

DYNAMIC FEEDBACK-DRIVEN THREAD MIGRATION FOR ENERGY-

EFFICIENT EXECUTION OF MULTITHREADED WORKLOADS

by

Claudia Alvarado, B.A., B.S.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Computer Science
December 2014

Committee Members:

 Apan Qasem, Chair

 Dan Tamir

 Martin Burtscher

COPYRIGHT

by

Claudia Alvarado

2014

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,
section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations
from this material are allowed with proper acknowledgment. Use of this material for
financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Claudia Alvarado, authorize duplication of this
work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

I dedicate my master thesis to my family, especially my mother and my sister, and

to my closest of friends. Their emotional, moral and financial support made this all

possible.

v

ACKNOWLEDGEMENTS

I wish to thank my committee members for the years of support and mentoring

that they have each provided me with, offering me invaluable opportunities for growth

and improvement. I would especially like to thank Dr. Apan Qasem for his unwavering

patience and constant support throughout this entire process. I would also like to thank

Dr. Dan Tamir for setting an unprecedented example in work ethic and always

encouraging me to challenge myself. Last of all, I would like to thank Dr. Martin

Burtscher for taking the time to turn his profession into a craft, and for inspiring me to

never settle.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... v

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

ABSTRACT .. xi

CHAPTER

1. INTRODUCTION ... 1

2. BACKGROUND ... 5
 2.1 Multithreaded Applications ... 5
 2.2 Thread Scheduling and Migration ... 6
 2.3 Linux Scheduler ... 6
 2.4 Load Balancing .. 7

 3. RELATED WORK .. 9
 3.1 Hardware Performance Counters in Performance Tuning 9
 3.2 Load Balancing .. 10
 3.3 Thread Placement Strategies .. 10

 4. METASCHED FRAMEWORK .. 15
 4.1 Workload Generation ... 15
 4.2 FeedSynth: Feedback Collector and Synthesizer 16
 4.3 Migrator ... 16
 4.4 Power Estimator ... 17
 4.5 Frequency Scaler .. 17

 5. THREAD MIGRATION STRATEGIES ... 18
 5.1 Load Balancing for Power Caps .. 18
 5.1.1 Core Utilization Metric ... 18
 5.1.2 Balancing Algorithm ... 20
 5.2 Thread Migration for Shared Resource Utilization-
 Feature Selection ... 21

 5.2.1 Deriving Relevant Metrics .. 21

vii

 5.2.2 Migration Algorithm ... 23
5.3 Machine Learning for Thread Migration ... 25
 5.3.1 Machine Learning Algorithms .. 26
 Decision Tree .. 26
 Support Vector Machine (SVM) ... 27
 Bayesian Model .. 27
5.4 Training Data Generation .. 28

6. EXPERIMENTAL SETUP, RESULTS AND EVALUATION 30
 6.1 Experimental Setup .. 30
 6.1.1 Platforms ... 30
 6.1.2 Benchmarks ... 31
 6.1.3 Workloads ... 32
 6.2 Power Reduction with Load Balancing ... 34
 6.2.1 Overhead ... 37
 6.2.2 Summary ... 38
 6.3 Workload Speed Up with Resource Sharing 39
 6.3.1 Overhead ... 42
 6.3.2 Summary ... 43
 6.4 Energy Efficiency with Machine Learning Models 44
 6.4.1 Model Accuracy .. 49
 6.4.2 Summary ... 50

7. CONCLUSION .. 52

 7.1 Recommendations for Future Work and Research Expansion 53

REFERENCES .. 54

viii

LIST OF TABLES

Table Page

1. Features used in resource utilization and machine learning algorithms 23

2. PARSEC Benchmark suite program characteristics ... 32

3. Two-program workload characteristics .. 33

4. Four-program workload characteristics .. 33

5. Workloads evaluated with each migration model ... 34

6. Percentage of experiments where the resource sharing model provided a speed
 up in execution time .. 44

7. Average percentage of correctly classified instances of workloads by machine
 learning models ... 50

ix

LIST OF FIGURES

Figure Page

1. Process state diagram ... 6

2. Linux process scheduler data structures .. 7

3. User space algorithm exploration framework .. 15

4. Core utilization and power consumption correlation ... 20

5. Load balancing analytical model logic flow .. 21

6. Shared resource migration policy heuristic .. 25

7. Simplified decision tree structure .. 27

8. Sample training data .. 29

9. Power consumption- 4 program workload, 4 threads, large dataset 35

10. Power consumption- 4 program workload, 4 threads, native dataset 35

11. Power consumption- 4 program workload, 8 threads, large dataset 36

12. Power consumption- 4 program workload, 8 threads, native dataset 36

13. Average power consumption savings in percent by the load balancing model per
 workload, Sandy Bridge I platform .. 37

14. Load balance model overhead- 4 program workload, 4 threads, large dataset 38

15. Load balance model overhead- 4 program workload, 4 threads, native dataset 38

16. Speed up of the resource sharing model over OS-set affinity, single program
 workload, 2 threads, native dataset .. 39

17. Speed up of the resource sharing model over a distributed affinity, single
 program workload, 2 threads, native dataset ... 40

x

18. Speed up of the resource sharing model over OS-set affinity 41

19. Speed up of the resource sharing model over a distributed affinity 41

20. Overhead of the resource sharing model for single program workloads 43

21. Overhead of the resource sharing model for multi-program workloads 43

22. OS scheduler and SVM ML model execution times- single workload,

2 threads, large dataset, Nehalem platform .. 45

23. OS scheduler and Decision Tree ML model execution times- multi-program
 workload, 2 threads, large dataset, Nehalem platform 45

24. OS scheduler and SVM ML model execution times- multi-program workload,

2 threads, large dataset, Nehalem platform .. 46

25. OS scheduler and Bayes ML model execution times- multi-program workload,
2 threads, large dataset, Nehalem platform .. 46

26. OS scheduler and Decision Tree ML model execution times- single workload,

2 threads, native dataset, Nehalem platform .. 47

27. OS scheduler and SVM ML model execution times- single workload,

2 threads, native dataset, Nehalem platform .. 47

28. OS scheduler and Bayesian ML model execution times- single workload,

2 threads, native dataset, Nehalem platform .. 48

29. Highest obtainable gain by combining all three machine learning models 49

xi

ABSTRACT

Multicore architectures require sound thread to core mapping policies in

order to exploit the efficiency and parallelism that multi-threaded programs offer.

Traditionally, the operating system scheduler focuses on temporal aspects of

performance such as execution time and latency, disregarding other factors that

may have significant impact on the system. For example, judicious thread

migration decisions can provide significant power savings. Typical schedulers,

however, fail to make power aware migration. This master thesis focuses on

comparing the effects of using resource aware analytical models, and a machine

learning model, on making power aware thread migration decisions.

The first analytical model uses a greedy algorithm, and aims to balance the

load on processors, based on each core’s utilization level, via thread migration.

We use a novel approach to derive core utilization levels, utilizing the dynamic

feedback provided by performance counters, as well as a modified utilization

metric that more accurately reflects the state of a processor.

The second analytical model is aware of the processors’ shared resources

and aims to reduce any contention via thread consolidation. Hardware

performance counters that reflect high miss rates in certain shared resources are

evaluated and compared to established thresholds; the model then recommends to

either consolidate or preserve the default scheduling. The new affinity

configuration, if any, is expected to promote greater power savings.

xii

The last evaluated model uses a machine learning approach to recommend

a final affinity configuration for a workload at runtime. The novelty of this

approach again lies in the utilization of hardware performance counters for model

training. A total of four metrics derived from a subset of available counters

comprise the feature vector of the model. Three algorithms are employed with the

model: a decision tree to aid with visualization, a support vector machine which

provides a categorical approach, and the statistically based Bayesian model.

The three models are evaluated with various single and multi-program

workloads, where each workload differs in certain tunable parameters such as

initial affinity configuration or thread count. Results reflect differences in

execution times when applying the models and when utilizing the default OS

scheduler. Additional comparisons in power consumption reveal strengths and

weaknesses of each approach, and a final evaluation recommends the most

beneficial approach for preserving power.

1

CHAPTER 1

Introduction

There is a continuously growing demand in the computer industry for faster

processors to perform increasingly complicated tasks. One major implication of

increasing a processor’s operating frequency is an increase in power consumption

resulting in heat dissipation. This design challenge is mitigated with the introduction of

multi-core processors, which offer a cost effective way to meet performance requirements

while minimizing the inevitable growth of the hardware’s footprint. Software, however,

is needed to maximize the benefits that multi-core architectures offer and plays an

important role achieving high performance. Multithreaded applications increase

performance by concurrently running tasks or threads for workloads. In order to fully

harness the multi tasking capabilities of concurrent threads, an additional software

solution is needed to extract and exploit the parallelism. Furthermore, multi-program,

multithreaded workloads must be managed carefully, particularly in regards to shared

resources. This management can be handled by thread scheduling policies that not only

aim to increase performance, but also attempt to reduce power consumption and are

aware of shared resources.

Because thread management is so important for multicore architectures, many

techniques for thread placement, migration and scheduling have been incorporated into

current operating systems. However, these techniques are sub-optimal because they do

not consider power. Linux, for example, uses a timesharing and priority based

scheduling policy that classifies processes as I/O Bound or CPU Bound, and schedules

them accordingly. The main goals of the Linux scheduler are to avoid starvation, give

2

priority to interactive applications, scalability, and reducing idle time [1]. Thread

migration is a technique commonly used by OS schedulers to encourage parallelism,

however, scheduling decisions are made by focusing on evenly distributing work among

the cores typically disregarding power consumption and shared resource ramifications.

The Linux scheduler fails to consider some influential factors; it follows that the most

optimal scheduling algorithm would require a vast increase in the considerations taken

when making migration decisions.

One way to supply more information to the OS is to take advantage of hardware

performance counters or performance monitoring units (PMUs). PMUs can measure a

variety of performance and power related metrics such as instruction count, shared

resource miss rates, and energy and power consumption levels. Although PMUs can

provide a lot of information and are routinely used in performance tuning, their use in

OS-specific tasks is limited. This is partly due to sampling overhead, and partly due to

the difficulty of modifying OS kernels.

This thesis develops several strategies for mapping and migrating threads on

multicore systems for improved energy savings. The intention is to implement three

different migration models as part of the operating system scheduler. However, in order

to enable efficient testing, experimentation, and evaluation, the algorithms are developed

and implemented in the Linux user-space. The novelty of the proposed strategies lies in

the fact that all three models can be implemented in user-space, with no modification to

the kernel and that all three models make extensive use of PMUs to gain insight into

workload behavior.

 The main contributions of this research are as follows:

3

1. A user-space software system for measuring and utilizing PMU events in OS-

specific tasks such as thread scheduling and mapping

2. A load balancing algorithm for maintaining power caps in multi-threaded, multi-

programmed environments

3. A thread migration policy that leverages PMU readings to reduce resource

contention

4. A machine learning strategy that makes thread migration decisions based on

workload characteristics to provide better energy savings.

This thesis paper is organized as follows. Chapter 2 provides a conceptual

background and discusses traditional operating system scheduling methods. A

description of power aware and resource aware migration policies and a review of

performance metrics define new contributing factors that are considered in the proposed

migration policies. Chapter 3 outlines relevant works that focus on operating system

power management techniques. The literature review reveals that closely related work

fails to extend power management policies to larger workloads. This research aims to

evaluate the effectiveness of power aware migration techniques on larger workloads in an

effort to simulate a more realistic working environment. Chapter 4 presents descriptions

of supplemental tools that were utilized in workload generation, the developed power

aware and resource aware migration policies, and the machine-learning algorithm.

Heuristics and development stages are highlighted, as well as variations that were

explored and abandoned. Chapter 5 provides a detailed description of thread migration

strategies. The derivation of metrics for each analytical model is described, followed by

the developed policies. A review of each of the three models, Decision Tree, Support

4

Vector Machine and Bayesian Model, used with the machine learning approach follows

along with a description of the training data generation process. Chapter 6 presents the

experimental setup, results and evaluation. First a review of the platforms that the

models were tested on is presented, followed by the benchmarks used and a description

of the generated workloads. An evaluation of each model is made by comparing the

power consumption or execution times of workloads scheduled with the OS scheduler

and with each proposed model. The effectiveness of the machine-learning algorithm is

assessed by illustrating a comparison of each workload’s power savings to power

consumption levels of workloads that are traditionally scheduled. Additionally,

execution times are evaluated to determine the benefit of each model individually, and

the greatest gain achievable given a combination of all three models. Chapter 7 provides

an overall synopsis of the problem, the proposed solutions, and main contributions of the

research. Emphasis is placed on the fact that significant power savings were successfully

attained through power aware thread migration policies. Suggested options for expansion

of the presented research conclude this paper, noting additional possible benefits that may

be achieved.

5

CHAPTER 2

Background

This chapter provides a description of fundamental concepts concerned with

operating system scheduling multi-threaded applications in a multicore environment.

2.1 Multithreaded Applications

A process is an instance of a program currently in execution, which defines the

address space, and contains a program counter, a stack pointer, and any opened file

handles. Every process requires access to certain resources such as memory, CPU time,

files, and I/O devices, and must be in the ‘ready’ state to be considered for execution. A

thread of execution is the smallest sequence of instructions that can be managed and must

live within a process. A thread shares the address space with its parent, and must reside

within a process. Each process and thread is identified with a unique process id (PID) or

thread id (TID), respectively. A multi-threaded process consists of a number of

concurrently executing threads that are each spawned by the parent process. Threads

running on a single core share computing units, CPU caches, and the translation look

aside buffer. A process or thread must be in one of five states during its execution: new,

ready, waiting, running, or terminated. Figure 1 shows the state diagram for a process

and illustrates the transitions between each state.

6

Figure 1: Process state diagram

2.2 Thread Scheduling and Migration

It is when a process or thread is in the ready state that the operating system can

schedule the task to run on a processor, referred to as task scheduling. The mapping

configuration that each thread has for a particular core is called the thread’s affinity.

Schedulers aim to optimize specific metrics such as reduced core idle time, or increased

performance and take different factors into consideration. Power aware task scheduling

considers a task’s power consumption and aims to create a mapping, which reduces

overall system power use. Power is defined as the rate of energy measured in Joules per

second or Watts.

Another facet of task scheduling is task migration, which reassigns currently

running tasks to different processors.

2.3 Linux Scheduler

 Linux provides preemptive multitasking where the scheduler is responsible for

deciding when to cease and resume a process. A time slice is a predetermined amount of

time that a process runs prior to being involuntarily stopped and is dynamically

7

determined. The basic data structure of the Linux scheduler is a run queue for each core,

which holds all of the runnable process for that core and uses the spin lock method for

access. Each run queue is comprised of an expired and an active priority array. Each

priority array has one queue of runnable processes per priority. Linux uses a fast find

first search algorithm to search a priority bitmap for the highest priority runnable task in

the system. Figure 2 illustrates the data structures that the Linux scheduler is built on [2].

Figure 2: Linux process scheduler data structures

 Linux gives priority to highly interactive tasks by reinserting them into the active

priority array rather than the active array. In addition, a load balancer is employed to

maintain run queue population.

2.4 Load Balancing

 Load balancing is a power saving technique that evenly distributes tasks or

processes between the processors in order to maintain a balanced system where cores are

somewhat equally utilized. Linux implements a load balancer in the scheduler that aims

8

to balance run queues and is invoked in one of two ways. The system balance is checked

at a fixed time interval, and if at any point there is a core with an empty run queue or if

there is an imbalance between the run queues, the balancer is utilized.

9

CHAPTER 3

Related Work

This chapter provides a survey of related research. Research that employs the use

of performance monitoring units (PMUs) is first discussed, followed by work exploring

the benefits of processor load balancing. Next is an in depth study of various thread

scheduling and migration techniques. The review is concluded with a study of closely

related work that emphasizes power aware scheduling.

3.1 Hardware Performance Counters in Performance Tuning

 Chip manufacturers first started to expose PMUs to software in the late 1990s.

The PMUs were increasingly utilized in research regarding performance tuning and code

optimization. Eranian was one of the first to describe the utility of PMUs in improving

application performance [3]. Subsequently, researchers have employed PMUs in

automated performance tuning [4, 5], performance modeling and recommendation of

transformations [6], optimizing for the memory hierarchy [7], better resource utilization

[8], estimation of processor temperature [9] and power consumption [10, 11], and DVFS-

based scheduling.

 Although PMUs are highly useful for tuning high performance computing (HPC)

applications, their incorporation into OS-based strategies is still very limited. One of the

most notable utilization of PMUs in OS work is by Azimi et al., where feedback from

hardware performance counters is used to dynamically partition the cache for workload

execution [12]. Bhattacharjee et al. exploit the use of performance counters to determine

which threads in a multithreaded process are the critical threads [13]. The motivation is

that when the OS is able to identify a critical thread, actions can be taken to expedite its

10

processing, such as increasing frequency, allocating on chip resources, or load balancing.

Banikazemi et al. develop a user-space meta scheduler that provides feedback regarding

resource congestion in cores to the OS [25]. Their strategy results in a 14% overall

improvement on the SPEC CPU workload. The considered metrics, however, do not

capture key sharing characteristics, nor are multi-threaded workloads evaluated.

3.2 Load Balancing

 Sarood et al. explore the effects of temperature aware load balancing on a large

scaled system consisting of 128 cores [14]. The motivation is that cores running at high

frequencies require a certain amount of cooling, which can often consume up to 50% of

the available power. They establish a migration policy that focuses on reducing each

core’s temperature while minimizing any total runtime penalty, and consequently

lowering the overall power consumption. They do not extend the evaluation to include

smaller systems consisting of a more readily available core count.

Musoll explores the power saving benefits of load balancing by clustering core

groups rather than individually gating cores [15]. The clusters are then balanced and

power gating is implemented on a cluster level. Results indicate that the methods

employed yield a low overhead, and increase the overall reliability of the processor. We

propose that a similar methodology can be applied to individual cores, and yield

comparable power savings once a system is balanced.

3.3 Thread Placement Strategies

 The amount of literature focused on thread placement and scheduling techniques

within the OS is large. User-level approaches, however, are relatively few. Among the

11

developed user-level techniques capable of affinity management, most are limited to

single applications or single-program workloads.

Recently, Zong et al. have proposed two algorithms for scheduling parallel

applications on large clusters [16]. Their framework takes a precedence-constrained task

graph of the application to be scheduled as input, and emits a schedule predicted to be the

most energy efficient. Tedorescu and Torellas present a power management algorithm

that considers voltage and frequency variations among the cores and attempts to improve

performance within a given power envelope [17]. Linear programming is utilized to

implement the algorithm, and it is intended to complement the existing OS-scheduling

policies. Brown et al. explore methods to partially copy data and pre-fetch instructions,

known as their ‘working set prediction’, in to the new cache [19]. Results show that

implementing the latter policy directly caused up to a double increase in performance for

short-lived threads, in addition to speculative multi-threaded environments. Experiments

were not extended to include entire workloads, however, and adopting the methodology

to the proposed research would reveal the power saving benefits of considering locality

when making thread migration decisions. Chen et al. compares two scheduling policies:

work stealing which is a traditional design utilizing a double-ended queue, and parallel

depth first (PDF) which is designed to promote concurrency between threads which have

a large overlapping working sets, also known as constructive cache sharing [21]. PDF

specifically, reduces the overall amount of cache needed, and consequently the amount of

power required.

Tam et al. consider locality and shared resources when scheduling on a

multiprocessor chip [18]. They create a scheduling algorithm that takes into account

12

whether or not concurrently running threads will be attempting to access the same data.

Threads that do share data are mapped to either the same or a closer core so that latency

is minimized. The pattern detection that is used to determine if resources are shared

introduces a negligible overhead as a consequence of dynamically employing

performance counters that are easily accessible. Once the data has been analyzed and

sharing patterns have been detected, selected threads are clustered together based on the

patterns, and are scheduled to be placed on the respective cores as close to each other as

possible. Thread migration decisions are made with the ultimate goal of having a

balanced system on the chip level, not the core level. We propose a scaled approach that

takes a closer look at individual core characteristics and aims to balance the system with

a finer granularity. In addition, rather than using pattern detection to identify

opportunities to exploit locality, we rely on the dynamic feedback of performance

counters. Kandemir et al. studies the effects of exposing the system’s memory topology

to a scheduling algorithm [20]. A comparison is made between two base cases where

scheduling is handled without modification, and with localization optimization

techniques employed, such as loop permutation, which permits modifying execution

order, and blocking, which consolidates sections of code to promote data reuse,

respectively. Results show that the algorithm aware of the memory topology improved

execution time. However, power consumption was not reported. We hypothesize that a

similar behavior will be seen in regards to power consumption when a power aware

scheduling algorithm is aware of the memory topology of a system. Merkel et al.

develop heuristics that schedule threads based on shared resources, and couple this

approach with DVFS based techniques [22]. They evaluate their strategy on a workload

13

with homogenous sharing patterns, and show that their strategy is able to significantly

reduce the Energy Delay Product (EDP). Boyd-Wickizer et al. propose a technique that

operates at an object level [23]. The objective is for inter-core thread migration decisions

to be based on data structure access, bringing threads closer their data, thereby reducing

memory latency.

 Singh et al. develop a user-space meta scheduler [11]. In their work, hardware

performance counters are used for estimating processor power consumption. Although

multithreaded benchmarks were used for evaluation, results were only reported for

processes spawned with one thread. Additionally, rather than providing a migration

policy, the proposed scheduler suspends and resumes entire applications to keep each

processor running under an established envelope.

 Work published by Vega et al. is most closely related to this research. Vega

proposes a thread consolidation technique that focuses on increasing power efficiency

without sacrificing performance for multi-threaded workloads [26]. Consideration is

given to the asymmetrical properties of software and hardware threads and is exploited;

resulting in increased power efficiency and yielding benefits from core gating in addition

to increasing throughput. Vega’s analysis shows that there is a power-performance trade

off that is more beneficial for applications with poor performance scalability, and further

concludes that the aforementioned trade off is affected by micro-architectural details in

addition to application affinity and core count. These two factors, however, although

mentioned, are not actually utilized to implement a power saving policy. Vega et al.

extend work from the 2013 publication with an implementation of the aforementioned

proposed policy [27]. The implementation exploits the use of a thread consolidation

14

heuristic as well as core gating to increase power efficiency. Research was focused on

running single applications at a time and analyzing their performance and power

consumption based on a number of varying configurations. We propose to create a

similar environment for an increased number of concurrent applications, and evaluate the

performance and power consumption of multi-application workloads rather than a single,

multi-threaded application.

15

CHAPTER 4

Metasched Framework

This section focuses on the implementation details of the overall framework,

called Metasched. Figure 3 outlines the main component tools of Metasched and shows

their interconnections. Our framework takes advantage of a number of userspace utilities

that come standard with current Linux distributions. The components of Metasched can

be used as standalone tools or in an integrated manner (as is done for the work presented

in this thesis). In the following sections, we provide brief descriptions of the main

components of Metasched.

Figure 3: User space algorithm exploration framework

4.1 Workload Generation

The workload generator can launch a set of programs from a pre-defined list using

a variety of configurations. This tool be can be used to create multi-program and multi-

threaded workloads, exhibiting different characteristics. The available options include:

16

number of applications to run, launch interval, number of threads for each process, initial

thread affinity, and data set size. Being able to fine-tune all of the parameters simplifies

the analysis and allows for changes in individual components to be easily identified. In

this work, the workload generator is used to create multi-threaded workloads from

selected applications and kernels from the PARSEC benchmark suite.

4.2 FeedSynth: Feedback Collector and Synthesizer

 Current architectures expose a large number of hardware performance counters that

can provide significant insight into application performance. These counters can be

probed in software with tools that are standard in most Linux distributions. Examples of

such tools include perf, likwid[28], and HPCtoolkit[29]. FeedSynth provides an interface

to perf and facilitates the reading of PMU registers directly in our system. Feedsynth is

capable of gathering information from all exposed counters on current AMD and Intel

processors. In this work, we only utilized a subset of theses counters, as described in

Chapters 5 and 6.

4.3 Migrator

 The thread migrator module in Metasched dynamically changes the affinity of

running processes using the Linux taskset utility. Taskset sets hard affinities for a

process, which implies that the affinities set by taskset are always honored by the OS.

The thread migrator tool extends the capabilities of taskset and facilitates the setting of

affinities at the individual thread level. In our work, taskset is also used to probe the

current affinity of running processes. The thread migration and mapping algorithms

described in this thesis are all implemented within the thread migrator module.

17

 Each migration model provides a power aware thread affinity configuration for

any given workload. The modules are each invoked by first specifying a number of

parameters: workload generator, number of programs in workload, a starting affinity, the

number of threads allocated to each program, and the dataset size. The model choice

dictates which hardware counters are sampled and used as dynamic feedback throughout

the execution of the workloads to ultimately guide the thread migration decisions.

4.4 Power Estimator

 To perform any type of power-aware migration, mapping, or scheduling, the

algorithms require feedback in terms of the amount of power that is being consumed.

Although some current architectures provide counters that can be probed to get an

estimate of processor power consumption, there are still many platforms where such

counters are not supported. To be able to implement thread migration and scheduling

techniques on these platforms, Metasched includes a regression-based model for

processor power estimation. The power estimator, named WattsUp, estimates processor

power consumption in Watts, using four different PMU events.

4.5 Frequency Scalar

 Metasched also supports DVFS-based optimization for power and energy. This

module changes processor states from user space by directly modifying the cpufreutil

system files on Linux systems. The number of transitions depends on the number of

supported frequency states on the target architecture. We do not make use of the DVFS-

module in the context of this research.

18

CHAPTER 5

Thread Migration Strategies

This chapter provides the motivation behind and a detailed description of each

thread migration strategy. Heuristics are discussed for the load balancing and shared

resource models, and details of the machine learning algorithm concludes the chapter.

5.1 Load Balancing for Power Caps

 Power spikes can cause significant increase in energy costs for large data centers.

To avoid these spikes, it is important for data centers to operate under a given power

budget. Techniques such as frequency and voltage scaling (DVFS) and core gating can

be used to ensure that power caps are maintained on such systems. In this work, we

devise a load balancing strategy to accomplish this goal. We select load balancing

because it is known to be effective in maintaining power caps with the least amount of

performance penalty. The novelty of our load-balancing algorithm comes from the use of

metrics derived from PMU events, and in its ability to operate from a user-space without

any OS intervention.

5.1.1 Core Utilization Metric

 To effectively balance the load on processors, the operating system must determine

the processor utilization levels across the system. However, it has been shown that CPU

utilization, the conventional metric used by operating systems, does not capture a

multicore platform’s utilization levels accurately. In this work, rather than using the

conventional CPU utilization metric used in current operating systems, we derive a more

accurate and descriptive metric for core utilization derived directly from hardware

performance. This metric can gauge utilization levels not only at the processor level, but

19

at core levels (both physical and logical) as well. The core utilization metric is derived as

follows:

Core Utilization = CPU time / Elapsed Time
 where,

Elapsed time = length of time slice
CPU time = UNHLTED_CYCLES * clock cycle time
where,
clock cycle time = 1 / clock rate

Furthermore, we determine that the core utilization metric provides a reasonable estimate

of per-core power consumption. This conclusion is particularly applicable for power-

aware optimizations where power counters are either not available, or require a

significant amount of overhead to estimate. On such systems, the models described in

this paper can be implemented using core utilization levels as the objective metric. As

we demonstrate in Chapter 6, using the core utilization metric for such power-aware

schemes, provides similar benefits as measuring power directly.

Figure 4 shows the core utilization and power consumption of two example

workloads. The first workload shown on the left requires high levels of computation and

the second workload exhibits high levels of cache sharing. In both cases it is evident that

although the magnitude of the values are different, there is a high correlation between

core utilization and power consumption. Hence, although core utilization cannot be used

to produce accurate estimates of actual power, the metric is useful for guiding

optimizations.

20

Figure 4: Core utilization and power consumption correlation

5.1.2 Balancing Algorithm

The first analytical model is founded on the idea that core utilization levels are

highly correlated with power consumption, and that a system must operate within an

established power threshold or cap. As a result of the established relationship between

power consumption and core utilization, the first model uses a greedy approach and aims

to maintain a balanced state for the system to reduce overall power consumption. The

implementation evaluates the core utilization level metric at each time slice during the

execution of a workload. Consideration is given to the highest and lowest utilized cores.

When the difference in their levels is above a predetermined threshold (reported results

reflect a threshold of 25%), the system is considered unbalanced. The algorithm then

modifies the affinity of threads running on the highest utilized core to also run on the

lowest utilized core. We call this increasing the affinity of a thread. We opt for

increasing the thread affinity rather than actually migrating the threads to reduce the

possibility of load imbalance in future time slices. A reevaluation of performance

counters on the next time slice reflects the impact of the thread migration, if any. If the

21

level of imbalance between any two cores is below the threshold, then the current affinity

or thread mapping is preserved. The performance counter evaluation and thread

migration decisions are repeated until the workload has completed execution or the

algorithm is terminated via an external signal.

Initial model implementation developed a migration policy for PIDs rather than

TIDs. As a result, if a program was launched with n threads and a migration decision

was made, migration of the PID would effectively migrate all of the n TIDs belonging to

that PID. The result was an ineffective model that lacked the granularity needed to truly

promote a balanced system. We augmented the model to focus on migrating individual

threads rather than entire processes, facilitating the maintenance of a balanced load on all

available cores. Figure 5 illustrates the overall logic flow of the described model.

Figure 5: Load balancing analytical model logic flow

5.2 Thread Migration for Shared Resource Utilization- Feature Selection

5.2.1 Deriving Relevant Metrics

 Hardware performance counters offer a significant amount of information about

program behavior and system state. This is particularly helpful for dealing with

22

multithreaded applications due to a number of contributing influences on overall

performance. For example, 656 events can be monitored on the Intel Sandy Bridge

platform, which in turn can be used to derive metrics to characterize specific aspects of

workload performance. These derived metrics can also be used to construct suitable

features for machine learning based optimization strategies. Monitoring all of the

available counters at once poses some issues, however:

1. The features considered by a machine-learning algorithm should include only the

necessary, representative features to prevent diminishing prediction accuracy.

2. Architectures limit the number of counters that can be simultaneously probed at

runtime. Consequently, analytical models using dynamic feedback to derive

metrics must limit the number of counters probed at once. Additionally, a

machine learning algorithm utilizing counters as features is also limited and must

adhere to what the architecture supports, which is traditionally four to eight

counters.

To accommodate the counter-probing limit and establish the relevant counters, we

develop a set of synthetic micro-benchmarks designed to utilize various shared resources

on the target platform. Each program is run with varying affinity configurations and

different levels of resource utilization, which are controlled via a set of command line

parameters. On each run, a large subset of available counters is sampled. On the Intel

Core 2 Quad platform, 68 counters are considered, and 120 counters are looked at on the

SandyBridge platform. This initial subset selection is founded on expert knowledge and

is performed to avoid sacrificing experimentation time. However, the strategy can be

extended to sample all available counters.

23

The initial subset of counters is further pruned by applying Spearman’s Rank

Correlation and outlier classification to obtain the counters most closely related with

micro-benchmark performance variations. We then remove highly correlated features by

applying Principal Component Analysis to the subset, and establish the following four

features of interest for the Core 2 Quad architecture:

- Access to L2 cache lines in a shared state

- LLC load misses

- DTLB misses

- L1 Instruction cache stalls

To ensure that the features are representative for various types of programs, we normalize

the counter values, and arrive at a feature vector with the four features as shown in Table

1.

Table 1: Features used in resource utilization and machine learning algorithms

Feature Name, Normalization Formula and Required Counters

Shared Access Rate (SAR) = Number of L2 accesses / Total number of accesses

LLC miss rate = (Number of L2 load misses / instructions) * 1000

DTLB miss rate = (Number of DTLB load misses / total loads) * 1000

L1 stall rate = Number of L1 stalls / iL1 fetches

The metrics in this feature vector require six hardware performance counters to be

calculated, all of which can be probed during a single execution.

5.2.2 Migration Algorithm

Based on the set of metrics derived through statistical analysis, we develop an

analytical model to improve shared resource utilization in multithreaded workloads. The

24

model is developed in two steps. The first phase considers only the private L1 cache.

Although L1 access is extremely fast, the cache size is relatively small, and often requires

additional memory accesses in the event of a large working set exceeding the cache’s

capacity. We adopt a heuristic similar to the one described in the Section 5.1. At each

time slice, performance counters are evaluated to calculate each core’s L1 miss rate.

Focus is turned to the cores with the highest and lowest miss rates. If the difference in

miss rates is above 10%, threads that are running on the core with the highest rate are

mapped to also run on the core with the lowest miss rate. Early model evaluation

revealed an ineffective migration strategy, and a need for additional metrics.

The resource aware model is extended to consider additional shared resources

when making thread migration decisions. The motivation lies in the fact that minimizing

resource contention between running threads increases performance by reducing

execution time and potentially reduces power consumption. To achieve this, a thread

consolidation migration technique is used to reduce power consumption and potentially

increase throughput. The inherent nature of multi threaded programs results in some idle

threads, and possibly idle cores. The goal of thread consolidation is to reduce the number

of cores that a process is running on, thereby reducing the power consumption of the

vacant cores. To achieve this, consolidating threads assigns them to core groups or

cohorts, which share certain resources such as the LLC in our case. This technique goes

through a rigorous test and must overcome an initial distributed affinity in some cases, in

order to better evaluate its performance. A distributed affinity will schedule threads

evenly across all of the available cores without considering shared resources.

25

Following the start of workload, at the second time slice, the four metrics listed in

Table 1 are derived. The counters are sampled at the second time slice rather than the

first to avoid capturing any non-representative startup characteristics. The derived

metrics are compared to established thresholds in order to dictate the decisions made by

the model with a heuristic designed for a single or multi program workload. The

thresholds are noted as follows: sharedAccess_T1, sharedAccess_T2, dTLB_T1,

dTLB_T2, iL1_T1, LLC_T1 and LLC_T2. Figure 6 provides an outline of the strategy

used in making migration decisions.

Figure 6: Shared resource migration policy heuristic

If the decision to consolidate is made, then the single program and all of its

threads are migrated to a single cohort, or core group. In the event of a multi program

workload, each program is consolidated to one cohort, and assignments are alternated

accordingly between cohorts.

5.3 Machine Learning for Thread Migration

The last developed model employs a machine learning approach. The model is

trained with metrics derived from hardware performance counters collected during a

26

number of workload executions and makes the decision whether or not to consolidate the

running processes. The metrics for each run or workload execution are saved in a feature

vector used as model input. The features used are the same as the derived metrics

evaluated with the resource sharing model: shared line access rate, LLC miss rate, dTLB

miss rate, and iL1 stall rate. Three different classes of algorithms are explored with the

machine learning approach. The first algorithm is a decision tree and is selected to

provide a visual representation of how a decision is being made. The second is a support

vector machine, which is a categorical approach, and the third is a Bayesian network,

which focuses on statistics to make predictions.

5.3.1 Machine Learning Algorithms

Decision Tree

The decision tree algorithm takes an approach that evaluates each metric

individually. The basic structure of the tree is binary in nature and consists of nodes and

the transitions between the nodes. Each node of the binary tree represents one metric in

the feature vector, and the value of the metric in question determines which side the tree

is traversed. For instance, call the root of the decision tree ‘Metric 1’. If the metric

derived from dynamic feedback at runtime that is being evaluated is >= n%, traverse

down the right side, otherwise traverse down the left. A new metric or node is then

reached which again must be evaluated in the same manner. Every leaf of the tree

represents a final consolidation decision [30]. Figure 7 illustrates a simplified structure

of a decision tree. Each node is labeled with a metric and each transition is labeled with a

threshold for comparison.

27

Figure 7: Simplified decision tree structure

Support Vector Machine (SVM)

The SVM algorithm is a binary model and focuses on complete ‘scenarios’ or sets

of metric values in the input vector, and represents a categorical approach. The support

vector machine features labeled examples that are generated through the training phase.

Each example is comprised of the metrics derived for each of the workload runs. For

example, consider an input vector consisting of two metrics A, and B. A simple scenario

may be that if A > 50% and B < 75% then output = 0. Inversely, if A <= 50% and B >=

75% then output = 1. In our case, our input vector consists of the four aforementioned

metrics. The thresholds, that observed values are compared to are learned by the model

through evaluating a number of labeled experiments. The key to a more accurate model

lies in creating a sufficient number of examples for the model to learn on so that there is

more coverage of actual data that is to be evaluated once the model is invoked [31].

Bayesian Model

The Bayesian Model uses a statistical approach that focuses on probabilities. The

metrics in the feature vector that are the input to the model are evaluated and based on

28

their correlation to existing labeled examples, the model predicts the probability of a

power consumption reduction and decides to consolidate or not [32].

5.4 Training Data Generation

 Training data was generated by evaluating single and multi-program workloads

and collecting the four derived metrics: shared line access rate, LLC miss rate, dTLB

miss rate, and iL1 stall rate. Single and two process workloads were launched with two

threads, a native dataset, and all three of the available affinity configurations: OS-set,

distributed and consolidated. Once all of the workloads’ data had been collected, it was

converted to a compatible format, suitable to use as input for the machine learning model.

Figure 8 shows a sample of the training data format. Columns are labeled for ease

of understanding; however, the actual training files consist of only data. Each line in a

training file consists of five values: four metrics, and a consolidation decision binary

value. Four separate training files were generated for the single and multi-program

workloads, each run with the default OS-set affinity, and a distributed affinity. The fifth

column holds a binary value denoting whether that particular example is a case for

consolidation and is determined by comparing execution times and looking for speedups.

For example, the training file for single program execution run with an OS-set affinity

(aff = 0), will compare the execution time of the workload run with the OS-set affinity

and with a consolidated affinity. If there is a speedup with consolidation, that value is

set to 1, otherwise it is set to 0.

29

Figure 8: Sample training data

30

CHAPTER 6

Experimental Setup, Results and Evaluation

This chapter explains the experimental environment and presents the results of

experiments for evaluating the various models. The first section provides details of the

three platforms that workloads were run on followed by a description of the benchmark

suite employed, and finally a thorough review of each workload. The chapter ends with a

presentation of results and analysis, supplemented with comparative tables and graphs.

6.1 Experimental Setup

 The workloads were executed and evaluated on three different systems to test the

effectiveness and scalability of the migration policies, as well as to conform to the

available performance counters provided by each of the systems. An overview of each

system is presented followed by an inspection of the benchmark suite that is employed.

Last of all a detailed description of workloads and their characteristics, concludes the

experimental setup explanation.

6.1.1 Platforms

Each of the three utilized systems run Ubuntu Linux. The load balancing model

was tested on a system with an Intel Sandy Bridge architecture. We refer to this platform

as Sandy Bridge I in the remainder of this section. This system features a total of twelve

cores, six physical cores which are hyper-threaded, and three levels of cache. Each core

has a private L1 and L2 cache, and there is a shared L3 cache. There are a total of six

cohorts where the cores are grouped as follows: (0,6), (1,7), (2,8), (3,9), (4,10), (5,11).

The load balancing analytical model was the only model evaluated on this system for the

31

purposes of exploring model scalability, and another performance counter probing utility,

‘likwid’.

The machine learning models were tested on a Sandy Bridge platform, featuring a

Xeon processor with 2GHz clock rate, 16 physical cores and 32 logical cores. For the

purposes of this research, 4 logical cores were utilized. The memory hierarchy of the

system features 32KB L1 caches that are shared between two logical cores, 256 KB L2

caches also shared between two logical cores, and a 20MB L3 cache shared by all of the

cores. We refer to this platform as Sandy Bridge II in the remainder of this section.

The resource sharing and machine learning models were both tested on a Core 2

Quad Core Intel Nehalem processor, which we will refer to as Nehalem for the remainder

of this section. This platform features four processing cores, each with a private L1

cache, and two L2 caches, which are shared by cores 0 and 2, and cores 1 and 3 creating

two cohorts or core groupings respectively. For the purposes of this study, these

architectural features are the main focus.

6.1.2 Benchmarks

 For all experiments, we use the Princeton Application Repository for Shared-

Memory Computers (PARSEC) [33]. PARSEC consists of a set of multithreaded

programs from various domains including computer vision, video encoding, financial

analytics, animation physics, and image processing. The programs are examples of

emerging types of workloads and give insight into the programming possibilities for

maximizing parallelism. Table 2 lists some of the key characteristics of the PARSEC

applications.

32

Table 2: PARSEC Benchmark suite program characteristics

Program Application Domain
Parallelization

Working Set
Data Usage

Model Granularity Sharing Exchange

blackscholes Financial Analysis data-parallel coarse small low low

bodytrack Computer Vision data-parallel medium medium high medium

canneal Engineering unstructured fine unbounded high high

dedup Enterprise Storage pipeline medium unbounded high high

facesim Animation data-parallel coarse large low medium

ferret Similarity Search pipeline medium unbounded high high

fluidanimate Animation data-parallel fine large low medium

freqmine Data Mining data-parallel medium unbounded high medium

raytrace Rendering data-parallel medium unbounded high low

streamcluster Data Mining data-parallel medium medium low medium

swaptions Financial Analysis data-parallel coarse medium low low

x264 Media Processing pipeline coarse medium high high

6.1.3 Workloads

 Various workloads were generated to test each of the models. The programs are

taken from the PARSEC benchmark suite, and are combined into different workloads

designed to exhibit particular characteristics.

Both analytical models were tested using single and multi-program workloads,

each with two, four and eight threads, and initiated with varying affinities. The load

balancing analytical model was additionally tested with four program workloads to

accommodate an increase in available cores when run on the Sandy Bridge platforms.

Table 3 shows the programs included in the multi-program workloads used with the

resource sharing model followed by Table 4 listing the four program workloads.

33

Table 3: Two-program workload characteristics

Workload A Workload B Workload C Workload D Workload E Workload F

[1] blackscholes [2] ferret [6] raytrace [0] bodytrack [4] fluidanimate [4] fluidanimate

[7] swaptions [6] raytrace [10] streamcluster [7] swaptions [5] freqmine [7] swaptions

 Workload G Workload H Workload I Workload J Workload K Workload L

[5] freqmine [2] ferret [7] swaptions [1] blackscholes [4] fluidanimate [6] raytrace

[8] x264 [7] swaptions [8] x264 [8] x264 [10] streamcluster [6] raytrace

Table 4: Four-program workload characteristics

Workload A Workload B Workload C Workload D Workload E Workload F

[0] bodytrack [0] bodytrack [1] blackscholes [0] bodytrack [1] blackscholes [9] canneal

[3] facesim [2] ferret [7] swaptions [5] freqmine [1] blackscholes [9] canneal

[7] swaptions [4] fluidanimate [9] canneal [7] swaptions [10] streamcluster [10] streamcluster

[7] swaptions [5] freqmine [9] canneal [8] x264 [10] streamcluster [10] streamcluster

 Three initial affinity configurations were explored when first launching a

workload. The first of the three allows the OS to decide the affinity of the workload and

reflects the decision of the default scheduler (aff = 0). The second affinity option is a

worst-case scenario which assigns tasks in a configuration that maximizes physical

distance between tasks, consequently increasing the amount of memory access in the

event of shared resources (aff = 2). The last affinity configuration promotes

consolidation and assigns tasks to core groups or cohorts, ensuring a certain amount of

available shared cache resources (aff = 5).

 The last tunable parameter available when launching a workload is the number of

threads that each program in the workload will be executed with. Different thread counts

were evaluated to pinpoint differences in trials where the thread count was less than,

34

equal to, and greater than the number of available cores. Exploring different thread

counts allowed for closer analysis and a better simulation of real world applications.

The training data used by the machine learning model was generated by running a

number of single and multi-program workloads. Each workload was executed with two

threads and with three different initial affinities. Evaluating the two-program workloads

described earlier generated additional training data.

Table 5 shows a comprehensive listing of the workloads evaluated for each of the

proposed models, and the metrics used for final analysis.

Table 5: Workloads evaluated with each migration model

Load Balancing Analytical Model
Workloads Affinity Threads Objective Metric

multi-program 0, 2 4, 8, 16 execution time, power

Resource Sharing Analytical Model
Workloads Affinity Threads Objective Metric

single program 0, 2, 5 2, 4, 8 execution time
multi-program 0, 2, 5 2 execution time

Machine Learning Model
Workloads Affinity Threads Objective Metric

single program 0, 2, 5 2 execution time, power
multi-program 0, 2, 5 2 execution time, power

6.2 Power Reduction with Load Balancing

 The load balancing model was tested on the Sandy Bridge I with a number of

different workloads and varying parameters. Shown below are the power consumption

levels of eight different four-program workloads, where each program is launched with

four and eight threads. Each workload was run twice; once with the affinity set to default

OS scheduler, and once with an initial distributed affinity and the load balance model

35

handling the final affinity configuration. Figure 9 below shows the power consumption

for a large dataset, followed by Figure 10 featuring power consumption levels for a native

dataset, both for four threaded applications.

Figure 9: Power consumption- 4 program workload, 4 threads, large dataset

Figure 10: Power consumption- 4 program workload, 4 threads, native dataset

In 100% of the experiments, the resource sharing model provides a thread migration

solution that consumes less power than the traditional OS scheduler.

Figures 11 and 12 follow with power consumption levels of the same workloads

launched with eight threads per application.

0
5

10
15
20
25
30
35
40
45
50

bodytrack,
facesim,

swaptions x2

blackscholes,
swaptions,
canneal x2

bodytrack,
freqmine,

swaptions, x264

freqmine x2,
x264 x2

blackscholes,
swaptions,

streamcluster x2

Po
w

er
 C

on
su

m
pt

io
n

(w
at

ts
)

aff=0 (OS)

aff=2 (ALG)

0
5

10
15
20
25
30
35
40
45
50

bodytrack,
facesim,

swaptions x2

blackscholes,
swaptions,
canneal x2

bodytrack,
freqmine,

swaptions, x264

freqmine x2,
x264 x2

blackscholes,
swaptions,

streamcluster x2

Po
w

er
 C

on
su

m
pt

io
n

(w
at

ts
)

aff=0 (OS)

aff=2 (ALG)

36

Figure 11: Power consumption- 4 program workload, 8 threads, large dataset

Figure 12: Power consumption- 4 program workload, 8 threads, native dataset

We see the same power efficiency improvement with the resource sharing model as the

working dataset size is significantly increased, effectively developing a strategy to

operate within an established power cap. Figure 13 provides a summary of the average

power savings in percent that the load balance model provides, per workload, for the

experiments shown in Figures 9-12.

0
5

10
15
20
25
30
35
40
45
50

bodytrack,
facesim,

swaptions x2

blackscholes,
swaptions,
canneal x2

bodytrack,
freqmine,

swaptions, x264

freqmine x2,
x264 x2

blackscholes,
swaptions,

streamcluster x2

Po
w

er
 C

on
su

m
pt

io
n

(w
at

ts
)

aff=0 (OS)

aff=2 (ALG)

0
5

10
15
20
25
30
35
40
45
50

bodytrack,
facesim,

swaptions x2

blackscholes,
swaptions,
canneal x2

bodytrack,
freqmine,

swaptions, x264

freqmine x2,
x264 x2

blackscholes,
swaptions,

streamcluster x2

Po
w

er
 C

on
su

m
pt

io
n

(w
at

ts
)

aff=0 (OS)

aff=2 (ALG)

37

Figure 13: Average power consumption savings in percent by the load balancing model
per workload, Sandy Bridge I platform

Figure 13 shows that in three out of the five workloads, we see that the load balancing

model provides power consumption savings of ~10%. We see a significant increase in

savings for two of the workloads, both seeing greater than a 25% decrease in power

consumption.

6.2.1 Overhead

 The overhead of the load balancing model was calculated by running the

evaluated workloads with certain parameters. The execution times of the four program

workloads run with large and native datasets, four threads, and with OS-set affinities are

first collected. Next, the same workloads are run through the load balancing model

script, and a flag is set so that all of the work by the script is completed, except for the

actual migrations, in which case the ‘taskset’ command is not executed. This allows for

an evaluation of the model’s overhead in terms of execution time. Figures 14 and 15

compare the execution times for each workload run with and without the load balancing

model invoked for large and native datasets, establishing the overhead.

0

5

10

15

20

25

30

35

bodytrack, facesim,
swaptions x2

blackscholes,
swaptions, canneal

x2

bodytrack, freqmine,
swaptions, x264

freqmine x2, x264 x2 blackscholes,
swaptions,

streamcluster x2

Av
er

ag
e

Po
w

er
 C

on
su

m
pt

io
n

Sa
vi

ng
s

(%
)

38

Figure 14: Load balance model overhead- 4 program workload, 4 threads, large dataset

Figure 15: Load balance model overhead- 4 program workload, 4 threads, native dataset

6.2.2 Summary

 The goal was to establish that there is a power cap that most systems must run

under, and the model successfully and consistently provides a migration policy that

consumes less power than the default scheduler. In all cases shown, regardless of what

any specific workload characteristics are, the load balancing model provides an affinity

0

2

4

6

8

10

12

14

bodytrack,
facesim, swaptions

x2

blackscholes,
swaptions,
canneal x2

bodytrack,
freqmine,

swaptions, x264

freqmine x2, x264
x2

blackscholes,
swaptions,

streamcluster x2

Ex
ec

ut
io

n
tim

e
(s

)

OS

ALG

0

50

100

150

200

250

300

bodytrack,
facesim,

swaptions x2

blackscholes,
swaptions,
canneal x2

bodytrack,
freqmine,

swaptions, x264

freqmine x2, x264
x2

blackscholes,
swaptions,

streamcluster x2

Ex
ec

ut
io

n
tim

e
(s

)

OS

ALG

39

configuration that balances out the load of the system and consumes less power.

Additionally, the model is able to overcome an initial distributed affinity, and still

provide that power savings. Due to a performance tradeoff, however, additional

considerations must be taken in order to provide a more efficient scheduler.

6.3 Workload Speed Up with Resource Sharing

 The resource sharing model was evaluated by comparing the execution times of a

workload launched with varying parameters. Two types of workloads were explored:

single program and multi-program. Each workload was launched with two, four, and

eight threads, and its execution time was recorded to reflect the speedup of the resource

sharing model over the OS set affinity, and a distributed affinity. The model was found

to be the most effective when each of the workloads was executed using two threads and

is reported here. For single program, two threaded workloads, and a native dataset,

Figure 16 illustrates the overall speedup of the resource sharing migration model over the

default OS scheduler. Figure 17 follows with the overall speedup of the migration model

over a distributed affinity.

Figure 16: Speed up of the resource sharing model over OS-set affinity, single program
workload, 2 threads, native dataset

0.8

0.9

1

1.1

1.2

1.3

1.4

Sp
ee

du
p

ov
er

 O
S-

se
t a

ffi
ni

ty

40

Figure 17: Speed up of the resource sharing model over a distributed affinity, single
program workload, 2 threads, native dataset

The single program workloads help to identify some interesting results. The

greatest speedup when employing the resource sharing model over both the OS-set

affinity and a distributed affinity, occurred when running the following applications:

blackscholes, raytrace, swaptions and x264. These programs exhibit characteristics

spanning opposite ends of the ranges. For example, blackscholes features a small

working set and low data sharing. Raytrace, on the other hand, utilizes an unbounded

working set and features high data sharing. Swaptions and x264 both use a medium size

working set, but require low and high data sharing respectively. The model makes a

successful decision to either consolidate or not in the above cases, regardless of

characteristics, that results in improved execution times, and consequently reduces power

consumption.

For multi-program workloads, the data is represented in the same manner as with

single workloads. Figure 18 shows the speed up of the resource model over the default

0.8

0.9

1

1.1

1.2

1.3

1.4
Sp

ee
du

p
ov

er
 d

is
tr

ib
ut

ed
 a

ffi
ni

ty

41

scheduler, and Figure 19 illustrates the speed up over a distributed affinity.

Figure 18: Speed up of the resource sharing model over OS-set affinity

Figure 19: Speed up of the resource sharing model over a distributed affinity

The multi-program workloads offer additional insight into the behavior of the

model. The greatest speed up over an OS-set affinity is seen with the following multi-

program workloads: blackscholes and swaptions, and blackscholes and x264. Here a

combination of small and medium working sets are found, as well as data sharing ranging

from low to high. This implies that the model is capable of making consolidation

0.8
0.9

1
1.1
1.2
1.3
1.4

Sp
ee

du
p

ov
er

 O
S-

se
t a

ffi
ni

ty

0.8

1

1.2

1.4

1.6

1.8

Sp
ee

du
p

ov
er

 d
is

tr
ib

ut
ed

 a
ffi

ni
ty

42

decisions based on those shared resources regardless of the degree of sharing. The

greatest speed up over a distributed affinity is again seen with blackscholes and x264, as

well as with two instances of the raytrace application. Raytrace features an unbounded

working set and high sharing. Launching two instances of raytrace with a distributed

affinity would force half of the threads to access memory not in their respective cohort.

The resource sharing model essentially consolidates one instance of raytrace to one

cohort, and the other instance to the other. The result is a significant increase in runtime,

thereby effectively reducing power consumption.

6.3.1 Overhead

A final comparison in execution times between a workload executed with a

consolidated affinity using both the default scheduler and the resource sharing model

reveals the amount of overhead that the model incurs. Figures 20 and 21 show the

overhead of the model by comparing the runtime of the same workloads started with a

consolidated affinity, and scheduled with the default scheduler and with the resource

sharing model.

43

Figure 20: Overhead of the resource sharing model for single program workloads

Figure 21: Overhead of the resource sharing model for multi-program workloads

6.3.2 Summary

 The resource sharing model increases the amount of utilized dynamic feedback

and considers a total of four performance metrics. This yields a more judicious model

than what the previous greedy algorithm provided, and reduces the performance trade-off

seen with the load balancing migration policy. The results presented reflect single

-1

1

3

5

7

%
 C

ha
ng

e
in

 e
xe

cu
tio

n
tim

e

-4

-2

0

2

%
 C

ha
ng

e
in

 e
xe

cu
tio

n
tim

e

44

program and multi-program workloads. Table 6 shows a summary of the resource

model’s overall speedup over an OS-set affinity, and a distributed affinity.

Table 6: Percentage of experiments where the resource sharing model provided a speed
up in execution time

% of experiments
where the model

provided speed up
over OS-set affinity

% of experiments
where the model

provided speed up
over distributed affinity

Single Program 83.33% 50.00%
Multi-program 66.67% 75.00%

From Table 6, it is evident that reducing shared resource contention between

concurrently running programs reduces execution time a majority of the time.

6.4 Energy Efficiency with Machine Learning Models

 The three machine learning models were tested on two systems: Nehalem and

Sandy Bridge II. Single workloads were first run with large and native datasets, and

execution times are compared between the default OS scheduler handling the migration

and the three algorithms: decision tree, SVM, and Bayes. Figure 22 presents the

execution times of the OS scheduler and the SVM model for a large dataset.

45

Figure 22: OS scheduler and SVM ML model execution times- single workload, 2 threads,
large dataset, Nehalem platform

Similar results were found for the other two algorithms, so attention is directed to multi-

program workloads. Figures 23-25 show the execution times for two program workloads

launched with two threads each, and a large dataset. A comparison is made between the

times when the OS schedules and when each of the models handles the scheduling.

Figure 23: OS scheduler and Decision Tree ML model execution times- multi-program
workload, 2 threads, large dataset, Nehalem platform

0
2
4
6
8

10
12
14
16
18

Ex
ec

ut
io

n
Ti

m
e

(s
)

OS

SVM

0
2
4
6
8

10
12
14
16
18
20

bl
ac

ks
ch

ol
es

, r
ay

tra
ce

bl

ac
ks

ch
ol

es
, f

re
qm

in
e

bl
ac

ks
ch

ol
es

, f
ac

es
im

bl

ac
ks

ch
ol

es
, s

w
ap

tio
ns

ca

nn
ea

l,
st

re
am

cl
us

te
r

ca
nn

ea
l,

flu
id

an
im

at
e

fa
ce

si
m

, s
w

ap
tio

ns

fa
ce

si
m

, f
lu

id
an

im
at

e
fa

ce
si

m
, x

26
4

fe
rr

et
, s

w
ap

tio
ns

fe

rr
et

, c
an

ne
al

fe

rr
et

, x
26

4
flu

id
an

im
at

e,
 ra

yt
ra

ce

flu
id

an
im

at
e,

 s
w

ap
tio

ns

fre
qm

in
e,

 ra
yt

ra
ce

fre

qm
in

e,
 c

an
ne

al

ra
yt

ra
ce

, r
ay

tra
ce

ra

yt
ra

ce
, s

w
ap

tio
ns

ra

yt
ra

ce
, c

an
ne

al

sw
ap

tio
ns

, x
26

4
sw

ap
tio

ns
, b

od
yt

ra
ck

x2

64
, c

an
ne

al

x2
64

, r
ay

tra
ce

m

ea
n

Ex
ec

ut
io

n
Ti

m
e

(s
)

OS

Decision Tree

46

Figure 24: OS scheduler and SVM ML model execution times- multi-program workload, 2
threads, large dataset, Nehalem platform

Figure 25: OS scheduler and Bayes ML model execution times- multi-program workload, 2
threads, large dataset, Nehalem platform

The execution times of all three models in comparison to the OS scheduler, on

average, were consistently less for multi-program workloads using large datasets.

Single program workloads with native datasets were also run to obtain additional

insight to possible behavior differences that may be data dependent. Figure 26 features

the execution time comparison between the OS scheduler and a decision tree machine

0
2
4
6
8

10
12
14
16
18
20

Ex
ec

ut
io

n
Ti

m
e

(s
)

OS

SVM

0
2
4
6
8

10
12
14
16
18
20

Ex
ec

ut
io

n
Ti

m
e

(s
)

OS

Bayes

47

learning model. Figure 27 shows the same comparison using a SVM model, and Figure

28 features the Bayesian model.

Figure 26: OS scheduler and Decision Tree ML model execution times- single workload, 2
threads, native dataset, Nehalem platform

Figure 27: OS scheduler and SVM ML model execution times- single workload, 2 threads,

native dataset, Nehalem platform

0

100

200

300

400

500

600

Ex
ec

ut
io

n
Ti

m
e

(s
)

OS

Decision Tree

0

100

200

300

400

500

600

Ex
ec

ut
io

n
Ti

m
e

(s
)

OS

SVM

48

Figure 28: OS scheduler and Bayesian ML model execution times- single workload, 2
threads, native dataset, Nehalem platform

Again, we see the same consistent behavior from the machine learning models,

with single program workloads and native datasets. Certain programs don’t see the same

time improvement from the machine learning models such as bodytrack, ferret and

facesim, and all three programs vary in working set size and sharing. This implies that

there may be thread activity within the program that inhibits the machine learning model

to provide better performance and requires further investigation.

The machine learning model was also evaluated on the Sandy Bridge II platform.

Figure 29 shows the highest obtainable gain in execution times, energy and power for

single process workloads run with a native dataset and two threads, if the three machine

learning models were to be combined.

0

100

200

300

400

500

600

Ex
ec

ut
io

n
Ti

m
e

(s
)

OS

Bayes

49

Figure 29: Highest obtainable gain by combining all three machine learning models

Figure 29 shows that the greatest gain offered by the machine learning model is power

savings. On average, the model provides about 1.4 times less power consumption than

the OS scheduler which can be significant in certain applications.

6.4.1 Model Accuracy

 To evaluate the quality of the machine learning models, we performed a 10-fold

cross validation during training. In this process, models were trained on 90% of the

training data points and then evaluated on the remaining 10%. This process was repeated

ten times, where each time, the 10% of the data points to be left out was selected

randomly.

 Table 7 presents the results of the cross-validation on the three models. We report

the average percentage of correctly classified instances for both single-program and

0.00

0.50

1.00

1.50

2.00

2.50

Pe
rf

or
m

an
ce

 a
nd

 E
ne

rg
y

G
ai

ns

Execution Time

Energy

Power

50

multi-program workloads. ‘Correctly classified’ implies that the model was able to pick

the best known thread configuration for the workload.

Table 7: Average percentage of correctly classified instances of workloads by machine
learning models

	 	 Single-‐Program	 	 Multi-‐Program	
Decision	 Tree	 75%	 100%	
SVM	 75%	 83%	
Bayes	 79%	 83%	

We observe that the accuracy of all three models is lower for the single program

workloads. This is expected, as the number of samples was much smaller in this case.

Somewhat surprisingly, the accuracy does not improve markedly for SVM or Bayes

when moving to multi-program workloads. We do see a significant improvement in

Decision Tree, which yields almost perfect accuracy.

6.4.2 Summary

 The single program workloads that were tested using a large dataset did not

benefit as much from the machine learning model’s scheduling policy. Due to the

overhead of the model and the workloads completing within a few seconds, obtaining

better performance was limited. An increase in the model’s performance with a large

dataset was seen when an additional program was added to the workload. The multi-

program workloads run with the decision tree algorithm executed quicker than the OS

scheduled workload 74% of the time. The SVM model performed better 70% of the

time, and the Bayesian model had increased performance 96% of the time. Native

datasets have much greater execution times, minimizing the effect that the model’s

overhead has on overall performance. The decision tree model provided a mean speedup

51

over the OS scheduler of 1.126 or roughly 12.6%. The SVM model provides an average

speedup of 1.13 or 13%, and the Bayesian model shows a speedup of 1.13 or 13%. When

combining all three models, the greatest possible expected gain is ~1.25.

52

CHAPTER 7

Conclusion

The demand for power efficient computing offers an opportunity for innovative

methods to be adopted when considering task scheduling in processors. Though

traditional OS schedulers do take several considerations when making decisions, power

efficiency is often overlooked. This research presents a novel approach to developing a

power aware migration policy capable of utilizing dynamic feedback to guide decisions.

Three different approaches are evaluated including two analytical models and one

machine learning method.

First, a greedy algorithm is developed with the goal of providing a migration

policy that promotes a balanced load to the available processors, and can operate within

an established power cap. A continuous evaluation of the workload’s effect on each

core’s utilization level helps to determine the migration of individual threads. The

‘greedy’ nature of the algorithm yields a method that is successful at reducing power

consumption with a performance trade-off.

The second proposed model considers shared resources. Additional hardware

performance counters are probed to determine whether consolidation would be a power

saving option. Once the decision is made, execution is resumed and allowed to finish.

The last approach is a machine learning approach that is trained on the same

metrics that the shared resource model employs. The trained model evaluates certain

performance counters at runtime, and decides if consolidation is beneficial or not. Once

the decision is made, execution is allowed to resume. Three different algorithms are

explored to offer various perspectives.

53

An evaluation of each model reveals certain strengths and weaknesses in

approach. Various single and multi-program workloads are developed that exhibit known

effects on available hardware resources. Every workload’s performance is evaluated

when scheduled with the default scheduler, and with each proposed model. Results

indicate that an increase in metric consideration positively effects both runtime and

power consumption, and that a machine learning approach can be a very effective

technique for energy efficiency through thread migration.

7.1 Recommendations for Future Work and Research Expansion

 The following proposals offer opportunity for better performance and possibly

greater power savings.

1. A new model can be developed that combines the metrics employed with the load

balancing and shared resource models. Factoring in both core utilization and shared

resources may offer additional benefits due to the added consideration.

2. Rather than evaluating the combined effect of the three algorithms employed with the

machine learning approach, a heuristic can be developed that successfully opts to use

the algorithm with the best expected performance given a particular workload’s

characteristics.

3. Workloads can be modified to include a greater amount of parameter variation,

introducing new scenarios for evaluation and training data collection.

54

REFERENCES

[1] The Linux Kernel Archives. The Linux Kernel Association. Web. 19 June 2014.

[2] R. Love. (2005) Linux Kernel Development 2nd Ed. Retrieved from
http://www.makelinux.net/books/lkd2/ch04lev1sec2

[3] S. Eranian. What can performance counters do for memory subsystem analysis? In
Proceedings of the 2008 ACM SIGPLAN workshop on Memory systems performance and
correctness, MSPC ’08, ACM, pages 26-30, 2008.

[4] S. Sarangkar.and A. Qasem. A Model-driven Adaptive Tuning System for Parallel
Workloads. In Journal of Parallel and Cloud Computing, pages 50-64, 2012.

[5] S. Rahman and R. Hay. Enhancing Learning-based Autotuning with Composite and
Diagnostic Feature Vectors. In 26th International Conference on High Performance
Computing, Networking, Storage and Analysis. 2013.

[6] M. Burtscher, B. Kim, J. Diamond, J. McCalpin, L. Koesterke and J. Browne.
PerfExpert: An Easy-to-Use Performance Diagnosis Tool for HPC Applications. In
Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis. 2010.

[7] M. Tikir and J.K. Hollingsworth. Using Hardware Counters to Automatically
Improve Memory Performance. In Proceedings of the ACM/IEEE Conference for High
Performance Computing, Networking, Storage and Analysis. 2004.

 [8] J. Chen, L.K. John, and D. Kaseridis. Modeling program resource demand using
inherent program characteristics. In Proceedings of the ACM SIGMETRICS joint
international conference on Measurement and modeling of computer systems (San Jose,
CA, 2011) SIGMETRICS ’11, ACM, pages 1-12, 2011.

[9] K. Lee and K. Skadron. Using performance counters for runtime temperature sensing
in high-performance processors. In Proceedings of Parallel and Distributed Processing
Symposium(2005).

[10] G. Contreras, and M. Martonosi. Power prediction for Intel XScale reg; processors
using performance monitoring unit events. In Proceedings of the 2005 International
Symposium on Low Power Electronics and Design, pages 221-226, 2005.

[11] K. Singh, M. Bhadhauria, and S. McKee. Real time power estimation and thread
scheduling via performance counters. In ACM SIGARCH Computer Architecture News,
pages 46–55, May 2008.

55

[12] R. Azimi, D.K. Tam, L. Soares and M. Stumm. Enhancing Operating System
Support for Multicore Processors by Using Hardware Performance Monitoring. In
SIGOPS Oper. Syst. Rev.(New York, NY, 2009), ACM, pages 56-65, April 2009.

[13] Bhattacharjee and M. Martonosi. Thread criticality predictors for dynamic
performance, power, and resource management in chip multiprocessors. In Proceedings
of the 36th Annual International Symposium on Computer Architecture, ISCA ’09, pages
290–301, 2009.

[14] O. Sarood, and L. V. Kale. A ’Cool’ Load Balancer for Parallel Applications. In
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (New York, NY, USA, 2011), SC ’11, ACM, pages
21:1–21:11.

[15] E. Musoll. Energy and thermal tradeoffs in hardware-based load balancing for
clustered multi-core architectures implementing power gating. In Proceedings of the
2008 IEEE Symposium on Application Specific Processors, SASP ’08, pages 89 –94,
2008.

[16] Z. L. Zong, A. Manzanares, X. J. Ruan, and X. Qin. EAD and PEBD: Two Energy-
Aware Duplication Scheduling Algorithms for Parallel Tasks on Homogeneous Clusters.
In IEEE Transactions on Computers, Vol. 60, Issue 3, pages 360-374, March 2011.

[17] R. Teodorescu and J. Torrellas. Variation-Aware Application Scheduling and Power
Management for Chip Multiprocessors. In Proceedings of the 35th Annual International
Symposium on Computer Architecture, ISCA ’08, 2008.

[18] D. Tam, R. Azimi, and M. Stumm. Thread clustering: sharing-aware scheduling on
SMP-CMP-SMT multiprocessors. In Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, EuroSys ’07, pages 47–58, 2007.

[19] J.A. Brown, L. Porter, and D.M. Tullsen. Fast thread migration via cache working
set prediction. In Proceedings of HPCA’11, Feb 2011.

[20] M. Kandemir, T. Yemliha, S. Muralidhara, S. Srikantaiah, M. J. Irwin, and Y.
Zhang. Cache topology aware computation mapping for multicores. In PLDI ’10, pages
74–85, New York, NY, USA, 2010. ACM.

[21] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki, G. E. Blelloch, B.
Falsafi, L. Fix, N. Hardavellas, T. C. Mowry, and C. Wilkerson. Scheduling threads for
constructive cache sharing on CMPs. In SPAA’07, pages 105–115, 2007.

[22] A. Merkel, J. Stoess and F. Bellosa. Resource-conscious scheduling for energy
efficiency on multicore processors. In Proceedings of the 5th European conference on
Computer system, EuroSys ‘10, 2010.

56

[23] S. Boyd-Wickizer, R. Morris and M.F. Kaashoek. Reinventing scheduling for
multicore systems. In Proceedings of the 12th conference on Hot topics in operating
systems, HotOS ’09, 2009.

[24] D. Tam, R. Azimi and M. Stumm. Thread clustering: sharing-aware scheduling on
SMP-CMP-SMT multiprocessors. In Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems, 2007.

[25] M. Banikazemi, D. Poff and B. Abali. PAM: a novel performance/power aware
meta-scheduler for multi-core systems. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, 2008.

[26] Vega, P. Bose, A. Buyuktosunoglu. Power-Aware Thread Placement. In SMT/CMP
Architectures. Workshop on Energy Efficient Design (WEED), in conjunction with
ISCA, June 2012.

[27] Vega, P. Bose, A. Buyuktosunoglu. SMT-centric power-aware thread placement in
chip multiprocessors. In PACT 2013 Proceedings of the 22nd international conference
on Parallel architectures and the compilation techniques, pages 167-176.

[28] Decision tree learning. (n.d.). In Wikipedia. Retrieved October 21, 2014, from
http://en.wikipedia.org/wiki/Decision_tree_learning

[29] Support vector machine. (n.d.). In Wikipedia. Retrieved October 21, 2014, from
http://en.wikipedia.org/wiki/Support_vector_machine

[30] Bayesian network. (n.d.). In Wikipedia. Retrieved October 21, 2014, from
http://en.wikipedia.org/wiki/Bayesian_network

[31] J. Treibig, G. Hager, G. Wellein, and M. Meier. 2011. Poster: LIKWID: lightweight
performance tools. In Proceedings of the 2011 companion on High Performance
Computing Networking, Storage and Analysis Companion (SC '11 Companion). ACM,
New York, NY, USA, pages 29-30. http://doi.acm.org/10.1145/2148600.2148616

[32] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and
N.R. Tallent. HPCToolkit: Tools for performance analysis of optimized parallel
programs. Concurrency and Computation: Practice and Experience, 22(6):685–701,
2010.

[33] Parsec- A unit of measure. Princeton University. 2007-2010. Retrieved July, 2013,
from http://parsec.cs.princeton.edu

	Alvarado_Thesis_FrontMatter.pdf
	Alvarado_Thesis_DocumentText_v1.pdf

