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PERIODIC SOLUTIONS FOR A CLASS OF SECOND-ORDER
HAMILTONIAN SYSTEMS

GABRIELE BONANNO, ROBERTO LIVREA

Abstract. Multiplicity results for an eigenvalue second-order Hamiltonian
system are investigated. Using suitable critical points arguments, the existence

of an exactly determined open interval of positive eigenvalues for which the

system admits at least three distinct periodic solutions is established. More-
over, when the energy functional related to the Hamiltonian system is not

coercive, an existence result of two distinct periodic solutions is given.

1. Introduction

Recently, several authors studied problems of the type
ü = ∇uF (t, u) a.e. in [0, T ]

u(T )− u(0) = u̇(T )− u̇(0) = 0
(1.1)

establishing, under suitable assumptions, existence or multiplicity of periodic solu-
tions. We refer the reader to the book of Mawhin and Willem [9] for basic results.
and to [3, 6, 7, 8, 13, 14] for more recent results. In particular, in [6] Brezis and
Nirenberg assumed that:

(a) F (t, 0) = 0, ∇uF (t, 0) = 0.
(b) lim|u|→+∞ F (t, u) = +∞ uniformly in t.
(c) For some constant vector u0,∫ T

0

F (t, u0) dt <

∫ T

0

F (t, 0) dt.

(d) There exists r > 0 and an integer k ≥ 0 such that

−1
2
(k + 1)2w2|u|2 ≤ F (t, u)− F (t, 0) ≤ −1

2
k2w2|u|2

for all |u| ≤ r, a.e. t ∈ [0, T ], where w = 2π/T .
Under the previous assumptions, they proved that problem (1.1) admits three

periodic solutions (see [6, Theorem 7]). In [13] and [14], relaxing the coercivity of
the potential and exploiting assumption (d), three periodic solutions to (1.1) are still
ensured (see [14, Theorems 2 and 4] and [13, Theorem 2]). Further, the existence of
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one periodic solution to (1.1) is guaranteed when (d) is not required and a weaker
type of coercivity is assumed (see [14, Theorems 1 and 3] and [13, Theorem 1]).
Very recently, in [8], if F (t, u) = 1

2A(t)u·u−b(t)G(u), the existence of three periodic
solutions to (1.1) is ensured without assuming (d), but still requiring a condition
that implies the coercivity of the energy functional related to the Hamiltonian
system, in addition to the following:

(e) There exist σ > 0 and u0 ∈ RN such that

|u0| <
√

σ∑N
i,j=1 ‖aij‖∞ T

and G(u0) = sup
|u|≤k

√
σ

G(u),

that is, G achieves its maximum in the interior of the ball of radius k
√

σ,
where k is the constant of the Sobolev embedding and aij are the entries
of the matrix A (see [8, assumptions 1 and 3 of Theorem 2.1]).

The aim of this paper is twofold: on the one hand we prove the existence of
three periodic solutions to (1.1) (see Theorem 3.1) when neither condition (d) nor
condition (e) are required, as Remarks 3.2 and 3.3 show; moreover, in our context,
condition (c) together with a limit condition on G at zero imply the key assumption
of Theorem 3.1 (see Remark 3.4). On the other hand we establish the existence
of two periodic solutions (see Theorem 3.3) when, in addition, condition (b) can
be removed, that is the energy functional related to the differential problem need
not be coercive (see Remark 3.5). In our approach condition (a) is not required, as
Example 3.1 and 3.2 show. To be precise, we study the following problem

ü = A(t)u− λb(t)∇G(u) a.e. in [0, T ]

u(T )− u(0) = u̇(T )− u̇(0) = 0
(1.2)

and establish the existence of an explicit open interval of positive parameters λ for
which (1.2) admits three or two distinct periodic solutions. We also observe that
problems of type (1.2) were studied in [3] and [7], but there only an upper bound of
the interval of positive parameters λ for which (1.2) admits three distinct periodic
solutions was established.

The proofs of the above-mentioned results are all based on critical point the-
orems. In particular, the results in [6], [13] and [14] are obtained exploiting the
critical points theorem of Brezis and Nirenberg ([6, Theorem 4]). In [3] and [7] the
main tool is the three critical points theorem of Bonanno [5, Theorem 2.1] (which
is a consequence of the three critical points theorem of Ricceri [12, Theorem 3]).
While in [8] the scope is achieved putting together the variational principle of Ric-
ceri [11, Theorem 2.5] and the classical mountain pass theorem of Pucci and Serrin
[10, Corollary 1]. Here, our results are based on multiple critical points theorems
established by Averna and Bonanno [2, Theorem B] and by Bonanno [4, Theorem
2.1] (where the variational principle of Ricceri [11, Theorem 2.1] was applied), that
we recall in Section 2 (see Theorems 2.1 and 2.2).

The present paper is organized as follows. Section 2 is devoted to preliminaries
and basic results; while in Section 3 we establish the multiplicity results for Problem
(1.2).

2. Preliminaries

Let T be a positive real number, N a positive integer and consider a matrix-
valued function A : [0, T ] → RN×N . We assume that A satisfies



EJDE-2005/115 PERIODIC SOLUTIONS 3

(A1) A : [0, T ] → RN×N is a map into the space of N ×N symmetric matrices
with A ∈ L∞([0, T ]) and there exists a positive constant µ such that

A(t)w · w ≥ µ|w|2

for every w ∈ RN and a.e. in [0, T ].

Recall that H1
T is the Sobolev space of all functions u ∈ L2([0, T ], RN ) that

admit a weak derivative u̇ ∈ L2([0, T ], RN ). We emphasize that, in defining this
kind of weak derivative, the test functions belong to the space C∞

T of functions that
are infinitely differentiable and T−periodic from R into RN . Moreover, for each
u ∈ H1

T one has that
∫ T

0
u̇(t)dt = 0 and u is absolutely continuous (for more details

we refer the reader to [9, pp. 6-7]).
For each u, v ∈ H1

T , we define

〈u, v〉 =
∫ T

0

u̇(t) · v̇(t)dt +
∫ T

0

A(t)u(t) · v(t)dt. (2.1)

Since A(t) is symmetric, (2.1) defines an inner product in H1
T .

Then we define a norm in H1
T by putting ‖u‖ = 〈u, u〉 1

2 for each u ∈ H1
T .

Observe that

A(t)ξ · ξ =
N∑

i,j=1

aij(t)ξiξj ≤
N∑

i,j=1

|aij(t)||ξi||ξj | ≤
N∑

i,j=1

‖aij‖∞|ξ|2. (2.2)

Hence, if we put

m = min{1, µ}, M = max
{
1,

N∑
i,j=1

‖aij‖∞
}
,

using (A1) and (2.2), we see that our norm ‖ · ‖ is equivalent to the usual norm.
Indeed one has

√
m‖u‖∗ ≤ ‖u‖ ≤

√
M‖u‖∗, (2.3)

where, for each u ∈ H1
T ,

‖u‖∗ =
( ∫ T

0

|u̇(t)|2dt +
∫ T

0

|u(t)|2dt
)1/2

.

It is well known that (H1
T , ‖ · ‖∗) is compactly embedded in C0([0, T ], RN ) (see for

instance [1]), hence, from (2.3), we conclude that

k̄ = sup
u∈H1

T , u6=0

‖u‖C0

‖u‖
(2.4)
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is finite. We are able to give an upper estimate of k̄ in the following manner. Fix
u ∈ H1

T and consider t0 ∈ [0, T ] such that |u(t0)| = minτ∈[0,T ] |u(τ)|. We can write

|u(t)| =
∣∣ ∫ t

t0

u̇(τ)dτ + u(t0)
∣∣

≤
∫ T

0

|u̇(τ)|dτ +
1
T

∫ T

0

|u(t0)|dτ

≤
∫ T

0

|u̇(τ)|dτ +
1
T

∫ T

0

|u(τ)|dτ

≤
√

T
( ∫ T

0

|u̇(τ)|2dτ
)1/2

+
1√
T

( ∫ T

0

|u(τ)|2dτ
)1/2

≤
√

2 max
{√

T ,
1√
T

}
‖u‖∗

(2.5)

for each t ∈ [0, T ]. Hence, from (2.5) and (2.3), if we put

k =

√
2
m

max
{√

T ,
1√
T

}
(2.6)

one has
k̄ ≤ k. (2.7)

In the sequel we shall make use of the constants

L =
1

k2T
∑N

i,j=1 ‖aij‖∞
, R =

L

1 + L
. (2.8)

Now, let b ∈ L1([0, T ]) \ {0} which is a.e. nonnegative and G ∈ C1(RN ).
Put

Φ(u) =
1
2
‖u‖2 and Ψ(u) = −

∫ T

0

b(t)G(u(t))dt

for each u ∈ H1
T . There are no difficulties in verifying that Φ is a continuously

Gâteaux differentiable functional whose Gâteaux derivative admits a continuous
inverse. In addition, Φ is a continuous and convex functional, so that it is se-
quentially lower semicontinuous too. Thanks to the Rellich-Kondrachov theorem,
Ψ is a well-defined continuously Gâteaux differentiable functional whose Gâteaux
derivative is a compact operator. In particular, for u, v ∈ H1

T , one has

Φ′(u)(v) =
∫ T

0

u̇(t) · v̇(t)dt +
∫ T

0

A(t)u(t) · v(t)dt,

Ψ′(u)(v) = −
∫ T

0

b(t)∇G(u(t)) · v(t)dt .

Let us recall that a critical point for the functional Φ + λΨ is any u ∈ H1
T such

that
Φ′(u)(v) + λΨ′(u)(v) = 0 (2.9)

for each v ∈ H1
T . Moreover, a solution for problem (1.2) is any u ∈ C1([0, T ], Rk)

such that u̇ is absolutely continuous and

ü = A(t)u− λb(t)∇G(u) a.e. in [0, T ]

u(T )− u(0) = u̇(T )− u̇(0) = 0.
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We claim that each critical point for the functional Φ+λΨ is a solution for problem
(1.2). In fact, since C∞

T is a subset of H1
T , we can observe that if u is a critical

point for the functional Φ + λΨ, then u̇ ∈ H1
T and, in particular,

ü = A(t)u− λb(t)∇G(u) a.e. in [0, T ].

Hence, ∫ T

0

u̇(t)dt =
∫ T

0

ü(t)dt = 0

and u(T )− u(0) = u̇(T )− u̇(0) = 0; that is, u is a solution for problem (1.2).
Let us recall a recent result, due to Averna and Bonanno [2, Theorem B], which

is the main tool to reach our goal.

Theorem 2.1 ([2, Theorem B]). Let X be a reflexive Banach Space, Φ : X → R
a continuously Gâteaux differentiable, coercive and sequentially weakly lower semi-
continuous functional whose Gâteaux derivative admits a continuous inverse on
X∗, Ψ : X → R a continuously Gâteaux differentiable functional whose Gâteaux
derivative is compact. Put, for each r > infX Φ,

ϕ1(r) = inf
x∈Φ−1(]−∞,r[)

Ψ(x)− inf
Φ−1(]−∞,r[)

w Ψ

r − Φ(x)
,

ϕ2(r) = inf
x∈Φ−1(]−∞,r[)

sup
y∈Φ−1([r,+∞[)

Ψ(x)−Ψ(y)
Φ(y)− Φ(x)

,

where Φ−1(]−∞, r[)
w

is the closure of Φ−1(] − ∞, r[) in the weak topology, and
assume that

(i) There is r ∈ R such that infX Φ < r and ϕ1(r) < ϕ2(r).
Further, assume that:

(ii) lim‖x‖→+∞(Φ(x) + λΨ(x)) = +∞ for all λ ∈] 1
ϕ2(r)

, 1
ϕ1(r)

[.

Then, for each λ ∈] 1
ϕ2(r)

, 1
ϕ1(r)

[ the equation (2.9) has at least three solutions in X.

We also use the following theorem concerning two critical points.

Theorem 2.2 ([4, Theorem 1.1]). Let X be a reflexive real Banach space, and
let Φ,Ψ : X → R be two sequentially weakly lower semicontinuous and Gâteaux
differentiable functionals. Assume that Φ is (strongly) continuous and satisfies
lim‖x‖→+∞ Φ(x) = +∞. Assume also that there exist two constants r1 and r2 such
that

(j) infX Φ < r1 < r2;
(jj) ϕ1(r1) < ϕ∗2(r1, r2);
(jjj) ϕ1(r2) < ϕ∗2(r1, r2),

where ϕ1 is defined as in Theorem 2.1 and

ϕ∗2(r1, r2) := inf
x∈Φ−1(]−∞,r1[)

sup
y∈Φ−1([r1,r2[)

Ψ(x)−Ψ(y)
Φ(y)− Φ(x)

,

Then, for each λ ∈] 1
ϕ∗2(r1,r2)

,min{ 1
ϕ1(r1)

, 1
ϕ1(r2)

}[, the functional Φ + λΨ admits at
least two critical points which lie in Φ−1(]−∞, r1[) and Φ−1([r1, r2[) respectively.

We recall that Theorem 2.1 and Theorem 2.2 are based on the variational prin-
ciple stated by Ricceri [11].
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3. Main results

For the sake of simplicity, throughout this section we shall assume that G(0) = 0.
Our main result is the following.

Theorem 3.1. Let A be a matrix-valued function that satisfies assumption (A1).
and let G ∈ C1(RN , R). Assume that there exist a positive constant γ and a vector
w0 ∈ RN with γ < |w0|, such that

max|w|≤γ G(w)
γ2

< R
G(w0)
|w0|2

; (3.1)

lim sup
|w|→∞

G(w)
|w|2

<
max|w|≤γ G(w)

γ2
. (3.2)

where R is defined in (2.8). Then, for every function b ∈ L1([0, T ]) \ {0} that is
a.e. nonnegative and for every λ in ] 1

2‖b‖1k2
1
R
|w0|2
G(w0)

, 1
2‖b‖1k2

γ2

max|w|≤γ G(w) [, problem
(1.2) admits at least three solutions.

Proof. Fix b ∈ L1([0, T ]) \ {0} that is a.e. nonnegative. Denote by X the space H1
T

and, for each u ∈ X, put

Φ(u) =
1
2
‖u‖2, Ψ(u) = −

∫ T

0

b(t)G(u(t))dt.

As we saw in Section 2, Φ and Ψ are continuously Gâteaux differentiable and
sequentially weakly lower semicontinuous functionals. In particular Φ′ admits a
continuous inverse on X∗ and Ψ′ is compact.

Since G(0) = 0, max|w|≤γ G(w) ≥ 0. Hence, we distinguish two cases. First,

assume max|w|≤γ G(w) > 0 and fix λ in
]

1
2‖b‖1k2

1
R
|w0|2
G(w0)

, 1
2‖b‖1k2

γ2

max|w|≤γ G(w)

[
. By

assumption (3.2), we can find two positive numbers δ and δ′, with

lim sup
|w|→∞

G(w)
|w|2

< δ <
max|w|≤γ G(w)

γ2

such that G(w) ≤ δ|w|2 + δ′ for each w ∈ RN . Fix For each u ∈ X one has

Φ(u) + λΨ(u) ≥ 1
2
‖u‖2 − λδ

∫ T

0

b(t)|u(t)|2dt− λδ′‖b‖1

≥ 1
2
‖u‖2 − λδ‖b‖1‖u‖2C0 − λδ′‖b‖1

≥
(

1
2
− λδk2‖b‖1

)
‖u‖2 − λδ′‖b‖1

>
1
2

(
1− δ

γ2

max|w|≤γ G(w)

)
‖u‖2 − λδ′‖b‖1.

(3.3)

Hence Φ + λΨ is coercive.
Let us consider ϕ1 and ϕ2 given in Theorem 2.1. We can observe that infX Φ =

Φ(0) = 0 and that, for each r > 0, 0 ∈ Φ−1(] − ∞, r[) and Φ−1(]−∞, r[)
w

=
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Φ−1(]−∞, r]). Fix r > 0. One has

ϕ1(r) ≤
−G(0)‖b‖1 − inf‖v‖2≤2r

(
−

∫ T

0
b(t)G(v(t))dt

)
r

≤ sup
‖v‖2≤2r

∫ T

0
b(t)G(v(t))dt

r
.

(3.4)

Thanks to (2.6) and (2.7), it is easy to check that

{v ∈ X : ‖v‖2 ≤ 2r} ⊆ {v ∈ C0 : ‖v‖2C0 ≤ 2k2r}.

Hence, from (3.4), bearing in mind that b ≥ 0 a.e. and that G is continuous, we
can write

ϕ1(r) ≤ ‖b‖1
max|w|≤k

√
2r G(w)

r
. (3.5)

Let now r = γ2/(2k2) and consider the function v ∈ X defined by putting v(t) = w0

for each t ∈ [0, T ]. A simple computation shows that k
√

µT ≥
√

2. Therefore, from
γ < |w0| one has γ < k

√
µT |w0| and, in view of condition (A), we obtain

‖v‖2 =
∫ T

0

A(t)w0 · w0dt ≥ Tµ|w0|2 > 2r.

On the other hand, from (2.2), one has

‖v‖2 ≤ T
N∑

i,j=1

‖aij‖∞|w0|2. (3.6)

For each u ∈ X such that ‖u‖2 < 2r one has∫ T

0

b(t)G(u(t))dt ≤ ‖b‖1 max
|w|≤k

√
2r

G(w) = ‖b‖1 max
|w|≤γ

G(w) (3.7)

and
0 < ‖v‖2 − ‖u‖2 ≤ ‖v‖2. (3.8)

We claim that
max|w|≤γ G(w)

γ2
< L

G(w0)−max|w|≤γ G(w)
|w0|2

, (3.9)

where L is defined in (2.8). In fact, since G(0) = 0, γ < |w0| and thanks to
assumption (3.1) one has

max|w|≤γ G(w)
γ2

+ L
max|w|≤γ G(w)

|w0|2

< (1 + L)
max|w|≤γ G(w)

γ2

< R(1 + L)
G(w0)
|w0|2

= L
G(w0)
|w0|2

.

(3.10)

Hence (3.9) holds and, consequently,

G(w0) > max
|w|≤γ

G(w). (3.11)
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At this point, putting together (3.7), (3.11), (3.8) and (3.6) we can obtain∫ T

0
b(t)G(v(t))dt−

∫ T

0
b(t)G(u(t))dt

‖v‖2 − ‖u‖2
≥ ‖b‖1

G(w0)−maxw≤γ G(w)
‖v‖2 − ‖u‖2

≥ ‖b‖1
G(w0)−max|w|≤γ G(w)

‖v‖2

≥ ‖b‖1
G(w0)−max|w|≤γ G(w)

T
∑N

i,j=1 ‖aij‖∞|w0|2

= Lk2‖b‖1
G(w0)−max|w|≤γ G(w)

|w0|2

for each u ∈ X such that ‖u‖2 < 2r. Hence, one has

ϕ2(r) ≥ 2 inf
‖u‖2<2r

∫ T

0
b(t)G(v(t))dt−

∫ T

0
b(t)G(u(t))dt

‖v‖2 − ‖u‖2

≥ 2Lk2‖b‖1
G(w0)−max|w|≤γ G(w)

|w0|2
.

(3.12)

Making use of (3.5), (3.9) and (3.12), we conclude that

ϕ1(r) ≤ ‖b‖1
max|w|≤k

√
2r G(w)

r

= 2k2‖b‖1
max|w|≤γ G(w)

γ2

< 2Lk2‖b‖1
G(w0)−max|w|≤γ G(w)

|w0|2
≤ ϕ2(r).

(3.13)

Moreover, in view of (3.9) and (3.13), since γ < |w0| and assumption (3.1) holds,
we have

1
ϕ2(r)

≤ 1
2Lk2‖b‖1

|w0|2

G(w0)−max|w|≤γ G(w)

<
1

2Lk2‖b‖1
|w0|2

G(w0)− γ2RG(w0)
|w0|2

<
1

2Lk2‖b‖1
|w0|2

G(w0)
1

1−R

=
1

2‖b‖1k2

1
R

|w0|2

G(w0)

(3.14)

and
1

ϕ1(r)
≥ 1

2‖b‖1k2

γ2

max|w|≤γ G(w)
. (3.15)

Hence, all assumptions of Theorem 2.1 are satisfied and the proof is complete once
observed that, as we saw in Section 2, the critical points of the functional Φ + λΨ
are solutions for our problem (1.2).

Now, let max|w|≤γ G(w) = 0. By assumption (3.2), we can find a positive number
δ̄ such that G(w) < 0 for every w ∈ RN with |w| > δ̄. At this point, if λ > 0, one
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has

Φ(u) + λΨ(u) ≥ 1
2
‖u‖2 − λ

∫
{t∈[0,T ]:|u(t)|≤δ̄}

b(t)G(u(t))dt

≥ 1
2
‖u‖2 − λ‖b‖1 max

|w|≤δ̄
G(w)

(3.16)

for every u ∈ X. Hence Φ + λΨ is coercive.
Due to (3.5), for r = γ2/(2k2), one has ϕ1(r) = 0. As well as, since G(w0) > 0,

reasoning as in (3.12) we obtain

ϕ2(r) ≥ 2Lk2‖b‖1
G(w0)
|w0|2

> 2Rk2‖b‖1
G(w0)
|w0|2

> 0.

At this point we have
1

ϕ2(r)
<

1
2‖b‖1k2

1
R

|w0|2

G(w0)

and we can conclude as in the previous case, where we agree to read 1
0 as +∞. �

Remark 3.1. We explicitly observe that, from the proof of Theorem 3.1 we obtain
that, when max|w|≤γ G(w) = 0, the interval of parameters for which problem (1.2)

admits at least three solutions is ] 1
2‖b‖1k2

1
L
|w0|2
G(w0)

,+∞[. Moreover, in this particular
case, the conclusion can be also obtained by standard arguments.

Example 3.1. Let G : R2 → R be defined by

G(x, y) =

(
x2 + y2

)6

ex2+y2 + x

for every (x, y) ∈ R2. By choosing γ = 1 and w0 ≡ (
√

6, 0) all assumptions of
Theorem 3.1 are satisfied and so, for every function b ∈ L1([0, 1]) \ {0} that is a.e.
nonnegative and for every λ ∈

]
1

‖b‖1
7

100 , 1
‖b‖1

18
100

[
, the problem

ü = u− λb(t)∇G(u) a.e. in [0, 1]

u(1)− u(0) = u̇(1)− u̇(0) = 0

admits at least three nonzero solutions. In fact, it is enough to observe that

max|w|≤γ G(w)
γ2

=
1
e

+ 1,

R = 1/5, G(w0) =
(

6
e

)6 +
√

6 and

lim
|w|→+∞

G(w)
|w|2

= 0.

Remark 3.2. Let G be as in Example 3.1, fix b ∈ C0([0, 1], R+) and λ > 0. It is
easy to see that, if we put F (t, w) = 1

2 |w|
2−λb(t)G(w) for every (t, w) ∈ [0, 1]×R2,

one has that

lim inf
|w|→0

F (t, w)
|w|2

= −∞

uniformly with respect to t. Therefore, assumption (d) in the introduction does not
hold and, hence by [6, Theorem 7], [14, Theorem 4] and [13, Theorem 2] cannot be
applied.
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Example 3.2. Let G : R → R be defined by

G(w) =

{
eew − e if w < 2
ee2

(e2w + 1− 2e2)− e if w ≥ 2.

By choosing γ = 1 and w0 = 2 we are able to apply Theorem 3.1 and affirm
that for every function b ∈ L1([0, 1]) \ {0} that is a.e. nonnegative and for every
λ ∈] 1

‖b‖1
19

1000 , 1
‖b‖1

17
100 [, the problem

ü = u− λb(t)Ġ(u) a.e. in [0, 1]

u(1)− u(0) = u̇(1)− u̇(0) = 0

admits at least three nonzero solutions. In fact, a simple computation shows that
max|w|≤γ G(w)

γ2
= ee − e,

R = 1/3 and G(w0) = ee2 − e so that assumption (3.1) holds. Moreover

lim
|w|→+∞

G(w)
|w|2

= 0

and (3.2) is also true.

Remark 3.3. By the fact that the function λG, where λ ∈] 1
‖b‖1

19
1000 , 1

‖b‖1
17
100 [ and

G is as in Example 3.2, is increasing, condition (e) in the introduction does not hold.
Hence, [8, Theorem 2.1] cannot be applied. Moreover, for fixed b ∈ C0([0, 1], R+),
if we consider F (t, w) = 1

2 |w|
2 − b(t)[λG(w)] for every (t, w) ∈ [0, 1]×R2, it is easy

to verify that

lim inf
|w|→0

F (t, w)
|w|2

= −∞

uniformly with respect to t and condition (d) in Introduction does not hold.

Remark 3.4. In our context, from (c) in Introduction one has
(b1) G(w0) > 0 for some constant vector w0.

If, in addition, we assume
(b2) limw→0

G(w)
|w|2 = 0,

then it is easy to verify that (b1) and (b2) imply (3.1) of Theorem 3.1.

As an immediate consequence of Theorem 3.1, we can obtain the following result.

Theorem 3.2. Let A, G, γ and w0 be like in Theorem 3.1. Then, for every
b ∈ L1([0, T ]) \ {0} that is a.e. nonnegative and such that ‖b‖1 is in the interval
] 1
2k2

1
R
|w0|2
G(w0)

, 1
2k2

γ2

max|w|≤γ G(w) [, the problem

ü = A(t)u− b(t)∇G(u) a.e. in [0, T ]

u(T )− u(0) = u̇(T )− u̇(0) = 0

admits at least three solutions.

Proof. Fix any b ∈ L1([0, T ]) \ {0} that is a.e. nonnegative and such that ‖b‖1 is
in ] 1

2k2
1
R
|w0|2
G(w0)

, 1
2k2

γ2

max|w|≤γ G(w) [. Obviously, one has that

1 ∈
] 1
2‖b‖1k2

1
R

|w0|2

G(w0)
,

1
2‖b‖1k2

γ2

max|w|≤γ G(w)
[
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and we apply Theorem 3.1. �

Here is another multiplicity result in which assumption (3.2) is not required.

Theorem 3.3. Let A be a matrix-valued function satisfying condition (A1) and
G ∈ C1(RN ). Put l = min

{
1, 1

k(T
Pk

i,j=1 ‖aij‖∞)1/2

}
, where k is defined in (2.6) and

assume that there exist two positive constants γ1, γ2 and a vector w0 ∈ RN such
that γ1 < |w0| < lγ2 and

max
{max|w|≤γ1 G(w)

γ2
1

,
max|w|≤γ2 G(w)

γ2
2

}
< R

G(w0)
|w0|2

, (3.17)

where R is defined in (2.8). Then, for every b ∈ L1([0, T ])\{0} that is a.e. nonneg-
ative, and every λ in

]
1

2‖b‖1k2
1
R
|w0|2
G(w0)

, 1
2‖b‖1k2 min

{ γ2
1

max|w|≤γ1 G(w) ,
γ2
2

max|w|≤γ2 G(w)

}[
,

problem (1.2) admits at least two solutions u1,λ and u2,λ such that ‖u1,λ‖C0 ≤ γ1

and ‖u2,λ‖C0 ≤ γ2.

Proof. Let b ∈ L1([0, T ]) \ {0} be a function that is a.e. nonnegative, put X = H1
T

and consider Φ and Ψ as usual. Let us introduce the following two positive numbers
r1 = γ2

1
2k2 , r2 = γ2

2
2k2 and verify that all assumptions of Theorem 2.2 hold. Obvi-

ously the functionals Φ and Ψ satisfy the regularity conditions required. Moreover,
infX Φ < r1 < r2. Consider the function v ∈ X as follows

v(t) = w0

for each t ∈ [0, T ]. Arguing as in Theorem 3.1, since γ1 < |w0| < lγ2 and taking
into account (2.2) we obtain

r1 < Φ(v) ≤ T

2

N∑
i,j=1

‖aij‖∞|w0|2 < r2,

G(w0) > max
|w|≤γ1

G(w).

Hence, by assumption (3.17) and noting that γ1 < |w0|, one has

ϕ∗2(r1, r2) ≥ inf
x∈Φ−1(]−∞,r1[)

Ψ(x)−Ψ(v)
Φ(v)− Φ(x)

= 2 inf
‖u‖2<2r1

∫ T

0
b(t)G(v(t))dt−

∫ T

0
b(t)G(u(t))dt

‖v‖2 − ‖u‖2

≥ 2Lk2‖b‖1
G(w0)−max|w|≤γ1 G(w)

|w0|2

> 2Lk2‖b‖1(1−R)
G(w0)
|w0|2

= 2Rk2‖b‖1
G(w0)
|w0|2

.

(3.18)

Moreover, as we saw in Theorem 3.1,

ϕ(r1) ≤ 2k2‖b‖1
max|w|≤γ1 G(w)

γ2
1

(3.19)

ϕ(r2) ≤ 2k2‖b‖1
max|w|≤γ2 G(w)

γ2
2

. (3.20)
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At this point, combining (3.19), (3.20), assumption (3.17) and (3.18) we obtain

max{ϕ1(r1), ϕ1(r2)} ≤ 2k2‖b‖1 max
{max|w|≤γ1 G(w)

γ2
1

,
max|w|≤γ2 G(w)

γ2
2

}
< 2Rk2‖b‖1

G(w0)
|w0|2

< ϕ∗2(r1, r2).

(3.21)

Therefore all assumptions of Theorem 2.2 are satisfied. Hence, since by (3.21) one
has

1
ϕ∗2(r1, r2)

<
1

2‖b‖1k2

1
R

|w0|2

G(w0)

<
1

2‖b‖1k2
min

{ γ2
1

max|w|≤γ1 G(w)
,

γ2
2

max|w|≤γ2 G(w)
}

≤ min
{ 1

ϕ1(r1)
,

1
ϕ1(r2)

}
,

for each λ ∈
]

1
2‖b‖1k2

1
R
|w0|2
G(w0)

, 1
2‖b‖1k2 min

{ γ2
1

max|w|≤γ1 G(w) ,
γ2
2

max|w|≤γ2 G(w)

}[
, prob-

lem (1.2) admits at least two solutions u1,λ and u2,λ such that ‖u1,λ‖2 < 2r1 ≤
‖u2,λ‖2 < 2r2. Then thanks to (2.4) and (2.7), we can complete the proof. �

Example 3.3. Let G : R2 → R be defined as follows

G(w) =


|w|6

e|w|2
if |w| ≤

√
3

( 3
e )3 cos(|w|2 − 3) if

√
3 < |w| ≤

√
3 + 15

2 π

( 3
e )3[e|w|

2−3− 15
2 π − 1] if |w| >

√
3 + 15

2 π.

Theorem 3.3 guarantees that for every b ∈ L1([0, 1]) \ {0} that is a.e. nonnegative
and for every λ ∈] 3

‖b‖1 , 4
‖b‖1 [ the problem

ü = u− λb(t)∇G(u) a.e. in [0, 1]

u(1)− u(0) = u̇(1)− u̇(0) = 0
(3.22)

admits at least one nonzero solution uλ such that ‖uλ‖C0 ≤
√

3 + 15
2 π. To see this,

we can observe that

k =
√

2,

2∑
i,j=1

‖aij‖∞ = 2, l =
1
2
, R =

1
5
.

Hence, Theorem 3.3 applies with γ1 = 1/2, γ2 =
√

3 + 15
2 π and w0 ∈ R2 such that

|w0| =
√

3.

Remark 3.5. We observe that in Example 3.3, for every positive λ, the energy
functional related to problem (P I

λ ) is not coercive, that is condition (b) in Intro-
duction fails. Hence, we cannot apply [14, Theorem 1] or [13, Theorem 1].
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