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Abstract

We study existence of continuous weak (viscosity) solutions of Dirichlet and Cauchy-

Dirichlet problems for fully nonlinear uniformly elliptic and parabolic equations. Two

types of results are obtained in contexts where uniqueness of solutions fails or is un-

known. For equations with merely measurable coefficients we prove solvability of the
problem, while in the continuous case we construct maximal and minimal solutions.

Necessary barriers on external cones are also constructed.

0. INTRODUCTION

The main results of this note concern existence of continuous solutions of the
Dirichlet problem for fully nonlinear elliptic equations as well as parabolic variants.
To illustrate the issues, we consider the Isaacs’ equation

sup
α
inf
β

(
−

n∑
i,j=1

aα,βi,j (x)uxi,xj (x) +
n∑
j=1

bα,βj (x)uxj (x) + c
α,β(x)u(x)− fα,β(x)

)
= 0

(0.1)
in a bounded open domain Ω ⊂ Rn coupled with the Dirichlet condition

u(x) = ψ(x) for x ∈ ∂Ω (0.2)

in two situations. In both cases the indices α, β can range over countable sets while
the symmetric matrices Aα,β =

(
aα,βi,j
)
, the vectors bα,β = (bα,β1 , . . . , bα,βn ), and the

functions cα,β satisfy
λI ≤ Aα,β(x) ≤ ΛI (0.3)

for some positive constants 0 < λ ≤ Λ, and

|bα,β(x)| ≤ γ, 0 ≤ cα,β(x) ≤ γ (0.4)

for some constant γ, both uniformly in α, β. In the first situation, the functions Aα,β ,
bα,β , cα,β and fα,β are equicontinuous and equibounded on Ω; we will call this the
continuous coefficient case. The continuous coefficient case stands in contrast to the
measurable coefficient case which assumes (0.3), (0.4), the mere measurability of the
data Aα,β , bα,β , cα,β , fα,β, and the technical but essential condition infα supβ f

α,β ∈
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Ln(Ω). In both cases, the domain Ω satisfies a uniform exterior cone condition while
ψ ∈ C(∂Ω).

As far as we know, no existence result in the literature covers the Dirichlet
problem for (0.1) for the continuous coefficient case in the generality stated. When
speaking of solutions in this note, we mean continuous viscosity solutions. For
background color, we note that the continuous coefficient linear equation

−
n∑

i,j=1

ai,j(x)uxi,xj (x) +

n∑
j=1

bj(x)uxj (x) + c(x)u(x) − f(x) = 0 (0.5)

is a special case of (0.1). Of course, the Dirichlet problem for (0.5) has a unique
strong (here meaning W 2,n

loc pointwise a.e.) solution, which by [4], Theorem 2.10 and
Proposition 2.9, is a unique viscosity solution. However, it is an interesting artifact of
the history of the subject that there seems to be no quotable direct statement of the
existence of viscosity solutions of the Dirichlet problem in the literature covering this
case. However, there are “good solutions” - see e.g. Cerutti, Fabes and Manselli [6]
- and “good solutions” are standard viscosity solutions in the continuous coefficient
linear case. The current note handles the general Isaacs’ equations in a similar
manner, and puts the matter in some perspective. Moreover, we treat the parabolic
analogue as well. Finally, existence is proved for the measurable coefficient case in
both the elliptic and parabolic settings.

We will use two viscosity solution contexts. The continuous coefficient case
lies within the “classical” viscosity solutions theory outlined in [8]. The measurable
coefficient case requires infrastructure from Caffarelli, Crandall, Kocan and Świe

↪
ch

[4], and Crandall, Fok, Kocan and Świe
↪
ch [7]. The body of the paper is organized

to accommodate the reader who is not interested in the more technical measurable
coefficient case at this time.

The outline of our method is standard. In both cases, a fully nonlinear equation
F = 0 including the Isaacs’ equation as a special case is treated. The equation F = 0
is approximated by better equations F ε = 0 for which the Dirichlet problem is
uniquely solvable, the solutions of the approximate problems are uniformly bounded
and equicontinuous, and the approximations were set up so that available results
guarantee that the original problem is solved by uniform limits of solutions of the
approximate problems. This last step uses the appropriate result from viscosity
solutions theory, which varies between the two cases.

In the continuous coefficient case, we exploit the additional structure to bracket
the original equation by approximations Fε ≤ F ≤ F ε which are monotone in
the parameter ε. This automatically constructs maximal and minimal solutions
of the original Dirichlet problem. The approximation process is interesting and
replaces linear equations by nonlinear equations. In the measurable coefficient case
(which of course includes the continuous coefficient case), approximation is by simple
mollification of the equation in the independent variables. We remark that as this
paper goes to print R. Jensen and A. Świe

↪
ch have a paper in preparation which

establishes the existence of maximal and minimal solutions in the measurable case
using different arguments than employed by us in the continuous case.

Part of our motivation arises from the desire to quote these results elsewhere.
Part of our motivation is that others should have a quotable source for these results.



EJDE–1999/24 Existence results for boundary problems 3

But there is a bit more to the matter than that. For example, if the viscosity solution
framework is to provide a basic existence platform for uniformly elliptic equations
(in particular, we mean to exclude the use of second derivative estimates on solutions
of the equation under discussion, as these are not available in general), as perhaps
it should, then certainly it is nice to have the linear equation appear as special case
of a general nonlinear result for (0.1) with little cost for the added generality.

The existence of continuous solutions is historically linked to uniqueness via
Ishii’s implementation of Perron’s method (e.g., [8], Section 4). The issue of unique-
ness of viscosity solutions of Isaacs’ equation fans out in two directions. If additional
restrictions are put on the coefficients beyond those of the continuous coefficient case,
one can establish uniqueness and then existence by standard viscosity solutions the-
ory (see Ishii and Lions [15] and [8]) even for some degenerate equations ((0.3) need
not hold). If the equation is uniformly elliptic and either convex or concave in
the Hessian matrix – as is the case for (0.1) when aα,β is independent of β – the
existence of strong solutions in the continuous coefficient case is a consequence of
Caffarelli’s estimates [2] (see Caffarelli and Cabré [3]) and some further arguments,
see [4]. Świe

↪
ch [28], Theorem 3.1, provides a sufficiently general statement. In the

presence of strong solutions, viscosity solutions are unique as noted above. For other
available results on the existence of continuous viscosity solutions we refer to [8], [15]
and Trudinger [31].

Existence for the problems studied here is decoupled from uniqueness and higher
regularity by means of simple approximations and compactness arguments. Unique-
ness in general remains an interesting issue for the continuous coefficient case of
Isaacs’ equation and fails even for the linear equation in the measurable coefficient
case according to Nadirashvili [24], see also Safonov [27]. Further comments on
uniqueness issues can be found in Section 1.

Our results in the measurable coefficient case may be regarded as a fully nonlin-
ear generalization of the well-known “good solution” existence theory for the linear
problem (0.5), (0.2); see Cerrutti, Escauriaza and Fabes [5]. Existence for the linear
problem in the good solution framework is demonstrated by smoothing the coeffi-
cients of the problem, using the estimates of Krylov and Safonov [19], [14] to obtain
compactness and defining by fiat the limit of strong solutions of approximate prob-
lems to be a good solution. We follow this outline, but do not have regular solutions
available at any stage of approximation. Thus we rely on viscosity solution theory
to provide solutions of approximate problems and on a suitable intrinsic notion of
solution of the equation itself when passing to the limit.

Section 1 contains some preliminaries and the statement of the result on max-
imal and minimal solutions in the continuous coefficient case. Section 2 contains
the proof of existence together with its parabolic analogue. An ingredient used in
the proof of Section 2 is the existence of subsolutions and supersolutions. These are
constructed in Section 3. We present explicit constructions here since a quotable
reference is needed and the literature concerning this issue under the exterior cone
condition is a little hazy (see Remark 3.3 and various comments made in Section 3).
Section 4 treats the measurable coefficient case.

1. PRELIMINARIES

The equation (0.1) can be written as F (x, u(x),Du(x),D2u(x)) = 0, where
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F (x, r, p,X) is defined for x ∈ Ω, r ∈ R, p ∈ Rn and X ∈ S(n) (the set of symmetric
n× n real matrices) by

F (x, r, p,X) = sup
α
inf
β

(
−Trace(Aα,β(x)X) + 〈bα,β(x), p〉+ cα,β(x)r − fα,β(x)

)
.

(1.1)
Here 〈·, ·〉 denotes the Euclidean inner-product.

Properties of F guaranteed by (0.3) and (0.4) are recalled next. Let X+, X−

denote the positive and negative parts of X ∈ S(n); e.g. X = X+ − X− and
Trace(X+) is the sum of the positive eigenvalues of X. Let

P+(X) = −λTrace(X+)+ΛTrace(X−), P−(X) = −ΛTrace(X+)+λTrace(X−)

be the “Pucci extremal operators”. It is standard and straightforward to show that
F satisfies the following conditions:

P−(X − Y )− γ|p − q| ≤ F (x, r, p,X) − F (x, r, q, Y ) ≤ P+(X − Y ) + γ|p − q|
(1.2)

for x ∈ Ω, r ∈ R, p, q ∈ Rn and X,Y ∈ S(n), and

F (x, r, p,X) is nondecreasing in r. (1.3)

To prove (1.2), one first treats a single linear operator and then observes that the
inequalities are preserved under sup-infs. For convenience, we adopt the shorthand:

F ∈ SC ⇐⇒ (1.2) & (1.3) hold.

The parameters λ,Λ, γ are fixed throughout the discussion. SC corresponds to
“structure conditions”.

The first inequality of (1.2) with p = q shows that F (x, r, p,X) is nonincreasing
in X, which together with the monotonicity in r is the meaning of “F is proper” in
the language of [8]. When F is proper and continuous, [8] outlines the basic theory
of merely continuous viscosity solutions of F = 0.

Our main result in the continuous coefficient elliptic case concerns the Dirichlet
problem (DP) below. In (DP) and everywhere else, Ω is assumed to be a bounded
open domain in Rn, n ≥ 2.

F (x, u,Du,D2u) = 0 in Ω, u = ψ on ∂Ω. (DP)

Terminology used in the statement is explained following it.

Theorem 1.1. Let Ω satisfy a uniform exterior cone condition, F ∈ SC and
ψ ∈ C(∂Ω). Assume also that F is continuous. Then there are C-viscosity solutions
u, u ∈ C(Ω) of (DP) such that any other C-viscosity solution u of (DP) satisfies
u ≤ u ≤ u.

We note again that neither the theory of [8] nor additional results of [15] appli-
cable to the case F ∈ SC provide uniqueness of solutions of the Dirichlet problem for
continuous F ∈ SC; the question seems to be open. This is one reason the existence
issue has not been treated to date. It remains possible that uniqueness holds and
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u = u = u. Further comments on the current situation regarding uniqueness can be
found at the end of this section.

The “uniform exterior cone condition” is recalled in Section 3, during the con-
struction of appropriate subsolutions and supersolutions. One of the resources pro-
vided by this work is a quotable source for these subsolutions and supersolutions
under this general assumption on the boundary.

It remains to explain the term a “C-viscosity solution of (DP)”. There are two
parts to this: the equation and the boundary condition. The boundary condition is
interpreted in the strict sense:

u(x) = u(x) = ψ(x) for x ∈ ∂Ω.

Regarding the equation “C-viscosity” means what “viscosity” means in [8]. That
is, u is a C-viscosity solution of F ≤ 0 (equivalently, a C-viscosity subsolution of
F = 0) if u ∈ USC(Ω) – the space of all upper semicontinuous functions on Ω
– and for every ϕ ∈ C2(Ω) and local maximum point x̂ ∈ Ω of u − ϕ, one has
F
(
x̂, u(x̂),Dϕ(x̂),D2ϕ(x̂)

)
≤ 0. The notion of a C-viscosity supersolution (equiv-

alently, a solution of F ≥ 0) arises by replacing “upper semicontinuous” by “lower
semicontinuous”, “max” by “min” and reversing the inequality to

F
(
x̂, u(x̂),Dϕ(x̂),D2ϕ(x̂)

)
≥ 0 .

C-viscosity solutions are functions which are simultaneously a C-viscosity subso-
lution and a C-viscosity supersolution. The appendage of the modifier “C” here
results from the fact that “Lp-viscosity” notions are used in Section 4, and it will
be necessary to refer to both concepts there. The parabolic case is incorporated in
the obvious way (or see [8]).

At this juncture, we revisit the uniqueness issue. In the course of proof of The-
orem 1.1, continuous C-viscosity subsolutions and supersolutions of (DP) satisfying
the boundary condition will be constructed. This demonstration uses F ∈ SC. If
we also know that a subsolution u and a supersolution v of F = 0 in Ω satisfying
u,−v ∈ USC(Ω) and u ≤ v on ∂Ω must satisfy u ≤ v in Ω, then it is standard that
there is a unique solution of (DP). When this strong comparison result holds, we
say comparison holds.

To assert that comparison holds via the theorems of [8] and [15] one must impose
structure on the continuity of F (x, r, p,X) in x. In the current case, for F given by
(1.1), if the Aα,β , etc., are uniformly continuous in x uniformly in α, β, then

|F (x, r, p,X) − F (y, r, p,X)| ≤ ω(|x− y|)(1 + |r|+ |p|+ ‖X‖) (1.4)

for some continuous ω: [0,∞)→ [0,∞) satisfying ω(0) = 0 (‖X‖ is any matrix norm
of X); ω is obtained from the uniform moduli of continuity of the coefficients of the
linear operators.

While proving uniqueness it is enough however to establish comparison for two
solutions, say u and v. It follows from the results of Caffarelli [2], that F ∈ SC and
(1.4) are enough to guarantee that C-viscosity solutions of F = 0 are C1,αloc for all
0 < α < ᾱ, where ᾱ = ᾱ(λ,Λ, n) ∈ (0, 1). (See also Trudinger [29] for an early result
in this direction and Świe

↪
ch [28], Theorem 2.1, for a more general statement.) In
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particular, u, v ∈ C1,αloc , and then uniqueness can be proved under restrictions on ω
as follows. First, by Section V.1 of [15], without loss of generality we can assume
that u solves F ≤ −κ for some κ > 0. Then we can combine the proof of Proposition
III.1 (2) of [15] with the arguments from Section 5.A of [8] (which show how to relax
the standard comparison assumptions when functions are C1,α) to prove comparison
if ω in (1.4) satisfies ω(r) ≤ Crθ for some θ > (1− ᾱ)/(2− ᾱ). This approach makes
full use of SC. If θ > 1

2 then F ∈ SC can be somewhat weakened, and uniqueness of
solutions still holds, see [15]. For other results in this direction see Jensen [16] and
Trudinger [31].

For the continuous coefficient linear case (0.5) existence of W 2,n
loc (Ω) solutions is

known. These solutions are also unique C-viscosity solutions – this is a special case
of Theorem 2.10 of [4] aided by Proposition 2.9 of the same work. For the elliptic
case, the most general results on existence of W 2,n

loc (Ω) solutions for F ∈ SC and
convex or concave in the Hessian are found in [28]; the parabolic analogue is in [10]
(which makes use of the results herein). These latter results rely on foundational
estimates of Caffarelli [3], Wang [32] and the contributions of Escauriaza [11].

Finally, in the good solution framework for linear equations, the results and
commentary of Safonov [25] and Cerutti, Fabes and Manselli [6] indicate what is
known on the positive side. As mentioned in the introduction, Nadirashvili [24]
shows nonuniqueness in general. See also Safonov [27].

2. EXISTENCE PROOF FOR CONTINUOUS F

Throughout this section, the terms subsolution, supersolution and solution mean,
respectively, C-viscosity subsolution, C-viscosity supersolution and C-viscosity solu-
tion (see above).

We are ready for the proof of Theorem 1.1.

Proof of Theorem 1.1. The idea for the proof, once conceived, makes the rest simple.
The point is to find approximating equations Fε = 0 and F

ε = 0 with better
dependence on x and satisfying Fε ≤ F ≤ F ε. Even if F is linear, there is in
general no linear approximation with the properties we need. Put

Fε(x, r, p,X) = min
y∈Ω

(
F (y, r, p,X) + 1

ε
|x− y|

)
. (2.1)

Since for each fixed y ∈ Ω

F (y, r, p,X) + 1
ε
|x− y|

belongs to SC and has the same parameters γ, λ,Λ and continuity in r as F , Fε
shares these properties. The striking thing is that Fε is Lipschitz continuous in x
with constant 1/ε uniformly in r, p,X while preserving the rest of the structure. The
operation of “inf-convolution” used here is standard, but this use of it is unusual.
By the definition Fε ≤ F (choose y = x in (2.1)). Next, F is continuous on Ω×R×
R
n×S(n), so for R > 0 there exists ωR: [0,∞)→ [0,∞) such that ωR(0+) = 0 and

|F (x, r, p,X) − F (y, r, p,X)| ≤ ωR(|x− y|) for |r|+ |p|+ ‖X‖ ≤ R (2.2)
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when x, y ∈ Ω. Then for |r|+ |p|+ ‖X‖ ≤ R

F (x, r, p,X) ≤F (y, r, p,X) + ωR(|x− y|)

≤ F (y, r, p,X) + 1
ε
|x− y|+ ωR(|x− y|)−

1
ε
|x− y|,

so we have
Fε(x, r, p,X) ≤ F (x, r, p,X) ≤ Fε(x, r, p,X) + δR(ε),

where
δR(ε) = sup

0<s≤diam(Ω)

(
ωR(s)−

s
ε

)
→ 0 as ε ↓ 0. (2.3)

In particular,

Fε(x, r, p,X) → F (x, r, p,X) uniformly for x ∈ Ω and bounded r, p,X (2.4)

as ε ↓ 0. Similarly, we define

F ε(x, r, p,X) = sup
y∈Ω

(
F (y, r, p,X) − 1

ε
|x− y|

)
, (2.5)

which has all the same structure properties as Fε and satisfies (2.4) in place of Fε.
Moreover for 0 < ε̂ < ε

Fε ≤ Fε̂ ≤ F ≤ F
ε̂ ≤ F ε.

We next claim that the Dirichlet problem (DP) with Fε in place of F has a
unique solution uε ∈ C(Ω). To prove this in the standard way (see Section 4 of [8]),
we need to know that comparison holds. Since Fε is globally Lipschitz continuous in
x with constant 1/ε and proper, if X ≤ Y then

Fε(y, r, p, Y )− Fε(x, r, p,X) ≤ Fε(y, r, p, Y )− Fε(x, r, p, Y ) ≤
1
ε
|x− y|

whenever x, y ∈ Ω, r ∈ R, p ∈ Rn; in particular, (3.14) of [8] trivially holds. More-
over, any subsolution may be perturbed to a strict subsolution via [15], Section V,
so comparison holds, see Section 5.C in [8]. Suitable supersolutions and subsolutions
achieving boundary values in a continuous fashion are constructed in Section 3, so
we may invoke Perron’s method to obtain the result. The same analysis produces a
solution uε of the Dirichlet problem for F ε = 0.

Since Fε ≤ F ≤ F ε, if u is any solution of the Dirichlet problem for F = 0,
it is also a subsolution for Fε and a supersolution for F

ε and so uε ≤ u ≤ uε by
comparison for the approximate equations. In the same way, if 0 < ε̂ ≤ ε, then
uε ≤ uε̂ ≤ uε̂ ≤ uε, so these families of functions attain the boundary values in
an equicontinuous manner. According to e.g. Trudinger [30] (see also Caffarelli
[2], Caffarelli and Cabré [3], Fok [13] and [28]), they are also locally equi-Hölder
continuous in Ω, so there are uniform limits

lim
ε↓0

uε = u ≤ u = lim
ε↓0

uε.

By the standard stability result for viscosity solutions (see Section 6 of [8]) and (2.4)
for Fε and F

ε, u, u are solutions of F = 0 and thus they are minimal and maximal
solutions of the Dirichlet problem for F = 0.
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We turn to the parabolic case. In this situation, we have 0 < T , set Q =
Ω× (0, T ], and use

∂pQ = ∂Ω× (0, T ] ∪ Ω× {0}

to denote the parabolic boundary of Q.

We consider the Cauchy-Dirichlet problem

ut + F (x, t, u,Du,D
2u) = 0 in Q and u = ψ on ∂pQ, (CDP)

where ψ ∈ C(∂pQ). Now F ∈ SC will mean that for each t ∈ [0, T ] the mapping
(x, r, p,X) 7→ F (x, t, r, p,X) belongs to SC in the sense of Section 1.

The analogue of Theorem 1.1 is:

Theorem 2.1. Let Ω satisfy a uniform exterior cone condition, F ∈ SC be contin-
uous on Ω × [0, T ] × R × Rn × S(n) and ψ ∈ C(∂pQ). Then there are C-viscosity
solutions u, u ∈ C(Q) of (CDP) such that if u is another C-viscosity solution, then
u ≤ u ≤ u.

Precisely the same outline as succeeds for the elliptic case proves Theorem 2.1.
The subsolutions and supersolutions required are provided in the next section. Con-
cerning the interior Hölder continuity of viscosity solutions of parabolic equations
see Wang [32] and Section 5 of [10] (see Krylov [18] and Lieberman [20] for classical
results). See [8] Section 8 for other standard adaptations to prove existence in the
parabolic case.

The compactness of the approximations uε, u
ε in C(Ω) (or C(Q)) is used above.

The monotonicity of these families was invoked to control continuity up to the
boundary. However, this does not reveal the full compactness available in these
circumstances. In Section 4 more is needed, and the appropriate general compactness
result is given.

3. CONSTRUCTION OF SUBSOLUTIONS AND SUPERSOLUTIONS

Elliptic Case.

We turn to the construction of subsolutions and supersolutions. There is only
one task here, not two, as the next remark recalls:

Remark 3.1. We note the following standard reduction: u is a supersolution
of an equation F (x, u,Du,D2u) = 0 if and only if v = −u is a subsolution of
F̃ (x, v,Dv,D2v) = 0, where F̃ (x, r, p,X) = −F (x,−r,−p,−X); moreover, noting
that if F (p,X) = P−(X)−γ|p|, then F̃ (p,X) = P+(X)+γ|p|, one sees F̃ ∈ SC if and
only if F ∈ SC. Thus it suffices to construct either supersolutions or subsolutions.

We will construct a supersolution U ∈ C(Ω) of (DP) for Fε such that U(x) =
ψ(x) on ∂Ω and U ≥ R = inf∂Ω ψ. Moreover, we will track the continuity properties
of U . To begin, we use Fε ∈ SC so that by (1.2)

Fε(x, r, p,X) ≥ P
−(X) − γ|p|+ Fε(x, r, 0, 0)
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and therefore a supersolution of P−(D2U)− γ|DU |+ Fε(x,U, 0, 0) = 0 in Ω is also
a supersolution for Fε. If U ≥ R, then −Fε(x,U, 0, 0) ≤ −Fε(x,R, 0, 0). It follows
that if M ≥ −Fε(x,R, 0, 0) for all x ∈ Ω, and U ≥ R solves

P−(D2U)− γ|DU | ≥M, (3.1)

then U is a supersolution for Fε.

On the other hand it is true in general that if U is a C-viscosity solution of (3.1)
with M ≥ 0 and U ≥ ψ on ∂Ω, then the Alexandrov–Bakelman–Pucci maximum
principle for viscosity supersolutions (see, e.g., [3], [30] or [4], Proposition 2.12)
implies that u ≥ inf∂Ω ψ. Thus if M ≥ supx∈Ω (−Fε(x, inf∂Ω ψ, 0, 0)) and M ≥ 0, a
solution of (3.1) satisfying U = ψ on ∂Ω is a supersolution of the Dirichlet problem
for Fε.

Let M > 0. The results of Miller [22], [23] provide the existence of local
barriers for the Dirichlet problem for (3.1) under a uniform exterior cone condition.
We do not know a place in the literature where global barriers (supersolutions) are
constructed, although the case γ = 0 is treated in Michael [21] and the proof there
may be modified to handle the general case – see Remark 3.4. We present another
option, using the flexibility of viscosity solutions.

First we recall the nature of the barriers on exterior cones for extremal elliptic
operators constructed by Miller [22], [23]. For n ≥ 2 and β ∈ (0, π) let

Tβ = {x ∈ R
n: xn ≥ (cos β)|x|}

be the closed circular cone of aperture β with axis in the direction of −en. Consider
barriers of the form

w(x) = rbf(θ), (3.2)

where r = |x| and θ = arccos (xn/|x|). It is shown in [23], Theorem 3 and Section
7, that for every β ∈ (0, π) there exist b ∈ (0, 1) and f ∈ C2([0, π)), depending only
on λ,Λ, n, β, γ, such that f ′(0) = 0 and f > 1 on [0, β], so that w given by (3.2) is
continuous on Tβ and C

2 on Rn \ {closed negative xn axis} and

w > rb on Tβ \ {0}, w(0) = 0, (3.3)

and, crucially,
P−(D2w)− γ|Dw| ≥ rb−2 on int(Tβ). (3.4)

Now let Ω be a bounded domain in Rn, n ≥ 2, satisfying a uniform exterior
cone condition. This means that there exist β ∈ (0, π) and r0 > 0 so that for every
z ∈ ∂Ω there is a rotation Θ = Θ(z) such that

Ω ∩Br0(z) ⊂ z +ΘTβ . (3.5)

Here, Br0(z) denotes the open ball in R
n of radius r0 centered at z. The “local”

nature of the barriers below is due to the possibility that Ω ⊂ z + ΘTβ does not
hold. Setting wz(x) = w(Θ

−1(x− z)), from (3.3) we have

wz(z) = 0, wz(x) ≥ |z − x|
b on Ω ∩Br0(z). (3.6)
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In particular, we have

wz ≥ (r0)
b on {x ∈ Ω: |x− z| = r0}. (3.7)

Using (3.4) and (3.5) we arrive at

P−(D2wz(x))− γ|Dwz(x)| ≥ |x− z|
b−2 for x ∈ Ω ∩Br0(z). (3.8)

We need to extend these local barriers to global ones. Choose any point y 6∈ Ω
and 2r1 < distance (y, ∂Ω). For σ > 0 put

G(x) =
(
1
rσ1
− 1
|x−y|σ

)
. (3.9)

Clearly

G(x) ≥
2σ − 1

(2r1)σ
> 0 on Ω (3.10)

and a standard computation ([14]) shows that

P−(D2G(x))−γ|DG(x)| ≥
σ

|x− y|σ+2
((σ + 1)λ− Λ(n− 1)− γ|x− y|) > 0 (3.11)

on Ω for large σ (depending only on n, λ,Λ, γ and diam (Ω)). Replacing G by aG
for a suitable a > 0 we can achieve all of:

G > 0 and P−(D2G)− γ|DG| ≥ κ on Ω (3.12)

for some κ > 0 and
G(x) < 1

2 (r0)
b for x ∈ Ω. (3.13)

Then the function

Wz(x) =

{
G(x) for x ∈ Ω, |x− z| > r0,
min (G(x), wz(x)) for x ∈ Ω, |x− z| ≤ r0

(3.14)

agrees with wz in a neighborhood of z ∈ ∂Ω relative to Ω (in view of (3.6) and
(3.12)), agrees with G on Ω \Br2(z) for some 0 < r2 < r0 (due to (3.7), (3.13)), and
is a solution of P−(D2Wz)−γ|DWz| ≥ κ1 in Ω provided that both wz and G satisfy
the same relation in Br0(z)∩Ω and G does in all of Ω. Hence, in view of (3.12) and
(3.8), we may multiply Wz by a constant and have all of the following properties of
the resulting function (still called Wz):

Wz ∈ C(Ω), Wz(z) = 0, Wz > 0 on Ω \ {z} (3.15)

and
P−(D2Wz)− γ|DWz| ≥ 1 on Ω. (3.16)

The task of satisfying the boundary condition remains. Let ψ ∈ C(∂Ω) and

|ψ(x) − ψ(z)| ≤ ρ(|x− z|) for x, z ∈ ∂Ω, (3.17)
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where ρ(0+) = 0, so ρ is a modulus of continuity for ψ. In addition to P−(D2U)−
γ|DU | ≥M , the supersolution U we construct will satisfy

|U(x)− ψ(z)| ≤ ω(|x− z|) for x ∈ Ω, z ∈ ∂Ω, (3.18)

where ω(0+) = 0; that is the boundary values are assumed uniformly. Moreover, ω
will depend only on the parameters of the cone condition, λ,Λ, n, γ and the diameter
of Ω (which already determine the character of each Wz), and M and ρ. For each
κ > 0 and z ∈ ∂Ω put

Wκ,z(x) = ψ(z) + κ+MκWz(x),

where Mκ ≥ M (guaranteeing P−(D2Wκ,z) − γ|DWκ,z| ≥ M by (3.16)) is chosen
so that

ψ(z) + κ+MκWz(x) ≥ ψ(x) for x ∈ ∂Ω.

In view of (3.17), it suffices to take

Mκ ≥ sup
x∈∂Ω,x6=z

(ρ(|x− z|)− κ)+

Wz(x)
;

this may evidently be done uniformly in z ∈ ∂Ω. Finally we put

W (x) = inf
z∈∂Ω,κ>0

Wκ,z(x).

By construction W ≥ R. Since for all κ

W (x)− ψ(z) ≤Wκ,z(x)− ψ(z) = κ+MκWz(x)

and Wz(x) is uniformly continuous in x uniformly in z, we conclude that for all
z ∈ ∂Ω and x ∈ Ω

W (x)− ψ(z) ≤ ω(|z − x|) (3.19)

for some ω satisfying ω(0+) = 0. We now use Remark 3.1 – the supersolutions
of (3.1) we have constructed imply the existence of corresponding subsolutions of
Fε ≤ 0 (or P−(D2U) − γ|DU | ≤ −M for an appropriate M) with boundary values
below ψ, call them Yκ,z and the supremum Y . By the analogue of (3.19) for Y we
have

−ω(|x− z|) ≤ Y (x)− ψ(z). (3.20)

According to [8], U =W∗, the lower semicontinuous envelope ofW , is a supersolution
of (3.1), and consequently of Fε = 0. Similarly, V = Y ∗, the upper semicontinuous
envelope of Y , is a subsolution of Fε = 0. Since V = U = ψ on ∂Ω, comparison
gives V ≤ U and using this together with (3.19) and (3.20) yields

|V (x)− ψ(z)|, |U(x)− ψ(z)| ≤ ω(|z − x|)

and we are done.

For convenient reference, we summarize the results of this construction in terms
of extremal equations:
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Proposition 3.2. Let Ω satisfy a uniform exterior cone condition, ψ ∈ C(∂Ω) and
M ∈ R. Then the problems

P−(D2u)− γ|Du| =M in Ω, u = ψ on ∂Ω (3.21)

and
P+(D2v) + γ|Dv| = −M in Ω, v = ψ on ∂Ω (3.22)

have unique C-viscosity solutions u, v ∈ C(Ω) satisfying u = v = ψ on ∂Ω. More-
over, there is a modulus ω depending only on the parameters of the cone condition,
λ,Λ, n, γ, diam (Ω), M and the modulus of continuity of ψ such that

|u(x) − ψ(z)|, |v(x) − ψ(z)| ≤ ω(|x− z|) for z ∈ ∂Ω, x ∈ Ω.

Regarding the statement, recall Remark 3.1; moreover, given the subsolutions
and supersolutions exhibited above, we may assert the existence of solutions, not
only subsolutions and supersolutions.

Remark 3.3. Bellman equations (3.22) and (3.21) are concave/convex in the Hes-
sian matrix and as such can be studied by classical methods, see Krylov [18]. In
particular, Safonov [26], Theorem 1.1, proves that under the assumptions of Propo-
sition 3.2, the problems (3.22) and (3.21) have classical C2,α

loc
(Ω) ∩ C(Ω) solutions.

From uniqueness it follows that C-viscosity solutions u, v of Proposition 3.2 coincide
with Safonov’s; in particular u, v ∈ C2(Ω). However, we feel that the construction
presented here is useful. The problems (3.22) and (3.21) were solved here – albeit in
a weaker sense – without invoking the apparatus of hard C2,α estimates for nonlin-
ear equations. Our objective is to solve equations Fε = 0 that are not expected to
have classical solutions. Fε = 0 is solved by Perron’s method, and for this purpose
the information summarized in Proposition 3.2 is sufficient. Corollary 3.10 of [4]
extends the existence to cover the situation when M is replaced by f ∈ Lp(Ω) for
suitable p, a fact used in Section 4.

As for the parabolic result, Proposition 3.5 below, we were not able to locate
a quotable result in literature asserting classical solvability of (3.25) and (3.26).
However, Krylov in [18], Theorem 6.4.3, proves an analogous result in the case of Ω
satisfying an exterior sphere condition, and this generalizes to handle the cone condi-
tion. Krylov’s method consists of approximating Ω from the inside by more regular
domains; a delicate argument involving barrier functions and Hölder estimates is
used to pass to the limit. The result of Krylov shows that C-viscosity solutions of
Proposition 3.5 are C2,1 (and more). This follows easily by solving (CDP) classically
on regular subdomains of Ω× (0, T ] using u (v, respectively) as the boundary data,
and invoking uniqueness.

Remark 3.4. Our construction of barriers relies on the barrier w from (3.2) for a
canonical unbounded cone Tβ at the origin, taken from [22], [23]. We used uniform
exterior cone condition to obtain a local barrier wz at every z ∈ ∂Ω; wz is obtained
by composing w with an appropriate isometry making Tβ into an exterior cone at
z. Then wz was extended to a global barrier Wz (3.14) by means of a fixed function
G in (3.9).
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Another possibility would be to first construct a barrier W0 on the exterior of
a canonical bounded cone Cβ,δ at the origin:

Cβ,δ = {x ∈ R
n: |x| ≤ δ, xn ≤ (cos β)|x|} .

This can be accomplished by a similar procedure as above. Namely, taking y =
− δ
2
en, sufficiently small r1 > 0 (determined only by δ, β) and G as in (3.9), for σ

large, depending only on n, λ,Λ, γ and diam(Ω) known in advance, one can guarantee

G > 0 and P−(D2G)− γ|DG| > 0 on Bdiam(Ω)(0) \ Cβ,δ.

As in (3.14), a multiple of this G combined with w would produce a desired barrier
W0. Now one can use uniform exterior cone condition to find for every z ∈ ∂Ω a
rotation Θ = Θ(z) such that

Ω ∩ (z +ΘCβ,δ) = {z},

and then Wz(x) =W0
(
Θ−1(x− z)

)
defines a global barrier at z.

Michael [21] considers barriers

ϕ(x) = 1− e−Kw(x),

where w is Miller’s barrier (3.2) and K > 0. [21] gives explicit recipes for K, b and
f so that ϕ becomes a barrier for P−(D2ϕ) ≥ rb−2 on the exterior of Cβ,δ. This
construction can be easily modified to handle first order terms to obtain P−(D2ϕ)−
γ|Dϕ| ≥ 1 on Bdiam(Ω)(0) \ Cβ,δ. This canonical barrier ϕ can be used instead of
W0 constructed above; note that ϕ is C

2 unlike W0.

Finally, if n = 2 the exterior cone condition can be replaced by a weaker condi-
tion, see [22], [23] and Section 2.8 of [14].

Parabolic Case.

The work done above renders the parabolic case simple. To construct superso-
lutions, we reduce as before to the problem

Ut + P
−(D2U)− γ|DU | ≥M.

Reviewing the preceding construction, we see that all we need will follow if we
produce a function Wz,τ for each point (z, τ) of the (parabolic) boundary ∂Ω ×
(0, T ] ∪Ω× {0} of Q satisfying the analogues of (3.15) and (3.16):

Wz,τ ∈ C(Q), Wz,τ(z, τ) = 0, Wz,τ > 0 on Q \ {(z, τ)} (3.23)

and
(Wz,τ )t + P

−(D2Wz,τ )− γ|DWz,τ | ≥ 1 on Q. (3.24)

For τ > 0 and z ∈ ∂Ω we set

Wz,τ(x, t) =
1
2T
(t− τ)2 + 2Wz(x),
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where Wz was constructed above and satisfies (3.15) and (3.16). It is clear that
(3.23) holds. Moreover, by (3.16),

(Wz,τ )t + P
−(D2Wz,τ)− γ|DWz,τ |

= 1
T
(t− τ)+2

(
P−(D2Wz)− γ|DWz|

)
≥ −1 + 2 = 1

and we have (3.24).

For τ = 0 and z ∈ Ω we set

Wz,0(x, t) = At+
1
2 |x− z|

2;

again if A > 0 we clearly have (3.23). Finally,

(Wz,0)t + P
−(D2Wz,0)− γ|DWz,0| =

A+ P−(I)− γ|x− z| = A− nΛ− γ|x− z| ≥ A− nΛ− γdiam (Ω).

Thus we have (3.24) if A = nΛ + γdiam (Ω) + 1. The rest of the analysis follows
that of the elliptic case step by step.

Here is the parabolic version of Proposition 3.2. We use the notation introduced
in Section 2.

Proposition 3.5. Let Ω satisfy a uniform exterior cone condition, ψ ∈ C(∂pQ)
and M ∈ R. Then the problems

ut + P
−(D2u)− γ|Du| =M in Q, u = ψ on ∂pQ (3.25)

and
vt + P

+(D2v) + γ|Dv| = −M in Q, v = ψ on ∂pQ (3.26)

have unique C-viscosity solutions u, v ∈ C(Q) satisfying u = v = ψ on ∂pQ. More-
over, there is a modulus ω depending only on the parameters of the cone condition,
λ,Λ, n, γ, T , diam (Ω), M and the modulus of continuity of ψ such that

|u(x, t)−ψ(z, τ)|, |v(x, t)−ψ(z, τ)| ≤ ω(|x−z|+|t−τ |) for (z, τ) ∈ ∂pQ, (x, t) ∈ Q.

4. Lp THEORY: GENERAL EXISTENCE

The requirements (1.2) and (1.3) constituting the basic structure conditions
require no continuity of F (x, r, p,X) in x and very little in r. In this section, we
assume that F is merely measurable in x (or (x, t) in the parabolic case) while
satisfying the structure conditions for almost every x (or (x, t)). Due to this gener-
ality we have to impose a requirement on the r dependence: for R > 0 there exists
ωR: [0,∞)→ [0,∞) such that ωR(0+) = 0 and

|F (x, r, p,X) − F (x, s, p,X)| ≤ ωR(|r − s|) (4.1)

for almost all x ∈ Ω and |r| + |s| + |p| + ‖X‖ ≤ R. (Obviously, if F is continuous
then (4.1) automatically holds.) In the parabolic case, x is replaced by (x, t) ∈ Q.
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Of course, the notions of C-viscosity subsolutions, etc., are no longer appro-
priate in this measurable situation, and there is now a well-developed theory using
corresponding “Lp-viscosity” notions ([4], [9], [28], [7], [10]) which is built up from
the fundamental regularity results of Caffarelli [2] (see [3]) as further developed by
Escuariaza [11] and Wang [32]. In the linear case other notions of weak solutions
were proposed, see Cerrutti, Escauriaza and Fabes [5] and Jensen [17]; relationships
between various notions of solutions are studied in [17] and [9].

Lp-Viscosity Notions

In contrast to the C-viscosity notions recalled at the end of Section 1, Lp-
viscosity notions use “test functions” ϕ ∈ W 2,p

loc (Ω) (functions whose distributional

second derivatives are in Lploc(Ω)) in the elliptic case and ϕ ∈ W
2,1,p
loc (Q) (functions

whose distributional first derivatives and second order spatial derivatives are in
Lploc(Q)) in the parabolic case. In addition, all subsolutions, etc., are required to be
continuous. For example, a continuous function u on Ω is an Lp-viscosity subsolution
of F (x, u,Du,D2u) = 0 if for every ϕ ∈W 2,p

loc (Ω) and local maximum x̂ of u−ϕ one
has

ess lim inf
x→x̂

F (x, u(x),Dϕ(x),D2ϕ(x)) ≤ 0;

equivalently, if for some ε > 0

F (x, u(x),Dϕ(x),D2ϕ(x)) ≥ ε a.e.

in some neighborhood of x̂, then x̂ is not a local maximum of u−ϕ. The correspond-
ing notions of Lp-viscosity supersolutions, Lp-viscosity solutions, and the parabolic
versions are what then one expects.

Consulting the literature mentioned above, one finds that there is an equation
dependent appropriate range of p determined by the parameters λ,Λ, n, γdiam(Ω)
(or γdiam(Q) for parabolic equations). One always has n/2 < p in the elliptic case
and (n + 2)/2 < p in the parabolic case. The range also extends below n in the
elliptic case and below n+1 in the parabolic case. The choices p = n and p = n+1
are the least possible which are appropriate for all choices of λ,Λ, γ,Ω. In statements
below we restrict our attention to the “universal” choices p = n and p = n + 1 for
simplicity. However, certain explicit arguments as well as proofs of quoted results
use the fact that extended ranges exist.

Note that if q < p, then the Lq-viscosity notions imply the corresponding Lp-
viscosity notions, as there are more test functions to check in the Lq-viscosity case.
Thus Ln-viscosity solutions are automatically Lp-viscosity solutions for n < p. Simi-
larly, if F happens to be continuous, Ln-viscosity notions imply C-viscosity notions.
It is a substantial result that the converse is true in this form: if F is continuous and
u is a continuous C-viscosity subsolution, etc., then it is an Ln-viscosity subsolution,
etc. In the elliptic case this is proved in Proposition 2.9 of [4], for the parabolic case
see [10].

General Existence of Ln-Viscosity Solutions

We consider the Dirichlet problem for G(x, u,Du,D2u) = 0, where G ∈ SC is
merely measurable in x:

G(x, u,Du,D2u) = 0 in Ω, u = ψ on ∂Ω. (4.2)
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As usual, ψ ∈ C(∂Ω). However, it will be convenient to rewrite (4.2) as

F (x, u,Du,D2u) = f(x) in Ω, u = ψ on ∂Ω, (4.3)

where

F (x, r, p,X) = G(x, r, p,X) −G(x, 0, 0, 0) and f(x) = −G(x, 0, 0, 0),

so that
F (x, 0, 0, 0) ≡ 0. (4.4)

Without loss of generality we hereafter assume that (4.4) holds. Note that then, via
F ∈ SC, (4.1) and (4.4)

F (x, r, p,X) ≤ F (x, r, 0, 0) + P+(X) + γ|p| ≤ β(r) + P+(X) + γ|p|,

where β(r) = ω|r|(|r|). The analogous estimate from below combines with this to
yield

|F (x, r, p,X)| ≤ Λ‖X‖ + γ|p|+ β(r), (4.5)

where we used the trace norm ‖X‖ = Trace(X+)+Trace(X−) and invoked |P±(X)| ≤
Λ‖X‖. In particular, F (x, r, p,X) is bounded and measurable in x for fixed r, p,X.
This guarantees that integrals occurring below are well defined. We have the follow-
ing theorem:

Theorem 4.1. Let F ∈ SC satisfy (4.1) and (4.4), let f ∈ Ln(Ω), ψ ∈ C(∂Ω)
and let Ω satisfy a uniform exterior cone condition. Then (4.3) has an Ln-viscosity
solution.

As a tool in the proof we will use:

Proposition 4.2. Let Ω satisfy a uniform exterior cone condition and C ⊂ C(∂Ω)
be compact, R > 0 and BR = {f ∈ Ln(Ω): ‖f‖Ln(Ω) ≤ R}. Then the set of all

functions u ∈ C(Ω) such that there exists ψ ∈ C and f ∈ BR for which u is an
Ln-viscosity solution of both

P−(D2u)− γ|Du| ≤ f and − f ≤ P+(D2u) + γ|Du| (4.6)

in Ω and u = ψ on ∂Ω is precompact in C(Ω).

Proof. According to [4] Corollary 3.10, if (ϕ, g) ∈ C(∂Ω) × Ln(Ω), there exist a
unique U = U(ϕ, g) ∈ C(Ω) ∩W 2,n

loc (Ω) such that

P−(D2U)− γ|DU | = g a.e. in Ω and u = ϕ on ∂Ω.

We require several facts. First, there exist p ∈ (n/2, n) depending on λ,Λ, n, γ diam (Ω)
(see [13], [11], [4], [28], [1]) and C such that

U(ϕ, g) ≤ sup
∂Ω

ϕ+ C

(∫
Ω

(g+)p
) 1
p

for (ϕ, g) ∈ C(∂Ω)× Ln(Ω). (4.7)
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Next the mapping

C(∂Ω)× Ln(Ω) 3 (ϕ, g)→ U(ϕ, g) is sublinear and order preserving. (4.8)

Finally, if u ∈ C(Ω) is an Ln-viscosity solution of

P−(D2u)− γ|Du| ≤ f in Ω and u = ψ on ∂Ω, (4.9)

where f ∈ Ln(Ω), then
u ≤ U(ψ, f). (4.10)

We review the genesis of these results in Remark 4.4 below.

The second inequality of (4.6) may be restated as w = −u is an Ln-viscosity
solution of P−(D2w) − γ|Dw| ≤ f , so if (4.6) holds (4.10) implies −u ≤ U(−ψ, f)
or −U(−ψ, f) ≤ u. All told, (4.6) and u = ψ on ∂Ω yield

−U(−ψ, f) ≤ u ≤ U(ψ, f). (4.11)

From (4.11) and (4.7) it follows that u remains bounded in C(Ω) if (ψ, f)
remains bounded in C(∂Ω)×Ln(Ω) (or even in C(∂Ω)×Lp(Ω)). We now use (4.11)
to show that u assumes the boundary values ψ in an equicontinuous manner. In this
regard, let fM = max(min(f,M),−M) be the standard truncation of f for M > 0.
We note that for f ∈ BR

‖f − fM‖Lp(Ω) ≤ (measure({|f | > M}))
n−p
np R ≤ R

(
R

M

)n−p
p

,

which tends to 0 as M →∞ uniformly in f ∈ BR. Using the properties (4.8), (4.7)
of U we thus have

U(ψ, f) ≤ U(ψ, fM ) + U(0, f − fM ) ≤ U(ψ,M) + C‖f − fM‖Lp(Ω)

≤ U(ψ,M) + CR

(
R

M

)n−p
p

.

According to Proposition 3.2, U(ψ,M) assumes the boundary values ψ in a manner
controlled by the modulus of continuity of ψ for fixed M . The “error term” on the
right above can be made as small as desired by choosing M sufficiently large, and
u ≤ U(ψ, f) thus guarantees an estimate u(x)−ψ(y) ≤ ρ(|x− y|) for x ∈ Ω, y ∈ ∂Ω,
where ρ(0+) = 0. Similarly, −U(−ψ, f) ≤ u provides control of u − ψ at the
boundary from below.

Finally, once u is bounded, (4.6) guarantees equi-Hölder continuity of u on
compact subsets of Ω so long as f remains bounded in Ln(Ω) (see, for example, [13]
for a sufficiently general statement and Remark 4.7 below). The result follows.

Remark 4.3. Proposition 4.2 can be reformulated by saying that if u satisfies (4.6)
and u = ψ on ∂Ω then u has a modulus of continuity on Ω that only depends on
the parameters of the cone condition, λ,Λ, n, γ, diam (Ω), R and the modulus of
continuity of ψ.
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Remark 4.4. The inequality (4.7) generalizes the original work of Fabes and
Stroock [12] and is proved in [13] in the spirit of this work, but it could also be
deduced from Cabré [1]; its relevance in this arena was first shown by Escauriaza
[11]. In fact, the existence of U(ϕ, g) for γ = 0 was proved in [11] relying on (4.7)
with γ = 0. The properties (4.8) are a consequence of the positive homogeneity and
superlinearity of (p,X) → P−(X) − γ|p| and (4.7) (p = n suffices). For example,
the superadditivity implies that W = U(ϕ, g) − U(ϕ̂, ĝ) solves

P−(D2W )− γ|DW | ≤ g − ĝ ≤ 0

if g ≤ ĝ and an application of (4.7) (p = n suffices) then proves the order preserving
property. The relation (4.10) given (4.9) follows upon observing that v = u−U(ψ, f)
is an Ln-viscosity solution of P−(D2v)− γ|Dv| ≤ 0 and the Alexandrov-Bakelman-
Pucci maximum principle for viscosity solutions proved in [2] (γ = 0), [30], [4].
Finally, Proposition 4.2 itself appears in [3], Theorem 4.14, in the situation where
γ = 0, Ω is a ball, and all functions f appearing in (4.6) are continuous. This proof
could be adapted, with effort, to the current case. The current proof uses the work
already done in Section 3.

Proof of Theorem 4.1. First we assume that F (x, r, p,X) is defined for all (r, p,X)
for all x ∈ Rn and satisfies the structure conditions (1.2), (1.3) and (4.1) for all
x ∈ Rn. To achieve this, if necessary extend F (x, r, p,X) to be P−(X) − γ|p| (or
P+(X)+ γ|p|) for those x’s where it was not originally defined. Now mollify F in x:

Fε(x, r, p,X) =
1

εn

∫
Rn

η

(
x− y

ε

)
F (y, r, p,X) dy,

where η ∈ C∞0 (R
n) satisfies η ≥ 0 and

∫
Rn
η(x) dx = 1. The structure conditions

are preserved under this sort of averaging, so Fε ∈ SC.

Clearly Fε satisfies (4.1), (4.4) and (4.5) as well as F . Moreover, the bound
(4.5) on |F | gives us

|Fε(x, r, p,X) − Fε(y, r, p,X)| ≤
C
ε
|x− y| (Λ‖X‖+ γ|p|+ β(r))

for some C. Fix f ∈ Ln(Ω) and let fj ∈ C(Ω) satisfy

‖fj − f‖Ln(Ω) → 0 as j →∞.

Since Fε ∈ SC is continuous, according to Theorem 1.1 the problem

Fε(x, u,Du,D
2u) = fj in Ω and u = ψ on ∂Ω (4.12)

has a C-viscosity solution (and hence Ln-viscosity solution) u = uε,j . Clearly u =
uε,j also solves

P−(D2u)−γ|Du|+Fε(x, u, 0, 0) ≤ fj and fj ≤ P
+(D2u)+γ|Du|+Fε(x, u, 0, 0).

Since Fε(x, u, 0, 0) ≥ Fε(x, 0, 0, 0) = 0 if u ≥ 0, the first relation above and the
maximum principle for viscosity solutions implies

u ≤ sup
∂Ω

u+ + C‖fj‖Ln(Ω) ≤ sup
∂Ω

ψ+ + C sup
j
‖fj‖Ln(Ω)
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and we conclude that the uε,j are bounded above independently of ε, j. Likewise,
the uε,j are bounded below independently of ε, j, and hence the family is uniformly
bounded. Using this information and (4.5) for Fε, there exists a constant K such
that |Fε(x, uε,j , 0, 0)| ≤ K and the uε,j satisfy

P−(D2uε,j)− γ|Duε,j | ≤ gj and − gj ≤ P
+(D2uε,j) + γ|Duε,j |,

where gj = |fj |+K.

Therefore, using Proposition 4.2, there exists εm ↓ 0, jm →∞ such that um =
uεm,jm converges uniformly on Ω to a limit u. By Theorem 3.8 of [4] this u is an
Ln-viscosity solution of (4.3); indeed, what we need to check to use this result is
only that for ϕ ∈W 2,n

loc (Ω) we have

Fεm(x, um(x),Dϕ(x),D
2ϕ(x))→ F (x, u(x),Dϕ(x),D2ϕ(x)) (4.13)

in Lnloc(Ω). However, Fε(x, r, p,X) → F (x, r, p,X) whenever x is a Lebesgue point
of F (·, r, p,X), and almost every x has this property for all r, p,X by F ∈ SC (see
[4], page 382), which together with (4.5) shows that (4.13) holds pointwise a.e. and
(locally) dominated, hence in Lnloc(Ω).

We now turn to the parabolic analogue of Theorem 4.1. In this case the initial
boundary value problem can be rewritten as before as

ut + F (x, t, u,Du,D
2u) = f(x, t) in Q = Ω× (0, T ], u = ψ on ∂pQ, (4.14)

where

F (x, t, 0, 0, 0) ≡ 0. (4.15)

The proof of the theorem below is similar to the one in the elliptic case and is
therefore omitted, save for the remarks to follow.

Theorem 4.5. Let F ∈ SC satisfy (4.1) and (4.15), let f ∈ Ln+1(Q), ψ ∈ C(∂pQ)
and let Ω satisfy a uniform exterior cone condition. Then (4.14) has an Ln+1-
viscosity solution.

The parabolic version of the compactness result Proposition 4.2 is

Proposition 4.6. Let Ω satisfy a uniform exterior cone condition and C ⊂ C(∂pQ)
be compact, R > 0 and BR = {f ∈ Ln+1(Q): ‖f‖Ln+1(Q) ≤ R}. Then the set of

all functions u ∈ C(Q) such that there exists ψ ∈ C and f ∈ BR for which u is an
Ln+1-viscosity solution of both

ut + P
−(D2u)− γ|Du| ≤ f and − f ≤ ut + P

+(D2u) + γ|Du| (4.16)

in Q and u = ψ on ∂pQ is precompact in C(Q).

A version of the maximum principle and an existence result sufficient for the
proof of this proposition is given in [7]. The interior Hölder continuity is established
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in [10], Section 5. The limit theorem needed to complete the proof of Theorem 4.5
is proved in [10], Section 6.

Remark 4.7. The proofs of the existence results above do not require full Propo-
sitions 4.2 and 4.6 but rather their versions with BR replaced by BR ∩ C(Ω) (or
BR ∩C(Q)). In this case, the proofs of the versions of the maximum principles and
equi-Hölder continuity results found in Caffarelli [2], Trudinger [30] (elliptic case),
and Wang [32] (parabolic case) could be used. This leaves aside (4.7), upon which
we have commented. The parabolic analogue is proved in [7]. The proofs of the
various maximum principles sketched in [7] might interest the reader in any case.

Remark 4.8. We note again, for emphasis, that Theorems 4.1 and 4.5 are also true
if n and n+1 are replaced by p in (parameter dependent) appropriate ranges of the
form n− δ < p and n+1− δ < p respectively. To document this fully in the elliptic
case requires results from [4], [28] while [10] contains the parabolic story.

Acknowledgments. Crandall was supported by NSF grant DMS93-02995 and by
an appointment as a Miller Research Professor at the University of California, Berke-
ley. Kocan was supported by the Australian Research Council and an Alexander
von Humboldt Fellowhip. Lions was supported by URA CNRS 749 and NSF grant
DMS93-02995. Świe
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