 5, 6]. This operator is symmetric negative, is linear continuous from Lp(R3) to
Lp(R3), 1 < p < +∞, and satisfies

−
∫

Ω

Hd(m) ·m dx =
∫

R3
|Hd(m)|2 dx.

The L(L2(R3),L2(R3)) norm of Hd is less than 1. We also define

H = He + Ha + Hd, Hd,a = Hd + Ha,

He,a = He + Ha, E = Ee + Ea + Ed.

The solutions to the static problem are the local minimizers of the total energy E
satisfying the constraint |m| = 1 a.e. in Ω.

2.2. The evolution system. The Landau-Lifshitz system models the evolution
of ferromagnetic materials. Let α > 0 be a dampening parameter. The Landau-
Lifshitz system comprises the nonlinear system

∂m
∂t

= −m ∧H(m)− αm ∧
(
m ∧H(m)

)
in Ω× R+, (2.1a)

the initial condition

m(·, 0) = m0 in Ω, (2.1b)

the non convex constraint

|m| = 1 in Ω× R+, (2.1c)

and the Neumann boundary conditions

∂m
∂ν

= 0 on ∂Ω× R+. (2.1d)

3. Known results

We give the definition of weak solutions to the Landau-Lifshitz system (2.1).

Definition 3.1. Given m0 in H1(Ω), |m0| = 1 a.e. in Ω, we call m a weak solution
to the Landau-Lifshitz system (2.1) if

(1) For all T > 0, m belongs to H1(Ω× (0, T )), and |m| = 1 a.e. in Ω× R+.



4 K. SANTUGINI-REPIQUET EJDE-2007/141

(2) For all φ in H1(Ω× (0, T )),∫∫
ΩT

∂m
∂t

· φdxdt− α

∫∫
ΩT

(
m ∧ ∂m

∂t

)
· φdxdt

= (1 + α2)A
∫∫

ΩT

3∑
i=1

(
m ∧ ∂m

∂xi

)
· ∂φ
∂xi

dxdt

− (1 + α2)
∫∫

ΩT

(m ∧Hd,a(m)) · φdxdt.

(3.1a)

(3) m(·, 0) = m0 in the sense of traces.
(4) For all T > 0,

E(m(T )) +
α

1 + α2

∫∫
ΩT

∣∣∂m
∂t

∣∣2 dtdx ≤ E(m(0)), (3.1b)

where

E(u) =
A

2
‖∇u‖2

L2(Ω) +
1
2
‖Ku‖2

L2(Ω) +
1
2
‖Hd(m)‖2

L2(Ω).

It was proved by Alouges and Soyeur [1] that the Landau-Lifshitz system (2.1)
has at least one weak solution when h = A∆m. This result was generalized to the
full h in [9]:

Theorem 3.2. Let m0 belongs to H1(Ω), such that |m0| = 1 a.e. in Ω. Then,
there exists at least one solution to the Landau-Lifshitz system m in the sense of
definition 3.1.

Proof. The proof is based on the study of a penalized system whose solution con-
verges to a weak solution to the Landau-Lifshitz system. The penalized system
was:

α
∂mk

∂t
+ mk ∧ ∂mk

∂t
= (1 + α2)

(
H(mk)− k(|mk|2 − 1)m

)
, (3.2a)

∂mk

∂ν
= 0, (3.2b)

mk(·, 0) = m0. (3.2c)

See [1, 9] for details. See also [12] for a generalization with surface energies. �

We will prove a slightly stronger result. However, we need a uniform L∞(Ω×R+)
bound of mk. But, the non locality of the Hd operator prevents us from proving
this result. For this reason, we introduce another penalized, less simple, system
(4.1) to prove the existence of solutions more regular on the boundary.

4. Existence of a solution with H1 regularity in space on the
boundary

We state our main result as follows.

Theorem 4.1. Let m0 belong to H1(Ω), such that |m0| = 1 a.e. in Ω. Then,
there exists at least one solution to the Landau-Lifshitz system m in the sense of
definition 3.1 such that γm ∈ L2(0, T ; H1(∂Ω)).
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This theorem is a consequence of propositions 4.3 and 4.6. The rest of this
section is dedicated to the proof of this theorem. We first introduce a penalized
system:

α
∂mk

∂t
+ mk ∧ ∂mk

∂t
= (1 + α2)

(
He,a(mk) + 1{mk 6=0}Hd(mk)

−
(
Hd(mk) · mk

|mk|
) mk

|mk|

− k(|mk|2 − 1)mk
)

in Ω× R+,

(4.1a)

∂mk

∂ν
= 0 on ∂Ω× R+, (4.1b)

mk(·, 0) = m0 in Ω. (4.1c)

We first show that this penalized system has a weak solution that converges to
a weak solution to the Landau-Lifshitz system as k tends to +∞. We then show
that the L2(0, T ; H1(∂Ω)) norm of mk is bounded independently of k. This requires
a uniform L∞(Ω × R+) bound of mk first: something we could not establish for
system (3.2), hence the modification of the penalized system.

4.1. Properties of solutions to the penalized system (4.1). One can easily
adapt the proof of existence of solution to the original penalized system (3.2) found
in [9, 1] to the modified penalized system (4.1):

Proposition 4.2. Let m0 in H1(Ω), |m0| = 1 a.e. in Ω. Then, there exists a
solution mk to system (4.1) in L∞(R+; H1(Ω)) ∩H1(Ω× (0, T )), i.e. satisfying:∫∫

ΩT

(
α
∂mk

∂t
+ mk ∧ ∂mk

∂t

)
· ψ dxdt

= −(1 + α2)A
∫∫

ΩT

∇mk · ∇ψ dxdt+ (1 + α2)
∫∫

ΩT

1{mk 6=0}Hd,a(mk) · ψ dxdt

− (1 + α2)
∫∫

ΩT

(
(Hd(mk) ·mk)mk

|mk|2

)
· ψ dxdt

− (1 + α2)k
∫∫

ΩT

(|mk|2 − 1)mk · ψ dxdt,

(4.2a)
for all ψ in H1(Ω× (0, T )), and for all time T > 0, all η > 0:

E(mk(·, T )) + (
α

1 + α2
− η)

∫ T

0

∥∥∂mk

∂t

∥∥2

L2(Ω)
dt+

k

4
‖|mk(·, T )|2 − 1‖2

L2(Ω)

≤
(
|Ω|+ E(m0)

)
exp(

T

2kη
)− |Ω|.

(4.2b)

Proof. The proof is the same as the one in [1, 9] with a minor complication arising
from the supplementary term.

Let (w1, . . . , wn, . . . ) be the orthonormal hilbertian basis of L2(Ω) comprising
the eigenfunctions of the Laplace operator with homogeneous Neumann boundary
conditions. The wi belongs to C∞(Ω). Let Vn be the subspace of L2(Ω) spanned
by functions (w1, . . . , wn). Let Pn be the orthogonal projector on Vn in L2(Ω).
The basis (w1, . . . , wn, . . . ) is also an hilbertian orthogonal basis of H(Ω) and Pn
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is also an orthogonal projector in H1(Ω). We search for mk
n with the form mk

n =∑n
i=1 φi(t)wi(x), where the φi are in C∞(R+; R3) such that

α
∂mk

n

∂t
+ Pn(mk

n ∧
∂mk

n

∂t
) = (1 + α2)Pn

(
H(mk

n)− (Hd(mk
n) ·mk

n)mk
n

|mk
n|2 + n−1

)
− (1 + α2)kPn

(
(|mk

n|2 − 1)mk
n

) (4.3a)

mk
n(·, 0) = Pn(m0). (4.3b)

Let Φn = (φ1, . . . , φn). Equation (4.3a) is equivalent to

dΦn

dt
−A(Φn(t))

dΦn

dt
= F (Φn(t)),

where F is of class C∞ (thanks to the n−1 in the denominator which serves no other
purpose) and Φn(t) 7→ A(Φn(t)) is linear continuous, thus smooth. Moreover,
A(Φ) is an antisymmetric matrix for all Φ. So the matrix I−A(Φ) is nonsingular
and the function Φ 7→ (I −A(Φ))−1 is of class C∞. By Cauchy-Lipshitz, Φi(t)
exists locally in time. Equation (4.3a) can be expressed as∫∫

ΩT

(
α
∂mk

n

∂t
+ mk

n ∧
∂mk

n

∂t

)
· ψ dxdt

= −(1 + α2)A
∫∫

ΩT

∇mk
n · ∇ψ dxdt+ (1 + α2)

∫∫
ΩT

Hd,a(mk
n) · ψ dxdt

− (1 + α2)
∫∫

ΩT

(
(Hd(mk

n) ·mk
n)mk

n

|mk
n|2 + n−1

)
· ψ dxdt

− (1 + α2)k
∫∫

ΩT

(|mk
n|2 − 1)mk

nψ dxdt,

(4.4)

for all ψ in Vn ⊗ C∞(R+; R3). In (4.4), we take ψ = ∂mk
n

∂t , we obtain for all T > 0:

E(mk
n(·, T )) +

α

1 + α2

∫ T

0

∥∥∂mk
n

∂t

∥∥2

L2(Ω)
dt+

k

4
‖|mk

n(·, T )|2 − 1‖2
L2(Ω)

≤ E(m0) +
k

4
‖|Pn(m0)|2 − 1‖2

L2(Ω) −
∫∫

ΩT

(
(Hd(mk

n) ·mk
n)mk

n

|mk
n|2 + n−1

)
· ∂m

k
n

∂t
dxdt.

Therefore, for all η > 0, all time T > 0:

E(mk
n(·, T )) + (

α

1 + α2
− η)

∫ T

0

∥∥∂mk
n

∂t

∥∥2

L2(Ω)
dt+

k

4
‖|mk

n(·, T )|2 − 1‖2
L2(Ω)

≤ E(m0) +
k

4
‖|Pn(m0)|2 − 1‖2

L2(Ω) +
1
8η

∫ T

0

∫
Ω

(
(|mk

n|2 − 1)2 + 1
)
dxdt.

By Gronwall, for all η > 0, all time T > 0:

E(mk
n(·, T )) + (

α

1 + α2
− η)

∫ T

0

∥∥∂mk
n

∂t

∥∥2

L2(Ω)
dt+

k

4
‖|mk

n(·, T )|2 − 1‖2
L2(Ω)

≤
(
|Ω|+ E(m0) +

k

4
‖|Pn(m0)|2 − 1‖2

L2(Ω)

)
exp(

T

2kη
)− |Ω|.

(4.5)

Thus, mk
n exists in global time. Since, Pn(m0) tends to m0 in H1(Ω), k

4‖|Pn(m0)|2−
1‖2

L2(Ω) tends to 0 as n tends to +∞. Therefore, mk
n is bounded in H1(ΩT ) and in

L∞(0, T ; H1(Ω)), independently of n. There exists mk in L∞(0, T ; H1(Ω)) and in
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H1(Ω × (0, T )) and vk in L2(Ω), such that, modulo a subsequence, as n tends to
+∞:

mk
n → mk strongly in L2(Ω× (0, T )), (4.6a)

mk
n → mk weakly in H1(Ω× (0, T )), (4.6b)

mk
n → mk weakly–∗ in L∞(0, T ; H1(Ω)), (4.6c)

1{mk=0}
(Hd(mk

n) ·mk
n)mk

n

|mk
n|2 + n−1

→ vk weakly in L2(Ω× (0, T )). (4.6d)

Also, by Aubin’s lemma, for all 1 < p < +∞, 1 < q < 6, T > 0,

mk
n → mk strongly in Lp(0, T ; Lq(Ω)). (4.6e)

The limit mk has the required properties: Pn(m0) converges to m0 in H1(Ω).
Computing the limit of (4.5), yields (4.2b). Since on the set {(x, t)|mk = 0}, ∂mk

∂t =
0 and ∆mk = 0 a.e., computing the limit of (4.4) yields first vk = 1{mk=0}Hd(mk),
then (4.2a) for all ψ in

⋃∞
n=1 Vn ⊗C∞([0, T ]; R3). By density, (4.2a) holds for all ψ

in H1(Ω× (0, T )). �

Now, we can prove that mk converges to a weak solution to the Landau-Lifshitz
system.

Proposition 4.3. Let m0 be in H1(Ω), |m0| = 1 a.e. in Ω. Let mk be a weak
solution to the penalized system (4.1). Then, there exists a subsequence of mk,
that converges to a weak solution m to the Landau-Lifshitz system (2.1) weakly in
H1(Ω× (0, T )).

Proof. By (4.2b), mk is bounded in L∞(0, T ; H1(Ω)) and in H1(Ω×(0, T ). Besides,
k‖|mk|2 − 1‖2

L∞(0,T ;L2(Ω)) is bounded. There exists m in H1(Ω× (0, T ), such that,
up to a subsequence,

mk → m strongly in L2(Ω× (0, T )), (4.7a)

mk → m weakly in H1(Ω× (0, T )), (4.7b)

mk → m weakly–∗ in L∞(0, T ; H1(Ω)), (4.7c)

|mk|2 − 1 → 0 strongly in L2(Ω× (0, T )), (4.7d)

Also, by Aubin’s lemma, for all 1 < p < +∞, 1 < q < 6, T > 0,

mk → m strongly in Lp(0, T ; Lq(Ω)). (4.7e)

Obviously, m(·, 0) = m0. By (4.7d), |m| = 1.
We compute the limit of (4.2b) as k tends to +∞ as in [1, 9]. Then, we have η

tend to 0: energy inequality (3.1b) is satisfied.
It only remains to prove that m satisfy (3.1a): in (4.2a), we take ψ = mk ∧ φ,

with φ in C∞(Ω× (0, T ); R3) and take the limit as k tends to +∞. Since the sup-
plementary term containing (Hd(mk) · mk

|mk| )
mk

|mk| disappears, we can then conclude

as in [1, 9] and obtain (3.1a) for all φ in C∞(Ω× (0, T )). By density, (3.1a) also
holds for all φ in H1(Ω× (0, T )). �

We establish an important proposition that we were unable to prove for the
original penalized system (3.2) due to the non locality of Hd.
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Proposition 4.4. Let m0 be in H1(Ω), |m0| = 1 a.e. in Ω. Let mk be a weak
solution to system (4.1). Then, mk satisfy |mk| ≤ 1 a.e. in Ω× R+.

Proof. We follow Alouges-Soyeur [1], and introduce the map g : R → R defined by

g(x) =


0 if x < 0,
x if 0 ≤ x ≤ 1,
1 if x ≥ 1,

We set ψ(x, t) = g(|mk(x, t)|2 − 1)mk(x, t). The function ψ belongs to H1(Ω ×
(0, T )) and

∂ψ

∂xi
= 2g′(|mk|2 − 1)

(
mk · ∂m

k

∂xi

)
mk + g(|mk|2 − 1)

∂mk

∂xi
.

Reporting ψ in (4.2a) yields

α

∫∫
ΩT

g(|mk(x, t)|2 − 1)mk(x, t) · ∂m
k

∂t
dxdt

= −(1 + α2)A
3∑

i=1

∫∫
ΩT

2g′(|mk|2 − 1)
(
mk · ∂m

k

∂xi

)2

dxdt

− (1 + α2)
∫∫

ΩT

g(|mk|2 − 1)|∇mk|2 dxdt

− (1 + α2)
∫∫

ΩT

g(|mk(x, t)|2 − 1)mk ·Kmk dxdt

− (1 + α2)k
∫∫

ΩT

(|mk|2 − 1)|mk|2g(|mk(x, t)|2 − 1) dxdt.

Should we have used system (3.2) instead, then the term containing the global
operator would have been very difficult, if not outright impossible, to estimate.

Therefore,
∫∫

ΩT
g(|mk(x, t)|2 − 1)mk(x, t) · ∂mk

∂t dxdt ≤ 0. Thus, for all T > 0,∫
Ω

G(|mk(·, T )|2 − 1) dx ≤
∫

Ω

G(|m0|2 − 1) dx = 0,

where G(x) =
∫ x

0
g(s) ds. Since G ≥ 0, G(|mk(·, T )|2 − 1) = 0 a.e. in Ω for all

T > 0. Therefore, mk ≤ 1 a.e. in Ω× R+. �

As a corollary to proposition 4.4, we have

Corollary 4.5. Any weak solution mk to system (4.1) belongs to the space H2,1(Ω×
(0, T )).

4.2. Uniform H1(∂Ω) bound of the penalized solution. To prove Theorem
4.1, we only need to prove the following proposition.

Proposition 4.6. Let m0 be in H1(Ω), |m0| = 1. Let mk be a weak solution to the
penalized system (4.1). Then, for all time T > 0 the quantity ‖∇Tγmk‖2

L2(∂Ω×(0,T ))

is bounded uniformly in k.

Proof. Let φi be in C∞(Ω× (0, T )) for any integer i, 1 ≤ i ≤ 3. By corollary 4.5
and proposition 4.4, we can multiply (4.1a) by ∂mk

∂xi
φi and integrate over any open



EJDE-2007/141 REGULARITY OF WEAK SOLUTIONS 9

set O ⊂ Ω with a smooth boundary:

α

∫
O×(0,T )

∂mk

∂t
· ∂m

k

∂xi
φi dxdt+

∫
O×(0,T )

(mk ∧ ∂mk

∂t
) · ∂m

k

∂xi
φi dxdt

= (1 + α2)
∫

O×(0,T )

1{mk 6=0}Hd,a(mk) · ∂m
k

∂xi
φi dxdt

− (1 + α2)
∫

O×(0,T )

(Hd(mk) · mk

|mk|
)

mk

|mk|
· ∂m

k

∂xi
φi dxdt

− (1 + α2) k
∫

O×(0,T )

(
|mk|2 − 1

)
mk · ∂m

k

∂xi
φi dxdt︸ ︷︷ ︸

I

+ (1 + α2)A
3∑

j=1

∫
O×(0,T )

( ∂

∂xj

(∂mk

∂xi
· ∂m

k

∂xj

)
− 1

2
∂

∂xi

∣∣∣∣∂mk

∂xj

∣∣∣∣2 )
φi dxdt︸ ︷︷ ︸

II

However, in the above equality,

I = −k
4

∫
O×(0,T )

(
|mk|2 − 1

)2 ∂φi

∂xi
dxdt+

k

4

∫
∂O×(0,T )

(
|mk|2 − 1

)2
νiφi dσ(x) dt,

and

II = −
3∑

j=1

∫
O×(0,T )

(∂mk

∂xi
· ∂m

k

∂xj

)∂φi

∂xj
dxdt+

1
2

∫
O×(0,T )

|∇mk|2 ∂φi

∂xi
dxdt

+
∫

∂O×(0,T )

(∂mk

∂xi
· ∂m

k

∂ν

)
φi dσ(x) dt− 1

2

∫
∂O×(0,T )

|∇mk|2νiφi dσ(x) dt.
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Therefore,

α

∫
O×(0,T )

∂mk

∂t
· ∂m

k

∂xi
φi dxdt+

∫
O×(0,T )

(mk ∧ ∂mk

∂t
) · ∂m

k

∂xi
φi dxdt

− (1 + α2)
∫

O×(0,T )

1{mk 6=0}Hd,a(mk) · ∂m
k

∂xi
φi dxdt

+ (1 + α2)
∫

O×(0,T )

(Hd(mk) · mk

|mk|
)

mk

|mk|
· ∂m

k

∂xi
φi dxdt

+ (1 + α2)A
3∑

j=1

∫
O×(0,T )

(∂mk

∂xi
· ∂m

k

∂xj

)∂φi

∂xj
dxdt

− (1 + α2)
A

2

∫
O×(0,T )

|∇mk|2 ∂φi

∂xi
dxdt

− (1 + α2)
k

4

∫
O×(0,T )

(
|mk|2 − 1

)2 ∂φi

∂xi
dxdt

= −(1 + α2)
k

4

∫
∂O×(0,T )

(
|mk|2 − 1

)2
νiφi dσ(x) dt

+ (1 + α2)A
∫

∂O×(0,T )

(∂mk

∂xi
· ∂m

k

∂ν

)
φi dσ(x) dt

− (1 + α2)
A

2

∫
∂O×(0,T )

|∇mk|2νiφi dσ(x) dt,

(4.8)

for all φi in C∞(Ω× (0, T )). In (4.8), we choose φi independent of the time t such
that φi = νi on ∂O and sum over i. We obtain, denoting by φ the vector valued
function (φ1, φ2, φ3),

α

∫
O×(0,T )

∂mk

∂t
· (φ · ∇)mk dxdt+

∫
O×(0,T )

(mk ∧ ∂mk

∂t
) · (φ · ∇)mk dxdt

− (1 + α2)
∫

O×(0,T )

1{mk 6=0}Hd,a(mk) · (φ · ∇)mk dxdt

+ (1 + α2)
∫

O×(0,T )

(Hd(mk) · mk

|mk|
)

mk

|mk|
· (φ · ∇)mk dxdt

+ (1 + α2)A
3∑

i,j=1

∫
O×(0,T )

(∂mk

∂xi
· ∂m

k

∂xj

)∂φi

∂xj
dxdt

− (1 + α2)
A

2

∫
O×(0,T )

|∇mk|2 div φdxdt

− (1 + α2)
k

4

∫
O×(0,T )

(
|mk|2 − 1

)2 div φdxdt

= −(1 + α2)
k

4

∫
∂O×(0,T )

(
|mk|2 − 1

)2 dσ(x) dt

+ (1 + α2)A
∫

∂O×(0,T )

∣∣∂mk

∂ν

∣∣2 dσ(x) dt
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− (1 + α2)
A

2

∫
∂O×(0,T )

|∇mk|2 dσ(x) dt.

The left hand-side is bounded uniformly in k. Therefore,∣∣∣A
2
‖∇Tγmk‖2

L2(∂O×(0,T )) −
A

2

∥∥∂mk

∂ν

∥∥2

L2(∂O×(0,T ))

+
k

4
‖|γmk|2 − 1‖2

L2(∂O×(0,T ))

∣∣∣ ≤ C(O).

Since ∂mk

∂ν = 0 on ∂Ω, taking O = Ω yields the wanted result. �

We derive from the previous proof the following corollary.

Corollary 4.7. Let m0 be in H1(Ω), |m0| = 1 a.e. in Ω. Let mk be a weak
solution to the penalized system (4.1). Then, the quantity k‖|γmk|2−1‖2

L2(∂Ω×(0,T ))

is bounded uniformly in k.

Conclusion. In this paper, we have proved the existence of weak solutions to the
Landau-Lifshitz system with an H1 regularity in space on the boundary of the
domain. This result holds for very general form of h and is not limited to the
case h = A∆m. These kinds of results are important because there is currently no
“perfect” concept of what is a good weak solution to the Landau-Lifshitz system.
Any criteria allowing to discriminate among those weak solutions is always welcome.
It is natural to prefer among weak solutions those that are more regular. This result
is also interesting as it opens the possibility to use first order transmission conditions
between adjacent domains.
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[9] S. Labbé. Simulation numérique du comportement hyperfréquence des matériaux ferro-

magnétiques. PhD thesis, Université Paris 13, Décembre 1998.
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