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UPPER SEMICONTINUITY OF ATTRACTORS OF
NON-AUTONOMOUS DYNAMICAL SYSTEMS FOR SMALL

PERTURBATIONS

DAVID N. CHEBAN

Abstract. We study the problem of upper semicontinuity of compact global
attractors of non-autonomous dynamical systems for small perturbations. For

the general nonautonomous dynamical systems, we give the conditions of up-
per semicontinuity of attractors for small parameter. Several applications of

these results are given (quasihomogeneous systems, monotone systems, nonau-

tonomously perturbed systems, nonautonomous 2D Navier-Stokes equations
and quasilinear functional-differential equations).

1. Introduction

The problem of upper semicontinuity of global attractors for small perturbations
is well studied (see, for example, [15] and references therein) for autonomous and
periodical dynamical systems. In the works [1] and [2] this problem was studied for
nonautonomous and random dynamical systems.

Our paper is devoted to a systematic study of the problem of upper semicon-
tinuity of compact global attractors and compact pullback attractors of abstract
nonautonomous dynamical systems for small perturbations. Several applications of
our results are given for different classes of evolutional equations.

The paper is organized as follows. In section 2 we study some general properties
of maximal compact invariant sets of dynamical systems. In particular, we prove
that the compact global attractor and pullback attractor are maximal compact
invariant sets (Theorem 2.6).

Section 3 contains the main results about upper semicontinuity of compact global
attractors of abstract non-autonomous dynamical systems for small perturbations
(Lemmas 3.3, 3.6 and Theorems 3.10, 3.13, 3.14 and 3.16). In section 4 we give con-
ditions for connectedness and component connectedness of global and pullback at-
tractors (Theorem 4.5). Section 5 is devoted to an application of our general results
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obtained in sections 2-4, to the study of different classes of non-autonomous differ-
ential equations (quasihomogeneous systems, monotone systems, nonautonomously
perturbed systems, nonautonomous 2D Navier-Stokes equations and quasilinear
functional-differential equations).

2. Maximal compact invariant sets.

Let W be a complete metric space, T = R or Z,Ω a compact metric space,
(Ω,T, σ) a group dynamical system on Ω and 〈W,ϕ, (Ω,T, σ)〉 a cocycle with fibre
W , i.e. the mapping ϕ : T+ × W × Ω → W is continuous and possesses the
following properties: ϕ(0, x, ω) = x and ϕ(t + τ, x, ω) = ϕ(t, ϕ(τ, x, ω), ωt), where
ωt = σ(t, ω).

We denote by X = W ×Ω, g = pr1 : X 7→W, (X,T+, π) a semi-group dynamical
system on X defined by the equality π = (ϕ, σ), i.e. πtx = (ϕ(t, u, ω), σ(t, ω)) for
every t ∈ T+ and x = (u, ω) ∈ X = W × Ω. Let 〈(X,T+, π), (Ω,T, σ), h〉 be a
nonautonomous dynamical system, where h = pr2 : X 7→ Ω.
Definition 2.1. A family {Iω|ω ∈ Ω}(Iω ⊂W ) of nonempty compact subsets of W
is called a maximal compact invariant set of cocycle ϕ, if the following conditions
are fulfilled:

(1) {Iω|ω ∈ Ω} is invariant, i.e.

ϕ(t, Iω, ω) = Iωt

for every ω ∈ Ω and t ∈ T+;
(2) I =

⋃
{Iω|ω ∈ Ω} is relatively compact;

(3) {Iω|ω ∈ Ω} is maximal, i.e. if the family {I ′ω|ω ∈ Ω} is relatively compact
and invariant, then I

′

ω ⊆ Iω for every ω ∈ Ω.
Lemma 2.2. The family {Iω|ω ∈ Ω} is invariant w.r.t. cocycle ϕ if and only if the
set J =

⋃
{Jω|ω ∈ Ω}(Jω = Iω × {ω}) is invariant with respect to the dynamical

system (X,T+, π).

Proof. Let the family {Iω|ω ∈ Ω} be invariant, J =
⋃
{Jω|ω ∈ Ω} and Jω =

Iω × {ω}). Then

πtJ =
⋃
{πtJω | ω ∈ Ω} =

⋃
{(ϕ(t, Iω, ω), ωt) | ω ∈ Ω}

=
⋃
{Iωt × {ωt} | ω ∈ Ω} =

⋃
{Jωt | ω ∈ Ω} = J

for all t ∈ T+. From the equality (2.1) follows that the family {Iω|ω ∈ Ω} is
invariant w.r.t. cocycle ϕ if and only if a set J is invariant w.r.t. dynamical system
(X,T+, π). �

Theorem 2.3. Let the family of sets {Iω|ω ∈ Ω} be maximal, compact and invari-
ant. Then it is closed.

Proof. We note that the set J =
⋃
{Jω|ω ∈ Ω}(Jω = Iω×{ω}) is relatively compact

and according to Lemma 2.2 it is invariant. Let K = J , then K is compact. We
shall show that K is invariant. If x ∈ K, then there exists {xn} ⊂ J such that
x = lim

n→+∞
xn. Thus xn ∈ J = πtJ for all t ∈ T+, then for t ∈ T+ there exists

xn ∈ J such that xn = πtxn. Since J is relatively compact, the sequence {xn} is
convergent. We denote by x = lim

n→+∞
xn,then x ∈ J, x = πtx and, consequently, x ∈

πtJ for all t ∈ T+, i.e. J = πtJ . Let I ′ = pr1K, then we have I ′ =
⋃
{I ′ω|ω ∈ Ω},
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where I ′ω = {u ∈W |(u, ω) ∈ K} and Kω = I ′ω × {ω}. Since the set K is invariant,
then according to Lemma 2.2 the set I ′ is also invariant w.r.t. cocycle ϕ. The set
I ′ is compact, because K is compact and pr1 : X 7→ W is continuous. According
to the maximality of the family {Iω|ω ∈ Ω} we have I ′ω ⊆ Iω for every ω ∈ Ω and,
consequently, I ′ ⊆ I. On the other hand I = pr1J = I ′ and, consequently, I ′ = I.
Thus the set I is compact. The theorem is proved. �

Denote by C(W ) the family of all compact subsets of W .

Definition 2.4. A family {Iω | ω ∈ Ω} (Iω ⊂W ) of nonempty compact subsets of
W is called a compact pullback attractor of the cocycle ϕ, if the following conditions
are fulfilled:

a. I =
⋃
{Iω|ω ∈ Ω} is relatively compact ;

b. I is invariant w.r.t. cocycle ϕ, i.e. ϕ(t, Iω, ω) = Iσ(t,ω) for all t ∈ T+ and
ω ∈ Ω;

c. for every ω ∈ Ω and K ∈ C(W )

lim
t→+∞

β(ϕ(t,K, ω−t), Iω) = 0, (2.2)

where β(A,B) = sup{ρ(a,B) : a ∈ A} is a semi-distance of Hausdorff and
ω−t := σ(−t, ω).

Definition 2.5. A family {Iω|ω ∈ Ω}(Iω ⊂ W ) of nonempty compact subsets of
W is called a compact global attractor, if the following conditions are fulfilled:

a. a family {Iω|ω ∈ Ω} is compact and invariant;
b. for every K ∈ C(W )

lim
t→+∞

sup
ω∈Ω

β(ϕ(t,K, ω), I) = 0, (2.3)

where I =
⋃
{Iω | ω ∈ Ω}.

Theorem 2.6. A family {Iω|ω ∈ Ω} of nonempty compact subsets of W will be
maximal compact invariant set w.r.t. cocycle ϕ, if and only if one of the following
two conditions is fulfilled :

a. {Iω | ω ∈ Ω} is a compact pullback attractor w.r.t. cocycle ϕ;
b. {Iω | ω ∈ Ω} is a compact global attractor w.r.t. cocycle ϕ.

Proof. a. Let the family {Iω | ω ∈ Ω} be a compact pullback attractor. If the
family {I ′ω | ω ∈ Ω} is a compact and invariant set of cocycle ϕ, then we have

β(I ′ω, Iω) = β(ϕ(t, I ′ω−t , ω
−t), Iω) ≤ β(ϕ(t,K, ω−t), Iω)→ 0

as t → +∞, where K =
⋃
{I ′ω | ω ∈ Ω}, and, consequently, I ′ω ⊆ Iω for every

ω ∈ Ω, i.e. {Iω | ω ∈ Ω} is maximal.
b.) Let the family {Iω | ω ∈ Ω} be a compact global attractor w.r.t. cocycle

ϕ, then according to Theorem 4.1 [6] it is a uniform compact pullback attractor
and, consequently, the family {Iω | ω ∈ Ω} is maximal compact invariant set of the
cocycle ϕ. �

Remark 2.7. The family {Iω | ω ∈ Ω} (Iω ⊂W ) is a maximal compact invariant
w.r.t. cocycle ϕ if and only if the set J =

⋃
{Jω | ω ∈ Ω}, where Jω = Iω × {ω}, is

a maximal compact invariant in the dynamical system (X,T, π).
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Definition 2.8. The cocycle ϕ is called compact dissipative if there exists a
nonempty compact set K ⊆W such that

lim
t→+∞

sup{β(U(t, ω)M,K) | ω ∈ Ω} = 0

for all M ∈ C(W ).
Theorem 2.9 ([6]). Let Ω be a compact metric space and the cocycle ϕ be compact
dissipative, then the following assertions are satisfied:

(1) the set Iω =
⋂
t≥0

⋃
τ≥t

ϕ(τ,K, Iω) is nonempty, compact and

lim
t→+∞

β(U(t, ω−t)K, Iω) = 0

for all ω ∈ Ω;
(2) U(t, ω)Iω = Iωt for all ω ∈ Ω and t ∈ T+;
(3)

lim
t→+∞

sup{β(U(t, ω−t)M, I) | ω ∈ Ω} = 0

and
lim

t→+∞
sup{β(U(t, ω)M, I) | ω ∈ Ω} = 0

for all M ∈ C(W ), where I =
⋃
{Iω | ω ∈ Ω}.

3. Upper semi-continuity

Lemma 3.1. Let {Iω | ω ∈ Ω} be a maximal compact invariant set of cocycle ϕ,
then the function F : Ω 7→ C(W ), defined by equality F (ω) = Iω is upper semi-
continuous, i.e. for all ω0 ∈ Ω

β(F (ωk), F (ω0))→ 0,

if ρ(ωk, ω0)→ 0.

Proof. Let ω0 ∈ Ω, ωk → ω0 and suppose there exists ε0 > 0 such that

β(F (ωk), F (ω0)) ≥ ε0.

Then there exists xk ∈ Iωk such that

ρ(xk, Iω0) ≥ ε0. (3.1)

As the set I is compact, without loss of generality we can suppose that the sequence
{xk} is convergent. Denote by x = lim

k→+∞
xk, then by virtue of Theorem 2.3 the set

I =
⋃
{Iω | ω ∈ Ω} is compact and hence there exists ω0 ∈ Ω such that x ∈ Iω0 ⊂ I.

On the other hand, according to the inequality (3.1) x /∈ Iω0 . This contradiction
shows that the function F is upper semi-continuous. �

Remark 3.2. Lemma 3.1 was proved for the pullback attractors of nonautonomous
quasi liner differential equations in the work [9, p.13-14].
Lemma 3.3. Let Λ be a compact metric space and ϕ : T+ ×W × Λ × Ω 7→ W
verify the following conditions:

(1) ϕ is continuous;
(2) for every λ ∈ Λ the function ϕλ = ϕ(·, ·, λ, ·) : T+ × W × Ω 7→ W is a

continuous cocycle on Ω with the fibre W ;
(3) the cocycle ϕλ admits a pullback attractor {Iλω | ω ∈ Ω} for every λ ∈ Λ;
(4) the set

⋃
{Iλ | λ ∈ Λ} is precompact, where Iλ =

⋃
{Iλω | ω ∈ Ω},
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then the equality
lim

λ→λ0,ω→ω0
β(Iλω , I

λ0
ω0

) = 0 (3.2)

holds for every λ0 ∈ Λ and ω0 ∈ Ω and

lim
λ→λ0

β(Iλ, Iλ0) = 0 (3.3)

for every λ0 ∈ Λ.

Proof. Let Y = Λ× Ω and µ : T× Y 7→ Y be the mapping defined by the equality
µ(t, (λ, ω)) = (λ, σ(t, ω)) for every t ∈ T, λ ∈ Λ and ω ∈ Ω. It is clear that the
triplet (Y,T, µ) is the group dynamical system on Y and ϕ : T+ × W × Y 7→
W (ϕ(t, x, (λ, ω)) = ϕ(t, x, λ, ω)) is the continuous cocycle on (Y,T, µ) with fibre
W . Under the conditions of Lemma 3.3 the cocycle ϕ admits a maximal compact
invariant set {Iy | y ∈ Y } (where Iy = I(λ,ω) = Iλω) because⋃

{Iy | y ∈ Y } =
⋃
{Iλω | λ ∈ Λ, ω ∈ Ω} =

⋃
{Iλ | λ ∈ Λ}.

According to Lemma 3.1, the function F : Y 7→ C(W ), defined by the equality
F (λ, ω) = Iλω , is upper semi-continuous and in particular the equality (3.3) holds.

We suppose that the equality (3.3) is not true, then there exist ε0 > 0, λ0 ∈
Λ, λk → λ0, ωk ∈ Ω and xk ∈ Iλkωk such that

ρ(xk, Iλ0) ≥ ε0. (3.4)

Without loss of generality we can suppose that ωk → ω0, xk → x0 because the sets
Ω and

⋃
{Iλ|λ ∈ Λ} are compact. According to the inequality 3.4 we have

ρ(x0, Iλ0) ≥ ε0.

On the other hand xk ∈ Iλkωk and from the equality 3.3 we have

x0 ∈ Iλ0
ω0
⊂ Iλ0

and, consequently,
ε0 ≤ ρ(x0, Iλ0) ≤ β(Iλ0

ω0
, Iλ0) = 0.

This contradiction shows that the equality (3.3) holds. �

Corollary 3.4. Under the conditions of Lemma 3.3 the equality

lim
λ→λ0

β(Iλω , I
λ0
ω ) = 0

holds for each ω ∈ Ω.
Remark 3.5. The article [2] contains a statement close to Corollary 3.4 in the
case when the non-perturbed cocycle ϕλ0 is autonomous, i.e. the mapping ϕλ0 :
T+ ×W × Ω→W does not depend of ω ∈ Ω .
Lemma 3.6. Let the conditions of Lemma 3.3 and the following condition be ful-
filled:

5. for certain λ0 ∈ Λ the application F : Ω 7→ C(W ), defined by equal-
ity F (ω) = Iλ0

ω is continuous, i.e. α(F (ω), F (ω0)) → 0 if ω → ω0 for
every ω0 ∈ Ω, where α is the full metric of Hausdorff, i.e. α(A,B) =
max{β(A,B), β(B,A)}.

Then
lim
λ→λ0

sup
ω∈Ω

β(Iλω , I
λ0
ω ) = 0 . (3.5)



6 DAVID N. CHEBAN EJDE–2002/42

Proof. Suppose that the equality (3.5) is not correct, then there exist ε0 > 0, λk →
λ0, ωk ∈ Ω such that

β(Iλkωk , I
λ0
ωk

) ≥ ε0. (3.6)

On the other hand we have

ε0 ≤ β(Iλkωk , I
λ0
ωk

) ≤ β(Iλkωk , I
λ0
ω0

) + β(Iλ0
ω0
, Iλ0
ωk

)

≤ β(Iλkωk , I
λ0
ω0

) + α(Iλ0
ωk
, Iλ0
ω0

). (3.7)

According to Lemma 3.3 (see the equality (3.2))

lim
k→+∞

β(Iλkωk , I
λ0
ω0

) = 0 . (3.8)

Under the condition 5. of Lemma 3.6 we have

lim
k→+∞

α(Iλ0
ωk
, Iλ0
ω0

) = 0. (3.9)

From (3.7)-(3.9) passing to the limit as k → +∞, we obtain ε0 ≤ 0. This contra-
diction shows that the equality (3.5) holds. �

Definition 3.7. The family of cocycle {ϕλ}λ∈Λ is called collectively compact dis-
sipative (uniformly collectively compact dissipative), if there exists a nonempty
compact set K ⊆W such that

lim
t→+∞

sup{β(Uλ(t, ω)M,K)|ω ∈ Ω} = 0 ∀ λ ∈ Λ (3.10)

(respectively lim
t→+∞

sup{β(Uλ(t, ω)M,K) | ω ∈ Ω, λ ∈ Λ} = 0)

for all M ∈ C(W ), where Uλ(t, ω) = ϕλ(t, ·, ω).
Lemma 3.8. The following conditions are equivalent:

(1) the family of cocycles {ϕλ}λ∈Λ is collectively compact dissipative;
(2) (a) every cocycle ϕλ (λ ∈ Λ) is compact dissipative;

(b) the set
⋃
{Iλ | λ ∈ Λ} is compact.

Proof. According to the equality (3.10) every cocycle ϕλ (λ ∈ Λ) is compact dissi-
pative and

⋃
{Iλ | λ ∈ Λ} ⊆ K.

Suppose that the conditions a. and b. hold. Let K =
⋃
{Iλ | λ ∈ Λ}, then the

equality (3.10) holds. �

Let {ϕλ}λ∈Λ be a family of cocycles on (Ω,T, σ) with fibre W and Ω̃ = Ω×Λ. On
Ω̃, we define a dynamical system (Ω̃,T, σ̃) by equality σ̃(t, (ω, λ)) = (σ(t, ω), λ) for
all t ∈ T, ω ∈ Ω and λ ∈ Λ. By family of cocycles {ϕλ}λ∈Λ is generated a cocycle ϕ̃
on (Ω̃,T, σ̃) with fibre W , defined in the following way: ϕ̃(t, w, (ω, λ)) = ϕλ(t, w, ω)
for all t ∈ T+, w ∈W,ω ∈ Ω and λ ∈ Λ.
Lemma 3.9. The following conditions are equivalent:

(1) the family of cocycles {ϕλ}λ∈Λ is uniformly collectively compact dissipative;
(2) the cocycle ϕ̃ is compact dissipative.

Proof. This assertion follows from the fact that

sup{β(Ũ(t, ω̃)M,K) | ω̃ ∈ Ω̃} = sup{β(Uλ(t, ω)M,K) | ω ∈ Ω, λ ∈ Λ},

where Ũ(t, ω̃) = ϕ̃(t, ·, ω̃), and from the corresponding definitions. �
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Theorem 3.10. Let Λ be a compact metric space and {ϕλ}λ∈Λ be a family of
uniformly collectively compact dissipative cocycles on (Ω,T, σ) with fibre W , then
the following are true:

(1) every cocycle ϕλ (λ ∈ Λ) is compact dissipative;
(2) the family of compacts {Iλω | ω ∈ Ω} = Iλ is a Levinson’s centre ( compact

global attractor ) of cocycle ϕλ, where Iλω = I(ω,λ) and I = {I(ω,λ) | (ω, λ) ∈
Ω̃} is a Levinson’s centre of cocycle ϕ̃;

(3) the set
⋃
{Iλ | λ ∈ Λ} is compact.

Proof. Consider the cocycle ϕ̃ generated by the family of cocycles {ϕλ}λ∈Λ. Ac-
cording to Lemma 3.9 ϕ̃ is compact dissipative and in virtue of the Theorem 4.1
[6] the following assertions take place:

1. Iω̃ = Ωω̃(K) 6= ∅, is compact, Iω̃ ⊆ K and

lim
t→+∞

β(Ũ(t, ω̃−t)M, Iω̃) = 0 (3.11)

for every ω̃ ∈ Ω̃, where

Ωω̃(K) =
⋂
t≥0

⋃
τ≥t

Ũ(τ, ω̃−τ )K, (3.12)

ω̃−τ = σ̃(−τ, ω̃) and K is a nonempty compact appearing in the equality (3.10);
2. Ũ(t, ω̃)Iω̃ = Iω̃t for all ω̃ ∈ Ω̃ and t ∈ T+;
3. the set I =

⋃
{Iω̃ | ω̃ ∈ Ω̃} is compact.

To finish the proof we note that from the collective compact dissipativeness of
the family of cocycles {ϕλ}λ∈Λ it follows that every cocycle ϕλ will be compact
dissipative. Let {Iλω | ω ∈ Ω} = Iλ be a Levinson’s centre of the cocycle ϕλ, then
according to Theorem 4.1 [6],

Iλω =
⋂
t≥0

⋃
τ≥t

Uλ(τ, ω−τ )K . (3.13)

From (3.12) and (3.13) it follows that Iλω = Ωω̃(K) = Iω̃ and, consequently, Iλ =⋃
{Iλω | ω ∈ Ω} ⊆

⋃
{Iλω | ω ∈ Ω, λ ∈ Λ} = I for all λ ∈ Λ. Thus

⋃
{Iλ | λ ∈ Λ} ⊆ I

and, consequently, it is compact. The theorem is proved. �

Definition 3.11. The family {(X,T+, πλ)}λ∈Λ of autonomous dynamical sys-
tems is called collectively ( uniformly collectively) asymptotic compact if for every
bounded positive invariant set M ⊆ X there exists a nonempty compact K such
that

lim
t→+∞

β(πtλM,K) = 0 ∀ λ ∈ Λ (3.14)

( lim
t→+∞

sup
λ∈Λ

β(πtλM,K) = 0).

Definition 3.12. The bounded set K ⊂ X is called absorbing (uniformly absorb-
ing) for the family {(X,T+, πλ)}λ∈Λ of autonomous dynamical systems if for any
bounded subset B ⊂ X there exists a number L = L(λ,B) > 0 (L = L(B) > 0)
such that πtλB ⊆ K for all t ≥ L(λ,B) (t ≥ L(B)) and λ ∈ Λ.

Theorem 3.13. Let Λ be a complete metric space. If the family {(X,T+, πλ)}λ∈Λ

of autonomous dynamical systems admits an absorbing bounded set K ⊂ X and
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is collectively asymptotic compact, then {(X,T+, πλ)}λ∈Λ admits a global compact
attractor, i.e. there exists a nonempty compact set K ⊂ X such that

lim
t→+∞

β(πtλB,K) = 0 (3.15)

for all λ ∈ Λ and bounded B ⊂ X.

Proof. Let the family {(X,T+, πλ)}λ∈Λ of autonomous dynamical systems be col-
lectively asymptotic compact and a bounded M be its absorbing set. According
to Theorem 3.4 [6] the nonempty set K = Ω(M) is compact and the equality 3.15
holds. The theorem is proved. �

Theorem 3.14. Let Λ be a complete compact metric space. If the family {(X,T+,
πλ)}λ∈Λ of autonomous dynamical systems admits a uniformly absorbing bounded
set K ⊂ X and it is uniformly collectively asymptotic compact, then {(X,T+,
πλ)}λ∈Λ admits a uniform compact global attractor, i.e. there exists a nonempty
compact set K ⊂ X such that

lim
t→+∞

sup
λ∈Λ

β(πtλB,K) = 0 (3.16)

for all bounded B ⊂ X.

Proof. Consider the autonomous dynamical system (X̃,T+, π̃) on X̃ = X × Λ
defined by equality π̃(t, (x, λ)) = (πλ(t, x), λ) for all t ∈ T+, x ∈ X and λ ∈ Λ.
We note that under the conditions of Theorem 3.14 the bounded set K × Λ is
absorbing for dynamical system (X̃,T+, π̃) if the set K is uniformly absorbing for
the family {(X,T+, πλ)}λ∈Λ and (X̃,T+, π̃) is asymptotically compact. According
to Theorem 3.4 [5] (see also Theorem 2.2.5 [4] ) the dynamical system (X̃,T+, π̃)
admits a compact global attractor K̃ ⊂ X̃ = X × Λ. To finish the proof it is
sufficient to note that the set K = pr1K̃ ⊂ X is compact and

sup
λ∈Λ

β(πtλB,K) ≤ β(π̃tλB,K0)→ 0

as t→ +∞, where K0 = K × Λ ⊃ K̃, for all bounded subset B ⊂ X. �

Let ϕ be a cocycle on (Ω,T, σ) with fibre W and (X,T+, π) be a skew-product
dynamical system, where X = W × Ω and π(t, (w,ω)) = (ϕ(t, w, ω), ωt) for all
t ∈ T+, w ∈W and ω ∈ Ω.
Definition 3.15. The cocycle ϕ is called asymptotically compact (a family of
cocycles {ϕλ}λ∈Λ is called collectively asymptotically compact) if a skew-product
dynamical system (X,T+, π) (a family of skew-product dynamical systems
(X,T+, πλ)λ∈Λ) is asymptotically compact.
Theorem 3.16. Let Ω and Λ be compact metric spaces, W be a Banach space and
{ϕλ}λ∈Λ be a family of cocycles on (Ω,T, σ) with fibre W . If there exist r > 0 and
the function Vλ : W × Ω→ R+ for all λ ∈ Λ, with the following properties:

(1) the family of cocycles {ϕλ}λ∈Λ is collectively asymptotically compact;
(2) the family of functions {Vλ}λ∈Λ is collectively bounded on bounded sets and

for every c ∈ R+ the sets {x ∈ Xr|Vλ(x) ≤ c} uniformly bounded;
(3) V ′λ(w,ω) ≤ −c(|w|) for all w ∈ Wr = {w ∈ W | |w| ≥ r}, ω ∈ Ω

and λ ∈ Λ, where c : R+ → R+ is positive on [r,+∞), V ′λ(w,ω) =
lim
t→0+

sup t−1[Vλ(ϕλ(t,
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w,ω), ωt) − Vλ(w,ω)] if T = R+ and V ′λ(w,ω) = Vλ(ϕλ(1, w, ω), ω1) −
Vλ(w,ω) if T = Z+.

Then every cocycle ϕλ (λ ∈ Λ) admits a uniform compact global attractor Iλ (λ ∈ Λ)
and the set

⋃
{Iλ | λ ∈ Λ} is compact.

Proof. Let X = W × Ω and (X,T, πλ) be a skew-product dynamical system, gen-
erated by the cocycle ϕλ , then (X,h,Ω) , where h = pr2 : X → Ω, is a trivial
fibering with fibre W . Under the conditions of Theorem 3.16 and according to
Theorem 3.4 [5] the nonautonomous dynamical system 〈(X,T+, πλ), (Ω,T, σ), h〉
admits a compact global attractor Jλ and according to Theorem 4.1 [6] the cocycle
ϕλ admits a compact global attractor Iλ = {Iλω |ω ∈ Ω}, where Iλω = pr1J

λ
ω and

Jλω = pr−1
2 (ω)

⋂
Jλ.

Let Ω̃ = Ω × Λ, (Ω̃,T, σ̃) be a dynamical system on Ω̃ defined by the equality
σ̃(t, (ω, λ))
= (σ(t, ω), λ) ( for all t ∈ T, ω ∈ Ω and λ ∈ Λ), X̃ = W×Ω̃ and (X̃,T+, π̃) be an au-
tonomous dynamical system defined by equality π̃(t, (w, ω̃)) = (πλ(t, w), (ωt, λ)) for
all ω̃ = (ω, λ) ∈ Ω̃ = Ω×Λ. Note that the triplet (X̃, h,Ω), where h = pr2 : X̃ → Ω̃,
is a trivial fibering with fibre W, 〈(X̃,T+, π̃), (Ω̃,T, σ̃), h〉 is a nonautonomous dy-
namical system. The function Ṽ : X̃r = Wr × Ω̃ → R+, defined by the equality
Ṽ (x̃) = Vλ(w,ω) for all x̃ = (w, (ω, λ)) ∈ X̃r under the conditions of Theorem
3.16, verifies all the conditions of Theorem 5.3 [7] and, consequently, the dynamical
system (X̃,T+, π̃) admits a compact global attractor. To finish the proof of the
theorem it is sufficiently to note that if the dynamical system (X̃,T+, π̃) admits a
compact global attractor J̃ , then the family of cocycles {ϕλ}λ∈Λ is uniformly collec-
tively compact dissipative and according to Theorem 3.10 the set I =

⋃
{Iλ | λ ∈ Λ}

is compact, where Iλ = {Iλω | ω ∈ Ω} is the compact global attractor of cocycle ϕλ.
The theorem is proved. �

4. Connectedness

Definition 4.1. We will say that the space W possesses the property (S) if for
every compact K ∈ C(W ) there exists a compact connected set V ∈ C(W ) such
that K ⊆ V .

Remark 4.2. 1. It is clear that if the space W possesses the property (S), then it
is connected. The inverse statement generally speaking is not true.

2. Every linear vectorial topological space W possesses the property (S), because
the set V (K) = {λx + (1 − λ)y | x, y ∈ K,λ ∈ [0, 1]} is connected, compact and
K ⊆ V (K).

If M ⊆W , for each ω ∈ Ω, we write

Ωω(M) =
⋂
t≥0

⋃
τ≥t

ϕ(τ,M, ω−τ ) .

Lemma 4.3. [6]. The following all hold:

(1) the point p ∈ Ωω(M) if and only if, when there are tn → +∞ and {xn} ⊆M
such that p = lim

n→+∞
ϕ(tn, xn, ω−tn);

(2) ϕ(t,Ωω(M), ω) ⊆ Ωωt(M) for all ω ∈ Ω and t ∈ T+;
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(3) If there exists a nonempty compact K ∈ C(W ) such that

lim
t→+∞

β(ϕ(t,M, ω−t),K) = 0,

then Ωω(M) 6= ∅, is compact,

lim
t→+∞

β(ϕ(t,M, ω−t),Ωω(M)) = 0 (4.1)

and
ϕ(t,Ωω(M), ω) = Ωωt(M) (4.2)

for all ω ∈ Ω and t ∈ T+.
Lemma 4.4. Suppose that the cocycle ϕ admits a compact pullback attractor {Iω |
ω ∈ Ω} , then the following hold:

a. ∅ 6= Ωω(M) ⊆ Iω for every M ∈ C(W ) and ω ∈ Ω;
b. the family {Ωω(M) | ω ∈ Ω} is compact and invariant w.r.t. cocycle ϕ for

every M ∈ C(W );
c. if I =

⋃
{Iω | ω ∈ Ω} ⊆M , then the following inclusion Iω ⊆ Ωω(M) holds

for every ω ∈ Ω.

Proof. The first and second assertions follow from the definition of pullback attrac-
tor and from the equalities (4.1)-(4.2).

Let I be a subset of M , then

Iω = ϕ(t, Iω−t , ω−t) ⊆ ϕ(t, I, ω−t) ⊆ ϕ(t,M, ω−t) (4.3)

and according to the equality (4.1) we have Iω ⊆ Ωω(M) for each ω ∈ Ω. �

Theorem 4.5. Let W possess the property (S) and let the cocycle ϕ admit a com-
pact pullback attractor {Iω | ω ∈ Ω}, then:

(1) the set Iω is connected for every ω ∈ Ω;
(2) if the space Ω is connected, then the set I =

⋃
{Iω|ω ∈ Ω} also is connected.

Proof. 1. Since the equality (2.2) holds and the space W possesses the property
(S), then there exists a connected compact V ∈ C(W ) such that I ⊆ V and

lim
t→+∞

β(ϕ(t, V, ω−t), Iω) = 0, (4.4)

for every ω ∈ Ω. We shall show that the set Iω is connected. If we suppose
that it is not true, then there are A1, A2 6= ∅, closes and A1

⊔
A2 = Iω. Let

0 < ε0 < d(A1, A2) and L = L(ε0) > 0 be such that

β(ϕ(t, V, ω−t), Iω) <
ε0

3
(4.5)

for all t ≥ L(ε0). We note that the set ϕ(t, V, ω−t) is connected and according to
the inclusion (4.3) and the inequality (4.5) the following condition

ϕ(t, V, ω−t)
⋂

(W \ [B(A1,
ε0

3
)
⊔
B(A2,

ε0

3
)]) 6= ∅

is fulfilled for every t ≥ L(ε0) and ω ∈ Ω, where B(A, ε) = {u ∈ W |ρ(u,A) < ε}.
Then there exists tn → +∞ and un ∈W such that

un ∈ ϕ(tn, V, ω−tn)
⋂

(W \ [B(A1,
ε0

3
)
⊔
B(A2,

ε0

3
)]). (4.6)

According to the equality (4.4) it is possible to suppose that the sequence {un} is
convergent. We denote by u = lim

n→+∞
un, then from Lemma 4.3 follows that u ∈
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Ωω(V ). Since I ⊆ V , then according to Lemma 4.3 we have u ∈ Ωω(V ) ⊆ Iω ⊆ I.
On the other hand according to (4.6) we have u /∈ B(A1,

ε0
3 )
⊔
B(A2,

ε0
3 ). This

contradiction shows that the set Iω is connected.
2. Let the space Ω be connected. According to Lemma 3.3 the function F :

Ω 7→ C(W ), defined by equality F (ω) = Iω is upper semi-continuous and from the
corollary 1.8.13 [4] (see also Lemma 3.1 [14]) follows that the set I =

⋃
{Iω | ω ∈

Ω} = F (Ω) is connected. �

Corollary 4.6. Let W be a metric space with the property (S) and let the cocycle
ϕ admit a compact global attractor {Iω | ω ∈ Ω}, then:

(1) the set Iω is connected for every ω ∈ Ω;
(2) if the space Ω is connected, then the set I =

⋃
{Iω | ω ∈ Ω} also is connected.

This affirmation follows from Theorems 2.6, 4.5 and Lemma 3.1.

5. Some applications

Quasihomogeneous systems. Let E and G be two finite dimensional spaces.
The function f ∈ C(E×G,E) is called [11, 12] homogeneous of order m with respect
to variable u ∈ E if the equality f(λu, ω) = λmf(u, ω) holds for all λ ≥ 0, u ∈ E
and ω ∈ G.
Theorem 5.1. Let f ∈ C1(E),Φ ∈ C1(G),Ω ⊆ G be a compact invariant set of
dynamical system

ω′ = Φ(ω), (5.1)

the function f be homogeneous (of order m > 1) and a zero solution of equation

u′ = f(u) (5.2)

be uniformly asymptotically stable. If F ∈ C1(E ×G,E) and

|F (u, ω)| ≤ c|u|m

for all |u| ≥ r and ω ∈ Ω, where r and c are certain positive numbers, then there
exists a positive number λ0 such that for all λ ∈ Λ = [−λ0, λ0] the following holds:

(1) a set Iλω = {u ∈ E | sup{|ϕλ(t, u, ω)| : t ∈ R} < +∞} is not empty, compact
and connected for each ω ∈ Ω, where ϕλ(t, u, ω) is a unique solution of
equation u′ = f(u)+λF (u, ωt) satisfying the initial condition ϕλ(0, u, ω) =
u;

(2) ϕλ(t, Iλω , ω) = Iλσ(t,ω) for all t ∈ R+ and ω ∈ Ω;
(3) the set Iλ =

⋃
{Iλω | ω ∈ Ω} is compact and connected;

(4) the equalities
lim

t→+∞
β(ϕλ(t,M, ω−t), Iλω) = 0 (5.3)

and
lim

t→+∞
β(ϕλ(t,M, ω), Iλ) = 0

take place for all λ ∈ Λ, ω ∈ Ω and bounded subset M ⊆ E.
(5) the set

⋃
{Iλ | λ ∈ Λ} is compact;

(6) the equality
lim
λ→0

sup
ω∈Ω

β(Iλω , 0) = 0

holds.
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Proof. Under the condition of Theorem 5.1 according to Theorem 3.2 [12] by equal-
ity

V (u) =
∫ +∞

0

|π(t, u)|kdt,

where π(t, u) is a solution of equation 5.2 with condition π(0, u) = u, is defined a
continuously differentiable function V : E → R+, verifying the following conditions:

a. V (µu) = µk−m+1V (u) for all µ ≥ 0 and u ∈ E;
b. there exist positive numbers α and β such that α|u|k−m+1 ≤ V (u) ≤

β|u|k−m+1 for all u ∈ E;
c. V ′(u) = DV (u)f(u) = −|u|k for all u ∈ E, where DV (u) is a derivative of

Frechet of function V in the point u.
Let us define a function V : X → R+ (X = E × Ω) in the following way:

V(u, ω) = V (u) for all (u, ω) ∈ X. Note that

V′(u, ω) =
d

dt
V (ϕλ(t, u, ω))|t=0 = −|u|k +DV (u)λF (u, ω)

and there exists λ0 > 0 such that the inequality

V′(u, ω) ≤ −ν|u|k

holds for all ω ∈ Ω and |u| ≥ r, where ν = 1−λ0cL > 0 ( see the proof of Theorem
4.3 [12]).

For finishing the proof of the theorem it is sufficient to refer to Theorem 3.16
and Lemma 3.6. �

Theorem 5.2. Let f ∈ C1(E × G,E),Φ ∈ C1(F ),Ω ⊆ G be a compact invariant
set of dynamical system (5.1), the function f be homogeneous (of order m = 1)
w.r.t. variable u ∈ E and a zero solution of equation

u′ = f(u, ωt) (ω ∈ Ω) (5.4)

be uniformly asymptotically stable. If |F (u, ω)| ≤ c|u| for all |u| ≥ r and ω ∈ Ω,
where r and c are certain positive numbers, then there exists a positive number λ0

such that for all λ ∈ Λ = [−λ0, λ0] the following assertions take place:
(1) a set Iλω = {u ∈ E | sup{|ϕλ(t, u, ω)| : t ∈ R} < +∞} is not empty,

compact and connected for each ω ∈ Ω,where ϕλ(t, u, ω) is a unique solution
of equation

u′ = f(u, ωt) + λF (u, ωt)
verifying the initial condition ϕλ(0, u, ω) = u;

(2) ϕλ(t, Iλω , ω) = Iλσ(t,ω) for all t ∈ R+ and ω ∈ Ω;
(3) a set Iλ =

⋃
{Iλω | ω ∈ Ω} is compact and connected;

(4) the equalities
lim

t→+∞
β(ϕλ(t,M, ω−t), Iλω) = 0

and
lim

t→+∞
β(ϕλ(t,M, ω), Iλ) = 0 (5.5)

take place for all λ ∈ Λ, ω ∈ Ω and bounded subset M ⊆ E.
(5) the set

⋃
{Iλ | λ ∈ Λ} is compact;

(6) the following equality holds:

lim
λ→0

sup
ω∈Ω

β(Iλω , 0) = 0 .
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The proof of this assertion is similar to the proof of Theorem 5.1.

Monotone systems. Let f ∈ C(E × Ω, E) be a function satisfying

Re〈f(u1, ω)− f(u2, ω), u1 − u2〉 ≤ −k|u1 − u2|α (5.6)

for all ω ∈ Ω and u1, u2 ∈ E (k > 0 and α ≥ 2).

Theorem 5.3 ([21, 10]). If the function f verifies the condition (5.6), then the
following statements are true:

(1) the set Iω = {u ∈ E | sup
t∈R
|ϕ(t, u, ω)| < +∞} contains a single point {ϕ(ω)}

for all ω ∈ Ω, where ϕ(t, u, ω) is a solution of equation (5.3) with condition
ϕ(0, u, ω) = u;

(2) the inequalities

|ϕ(t, u, ω)− ϕ(ωt)| ≤ e−kt|u− ϕ(u)| (if α = 2),

|ϕ(t, u, ω)− ϕ(ωt)| ≤ (|u− ϕ(u)|2−α + (α− 2)t)
1

2−α (if α > 2)

hold for all t ≥ 0, u ∈ E and ω ∈ Ω;
(3) the function γ : Ω → E, defined by equality γ(ω) = Iω is continuous and

γ(ωt) = ϕ(t, γ(ω), ω) for all t ≥ 0, u ∈ E and ω ∈ Ω.

Theorem 5.4. Let f ∈ C(E × Ω, E) be a function verifying the condition (5.6)
and F ∈ C(E × Ω, E) be a function with the condition

Re〈F (u1, ω)− F (u2, ω), u1 − u2〉 ≤ L|u1 − u2|α (5.7)

for all u1, u2 ∈ E and ω ∈ Ω, where L is some positive number.
Then there exists a positive number λ0 such that for all |λ| ≤ λ0 the following

hold:

(1) the set Iλω = {u ∈ E | sup
t∈R
|ϕλ(t, u, ω)| < +∞} contains a single point

{ϕλ(ω)} for each ω ∈ Ω, where ϕλ(t, u, ω) is a unique solution of the equa-
tion

u′ = f(u, ωt) + λF (u, ωt) (ω ∈ Ω) (5.8)

satisfying the initial condition ϕλ(0, u, ω) = u;
(2) the function ϕλ : Ω→ E defined by equality ϕλ(ω) = Iλω is continuous and

ϕλ(ωt) = ϕλ(t, ϕ(ω), ω) for all t ≥ 0, u ∈ E and ω ∈ Ω.
(3)

lim
λ→0

sup
ω∈Ω
|ϕλ(ω)− ϕ(ω)| = 0.

Proof. Let g = f + λF , then from (5.6)-(5.9) follows that

Re〈g(u1, ω)− g(u2, ω), u1 − u2〉 ≤ (−k + L|λ|)|u1 − u2|α (5.9)

for all u1, u2 ∈ E and ω ∈ Ω. From (5.9) follows that there exists λ0 > 0 such
that −k + L|λ| ≤ −k + Lλ0 < 0 for all |λ| ≤ λ0 and according to Theorem 5.3 the
assertions 1. and 2. of the theorem are true.

It is clear that for |λ| ≤ λ0 the cocycle ϕλ generated by the equation (5.8) admits
a compact global attractor Iλ = {ϕλ(ω) | ω ∈ Ω}.
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Now we will show that the set
⋃
{Iλ | λ ∈ Λ = [−λ0, λ0]} is compact. Let

V (u) = 1
2 |u|

2, then

V ′(u) =
d

dt
V (ϕλ(t, u, ω))|t=0

= Re〈g(u, ω), u〉
= Re〈g(u, ω)− g(0, ω), u〉+ Re〈g(0, ω), u〉
≤(−k + L|λ0|)|u|2 + C|u|

=|u|2(−k + L|λ0|+
C

|u|α−1
),

(5.10)

where C = max{|g(0, ω)| : ω ∈ Ω, λ ∈ Λ}. From the equality (5.10) follows that
there exists r > 0 such that for all |u| ≥ r

V ′(u) ≤ −ν|u|2, (5.11)

where ν = k − L|λ0| − C
rα−1 > 0. Now to finish the proof of Theorem 5.3 it is

sufficient to refer to Theorem 3.16. The theorem is proved. �

Quasilinear systems. Consider a nonautonomous quasilinear system

u′ = A(ωt)u+ λf(u, ωt) (ω ∈ Ω)

on E. Denote by [E] the space of all linear continuous operators acting onto E and
equipped with the operational norm.
Theorem 5.5. Let A ∈ C(Ω, [E]), f ∈ C(E×Ω, E) and let the following conditions
be fulfilled:

(1) there exists a positive constant α0 such that Re〈A(ω)u, u〉 ≤ −α0|u|2 for all
u ∈ E and ω ∈ Ω;

(2) for any r > 0 there exists a positive constant L(r) such that

|f(u1, ω)− f(u2, ω)| ≤ L|u1 − u2|

for all u1, u2 ∈ B[0, r] = {u ∈ E | |u| ≤ r} and ω ∈ Ω.
Then there exists a positive constant λ0 such that for all λ ∈ Λ = [−λ0, λ0] the

following are true:
(1) the set Iλω = {u ∈ E | sup{|ϕλ(t, u, ω)| : t ∈ R} < +∞} is not empty,

compact and connected for each ω ∈ Ω,where ϕλ(t, u, ω) there is a unique
solution of equation

u′ = A(ωt)u+ λF (u, ωt)

satisfying the initial condition ϕλ(0, u, ω) = u;
(2) ϕλ(t, Iλω , ω) = Iλσ(t,ω) for all t ∈ R+ and ω ∈ Ω;
(3) the set Iλ =

⋃
{Iλω | ω ∈ Ω} is compact and connected;

(4) the equalities
lim

t→+∞
β(ϕλ(t,M, ω−t), Iλω) = 0,

lim
t→+∞

β(ϕλ(t,M, ω), Iλ) = 0

hold for all λ ∈ Λ, ω ∈ Ω and bounded subset M ⊆ E.
(5) the set

⋃
{Iλ | λ ∈ Λ} is compact;
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(6) the following equality is true

lim
λ→0

sup
ω∈Ω

β(Iλω , 0) = 0.

Proof. Let λ0 be a positive number such that ν = α0 − λ0α > 0, then the function
Fλ(u, ω) = A(ω)u+ λf(u, ω) verifies the condition

Re〈Fλ(u, ω), u〉 ≤ −ν|u|2 + λ0β (5.12)

for all |λ| ≤ λ0, ω ∈ Ω and u ∈ E .
From the inequality (5.12) follows (see, for example, [9, p.11]) that the inequality

|ϕλ(t, u, ω)|2 ≤ |u|2e−2νt +
λ0β

ν
(1− e−2νt) (5.13)

holds for all t ∈ R+, λ ∈ Λ and (u, ω) ∈ E × Ω and, consequently, the family of
cocycles {ϕλ}λ∈Λ admits a bounded absorbing set. Now to finish the proof of the
theorem it is sufficient to refer to Theorems 3.10, 3.14 and Lemma 3.6. �

Nonautonomously perturbed systems.
Theorem 5.6. Suppose that f ∈ C(E) is uniformly Lipshitzian and an autonomous
system (5.1) has a global attractor I. Furthermore suppose that F ∈ C(E ×
Ω, E) is uniformly Lipshitz in u ∈ E and it is uniformly bounded on E × Ω, i.e.
sup{|F (u, ω)| : (u, ω) ∈ E × Ω} = K < +∞. Then there exists a positive number
λ0 > 0 such that for all λ ∈ Λ = [−λ0, λ0] the following are true:

(1) the set Iλω = {u ∈ E | sup{|ϕλ(t, u, ω)| : t ∈ R} < +∞} is not empty,
compact and connected for each ω ∈ Ω, where ϕλ(t, u, ω) there is a unique
solution of equation u′ = f(u) + λF (u, ωt) satisfying the initial condition
ϕλ(0, u, ω) = u;

(2) ϕλ(t, Iλω , ω) = Iλσ(t,ω) for all t ∈ R+ and ω ∈ Ω;
(3) the set Iλ =

⋃
{Iλω | ω ∈ Ω} is compact and connected;

(4) the equalities
lim

t→+∞
β(ϕλ(t,M, ω−t), Iλω) = 0

and
lim

t→+∞
β(ϕλ(t,M, ω), Iλ) = 0

take place for all λ ∈ Λ, ω ∈ Ω and bounded subset M ⊆ E.
(5) the set

⋃
{Iλ | λ ∈ Λ} is compact;

(6) the following equality is true

lim
λ→0

sup
ω∈Ω

β(Iλω , I) = 0 .

Proof. According to [22, Theorem 22.5] (see also [16, 17]), under its conditions there
exists a continuous function V : E → R+ with the following properties:

a. V is uniformly Lipshitz in E, i.e. there exists a constant L > 0 such that
|V (u1)− V (u2)| ≤ L|u1 − u2| for all u1, u2 ∈ E;

b. there exist continuous strictly increasing functions a, b : R+ → R+ with
a(0) = b(0) = 0 and 0 < a(r) < b(r) for all r > 0 such that a(β(u, I)) ≤
V (u) ≤ b(β(u, I)) for all u ∈ E;

c. there exists a constant c > 0 such that V ′(u) ≤ −cV (u) for all u ∈ E, where
V ′(u) = lim

t→0+
sup t−1[V (π(t, u))− V (u)] and π(t, u) is a unique solution of

equation (5.2) with initial condition π(0, u) = u.
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Define a function V : X → R+ (X = E × Ω) in the following way: V(x) := V (u)
for all x = (u, ω) ∈ X. Note that

V′(u, ω) = lim
t→0+

supV (ϕλ(t, u, ω))|t=0 ≤ LKr − cV(u, ω)

(see [17, p.11]) for all u ∈ E. Then there exist λ0 > 0 and r0 > 0 such that

V′(u, ω) ≤ −LKλ0

for all |u| ≥ r0 and ω ∈ Ω.
To finish the proof of the theorem it is sufficient to refer to Theorem 3.16 and

Lemma 3.6. �

Remark 5.7. Similar theorem was proved in [17, Th.4.1] for the pullback attractors
of nonautonomously perturbed systems.

Non-autonomous 2D Navier Stokes equation. Let G ⊂ R
2 be a bounded

domain with C2 smooth boundary,

V = {u ∈ (Ẇ 1
2 (G))2, divu(x) = 0}, H = V

(L2(G))2

,

V ′ be the dual space of V, (Ẇ 1
2 (G))2 denotes the Sobolev space of functions having

two components, and let π be the orthogonal projector from (L2(G))2 onto H. The
operator F (u, v) = π(u,∇)v has values in V ′.

Let Ω be a compact complete metric space, (Ω,R, σ) be a dynamical system on
Ω, F ∈ C(V × Ω, V ) and and satisfy the the following conditions:

(i) |F(u1, ω)−F(u2, ω)| ≤ L|u1 − u2| for all u1, u2 ∈ V and ω ∈ Ω;
(ii) Re〈F(u, ω), u〉 ≤ M |u|2 + N for all u ∈ V and ω ∈ Ω, where L,M and N

are some positive constants.

Consider the perturbed 2D Navier Stokes equation

u′ + νAu+B(u, u) = F(u, ωt) (ω ∈ Ω) (5.14)

on H, where B : V × V → V ′ is a bilinear continuous form and A is the extension
of −π∇ with zero boundary conditions on V and ν > 0. In particular, there exists
λ1 > 0 such that

〈Au, u〉 ≥ |u|2V ≥ λ1|u|2H
for any u ∈ V . According to [20],[19] by equation (5.14) is generated a cocycle
ϕ(t, u, ω) on (Ω,R, σ) with fibre H, where ϕ(t, u, ω) is a unique solution of equation
(5.14) with the condition ϕ(0, u, ω) = u.

Lemma 5.8. Under the conditions (i) and (ii) the following holds:

(1) for any T > 0, ν > 0, ω ∈ Ω and any u ∈ H the equation (5.11) has a
unique solution ϕ(t, u, ω) with path in C([0, T ],H);

(2) the energy inequality holds

d

dt
|ϕ(t, u, ω)|2H + νλ1ϕ(t, u, ω)|2H ≤

|F(0, ωt)|2H
νλ1

+ 2L|ϕ(t, u, ω)|2H (5.15)

for all t ∈ [0, T ], u ∈ H and ω ∈ Ω;
(3) the mapping ϕ : R+ ×H × Ω→ H is continuous.
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Proof. The assertions 1. and 2. follow from [13] (see also Lemma 3.1 [19]).
Now we will prove that the mapping ϕ : R+ ×H × Ω → H is continuous. Let

t0 ∈ R+, u0 ∈ H and ω0 ∈ Ω, then we have

|ϕ(t, u, ω)− ϕ(t0, u0, ω0)|H
≤ |ϕ(t, u, ω)− ϕ(t, u0, ω0)|H + |ϕ(t, u0, ω0)− ϕ(t0, u0, ω0)|H . (5.16)

Denote by w(t) = ϕ(t, u, ω)− ϕ(t, u0, ω0) and f(t) = F(ϕ(t, u, ω), ωt)− F(ϕ(t, u0,
ω0), ω0t), then the function w(t) verifies the following equation

dw

dt
+ νAw +B(w,w) +B(w, u1) +B(u1, w) = f(t), (5.17)

where u1 = ϕ(t, u0, ω0). Using the well-known identity 〈B(u, v), v〉 = 0, where 〈·, ·〉
is the scalar product in H, we obtain

1
2
d

dt
|w|2H =〈ẇ, w〉 = 〈−νAw −B(w,w)−B(w, u1)−B(u1, w) + f(t), w〉

=− ν〈Aw,w〉 − 〈B(w,w), w〉 − 〈B(w, u1), w〉 − 〈B(u1, w), w〉+ 〈f(t), w〉
=− ν〈Aw,w〉 − 〈B(w, u1), w〉+ 〈f(t), w〉.

Bearing in mind the inequality (see [18]) |u|2L4
≤ |w|H |w|V we obtain

|〈B(w, u1), w〉| ≤ |w|2L4
|u1|V ≤ |w|H |w|V |u1|V ≤

ν

2
|w|2V +

1
2ν
|w|2H |u1|2V .

Taking into account that |(f, w)| ≤ |f |H |w|H , we get from (5.18)

1
2
d

dt
|w|2H ≤ −νλ1|w|2V +

νλ1

2
|w|2V +

1
2νλ1

|w|2H |u1|2V + |f |H |w|H . (5.19)

We remark that
|f(t)|H =|F(ϕ(t, u, ω), ωt)−F(ϕ(t, u0, ω0), ω0t)|H

≤L|ϕ(t, u0, ω0)− ϕ(t, u0, ω0)|+ |F(ϕ(t, u0, ω0), ωt)−F(ϕ(t, u0, ω0), ω0t)|
(5.20)

and, consequently, from (5.18)-(5.20), we obtain

1
2
d

dt
|w|2H ≤ (

1
2ν
|u1|2V + L+

1
2

)|w|2H +
|f |2

2
. (5.21)

From this differential inequality we deduce that

|w(t)|2H ≤ exp
( ∫ t

0

(
1

2ν
|ϕ(τ, u0, ω0)|2V + L+

1
2

)dτ
)
|u− u0|2H

+
∫ t

0

exp
(
−
∫ τ

0

(
1

2ν
|ϕ(s, u0, ω0)|2V + L+

1
2

)ds
)

× 1
2

∣∣F(ϕ(τ, u0, ω0), ωτ)−F(ϕ(τ, u0, ω0), ω0τ)
∣∣dτ.

(5.22)

Since F ∈ C(H × Ω,H), then

max
0≤t≤T

|F(ϕ(t, u0, ω0), ωt)−F(ϕ(t, u0, ω0), ω0t)| → 0

as ω → ω0 and, consequently, from (5.22) we obtain

max
0≤t≤T

|w(t)| → 0. (5.23)
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From (5.16) and (5.23) we obtain the continuity of mapping ϕ. The lemma is
proved. �

Corollary 5.9. Under the conditions (i) and (ii) there exists a positive number
L0 <

νλ1
2 such that if L < L0, then the following inequality

|ϕ(t, u, ω)|2 ≤ e(−νλ1+2L0)t|u|2 +
|f |2

νλ1(−2L0 + νλ1)

holds for all t ≥ 0, u ∈ H and ω ∈ Ω, where |f | = max
ω∈Ω
|F(0, ω)|.

This assertion follows from the second assertion of Lemma 5.8.
Theorem 5.10. There exists a positive number L0 > 0 such that the cocycle ϕ
generated by (5.14) admits a compact global attractor, if L ≤ L0.

Proof. According to Lemma 3.1 [19] there exists L0 > 0 (for example L0 <
νλ1

2 )
such that the cocycle ϕ admits a bounded absorbing set if L < L0. On the other
hand the cocycle ϕ is compact, i.e. the mapping ϕ(t, ·, ·) : V ×Ω→ V is completely
continuous for all t > 0. To finish the proof of the theorem it is sufficient to refer
to Theorem 1.3 [6]. �

Theorem 5.11. Under the conditions (i) and (ii) there exists a positive number
λ0 such that the following is true:

(1) the set Iλω = {u ∈ H | sup
t∈R
|ϕλ(t, u, ω)| < +∞} is not empty, compact

and connected for all ω ∈ Ω and λ ∈ Λ = [−λ0,−λ0], where h ∈ H and
ϕλ(t, u, ω) is a unique solution of the equation

u′ + νAu+ F (u, u) + h = λF(u, ωt) (ω ∈ Ω) (5.24)

satisfying the initial condition ϕλ(0, u, ω) = u;
(2) ϕλ(t, Iλω , ω) = Iλσ(t,ω) for all λ ∈ Λ, t ∈ R+ and ω ∈ Ω;
(3) the set Iλ =

⋃
{Iλω | ω ∈ Ω} is compact and connected;

(4) the equalities
lim

t→+∞
β(ϕλ(t,M, ω−t), Iλω) = 0

and
lim

t→+∞
β(ϕλ(t,M, ω), Iλ) = 0

take place for all λ ∈ Λ, ω ∈ Ω and bounded subset M ⊆ E.
(5) the set

⋃
{Iλ | λ ∈ Λ} is compact and connected;

(6) the equality
lim
λ→0

sup
ω∈Ω

β(Iλω , I) = 0

holds, where I is a Levinson’s centre for the equation

u′ + νAu+ F (u, u) + h = 0.

Proof. Let F̃ (u, ωt) = −h+ λF(u, ωt) and λ0 <
νλ1
2L , then for the equation

u′ + νAu+ F (u, u) = λF̃ (u, ωt) (ω ∈ Ω)

the conditions of Theorem 5.10 are fulfilled. Let ϕλ be a cocycle generated by
equation (5.20), then according to Corollary 5.9 the family of cocycle {ϕλ}λ∈Λ

admits a collectively absorbing bounded set. Since the imbedding V into H is
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compact, to finish the proof of the theorem it is sufficient to refer to Theorem 3.16
and Lemma 3.6. The theorem is proved. �

Quasilinear Functional-Differential Equations. Functional-differential equa-
tions are a very important class of systems with infinite-dimensional phase space
[15]. Let r > 0, C([a, b],Rn) be the Banach space of continuous functions ν :
[a, b]→ R

n with the sup-norm . If [a, b] = [−r, 0], then suppose C := C([−r, 0],Rn).
Let σ ∈ R, A ≥ 0 and u ∈ C([σ− r, σ+A],Rn). For any t ∈ [σ, σ+A] define ut ∈ C
by the equality ut(θ) = u(t + θ),−r ≤ θ ≤ 0. Let us define by C(Ω × C,Rn) the
space of all continuous functions f : Ω×C → R

n, with compact-open topology and
let (Ω,R, σ) be a dynamical system on the compact metric space Ω. Consider the
equation

u′ = f(ωt, ut) (ω ∈ Ω), (5.25)
where f ∈ C(Ω×C,Rn). We will suppose that the function f is regular, that is for
any ω ∈ Ω and u ∈ C the equation (5.25) has a unique solution ϕ(t, u, ω) which is
defined on R+ = [0,+∞). Let X := C × Ω, and π : X × R+ → X be a dynamical
system on X defined by the following rule: π((u, ω), τ) = (ϕτ (u, ω), ωτ), then the
triplet 〈(X,R+, π), (Ω,R, σ), h〉(h = pr2 : X → Ω) is a nonautonomous dynamical
system, where ϕτ (u, ω)(θ) = ϕ(τ+θ, u, ω). From the general properties of solutions
of (5.25) (see, for example [15]), we have the following statement.
Theorem 5.12. The following statements are true:

(1) The nonautonomous dynamical system 〈(X,R+, π), (Ω,R, σ), h〉 generated
by equation (5.22) is conditionally completely continuous;

(2) Let Ω be compact and the function f : Ω × C → R
n be bounded on Ω × B

for any bounded set B ⊂ C, then the nonautonomous dynamical system
generated by the equation (5.25) is conditionally completely continuous (in
particular, it is asymptotically compact).

Denote by [C] the space of all linear continuous operators acting onto C and
equipped with the operational norm.
Theorem 5.13 ([3]). Let A ∈ C(Ω, [C]), f ∈ C(C × Ω, E) and let the following
conditions be fulfilled:

(1) a zero solution of equation

u′ = A(ωt)ut (5.26)

is uniformly asymptotically stable, i.e. there exist positive numbers N and ν
such that |ϕ0(t, u, ω)| ≤ Ne−νt|u| for all t ≥ 0 and ω ∈ Ω, where ϕ0(t, u, ω)
is a solution of equation (5.26) with condition that ϕ0(0, u, ω) = u;

(2) there exists a positive constant L such that

|f(u1, ω)− f(u2, ω)| ≤ L|u1 − u2|
for all u1, u2 ∈ C and ω ∈ Ω.

Then there exists a positive constant ε0(ε0 <
ν
N ) such that

|ϕ(t, u, ω)| ≤ NM

ν −NL
+ (N |u| − NM

ν −NL
)e−(ν−NL)t

for all t ≥ 0, u ∈ C and ω ∈ Ω, where ϕ(t, u, ω) is a unique solution of the equation

u′ = A(ωt)ut + f(ut, ωt)

with the condition ϕ(0, u, ω) = u and M = max{|f(0, ω)| : ω ∈ Ω}.
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Consider a nonautonomous quasilinear system

u′ = A(ωt)ut + λf(ut, ωt) (ω ∈ Ω) (5.27)

on C.
Theorem 5.14. Let f ∈ C(C × Ω, E) and let the inequality

|f(u1, ω)− f(u2, ω)| ≤ L|u1 − u2|

take place for all u1, u2 ∈ C and ω ∈ Ω, where L is some positive number.
Then there exists a positive number λ0 such that for all λ ∈ Λ = [−λ0, λ0] the

following statements are true:
(1) the set Iλω = {u ∈ C| sup{|ϕλ(t, u, ω)| : t ∈ R} < +∞} is not empty,

compact and connected for each ω ∈ Ω,where ϕλ(t, u, ω) there is a unique
solution of equation (5.27) satisfying the initial condition ϕλ(0, u, ω) = u;

(2) ϕλ(t, Iλω , ω) = Iλσ(t,ω) for all t ∈ R+ and ω ∈ Ω;
(3) the set Iλ =

⋃
{Iλω | ω ∈ Ω} is compact and connected;

(4) the equalities
lim

t→+∞
β(ϕλ(t,M, ω−t), Iλω) = 0,

lim
t→+∞

β(ϕλ(t,M, ω), Iλ) = 0

hold for all λ ∈ Λ, ω ∈ Ω and bounded subset M ⊆ E.
(5) the set

⋃
{Iλ | λ ∈ Λ} is compact;

(6) the following equality holds

lim
λ→0

sup
ω∈Ω

β(Iλω , 0) = 0 .

Proof. Let λ0 be a positive number such that ν = λ0L < ν/N , then the function
Fλ(u, ω) = A(ω)u+ λf(u, ω) satisfies the condition

|Fλ(u, ω)| ≤ ν|u|+M (5.28)

(with M = max
ω∈Ω
|f(0, ω|) for all |λ| ≤ λ0, ω ∈ Ω and u ∈ C. From the inequality

(5.28) and Theorem 5.12 follows that the family of cocycles {ϕλ}λ∈Λ admits a
bounded absorbing set. Now to finish the proof of theorem it is sufficient to refer
to Theorems 3.10, 3.14, 5.11 and Lemma 3.6. �
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