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ABSTRACT 
 

Multicore architectures require sound thread to core mapping policies in 

order to exploit the efficiency and parallelism that multi-threaded programs offer.  

Traditionally, the operating system scheduler focuses on temporal aspects of 

performance such as execution time and latency, disregarding other factors that 

may have significant impact on the system.  For example, judicious thread 

migration decisions can provide significant power savings.  Typical schedulers, 

however, fail to make power aware migration.  This master thesis focuses on 

comparing the effects of using resource aware analytical models, and a machine 

learning model, on making power aware thread migration decisions.   

The first analytical model uses a greedy algorithm, and aims to balance the 

load on processors, based on each core’s utilization level, via thread migration.  

We use a novel approach to derive core utilization levels, utilizing the dynamic 

feedback provided by performance counters, as well as a modified utilization 

metric that more accurately reflects the state of a processor.   

The second analytical model is aware of the processors’ shared resources 

and aims to reduce any contention via thread consolidation.  Hardware 

performance counters that reflect high miss rates in certain shared resources are 

evaluated and compared to established thresholds; the model then recommends to 

either consolidate or preserve the default scheduling.  The new affinity 

configuration, if any, is expected to promote greater power savings. 
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The last evaluated model uses a machine learning approach to recommend 

a final affinity configuration for a workload at runtime.  The novelty of this 

approach again lies in the utilization of hardware performance counters for model 

training.  A total of four metrics derived from a subset of available counters 

comprise the feature vector of the model.  Three algorithms are employed with the 

model: a decision tree to aid with visualization, a support vector machine which 

provides a categorical approach, and the statistically based Bayesian model. 

The three models are evaluated with various single and multi-program 

workloads, where each workload differs in certain tunable parameters such as 

initial affinity configuration or thread count.  Results reflect differences in 

execution times when applying the models and when utilizing the default OS 

scheduler.  Additional comparisons in power consumption reveal strengths and 

weaknesses of each approach, and a final evaluation recommends the most 

beneficial approach for preserving power. 
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CHAPTER 1 

Introduction 

There is a continuously growing demand in the computer industry for faster 

processors to perform increasingly complicated tasks.  One major implication of 

increasing a processor’s operating frequency is an increase in power consumption 

resulting in heat dissipation.  This design challenge is mitigated with the introduction of 

multi-core processors, which offer a cost effective way to meet performance requirements 

while minimizing the inevitable growth of the hardware’s footprint.  Software, however, 

is needed to maximize the benefits that multi-core architectures offer and plays an 

important role achieving high performance.  Multithreaded applications increase 

performance by concurrently running tasks or threads for workloads.  In order to fully 

harness the multi tasking capabilities of concurrent threads, an additional software 

solution is needed to extract and exploit the parallelism.  Furthermore, multi-program, 

multithreaded workloads must be managed carefully, particularly in regards to shared 

resources.  This management can be handled by thread scheduling policies that not only 

aim to increase performance, but also attempt to reduce power consumption and are 

aware of shared resources. 

Because thread management is so important for multicore architectures, many 

techniques for thread placement, migration and scheduling have been incorporated into 

current operating systems.  However, these techniques are sub-optimal because they do 

not consider power.  Linux, for example, uses a timesharing and priority based 

scheduling policy that classifies processes as I/O Bound or CPU Bound, and schedules 

them accordingly.  The main goals of the Linux scheduler are to avoid starvation, give 
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priority to interactive applications, scalability, and reducing idle time [1].  Thread 

migration is a technique commonly used by OS schedulers to encourage parallelism, 

however, scheduling decisions are made by focusing on evenly distributing work among 

the cores typically disregarding power consumption and shared resource ramifications.  

The Linux scheduler fails to consider some influential factors; it follows that the most 

optimal scheduling algorithm would require a vast increase in the considerations taken 

when making migration decisions.   

One way to supply more information to the OS is to take advantage of hardware 

performance counters or performance monitoring units (PMUs).  PMUs can measure a 

variety of performance and power related metrics such as instruction count, shared 

resource miss rates, and energy and power consumption levels.  Although PMUs can 

provide a lot of information and are routinely used in performance tuning, their use in 

OS-specific tasks is limited.  This is partly due to sampling overhead, and partly due to 

the difficulty of modifying OS kernels.   

This thesis develops several strategies for mapping and migrating threads on 

multicore systems for improved energy savings.  The intention is to implement three 

different migration models as part of the operating system scheduler.  However, in order 

to enable efficient testing, experimentation, and evaluation, the algorithms are developed 

and implemented in the Linux user-space.  The novelty of the proposed strategies lies in 

the fact that all three models can be implemented in user-space, with no modification to 

the kernel and that all three models make extensive use of PMUs to gain insight into 

workload behavior.  

 The main contributions of this research are as follows: 
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1.   A user-space software system for measuring and utilizing PMU events in OS-

specific tasks such as thread scheduling and mapping 

2.   A load balancing algorithm for maintaining power caps in multi-threaded, multi-

programmed environments 

3.   A thread migration policy that leverages PMU readings to reduce resource 

contention  

4. A  machine learning strategy that makes thread migration decisions based on 

workload characteristics to provide better energy savings.    

This thesis paper is organized as follows.  Chapter 2 provides a conceptual 

background and discusses traditional operating system scheduling methods.  A 

description of power aware and resource aware migration policies and a review of 

performance metrics define new contributing factors that are considered in the proposed 

migration policies.   Chapter 3 outlines relevant works that focus on operating system 

power management techniques.  The literature review reveals that closely related work 

fails to extend power management policies to larger workloads.  This research aims to 

evaluate the effectiveness of power aware migration techniques on larger workloads in an 

effort to simulate a more realistic working environment.  Chapter 4 presents descriptions 

of supplemental tools that were utilized in workload generation, the developed power 

aware and resource aware migration policies, and the machine-learning algorithm.  

Heuristics and development stages are highlighted, as well as variations that were 

explored and abandoned.  Chapter 5 provides a detailed description of thread migration 

strategies.  The derivation of metrics for each analytical model is described, followed by 

the developed policies.  A review of each of the three models, Decision Tree, Support 
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Vector Machine and Bayesian Model, used with the machine learning approach follows 

along with a description of the training data generation process. Chapter 6 presents the 

experimental setup, results and evaluation.  First a review of the platforms that the 

models were tested on is presented, followed by the benchmarks used and a description 

of the generated workloads.  An evaluation of each model is made by comparing the 

power consumption or execution times of workloads scheduled with the OS scheduler 

and with each proposed model.  The effectiveness of the machine-learning algorithm is 

assessed by illustrating a comparison of each workload’s power savings to power 

consumption levels of workloads that are traditionally scheduled.  Additionally, 

execution times are evaluated to determine the benefit of each model individually, and 

the greatest gain achievable given a combination of all three models.  Chapter 7 provides 

an overall synopsis of the problem, the proposed solutions, and main contributions of the 

research.  Emphasis is placed on the fact that significant power savings were successfully 

attained through power aware thread migration policies.  Suggested options for expansion 

of the presented research conclude this paper, noting additional possible benefits that may 

be achieved.   
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CHAPTER 2 

Background 

This chapter provides a description of fundamental concepts concerned with 

operating system scheduling multi-threaded applications in a multicore environment. 

2.1 Multithreaded Applications 

A process is an instance of a program currently in execution, which defines the 

address space, and contains a program counter, a stack pointer, and any opened file 

handles.  Every process requires access to certain resources such as memory, CPU time, 

files, and I/O devices, and must be in the ‘ready’ state to be considered for execution.  A 

thread of execution is the smallest sequence of instructions that can be managed and must 

live within a process.  A thread shares the address space with its parent, and must reside 

within a process.  Each process and thread is identified with a unique process id (PID) or 

thread id (TID), respectively. A multi-threaded process consists of a number of 

concurrently executing threads that are each spawned by the parent process.  Threads 

running on a single core share computing units, CPU caches, and the translation look 

aside buffer.  A process or thread must be in one of five states during its execution: new, 

ready, waiting, running, or terminated.  Figure 1 shows the state diagram for a process 

and illustrates the transitions between each state. 
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Figure 1: Process state diagram 

 

2.2 Thread Scheduling and Migration 

It is when a process or thread is in the ready state that the operating system can 

schedule the task to run on a processor, referred to as task scheduling.  The mapping 

configuration that each thread has for a particular core is called the thread’s affinity.  

Schedulers aim to optimize specific metrics such as reduced core idle time, or increased 

performance and take different factors into consideration.    Power aware task scheduling 

considers a task’s power consumption and aims to create a mapping, which reduces 

overall system power use.  Power is defined as the rate of energy measured in Joules per 

second or Watts.   

Another facet of task scheduling is task migration, which reassigns currently 

running tasks to different processors.   

2.3 Linux Scheduler 

 Linux provides preemptive multitasking where the scheduler is responsible for 

deciding when to cease and resume a process.  A time slice is a predetermined amount of 

time that a process runs prior to being involuntarily stopped and is dynamically 
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determined.  The basic data structure of the Linux scheduler is a run queue for each core, 

which holds all of the runnable process for that core and uses the spin lock method for 

access.  Each run queue is comprised of an expired and an active priority array.  Each 

priority array has one queue of runnable processes per priority.  Linux uses a fast find 

first search algorithm to search a priority bitmap for the highest priority runnable task in 

the system.  Figure 2 illustrates the data structures that the Linux scheduler is built on [2]. 

 

Figure 2: Linux process scheduler data structures 

 
 Linux gives priority to highly interactive tasks by reinserting them into the active 

priority array rather than the active array.  In addition, a load balancer is employed to 

maintain run queue population.   

2.4 Load Balancing 

 Load balancing is a power saving technique that evenly distributes tasks or 

processes between the processors in order to maintain a balanced system where cores are 

somewhat equally utilized.  Linux implements a load balancer in the scheduler that aims 
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to balance run queues and is invoked in one of two ways.  The system balance is checked 

at a fixed time interval, and if at any point there is a core with an empty run queue or if 

there is an imbalance between the run queues, the balancer is utilized.
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CHAPTER 3 

Related Work 

This chapter provides a survey of related research.  Research that employs the use 

of performance monitoring units (PMUs) is first discussed, followed by work exploring 

the benefits of processor load balancing. Next is an in depth study of various thread 

scheduling and migration techniques.  The review is concluded with a study of closely 

related work that emphasizes power aware scheduling. 

3.1 Hardware Performance Counters in Performance Tuning 

 Chip manufacturers first started to expose PMUs to software in the late 1990s.  

The PMUs were increasingly utilized in research regarding performance tuning and code 

optimization.  Eranian was one of the first to describe the utility of PMUs in improving 

application performance [3].  Subsequently, researchers have employed PMUs in 

automated performance tuning [4, 5], performance modeling and recommendation of 

transformations [6], optimizing for the memory hierarchy [7], better resource utilization 

[8], estimation of processor temperature [9] and power consumption [10, 11], and DVFS- 

based scheduling. 

 Although  PMUs are highly useful for tuning high performance computing (HPC) 

applications, their incorporation into OS-based strategies is still very limited.  One of the 

most notable utilization of PMUs in OS work is by Azimi et al., where feedback from 

hardware performance counters is used to dynamically partition the cache for workload 

execution [12].  Bhattacharjee et al. exploit the use of performance counters to determine 

which threads in a multithreaded process are the critical threads [13].  The motivation is 

that when the OS is able to identify a critical thread, actions can be taken to expedite its 
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processing, such as increasing frequency, allocating on chip resources, or load balancing. 

Banikazemi et al. develop a user-space meta scheduler that provides feedback regarding 

resource congestion in cores to the OS [25].  Their strategy results in a 14% overall 

improvement on the SPEC CPU workload.  The considered metrics, however, do not 

capture key sharing characteristics, nor are multi-threaded workloads evaluated. 

3.2 Load Balancing 

 Sarood et al. explore the effects of temperature aware load balancing on a large 

scaled system consisting of 128 cores [14].  The motivation is that cores running at high 

frequencies require a certain amount of cooling, which can often consume up to 50% of 

the available power.  They establish a migration policy that focuses on reducing each 

core’s temperature while minimizing any total runtime penalty, and consequently 

lowering the overall power consumption.  They do not extend the evaluation to include 

smaller systems consisting of a more readily available core count. 

Musoll explores the power saving benefits of load balancing by clustering core 

groups rather than individually gating cores [15]. The clusters are then balanced and 

power gating is implemented on a cluster level.  Results indicate that the methods 

employed yield a low overhead, and increase the overall reliability of the processor.  We 

propose that a similar methodology can be applied to individual cores, and yield 

comparable power savings once a system is balanced.   

3.3 Thread Placement Strategies 

 The amount of literature focused on thread placement and scheduling techniques 

within the OS is large.  User-level approaches, however, are relatively few.  Among the 
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developed user-level techniques capable of affinity management, most are limited to 

single applications or single-program workloads. 

Recently, Zong et al. have proposed two algorithms for scheduling parallel 

applications on large clusters [16].  Their framework takes a precedence-constrained task 

graph of the application to be scheduled as input, and emits a schedule predicted to be the 

most energy efficient.  Tedorescu and Torellas present a power management algorithm 

that considers voltage and frequency variations among the cores and attempts to improve 

performance within a given power envelope [17].  Linear programming is utilized to 

implement the algorithm, and it is intended to complement the existing OS-scheduling 

policies.  Brown et al. explore methods to partially copy data and pre-fetch instructions, 

known as their ‘working set prediction’, in to the new cache [19].  Results show that 

implementing the latter policy directly caused up to a double increase in performance for 

short-lived threads, in addition to speculative multi-threaded environments.  Experiments 

were not extended to include entire workloads, however, and adopting the methodology 

to the proposed research would reveal the power saving benefits of considering locality 

when making thread migration decisions.  Chen et al. compares two scheduling policies: 

work stealing which is a traditional design utilizing a double-ended queue, and parallel 

depth first (PDF) which is designed to promote concurrency between threads which have 

a large overlapping working sets, also known as constructive cache sharing [21].  PDF 

specifically, reduces the overall amount of cache needed, and consequently the amount of 

power required.   

Tam et al. consider locality and shared resources when scheduling on a 

multiprocessor chip [18].  They create a scheduling algorithm that takes into account 
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whether or not concurrently running threads will be attempting to access the same data.  

Threads that do share data are mapped to either the same or a closer core so that latency 

is minimized.  The pattern detection that is used to determine if resources are shared 

introduces a negligible overhead as a consequence of dynamically employing 

performance counters that are easily accessible.  Once the data has been analyzed and 

sharing patterns have been detected, selected threads are clustered together based on the 

patterns, and are scheduled to be placed on the respective cores as close to each other as 

possible.  Thread migration decisions are made with the ultimate goal of having a 

balanced system on the chip level, not the core level.  We propose a scaled approach that 

takes a closer look at individual core characteristics and aims to balance the system with 

a finer granularity.  In addition, rather than using pattern detection to identify 

opportunities to exploit locality, we rely on the dynamic feedback of performance 

counters.  Kandemir et al. studies the effects of exposing the system’s memory topology 

to a scheduling algorithm [20].  A comparison is made between two base cases where 

scheduling is handled without modification, and with localization optimization 

techniques employed, such as loop permutation, which permits modifying execution 

order, and blocking, which consolidates sections of code to promote data reuse, 

respectively.  Results show that the algorithm aware of the memory topology improved 

execution time. However, power consumption was not reported.  We hypothesize that a 

similar behavior will be seen in regards to power consumption when a power aware 

scheduling algorithm is aware of the memory topology of a system.  Merkel et al. 

develop heuristics that schedule threads based on shared resources, and couple this 

approach with DVFS based techniques [22].  They evaluate their strategy on a workload 
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with homogenous sharing patterns, and show that their strategy is able to significantly 

reduce the Energy Delay Product (EDP).  Boyd-Wickizer et al. propose a technique that 

operates at an object level [23].  The objective is for inter-core thread migration decisions 

to be based on data structure access, bringing threads closer their data, thereby reducing 

memory latency.  

 Singh et al. develop a user-space meta scheduler [11].  In their work, hardware 

performance counters are used for estimating processor power consumption.  Although 

multithreaded benchmarks were used for evaluation, results were only reported for 

processes spawned with one thread.  Additionally, rather than providing a migration 

policy, the proposed scheduler suspends and resumes entire applications to keep each 

processor running under an established envelope. 

 Work published by Vega et al. is most closely related to this research.  Vega 

proposes a thread consolidation technique that focuses on increasing power efficiency 

without sacrificing performance for multi-threaded workloads [26].  Consideration is 

given to the asymmetrical properties of software and hardware threads and is exploited; 

resulting in increased power efficiency and yielding benefits from core gating in addition 

to increasing throughput.  Vega’s analysis shows that there is a power-performance trade 

off that is more beneficial for applications with poor performance scalability, and further 

concludes that the aforementioned trade off is affected by micro-architectural details in 

addition to application affinity and core count.  These two factors, however, although 

mentioned, are not actually utilized to implement a power saving policy.  Vega et al. 

extend work from the 2013 publication with an implementation of the aforementioned 

proposed policy [27].  The implementation exploits the use of a thread consolidation 
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heuristic as well as core gating to increase power efficiency.  Research was focused on 

running single applications at a time and analyzing their performance and power 

consumption based on a number of varying configurations.  We propose to create a 

similar environment for an increased number of concurrent applications, and evaluate the 

performance and power consumption of multi-application workloads rather than a single, 

multi-threaded application.  
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CHAPTER 4 

Metasched Framework

This section focuses on the implementation details of the overall framework, 

called Metasched.  Figure 3 outlines the main component tools of Metasched and shows 

their interconnections. Our framework takes advantage of a number of userspace utilities 

that come standard with current Linux distributions. The components of Metasched can 

be used as standalone tools or in an integrated manner (as is done for the work presented 

in this thesis). In the following sections, we provide brief descriptions of the main 

components of Metasched.   

 

Figure 3: User space algorithm exploration framework 
 

4.1 Workload Generation 

The workload generator can launch a set of programs from a pre-defined list using 

a variety of configurations. This tool be can be used to create multi-program and multi-

threaded workloads, exhibiting different characteristics.  The available options include: 



 

16 

number of applications to run, launch interval, number of threads for each process, initial 

thread affinity, and data set size.  Being able to fine-tune all of the parameters simplifies 

the analysis and allows for changes in individual components to be easily identified.  In 

this work, the workload generator is used to create multi-threaded workloads from 

selected applications and kernels from the PARSEC benchmark suite.  

4.2 FeedSynth: Feedback Collector and Synthesizer 

 Current architectures expose a large number of hardware performance counters that 

can provide significant insight into application performance. These counters can be 

probed in software with tools that are standard in most Linux distributions. Examples of 

such tools include perf, likwid[28], and HPCtoolkit[29].  FeedSynth provides an interface 

to perf and facilitates the reading of PMU registers directly in our system. Feedsynth is 

capable of gathering information from all exposed counters on current AMD and Intel 

processors. In this work, we only utilized a subset of theses counters, as described in 

Chapters 5 and 6.   

4.3 Migrator 

 The thread migrator module in Metasched dynamically changes the affinity of 

running processes using the Linux taskset utility.  Taskset sets hard affinities for a 

process, which implies that the affinities set by taskset are always honored by the OS.  

The thread migrator tool extends the capabilities of taskset and facilitates the setting of 

affinities at the individual thread level.  In our work, taskset is also used to probe the 

current affinity of running processes.  The thread migration and mapping algorithms 

described in this thesis are all implemented within the thread migrator module. 



 

17 

 Each migration model provides a power aware thread affinity configuration for 

any given workload.  The modules are each invoked by first specifying a number of 

parameters: workload generator, number of programs in workload, a starting affinity, the 

number of threads allocated to each program, and the dataset size.  The model choice 

dictates which hardware counters are sampled and used as dynamic feedback throughout 

the execution of the workloads to ultimately guide the thread migration decisions.   

4.4 Power Estimator 

 To perform any type of power-aware migration, mapping, or scheduling, the 

algorithms require feedback in terms of the amount of power that is being consumed.  

Although some current architectures provide counters that can be probed to get an 

estimate of processor power consumption, there are still many platforms where such 

counters are not supported.  To be able to implement thread migration and scheduling 

techniques on these platforms, Metasched includes a regression-based model for 

processor power estimation.  The power estimator, named WattsUp, estimates processor 

power consumption in Watts, using four different PMU events. 

4.5 Frequency Scalar 

 Metasched also supports DVFS-based optimization for power and energy.  This 

module changes processor states from user space by directly modifying the cpufreutil 

system files on Linux systems.  The number of transitions depends on the number of 

supported frequency states on the target architecture.  We do not make use of the DVFS-

module in the context of this research.
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CHAPTER 5 

Thread Migration Strategies 

This chapter provides the motivation behind and a detailed description of each 

thread migration strategy.  Heuristics are discussed for the load balancing and shared 

resource models, and details of the machine learning algorithm concludes the chapter. 

5.1 Load Balancing for Power Caps 

 Power spikes can cause significant increase in energy costs for large data centers. 

To avoid these spikes, it is important for data centers to operate under a given power 

budget.  Techniques such as frequency and voltage scaling (DVFS) and core gating can 

be used to ensure that power caps are maintained on such systems. In this work, we 

devise a load balancing strategy to accomplish this goal. We select load balancing 

because it is known to be effective in maintaining power caps with the least amount of 

performance penalty.  The novelty of our load-balancing algorithm comes from the use of 

metrics derived from PMU events, and in its ability to operate from a user-space without 

any OS intervention.   

5.1.1 Core Utilization Metric 

 To effectively balance the load on processors, the operating system must determine 

the processor utilization levels across the system.  However, it has been shown that CPU 

utilization, the conventional metric used by operating systems, does not capture a 

multicore platform’s utilization levels accurately.  In this work, rather than using the 

conventional CPU utilization metric used in current operating systems, we derive a more 

accurate and descriptive metric for core utilization derived directly from hardware 

performance.  This metric can gauge utilization levels not only at the processor level, but 
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at core levels (both physical and logical) as well.  The core utilization metric is derived as 

follows: 

Core Utilization =  CPU time / Elapsed Time 
      where,  

Elapsed time = length of time slice 
CPU time = UNHLTED_CYCLES * clock cycle time 
where, 
clock cycle time = 1 / clock rate 

 

Furthermore, we determine that the core utilization metric provides a reasonable estimate 

of per-core power consumption.  This conclusion is particularly applicable for power-

aware optimizations where power counters are either not available, or require a 

significant amount of overhead to estimate.  On such systems, the models described in 

this paper can be implemented using core utilization levels as the objective metric.  As 

we demonstrate in Chapter 6, using the core utilization metric for such power-aware 

schemes, provides similar benefits as measuring power directly. 

Figure 4 shows the core utilization and power consumption of two example 

workloads.  The first workload shown on the left requires high levels of computation and 

the second workload exhibits high levels of cache sharing.  In both cases it is evident that 

although the magnitude of the values are different, there is a high correlation between 

core utilization and power consumption.  Hence, although core utilization cannot be used 

to produce accurate estimates of actual power, the metric is useful for guiding 

optimizations. 
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Figure 4: Core utilization and power consumption correlation 
              

5.1.2 Balancing Algorithm 

The first analytical model is founded on the idea that core utilization levels are 

highly correlated with power consumption, and that a system must operate within an 

established power threshold or cap.  As a result of the established relationship between 

power consumption and core utilization, the first model uses a greedy approach and aims 

to maintain a balanced state for the system to reduce overall power consumption.  The 

implementation evaluates the core utilization level metric at each time slice during the 

execution of a workload.  Consideration is given to the highest and lowest utilized cores.  

When the difference in their levels is above a predetermined threshold (reported results 

reflect a threshold of 25%), the system is considered unbalanced.  The algorithm then 

modifies the affinity of threads running on the highest utilized core to also run on the 

lowest utilized core.  We call this increasing the affinity of a thread.  We opt for 

increasing the thread affinity rather than actually migrating the threads to reduce the 

possibility of load imbalance in future time slices.  A reevaluation of performance 

counters on the next time slice reflects the impact of the thread migration, if any.  If the 
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level of imbalance between any two cores is below the threshold, then the current affinity 

or thread mapping is preserved.  The performance counter evaluation and thread 

migration decisions are repeated until the workload has completed execution or the 

algorithm is terminated via an external signal.   

Initial model implementation developed a migration policy for PIDs rather than 

TIDs.  As a result, if a program was launched with n threads and a migration decision 

was made, migration of the PID would effectively migrate all of the n TIDs belonging to 

that PID. The result was an ineffective model that lacked the granularity needed to truly 

promote a balanced system.  We augmented the model to focus on migrating individual 

threads rather than entire processes, facilitating the maintenance of a balanced load on all 

available cores.  Figure 5 illustrates the overall logic flow of the described model. 

 

Figure 5: Load balancing analytical model logic flow 

 
5.2 Thread Migration for Shared Resource Utilization- Feature Selection 

5.2.1 Deriving Relevant Metrics 

 Hardware performance counters offer a significant amount of information about 

program behavior and system state.  This is particularly helpful for dealing with 
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multithreaded applications due to a number of contributing influences on overall 

performance.  For example, 656 events can be monitored on the Intel Sandy Bridge 

platform, which in turn can be used to derive metrics to characterize specific aspects of 

workload performance.  These derived metrics can also be used to construct suitable 

features for machine learning based optimization strategies.  Monitoring all of the 

available counters at once poses some issues, however: 

1. The features considered by a machine-learning algorithm should include only the 

necessary, representative features to prevent diminishing prediction accuracy. 

2. Architectures limit the number of counters that can be simultaneously probed at 

runtime.  Consequently, analytical models using dynamic feedback to derive 

metrics must limit the number of counters probed at once.  Additionally, a 

machine learning algorithm utilizing counters as features is also limited and must 

adhere to what the architecture supports, which is traditionally four to eight 

counters.    

To accommodate the counter-probing limit and establish the relevant counters, we 

develop a set of synthetic micro-benchmarks designed to utilize various shared resources 

on the target platform.  Each program is run with varying affinity configurations and 

different levels of resource utilization, which are controlled via a set of command line 

parameters.  On each run, a large subset of available counters is sampled.  On the Intel 

Core 2 Quad platform, 68 counters are considered, and 120 counters are looked at on the 

SandyBridge platform.  This initial subset selection is founded on expert knowledge and 

is performed to avoid sacrificing experimentation time.  However, the strategy can be 

extended to sample all available counters. 
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The initial subset of counters is further pruned by applying Spearman’s Rank 

Correlation and outlier classification to obtain the counters most closely related with 

micro-benchmark performance variations.  We then remove highly correlated features by 

applying Principal Component Analysis to the subset, and establish the following four 

features of interest for the Core 2 Quad architecture:  

- Access to L2 cache lines in a shared state 

- LLC load misses 

- DTLB misses 

- L1 Instruction cache stalls 

To ensure that the features are representative for various types of programs, we normalize 

the counter values, and arrive at a feature vector with the four features as shown in Table 

1. 

Table 1: Features used in resource utilization and machine learning algorithms 

Feature Name, Normalization Formula and Required Counters 

Shared Access Rate (SAR) = Number of L2 accesses / Total number of accesses 

LLC miss rate = (Number of L2 load misses / instructions) * 1000 

DTLB miss rate = (Number of DTLB load misses / total loads) * 1000 

L1 stall rate = Number of L1 stalls / iL1 fetches 

 

The metrics in this feature vector require six hardware performance counters to be 

calculated, all of which can be probed during a single execution. 

5.2.2 Migration Algorithm 

Based on the set of metrics derived through statistical analysis, we develop an 

analytical model to improve shared resource utilization in multithreaded workloads. The 
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model is developed in two steps.  The first phase considers only the private L1 cache.  

Although L1 access is extremely fast, the cache size is relatively small, and often requires 

additional memory accesses in the event of a large working set exceeding the cache’s 

capacity.  We adopt a heuristic similar to the one described in the Section 5.1.  At each 

time slice, performance counters are evaluated to calculate each core’s L1 miss rate.  

Focus is turned to the cores with the highest and lowest miss rates.  If the difference in 

miss rates is above 10%, threads that are running on the core with the highest rate are 

mapped to also run on the core with the lowest miss rate.  Early model evaluation 

revealed an ineffective migration strategy, and a need for additional metrics. 

The resource aware model is extended to consider additional shared resources 

when making thread migration decisions.  The motivation lies in the fact that minimizing 

resource contention between running threads increases performance by reducing 

execution time and potentially reduces power consumption.  To achieve this, a thread 

consolidation migration technique is used to reduce power consumption and potentially 

increase throughput.  The inherent nature of multi threaded programs results in some idle 

threads, and possibly idle cores.  The goal of thread consolidation is to reduce the number 

of cores that a process is running on, thereby reducing the power consumption of the 

vacant cores.  To achieve this, consolidating threads assigns them to core groups or 

cohorts, which share certain resources such as the LLC in our case.  This technique goes 

through a rigorous test and must overcome an initial distributed affinity in some cases, in 

order to better evaluate its performance.  A distributed affinity will schedule threads 

evenly across all of the available cores without considering shared resources.  
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Following the start of workload, at the second time slice, the four metrics listed in 

Table 1 are derived.  The counters are sampled at the second time slice rather than the 

first to avoid capturing any non-representative startup characteristics.  The derived 

metrics are compared to established thresholds in order to dictate the decisions made by 

the model with a heuristic designed for a single or multi program workload.  The 

thresholds are noted as follows: sharedAccess_T1, sharedAccess_T2, dTLB_T1, 

dTLB_T2, iL1_T1, LLC_T1 and LLC_T2.  Figure 6 provides an outline of the strategy 

used in making migration decisions. 

                             

Figure 6: Shared resource migration policy heuristic 

 

If the decision to consolidate is made, then the single program and all of its 

threads are migrated to a single cohort, or core group.  In the event of a multi program 

workload, each program is consolidated to one cohort, and assignments are alternated 

accordingly between cohorts.   

5.3 Machine Learning for Thread Migration 

The last developed model employs a machine learning approach.  The model is 

trained with metrics derived from hardware performance counters collected during a 
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number of workload executions and makes the decision whether or not to consolidate the 

running processes. The metrics for each run or workload execution are saved in a feature 

vector used as model input.  The features used are the same as the derived metrics 

evaluated with the resource sharing model: shared line access rate, LLC miss rate, dTLB 

miss rate, and iL1 stall rate.   Three different classes of algorithms are explored with the 

machine learning approach.  The first algorithm is a decision tree and is selected to 

provide a visual representation of how a decision is being made.  The second is a support 

vector machine, which is a categorical approach, and the third is a Bayesian network, 

which focuses on statistics to make predictions. 

5.3.1 Machine Learning Algorithms 

Decision Tree 

The decision tree algorithm takes an approach that evaluates each metric 

individually.  The basic structure of the tree is binary in nature and consists of nodes and 

the transitions between the nodes.  Each node of the binary tree represents one metric in 

the feature vector, and the value of the metric in question determines which side the tree 

is traversed.  For instance, call the root of the decision tree ‘Metric 1’.  If the metric 

derived from dynamic feedback at runtime that is being evaluated is >= n%, traverse 

down the right side, otherwise traverse down the left.  A new metric or node is then 

reached which again must be evaluated in the same manner.  Every leaf of the tree 

represents a final consolidation decision [30].   Figure 7 illustrates a simplified structure 

of a decision tree.  Each node is labeled with a metric and each transition is labeled with a 

threshold for comparison.   
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Figure 7: Simplified decision tree structure 
 

Support Vector Machine (SVM) 

The SVM algorithm is a binary model and focuses on complete ‘scenarios’ or sets 

of metric values in the input vector, and represents a categorical approach.   The support 

vector machine features labeled examples that are generated through the training phase.  

Each example is comprised of the metrics derived for each of the workload runs.  For 

example, consider an input vector consisting of two metrics A, and B.  A simple scenario 

may be that if A > 50% and B < 75% then output = 0. Inversely, if A <= 50% and B >= 

75% then output = 1.  In our case, our input vector consists of the four aforementioned 

metrics.  The thresholds, that observed values are compared to are learned by the model 

through evaluating a number of labeled experiments.   The key to a more accurate model 

lies in creating a sufficient number of examples for the model to learn on so that there is 

more coverage of actual data that is to be evaluated once the model is invoked [31].   

Bayesian Model 

The Bayesian Model uses a statistical approach that focuses on probabilities.  The 

metrics in the feature vector that are the input to the model are evaluated and based on 
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their correlation to existing labeled examples, the model predicts the probability of a 

power consumption reduction and decides to consolidate or not [32].   

5.4 Training Data Generation 

 Training data was generated by evaluating single and multi-program workloads 

and collecting the four derived metrics: shared line access rate, LLC miss rate, dTLB 

miss rate, and iL1 stall rate.  Single and two process workloads were launched with two 

threads, a native dataset, and all three of the available affinity configurations: OS-set, 

distributed and consolidated.  Once all of the workloads’ data had been collected, it was 

converted to a compatible format, suitable to use as input for the machine learning model. 

Figure 8 shows a sample of the training data format.  Columns are labeled for ease 

of understanding; however, the actual training files consist of only data.  Each line in a 

training file consists of five values: four metrics, and a consolidation decision binary 

value.  Four separate training files were generated for the single and multi-program 

workloads, each run with the default OS-set affinity, and a distributed affinity.  The fifth 

column holds a binary value denoting whether that particular example is a case for 

consolidation and is determined by comparing execution times and looking for speedups.  

For example, the training file for single program execution run with an OS-set affinity 

(aff = 0), will compare the execution time of the workload run with the OS-set affinity 

and with a consolidated affinity.   If there is a speedup with consolidation, that value is 

set to 1, otherwise it is set to 0. 
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Figure 8: Sample training data 
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CHAPTER 6 

Experimental Setup, Results and Evaluation 

This chapter explains the experimental environment and presents the results of 

experiments for evaluating the various models.  The first section provides details of the 

three platforms that workloads were run on followed by a description of the benchmark 

suite employed, and finally a thorough review of each workload.  The chapter ends with a 

presentation of results and analysis, supplemented with comparative tables and graphs. 

6.1 Experimental Setup 

 The workloads were executed and evaluated on three different systems to test the 

effectiveness and scalability of the migration policies, as well as to conform to the 

available performance counters provided by each of the systems.  An overview of each 

system is presented followed by an inspection of the benchmark suite that is employed.  

Last of all a detailed description of workloads and their characteristics, concludes the 

experimental setup explanation. 

6.1.1 Platforms 

Each of the three utilized systems run Ubuntu Linux.  The load balancing model 

was tested on a system with an Intel Sandy Bridge architecture.  We refer to this platform 

as Sandy Bridge I in the remainder of this section.  This system features a total of twelve 

cores, six physical cores which are hyper-threaded, and three levels of cache.  Each core 

has a private L1 and L2 cache, and there is a shared L3 cache.  There are a total of six 

cohorts where the cores are grouped as follows: (0,6), (1,7), (2,8), (3,9), (4,10), (5,11).  

The load balancing analytical model was the only model evaluated on this system for the 
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purposes of exploring model scalability, and another performance counter probing utility, 

‘likwid’.   

The machine learning models were tested on a Sandy Bridge platform, featuring a 

Xeon processor with 2GHz clock rate, 16 physical cores and 32 logical cores.  For the 

purposes of this research, 4 logical cores were utilized.  The memory hierarchy of the 

system features 32KB L1 caches that are shared between two logical cores, 256 KB L2 

caches also shared between two logical cores, and a 20MB L3 cache shared by all of the 

cores.  We refer to this platform as Sandy Bridge II in the remainder of this section. 

The resource sharing and machine learning models were both tested on a Core 2 

Quad Core Intel Nehalem processor, which we will refer to as Nehalem for the remainder 

of this section.  This platform features four processing cores, each with a private L1 

cache, and two L2 caches, which are shared by cores 0 and 2, and cores 1 and 3 creating 

two cohorts or core groupings respectively.  For the purposes of this study, these 

architectural features are the main focus.   

6.1.2 Benchmarks 

 For all experiments, we use the Princeton Application Repository for Shared-

Memory Computers (PARSEC) [33].  PARSEC consists of a set of multithreaded 

programs from various domains including computer vision, video encoding, financial 

analytics, animation physics, and image processing.  The programs are examples of 

emerging types of workloads and give insight into the programming possibilities for 

maximizing parallelism.  Table 2 lists some of the key characteristics of the PARSEC 

applications.   
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Table 2: PARSEC Benchmark suite program characteristics 

Program  Application Domain  
Parallelization  

Working Set  
Data Usage  

Model  Granularity  Sharing  Exchange  

blackscholes  Financial Analysis  data-parallel  coarse  small  low  low  

bodytrack  Computer Vision  data-parallel  medium  medium  high  medium  

canneal  Engineering  unstructured  fine  unbounded  high  high  

dedup  Enterprise Storage  pipeline  medium  unbounded  high  high  

facesim  Animation  data-parallel  coarse  large  low  medium  

ferret  Similarity Search  pipeline  medium  unbounded  high  high  

fluidanimate  Animation  data-parallel  fine  large  low  medium  

freqmine  Data Mining  data-parallel  medium  unbounded  high  medium  

raytrace  Rendering  data-parallel  medium  unbounded  high  low  

streamcluster  Data Mining  data-parallel  medium  medium  low  medium  

swaptions  Financial Analysis  data-parallel  coarse  medium  low  low  

x264  Media Processing  pipeline  coarse  medium  high  high  

 

6.1.3 Workloads 

 Various workloads were generated to test each of the models.  The programs are 

taken from the PARSEC benchmark suite, and are combined into different workloads 

designed to exhibit particular characteristics.  

Both analytical models were tested using single and multi-program workloads, 

each with two, four and eight threads, and initiated with varying affinities.  The load 

balancing analytical model was additionally tested with four program workloads to 

accommodate an increase in available cores when run on the Sandy Bridge platforms.  

Table 3 shows the programs included in the multi-program workloads used with the 

resource sharing model followed by Table 4 listing the four program workloads. 
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Table 3: Two-program workload characteristics 

Workload A Workload B Workload C Workload D Workload E Workload F 

[1] blackscholes [2] ferret [6] raytrace [0] bodytrack [4] fluidanimate [4] fluidanimate 

[7] swaptions [6] raytrace [10] streamcluster [7] swaptions [5] freqmine [7] swaptions 

      Workload G Workload H Workload I Workload J Workload K Workload L 

[5] freqmine [2] ferret [7] swaptions [1] blackscholes [4] fluidanimate [6] raytrace 

[8] x264 [7] swaptions [8] x264 [8] x264 [10] streamcluster [6] raytrace 

 

Table 4: Four-program workload characteristics 

Workload A Workload B Workload C Workload D Workload E Workload F 

[0] bodytrack [0] bodytrack [1] blackscholes [0] bodytrack [1] blackscholes [9] canneal 

[3] facesim [2] ferret [7] swaptions [5] freqmine [1] blackscholes [9] canneal 

[7] swaptions [4] fluidanimate [9] canneal [7] swaptions [10] streamcluster [10] streamcluster 

[7] swaptions [5] freqmine [9] canneal [8] x264 [10] streamcluster [10] streamcluster 

 

 Three initial affinity configurations were explored when first launching a 

workload.  The first of the three allows the OS to decide the affinity of the workload and 

reflects the decision of the default scheduler (aff = 0).  The second affinity option is a 

worst-case scenario which assigns tasks in a configuration that maximizes physical 

distance between tasks, consequently increasing the amount of memory access in the 

event of shared resources (aff = 2).  The last affinity configuration promotes 

consolidation and assigns tasks to core groups or cohorts, ensuring a certain amount of 

available shared cache resources (aff = 5). 

 The last tunable parameter available when launching a workload is the number of 

threads that each program in the workload will be executed with.  Different thread counts 

were evaluated to pinpoint differences in trials where the thread count was less than, 
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equal to, and greater than the number of available cores.  Exploring different thread 

counts allowed for closer analysis and a better simulation of real world applications. 

The training data used by the machine learning model was generated by running a 

number of single and multi-program workloads.  Each workload was executed with two 

threads and with three different initial affinities.  Evaluating the two-program workloads 

described earlier generated additional training data.   

Table 5 shows  a comprehensive listing of the workloads evaluated for each of the 

proposed models, and the metrics used for final analysis. 

 

Table 5: Workloads evaluated with each migration model 
 

Load Balancing Analytical Model 
Workloads Affinity Threads Objective Metric 

multi-program 0, 2 4, 8, 16 execution time, power 

Resource Sharing Analytical Model 
Workloads Affinity Threads Objective Metric 

single program 0, 2, 5 2, 4, 8 execution time 
multi-program 0, 2, 5 2 execution time 

Machine Learning Model 
Workloads Affinity Threads Objective Metric 

single program 0, 2, 5 2 execution time, power 
multi-program 0, 2, 5 2 execution time, power 

 

6.2 Power Reduction with Load Balancing  

 The load balancing model was tested on the Sandy Bridge I with a number of 

different workloads and varying parameters.  Shown below are the power consumption 

levels of eight different four-program workloads, where each program is launched with 

four and eight threads.  Each workload was run twice; once with the affinity set to default 

OS scheduler, and once with an initial distributed affinity and the load balance model 
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handling the final affinity configuration.  Figure 9 below shows the power consumption 

for a large dataset, followed by Figure 10 featuring power consumption levels for a native 

dataset, both for four threaded applications.   

 

Figure 9: Power consumption- 4 program workload, 4 threads, large dataset 
 

 
 

Figure 10: Power consumption- 4 program workload, 4 threads, native dataset 
 
In 100% of the experiments, the resource sharing model provides a thread migration 

solution that consumes less power than the traditional OS scheduler. 

Figures 11 and 12 follow with power consumption levels of the same workloads 

launched with eight threads per application. 
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Figure 11: Power consumption- 4 program workload, 8 threads, large dataset 
 
 

 
 

Figure 12: Power consumption- 4 program workload, 8 threads, native dataset 
 
We see the same power efficiency improvement with the resource sharing model as the 

working dataset size is significantly increased, effectively developing a strategy to 

operate within an established power cap.  Figure 13 provides a summary of the average 

power savings in percent that the load balance model provides, per workload, for the 

experiments shown in Figures 9-12. 
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Figure 13: Average power consumption savings in percent by the load balancing model 
per workload, Sandy Bridge I platform 

 
Figure 13 shows that in three out of the five workloads, we see that the load balancing 

model provides power consumption savings of ~10%.  We see a significant increase in 

savings for two of the workloads, both seeing greater than a 25% decrease in power 

consumption. 

6.2.1 Overhead 

 The overhead of the load balancing model was calculated by running the 

evaluated workloads with certain parameters.  The execution times of the four program 

workloads run with large and native datasets, four threads, and with OS-set affinities are 

first collected.  Next, the same workloads are run through the load balancing model 

script, and a flag is set so that all of the work by the script is completed, except for the 

actual migrations, in which case the ‘taskset’ command is not executed.  This allows for 

an evaluation of the model’s overhead in terms of execution time.  Figures 14 and 15 

compare the execution times for each workload run with and without the load balancing 

model invoked for large and native datasets, establishing the overhead. 
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Figure 14: Load balance model overhead- 4 program workload, 4 threads, large dataset 
 

 

Figure 15: Load balance model overhead- 4 program workload, 4 threads, native dataset 
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configuration that balances out the load of the system and consumes less power.  

Additionally, the model is able to overcome an initial distributed affinity, and still 

provide that power savings. Due to a performance tradeoff, however, additional 

considerations must be taken in order to provide a more efficient scheduler. 

6.3 Workload Speed Up with Resource Sharing 

 The resource sharing model was evaluated by comparing the execution times of a 

workload launched with varying parameters.  Two types of workloads were explored: 

single program and multi-program.  Each workload was launched with two, four, and 

eight threads, and its execution time was recorded to reflect the speedup of the resource 

sharing model over the OS set affinity, and a distributed affinity.  The model was found 

to be the most effective when each of the workloads was executed using two threads and 

is reported here.  For single program, two threaded workloads, and a native dataset, 

Figure 16 illustrates the overall speedup of the resource sharing migration model over the 

default OS scheduler.  Figure 17 follows with the overall speedup of the migration model 

over a distributed affinity. 

 

Figure 16: Speed up of the resource sharing model over OS-set affinity, single program 
workload, 2 threads, native dataset 
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Figure 17: Speed up of the resource sharing model over a distributed affinity, single 
program workload, 2 threads, native dataset 

 
The single program workloads help to identify some interesting results.  The 

greatest speedup when employing the resource sharing model over both the OS-set 

affinity and a distributed affinity, occurred when running the following applications: 

blackscholes, raytrace, swaptions and x264.  These programs exhibit characteristics 

spanning opposite ends of the ranges.  For example, blackscholes features a small 

working set and low data sharing.  Raytrace, on the other hand, utilizes an unbounded 

working set and features high data sharing.  Swaptions and x264 both use a medium size 

working set, but require low and high data sharing respectively.  The model makes a 

successful decision to either consolidate or not in the above cases, regardless of 

characteristics, that results in improved execution times, and consequently reduces power 

consumption. 

For multi-program workloads, the data is represented in the same manner as with 
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scheduler, and Figure 19 illustrates the speed up over a distributed affinity.  

 

Figure 18: Speed up of the resource sharing model over OS-set affinity 

 

 

Figure 19: Speed up of the resource sharing model over a distributed affinity 
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decisions based on those shared resources regardless of the degree of sharing.  The 

greatest speed up over a distributed affinity is again seen with blackscholes and x264, as 

well as with two instances of the raytrace application.  Raytrace features an unbounded 

working set and high sharing.  Launching two instances of raytrace with a distributed 

affinity would force half of the threads to access memory not in their respective cohort.  

The resource sharing model essentially consolidates one instance of raytrace to one 

cohort, and the other instance to the other.  The result is a significant increase in runtime, 

thereby effectively reducing power consumption. 

6.3.1 Overhead 

A final comparison in execution times between a workload executed with a 

consolidated affinity using both the default scheduler and the resource sharing model 

reveals the amount of overhead that the model incurs.  Figures 20 and 21 show the 

overhead of the model by comparing the runtime of the same workloads started with a 

consolidated affinity, and scheduled with the default scheduler and with the resource 

sharing model. 
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Figure 20: Overhead of the resource sharing model for single program workloads 

 

Figure 21: Overhead of the resource sharing model for multi-program workloads 

6.3.2 Summary 
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program and multi-program workloads.  Table 6 shows a summary of the resource 

model’s overall speedup over an OS-set affinity, and a distributed affinity.   

 

Table 6: Percentage of experiments where the resource sharing model provided a speed 
up in execution time 

 

 

% of experiments 
where the model 

provided speed up 
over OS-set affinity 

% of experiments 
where the model 

provided speed up 
over distributed affinity 

Single Program 83.33% 50.00% 
Multi-program 66.67% 75.00% 

 

From Table 6, it is evident that reducing shared resource contention between 

concurrently running programs reduces execution time a majority of the time.     

6.4 Energy Efficiency with Machine Learning Models 

 The three machine learning models were tested on two systems: Nehalem and 

Sandy Bridge II.  Single workloads were first run with large and native datasets, and 

execution times are compared between the default OS scheduler handling the migration 

and the three algorithms: decision tree, SVM, and Bayes.  Figure 22 presents the 

execution times of the OS scheduler and the SVM model for a large dataset.   



 

45 

 

Figure 22: OS scheduler and SVM ML model execution times- single workload, 2 threads, 
large dataset, Nehalem platform 

 

Similar results were found for the other two algorithms, so attention is directed to multi-

program workloads.  Figures 23-25 show the execution times for two program workloads 

launched with two threads each, and a large dataset.  A comparison is made between the 

times when the OS schedules and when each of the models handles the scheduling. 

 

Figure 23: OS scheduler and Decision Tree ML model execution times- multi-program 
workload, 2 threads, large dataset, Nehalem platform 
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Figure 24: OS scheduler and SVM ML model execution times- multi-program workload, 2 
threads, large dataset, Nehalem platform 

 

 

Figure 25: OS scheduler and Bayes ML model execution times- multi-program workload, 2 
threads, large dataset, Nehalem platform 
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learning model. Figure 27 shows the same comparison using a SVM model, and Figure 

28 features the Bayesian model. 

 

Figure 26: OS scheduler and Decision Tree ML model execution times- single workload, 2 
threads, native dataset, Nehalem platform 

 

 
 
Figure 27: OS scheduler and SVM ML model execution times- single workload, 2 threads, 

native dataset, Nehalem platform 
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Figure 28: OS scheduler and Bayesian ML model execution times- single workload, 2 
threads, native dataset, Nehalem platform 

 
Again, we see the same consistent behavior from the machine learning models, 

with single program workloads and native datasets.  Certain programs don’t see the same 

time improvement from the machine learning models such as bodytrack, ferret and 

facesim, and all three programs vary in working set size and sharing.  This implies that 

there may be thread activity within the program that inhibits the machine learning model 

to provide better performance and requires further investigation. 

The machine learning model was also evaluated on the Sandy Bridge II platform.  

Figure 29 shows the highest obtainable gain in execution times, energy and power for 

single process workloads run with a native dataset and two threads, if the three machine 

learning models were to be combined. 
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Figure 29: Highest obtainable gain by combining all three machine learning models 
 
Figure 29 shows that the greatest gain offered by the machine learning model is power 

savings.  On average, the model provides about 1.4 times less power consumption than 

the OS scheduler which can be significant in certain applications. 

6.4.1 Model Accuracy 

 To evaluate the quality of the machine learning models, we performed a 10-fold 

cross validation during training.  In this process, models were trained on 90% of the 

training data points and then evaluated on the remaining 10%.  This process was repeated 
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randomly. 
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0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

Pe
rf

or
m

an
ce

 a
nd

 E
ne

rg
y 

G
ai

ns
 

Execution Time 

Energy 

Power 



 

50 

multi-program workloads.  ‘Correctly classified’ implies that the model was able to pick 

the best known thread configuration for the workload.   

 

Table 7: Average percentage of correctly classified instances of workloads by machine 
learning models 

 
	  	   Single-‐Program	  	   Multi-‐Program	  
Decision	  Tree	   75%	   100%	  
SVM	   75%	   83%	  
Bayes	   79%	   83%	  

 

We observe that the accuracy of all three models is lower for the single program 

workloads.  This is expected, as the number of samples was much smaller in this case.  

Somewhat surprisingly, the accuracy does not improve markedly for SVM or Bayes 

when moving to multi-program workloads.  We do see a significant improvement in 

Decision Tree, which yields almost perfect accuracy. 

6.4.2 Summary 

 The single program workloads that were tested using a large dataset did not 

benefit as much from the machine learning model’s scheduling policy.  Due to the 

overhead of the model and the workloads completing within a few seconds, obtaining 

better performance was limited.  An increase in the model’s performance with a large 

dataset was seen when an additional program was added to the workload.  The multi-

program workloads run with the decision tree algorithm executed quicker than the OS 

scheduled workload 74% of the time.  The SVM model performed better 70% of the 

time, and the Bayesian model had increased performance 96% of the time.  Native 

datasets have much greater execution times, minimizing the effect that the model’s 

overhead has on overall performance.  The decision tree model provided a mean speedup 
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over the OS scheduler of 1.126 or roughly 12.6%.  The SVM model provides an average 

speedup of 1.13 or 13%, and the Bayesian model shows a speedup of 1.13 or 13%.  When 

combining all three models, the greatest possible expected gain is ~1.25.
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CHAPTER 7 

Conclusion

The demand for power efficient computing offers an opportunity for innovative 

methods to be adopted when considering task scheduling in processors.  Though 

traditional OS schedulers do take several considerations when making decisions, power 

efficiency is often overlooked.  This research presents a novel approach to developing a 

power aware migration policy capable of utilizing dynamic feedback to guide decisions.  

Three different approaches are evaluated including two analytical models and one 

machine learning method.   

First, a greedy algorithm is developed with the goal of providing a migration 

policy that promotes a balanced load to the available processors, and can operate within 

an established power cap.  A continuous evaluation of the workload’s effect on each 

core’s utilization level helps to determine the migration of individual threads.  The 

‘greedy’ nature of the algorithm yields a method that is successful at reducing power 

consumption with a performance trade-off. 

The second proposed model considers shared resources.  Additional hardware 

performance counters are probed to determine whether consolidation would be a power 

saving option.  Once the decision is made, execution is resumed and allowed to finish. 

The last approach is a machine learning approach that is trained on the same 

metrics that the shared resource model employs.  The trained model evaluates certain 

performance counters at runtime, and decides if consolidation is beneficial or not.  Once 

the decision is made, execution is allowed to resume.  Three different algorithms are 

explored to offer various perspectives.   
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An evaluation of each model reveals certain strengths and weaknesses in 

approach.  Various single and multi-program workloads are developed that exhibit known 

effects on available hardware resources.  Every workload’s performance is evaluated 

when scheduled with the default scheduler, and with each proposed model.  Results 

indicate that an increase in metric consideration positively effects both runtime and 

power consumption, and that a machine learning approach can be a very effective 

technique for energy efficiency through thread migration. 

7.1 Recommendations for Future Work and Research Expansion 

 The following proposals offer opportunity for better performance and possibly 

greater power savings. 

1. A new model can be developed that combines the metrics employed with the load 

balancing and shared resource models.  Factoring in both core utilization and shared 

resources may offer additional benefits due to the added consideration.    

2. Rather than evaluating the combined effect of the three algorithms employed with the 

machine learning approach, a heuristic can be developed that successfully opts to use 

the algorithm with the best expected performance given a particular workload’s 

characteristics. 

3. Workloads can be modified to include a greater amount of parameter variation, 

introducing new scenarios for evaluation and training data collection.
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