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A LINEAR MODEL FOR THE DYNAMICS OF FISH LARVAE

NOUREDDINE GHOUALI, TARIK MOHAMED TOUAOULA

Abstract. We consider a linear model for the growth and the dispersion of

fish larvae of certain species. Dispersion is modeled as entailed by the combi-

nation of transport and vertical diffusion. We generalize the work of Boushaba,
Arino and Boussouar [5], [6] in the sense that horizontal velocities are uniform

throughout the water column; but we deal with vertical component velocity

and vertical diffusion depending on the space variables and on time, which was
not the case in [5], [6]. This new vision leads us to non-autonomous problems,

the aim of this work is to show the existence, uniqueness, and positivity of

solutions.

1. Introduction.

In this paper, we introduce a mathematical model for the dynamics of the fish
larvae of certain species. This model takes into account both the physical and
biological effects. For the physical part, the model considered here stresses two
main factors: 1) Transport entailed by the currents: the currents are computed
using Navier-Stokes equations and are introduced in the equations of the larvae
as functions of space and time with sufficient regularity to allow existence and
uniqueness of stream lines. 2) Vertical diffusion induced by vertical mixing in the
upper part of the water column. For the biological part the main parameters are a
function which gives the instantaneous rate of progression within the stages from
the egg fertilization to the end of the yolk-sac period.

The model is expressed in a generality which encompasses a large variety of
situations. The motivation at the origin of this work is the study of the dynamics
of the Bay of Biscay anchovy [4], that is to say, a region of the Atlantic ocean close
to the French coast, bordered eastward by the continental shelf. The Bay of Biscay
goes from the Northern Spanish coast up to about 460 in “latitude”. In this region
at the end of May , a thermocline establishes itself: the top of the thermocline is
roughly at the same distance ztherm from the surface. The thermocline divides the
water column into three regions: the upper part, from the surface to ztherm deep,
the so called mixed layer. This is where the larvae grow. Below is the thermocline, a
rather thin layer where the temperature loses rapidly a few degrees and the vertical
mixing coefficient is negligibly small. Below the thermocline is another well mixed
layer where the temperature is only slowly changing with depth. This region is of no
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concern to us for the rest of the study, which will be confined to the mathematical
issues related to the above mentioned model.

The domain of study has notably been restricted to the upper layer, the so called
mixed layer of the water column.

The purpose of this work is to perform a mathematical analysis of the model,
notably, show existence, uniqueness and positivity of solutions. In a previous work
coauthored by Boushaba, Boussouar; and Arino [6], a simplified version of the model
of the phytoplankton had been investigated. It was assumed that the diffusion rate
and the vertical current does not depend on time and the horizontal current is
uniform throughout the water column. Under this assumption, it was possible to
uncouple the vertical and the horizontal components in the following sense: the
study was restricted to each of the horizontal streamlines: the restriction to such a
line reduces the functions of time horizontal components to functions of time so that
the full model reduces on such a line to a diffusion equation in the vertical variable
coupled with a first order growth equation. Our purpose in this work is to extend
this method to the more realistic situation where the diffusion rate and the vertical
current depends also on time and the horizontal current is uniform throughout the
water column. The idea we exploit here is the same in the first time, that is to
uncouple the vertical and the horizontal components but the restriction on such a
line gives equations of parabolic type with time dependent coefficients. The study
of such equations takes up the main part in this work.

Time dependence is dealt with using results on time-dependent evolution equa-
tions by Acquistapace [1, 2, 3] and several other authors (Lunardi [8], Tanabe [10]).
A valuable source of information of this work was a monograph by Tanabe [10].
The main result of this part, stated in theorem 4.1, ensures that, under some con-
ditions on the coefficients of the equation, the Cauchy problem associated with the
equation has a unique classical solution, which moreover is nonnegative if the initial
value is non negative. The paper is organized as follows. Section 2 is devoted to
recall some important theorems. Section 3 is devoted to a detailed presentation of
the model. Section 4 is devoted to proving existence, uniqueness and positivity of
solution of our problem.

2. Notation and preliminary results

Let Y be a Banach space and [a, b] a finite interval of the real line, then we define
the space

C([a, b];Y ) = {f : [a, b] → Y : f is continuous}.
Note that C([a, b];Y ) is a Banach space with the norm

‖f‖C([a,b];Y ) = sup
s∈[a,b]

‖f(s)‖Y .

We also consider the space C1([a, b];Y ) consisting of functions f ∈ C([a, b];Y ) such
that f is strongly differentiable in [a, b] and f ′ ∈ C([a, b];Y ), with the norm

‖f‖C1([a,b];Y ) = ‖f‖C([a,b];Y ) + ‖f ′‖C([a,b];Y ).

Let θ ∈]0, 1[ then we define the following Holder type spaces

Cθ([a, b];Y ) = {f ∈ C([a, b];Y ) : [f ]Cθ([a,b];Y ) = sup{‖f(s)− f(t)‖Y

|t− s|θ
t, s ∈ [a, b], t 6= s} <∞},
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which is equipped with the norm

‖f‖Cθ([a,b];Y ) = ‖f‖C([a,b];Y ) + [f ]Cθ([a,b];Y ) .

Also let
C1,θ([a, b];Y ) = {f ∈ C1([a, b];Y ) : f ′ ∈ Cθ([a, b];Y )},

with norm
‖f‖C1,θ([a,b];Y ) = ‖f‖C([a,b];Y ) + ‖f ′‖Cθ([a,b];Y ).

We consider the problem

ut(t, x)− a(t, x)uxx(t, x)− b(t, x)ux(t, x)− c(t, x)u(t, x) = 0,

(t, x) ∈ [0, T ]× [0, 1]

α0(t)u(t, 0)− β0(t)ux(t, 0) = α1(t)u(t, 1) + β1(t)ux(t, 1) = 0, t ∈ [0, T ],

u(0, x) = Φ(x), x ∈ [0, 1],

(2.1)

under the following assumptions:

a, b, c ∈ C([0, T ]× [0, 1]),

a(., x), b(., x), c(., x) ∈ C1,δ([0, T ]; R)

with norms indpendent of x ∈ [0, 1], for some δ ∈]0, 1[,

a > 0, c ≤ 0 in [0, T ]× [0, 1],

(2.2)

To recall some propositions, we set E = C([0, 1]), ‖u‖E = supx∈[0,1] |u(x)|, and
define for each t ∈ (0, T ),

D(A(t)) = {u ∈ C2([0, 1]) : α0(t)u(0)− β0(t)u′(0) = α1(t)u(1) + β1(t)u′(1) = 0, }
A(t)u = a(t, .)u′′ + b(t, .)u′ + c(t, .)u .

(2.3)

Proposition 2.1 ([2]). Let a, b, c be as in (2.1), (2.2), and suppose that u ∈
C2([0, 1]) is a solution of

λu− a(t, .)u′′ − b(t, .)u′ − c(t, .)u = f ∈ C([0, 1]),

α0(t)u(0)− β0(t)u′(0) = z0 ∈ C,
α1(t)u(1) + β1(t)u′(1) = z1 ∈ C,

(2.4)

where t ∈ [0, T ] is fixed and λ is a complex number lying in the sector

ΣK := {z ∈ C : Re z ≥ 0} ∪ {z ∈ C : | Im z| > K|Re z|} (K > 0.)

Then there exists M > 0, depending on K, a, b, c, but independent of t such that

(1+|λ|)‖u‖E+(1+|λ|1/2)‖u′‖E+‖u′′‖E ≤M(‖f‖E+(1+|λ|1/2)(|z0|+|z1|)). (2.5)

As a consequence of the above proposition we have the following result.

Proposition 2.2 ([2]). Let a, b, c be as in (2.1), (2.2); let {A(t)}t∈[0,T ] be defined
by (2.3). Then we have:

(i) [0,∞[⊆ ρ(A(t)) for all t ∈ [0, T ]; where ρ(A(t)) is the resolvent set of A(t)
and R(λ,A(t)) = (λI −A(t))−1.
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(ii) ΣK ⊆ ρ(A(t)) and for each K > 0 there exists M(K) > 0 (depending also
on a, b, c) such that

‖R(λ,A(t))‖L(E) ≤
M(K)
1 + |λ|

∀λ ∈ ΣK ,∀t ∈ [0, T ],

where ΣK is defined above.

Definition 2.3 ([10]). A classical solution of (2.1) is a function

u ∈ C([0, T ], E) ∩ C((0, T ], D(A(t))) ∩ C1((0, T ], E),

such that u(0) = x, u′(t)−A(t)u(t) = 0 in (0, T ].

Let us assume the following hypotheses:
(AT1) For each t ∈ [0, T ], A(t) : D(A(t)) ⊆ E → E is a closed linear operator and

there exists M > 0 and θ ∈ (π
2 , π) such that

ρ(A(t)) ⊇ Sθ := {λ ∈ C : λ 6= 0, | arg λ| < θ} ∪ {0},

‖R(λ,A(t))‖ ≤ M

1 + |λ|
∀λ ∈ Sθ ∪ {0}, ∀t ∈ [0, T ],

(AT2) There exist B > 0 and δ1, . . . , δk, ν1, . . . , νk with 0 ≤ νi < δi ≤ 2 such that

‖A(t)R(λ,A(t))((A(s))−1 − (A(t))−1)‖ ≤ B
k∑

i=1

|t− s|δi |λ|νi−1,

for all λ ∈ Sθ − {0}, 0 ≤ s < t ≤ T .
It is obvious that ΣK and Sθ are the same sets.

Theorem 2.4 ([10]). Assume that (AT1) and (AT2) hold. Then, if x ∈ D̄(A(0)),
problem (2.1) has a unique classical solution.

Remark 2.5. In general the function c in the problem (2.1)is not negative. More-
over by setting u = veωt with ω ∈ R, the function v is solution of

v′(t)− (A(t)− ωI)v(t) = 0, t ∈ (0, T ]

v(0) = x .
(2.6)

Hence existence, uniqueness and positivity of solutions of problem (2.6) is equivalent
to the same properties of problem (2.1).

3. The model

The domain under consideration is Ω = D × (0, z∗), where D is an open subset
of the surface, that is D is a portion of the plane and z∗ is the distance from the
surface to a region above the thermocline .

The state variable for the dynamics of the larvae is the density of larvae. For
the part of the larval cycle which goes from fertilization to the end of stage, the
density l = l(t, s, P ), where s denotes the position within the stages, which we take
specifically of the Bay of Biscay anchovy in [1, 12) [4] and P = (x, y, z) represents
a generic point in the physical space.

The region of observation is assimilated to the product of the horizontal plane
and a vertical line. The origin is a point of the surface in the sea, the x axis is
oriented westward, the y axis is oriented northward, and the z axis is oriented
downward. Of course t is the chronological time. l is a density with respect to the
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stage and the position. The larvae are characterized by their density, that is to say,
at each time t ∈ [0, T ], where T is the maximal time of observation, l(t, s, P ) can
be thought of as the larvae biomass per unit of volume evaluated at the point P ,
at that time. The full model is as follows

∂l

∂t
+
∂(fl)
∂s

+ div (V l)− ∂

∂z
(h
∂l

∂z
) + µl = 0,

l(t, 1, x, y, z) = B(t, P ),

h
∂l

∂z
= 0, z = 0,

h
∂l

∂z
= 0 z = z∗,

(3.1)

We now discuss in detail the parameters and functions of the model.
The velocity. The velocity vector V (t, P ) = (V1(t, P ), V2(t, P ), V3(t, P )) describes
the sea current which is supposed to be known. We assume that the sea water is
incompressible, which yields:

div(V ) = 0, (3.2)

with V1(t, x, y, z) = V1(t, x, y), V2(t, x, y, z) = V2(t, x, y).
The mixing coefficient. The mixing coefficient h = h(t, P ) gives the diffusion
rate, supposed to be essentially vertical.
The growth function. The main biological parameters are functions f(t, s),
which gives the instantaneous rate of progression within the stages from the egg
fertilization to the end of the yolk-sac period. For the principle of determination
see [9, 4].
The mortality of larvae. The mortality is modelled by the expression µ =
µ(t, s, P ).
Demographic boundary conditions. Demographic boundary conditions are
given at s = 1, at any time during the spawning period, the variable s takes its
values in the interval [1, 12), where s = 1 corresponds to the newly fertilized eggs,
and s = 12, to the end of the yolk sac period.
Horizontal boundary conditions. Model (3.1) does not show any lateral bound-
ary conditions. Choosing the right boundary in the x and y directions is a difficult
issue that we mainly avoid here by assuming that the initial value has a compact
support contained in the interior of the domain and we consider the solution within
a time interval [0, T ] during which the horizontal projection of the support is con-
tained in the interior of the domain D.
Vertical boundary conditions. Vertical boundary conditions are imposed at the
surface and at z∗, here we are assuming a no flux conditions.
Initial conditions Initial conditions are given at t = 0 (beginning of the year).
The standing assumption is that there is no larva alive at this period of the year,
so that l(0, s, x, y, z) = 0.

Remark 3.1. What we call an initial value in the present context is not the value
of the solution at a given time or rather, the only relevant information would be
that at t = 0 (that is 1st January) there is no larva in the sea. What we consider
as an initial value is the distribution of newly fertilized eggs, that is the larvae at
stage s = 1 all over the reproduction season.
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4. Existence, uniqueness and positivity of the solution of the
Cauchy problem

The aim of this section is to show that model (3.1) possesses a positive, unique
solution. For this we use an approach by the method of characteristics to build a
one dimensional time dependent parabolic equation whose solution will yield the
solution of equation (3.1). We assume that

(H1) V1, V2 are functions in C1((0, T )×D) and f ∈ C1((0, T )× (1, 12)).

We introduce the flow generated by the horizontal current and the size growth, that
is

φ := φ(τ, t0, 1, x0, y0),

and for each initial value ζ̃ ≡ (t0, 1, x0, y0), φ(τ, ζ̃) is the solution of the equation( dt
dτ
,
ds

dτ
,
dx

dτ
,
dy

dτ

)
= (1, f(t, s), V1(t, x, y), V2(t, x, y)), (4.1)

satisfying t(0) = t0, s(0) = 1, x(0) = x0, y(0) = y0, since the theory of ordinary
differential equations guarantees that a unique characteristic curve passes through
each point ζ̃.

We denote l̄(τ, z) ≡ l̄(τ, ζ̃, z) = l(φ(τ, ζ̃), z) the restriction of l along the charac-
teristic line. The equation verified by l̄ reads

∂l̄(τ, z)
∂τ

+ V̄3
∂l̄(τ, z)
∂z

− ∂

∂z
(h̄
∂l̄(τ, z)
∂z

) + γ̄l̄(τ, z) = 0,

where V̄3 := V̄3(τ, ζ̃, z), h̄ := h̄(τ, ζ̃, z), γ̄ := γ̄(τ, ζ̃, z) are the restrictions of
V3, h, B, γ respectively along the characteristic line and γ is equation of order
0. So to each ζ̃, we have associated the following problem

∂l̄

∂τ
+ V̄3

∂l̄

∂z
− ∂

∂z
(h̄
∂l̄

∂z
) + γ̄l̄ = 0,

l̄(0, z) = B̄(z),

h̄(τ, 0)
∂l̄

∂z
(τ, 0) = 0,

h̄(τ, z∗)
∂l̄

∂z
(τ, z∗) = 0,

(4.2)

where B̄(z) is the restriction of B along the characteristic line. We consider the
operator A(τ) : D(A(τ)) ⊆ C([0, z∗]) → C([0, z∗]) defined by

A(τ)u = V̄3(τ, .)u′ − (h̄(τ, .)u′)′ + γ̄(τ, .)u,

D(A(τ)) = {u ∈ C2([0, z∗]), h̄(τ, 0)u′(0) = h̄(τ, z∗)u′(z∗) = 0}.

We now state the assumptions of this section.

(H2) h ∈ C1([0, T ]× Ω̄), V3 ∈ C([0, T ]× Ω̄), γ ∈ C([0, T ]× [1, 12]× Ω̄).
(H3) h, ∂h

∂z , V3 ∈ C1,δ([0, T ];C(Ω̄)), and γ ∈ C1,δ([0, T ];C([1, 12]× Ω̄)).
(H4) h ≥ c0 in [0, T ]× Ω̄ where c0 > 0.

Theorem 4.1. Assume (H2)–(H4) hold. If the positive function B̄ is in C([0, z∗]),
then problem (4.2) has a unique non-negative classical solution.
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Proof. Without loss of generality we can assume that γ ≥ 0, otherwise we can
replace γ by γ + ω ≥ 0 see Remark 2.5. The main idea is to use theorem 2.4.
The first assertion (AT1) follows from the proposition 2.2. Concerning the second
assertion (AT2), for f ∈ C([0, z∗]), t, s ∈ G1, where G1 is some neighborhood of
τ = 0, λ ∈ Sθ −{0}, we set v = (A(s))−1f and u = R(λ,A(t))(λ−A(s))v, then we
have to estimate the C([0, z∗])-norm of

u− v = (A(t))R(λ,A(t))(A(t))−1 − (A(s))−1)f.

Now u− v ∈ C2([0, z∗]) and u and v solve

λu−A(t, .)u = λv − f,

h̄(t, 0)u′(0) = h̄(t, z∗)u′(z∗) = 0,
(4.3)

and
A(s, .)v = f,

h̄(s, 0)v′(0) = h̄(s, z∗)v′(z∗) = 0,
(4.4)

respectively. This shows that

λ(u− v)−A(t, .)(u− v) = (A(t, .)−A(s, .))v,

h̄(t, 0)(u′ − v′)(0) = (h̄(s, 0)− h̄(t, 0))v′(0),

h̄(t, z∗)(u′ − v′)(z∗) = (h̄(s, z∗)− h̄(t, z∗))v′(z∗).

(4.5)

Applying Proposition 2.1 to (4.4) with λ = 0, we have

‖v‖E ≤ c‖f‖E . (4.6)

Using again the proposition 2.1 to (4.5), we get

|λ|‖u− v‖E ≤M(‖(A(s, .)−A(t, .))v‖E + (1 + |λ|1/2)

×
(
|(h̄(s, 0)− h̄(t, 0))v′(0)|+ |(h̄(s, z∗)− h̄(t, z∗))v′(z∗)|

)
) .

Using hypothesis (H3) and by virtue of (4.6),

‖u− v‖E ≤ c(|t− s||λ|−1|t− s|δ|λ|−1 + |t− s||λ|−1/2)‖f‖E .

Hence the hypothesis (AT2) holds.
Since D(A(0)) is dense in C([0, z∗]) see [2], then according to Theorem 2.4, for

B̄ ∈ C([0, z∗]) we have existence and uniqueness of a classical solution of problem
(4.2). It remain to see that the solution is positive which can be proved by the
standard argument. If u is solution of problem (4.2), we set u = u+ − u− where
u+ and u− are respectively the positive and negative part of u, so multiplying the
equation (4.2) by u−, and integrating over (0, z∗) we have∫ z∗

0

(
∂u

∂τ
u− + h̄(τ, z)

∂u

∂z

∂u−

∂z
+ V̄3(τ, z)

∂u

∂z
u− + γ̄(τ, z)uu−)dz = 0,

hence

−1
2
d

dτ
‖u−(τ)‖2L2(0,z∗) ≥ c0

∫ z∗

0

|∂u
−

∂z
|2dz −m3

∫ z∗

0

∂u−

∂z
u−dz +m4

∫ z∗

0

|u−|2dz,

with
m3 = sup

τ,z
|V̄3(τ, z)|, m4 = inf

τ,z
|γ̄(τ, z)|.
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Since ∫ z∗

0

∂u−

∂z
u−dz ≤

∫ z∗

0

(
ρ|∂u

−

∂z
|2 +

1
ρ
|u−|2

)
dz, ∀ρ > 0,

it follows that
1
2
d

dτ
‖u−(τ)‖2L2(0,z∗) + (c0 −m3ρ)‖

∂u−(τ)
∂z

‖2L2(0,z∗)

+ (m4 −
m3

ρ
+ ω)‖u−(τ)‖2L2(0,z∗)

≤ ω‖u−(τ)‖2L2(0,z∗),

choosing ρ and ω such that

c0 −m3ρ > 0 and m4 −
m3

ρ
+ ω > 0,

so
1
2
d

dτ
‖u−(τ)‖2L2(0,z∗) ≤ ω‖u−(τ)‖2L2(0,z∗),

then
‖u−(τ)‖2L2(0,z∗) ≤ ‖u−(0)‖2L2(0,z∗)e

2ωτ ,

which gives u−(τ) = 0 provided B ≥ 0, then the solution is positive. �

Recall that for z ∈ [0, z∗] the system

t = T (τ, t0, x0, y0), s = S(τ, t0, x0, y0),

x = X(τ, t0, x0, y0), y = Y (τ, t0, x0, y0),

is a solution of the characteristic system (4.1) emanating from the point ζ̃. We have
also

t0 = T (0, t0, x0, y0), 1 = S(0, t0, x0, y0),

x0 = X(0, t0, x0, y0), y0 = Y (0, t0, x0, y0) .

If

Jac(T, S,X, Y ) :=

∣∣∣∣∣∣∣∣∣
∂T
∂τ

∂T
∂t0

∂T
∂x0

∂T
∂y0

∂S
∂τ

∂S
∂t0

∂S
∂x0

∂S
∂y0

∂X
∂τ

∂X
∂t0

∂X
∂x0

∂X
∂y0

∂Y
∂τ

∂Y
∂t0

∂Y
∂x0

∂Y
∂y0

∣∣∣∣∣∣∣∣∣
τ=0

6= 0,

then the Jacobian does not vanish in a neighborhood of the initial curve. There-
fore, the local inversion theorem guarantees that we can solve for (τ, t0, x0, y0) as
function of (t, s, x, y) near the initial curve; that is, there exists a neighborhood G1

of (0, t0, x0, y0) and a neighborhood G of (t, s, x, y) such that

(T, S,X, Y ) : G1 → G

is a diffeomorphism. Then

τ = ψ1(t, s, x, y), t0 = ψ2(t, s, x, y),

x0 = ψ3(t, s, x, y), y0 = ψ4(t, s, x, y),

and for initial data

0 = ψ1(t0, 1, x0, y0), t0 = ψ2(t0, 1, x0, y0),

x0 = ψ3(t0, 1, x0, y0), y0 = ψ4(t0, 1, x0, y0).
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Once problem (4.2) is solved, we have

l(t, s, x, y, z) = l̄(ψ1, ψ2, ψ3, ψ4, z),

in a neighborhood of G. Indeed, by differentiation we obtain that

∂l

∂t
=
∂l̄

∂τ

∂ψ1

∂t
+

∂l̄

∂t0

∂ψ2

∂t
+

∂l̄

∂x0

∂ψ3

∂t
+

∂l̄

∂y0

∂ψ4

∂t
,

f
∂l

∂s
= f(

∂l̄

∂τ

∂ψ1

∂s
+

∂l̄

∂t0

∂ψ2

∂s
+

∂l̄

∂x0

∂ψ3

∂s
+

∂l̄

∂y0

∂ψ4

∂s
),

V1
∂l

∂x
= V1(

∂l̄

∂τ

∂ψ1

∂x
+

∂l̄

∂t0

∂ψ2

∂x
+

∂l̄

∂x0

∂ψ3

∂x
+

∂l̄

∂y0

∂ψ4

∂x
),

V2
∂l

∂y
= V2(

∂l̄

∂τ

∂ψ1

∂y
+

∂l̄

∂t0

∂ψ2

∂y
+

∂l̄

∂x0

∂ψ3

∂y
+

∂l̄

∂y0

∂ψ4

∂y
) .

Thus
∂l

∂t
+ f

∂l

∂s
+ V1

∂l

∂x
+ V2

∂l

∂y
=
∂l̄

∂τ

(∂ψ1

∂t
+ f

∂ψ1

∂s
+ V1

∂ψ1

∂x
+ V2

∂ψ1

∂y

)
+

∂l̄

∂t0

(∂ψ2

∂t
+ f

∂ψ2

∂s
+ V1

∂ψ2

∂x
+ V2

∂ψ2

∂y

)
+

∂l̄

∂x0

(∂ψ3

∂t
+ f

∂ψ3

∂s
+ V1

∂ψ3

∂x
+ V2

∂ψ3

∂y

)
+

∂l̄

∂y0

(∂ψ4

∂t
+ f

∂ψ4

∂s
+ V1

∂ψ4

∂x
+ V2

∂ψ4

∂y

)
.

Then
∂l

∂t
+ f

∂l

∂s
+ V1

∂l

∂x
+ V2

∂l

∂y
=
∂l̄

∂τ

(∂T
∂τ

∂ψ1

∂t
+
∂S

∂t0

∂ψ1

∂s
+
∂X

∂x0

∂ψ1

∂x
+
∂Y

∂y0

∂ψ1

∂y

)
+

∂l̄

∂t0

(∂T
∂τ

∂ψ2

∂t
+
∂S

∂t0

∂ψ2

∂s
+
∂X

∂x0

∂ψ2

∂x
+
∂Y

∂y0

∂ψ2

∂y

)
+

∂l̄

∂x0

(∂T
∂τ

∂ψ3

∂t
+
∂S

∂t0

∂ψ3

∂s
+
∂X

∂x0

∂ψ3

∂x
+
∂Y

∂y0

∂ψ3

∂y

)
+

∂l̄

∂y0

(∂T
∂τ

∂ψ4

∂t
+
∂S

∂t0

∂ψ4

∂s
+
∂X

∂x0

∂ψ4

∂x
+
∂Y

∂y0

∂ψ4

∂y

)
.

For Z = (T, S,X, Y )T and ψ = (ψ1, ψ2, ψ3, ψ4)T , we have (Z ◦ ψ)(t, s, x, y) =
(t, s, x, y) which implies

Jac(Z). Jac(ψ) = Id 4 . (4.7)

By identification in (4.7), we find

∂T

∂τ

∂ψ1

∂t
+
∂S

∂t0

∂ψ1

∂s
+
∂X

∂x0

∂ψ1

∂x
+
∂Y

∂y0

∂ψ1

∂y
= 1,

∂T

∂τ

∂ψ2

∂t
+
∂S

∂t0

∂ψ2

∂s
+
∂X

∂x0

∂ψ2

∂x
+
∂Y

∂y0

∂ψ2

∂y
= 0,

∂ψ3

∂t
+ f

∂ψ3

∂s
+ V1

∂ψ3

∂x
+ V2

∂ψ3

∂y
= 0,

∂T

∂τ

∂ψ4

∂t
+
∂S

∂t0

∂ψ4

∂s
+
∂X

∂x0

∂ψ4

∂x
+
∂Y

∂y0

∂ψ4

∂y
= 0 .
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Therefore,
∂l

∂t
+ f

∂l

∂s
+ V1

∂l

∂x
+ V2

∂l

∂y
=
∂l̄

∂τ
.

In addition,
∂l

∂z
=
∂l̄

∂z
,

for the initial data

l(t, 1, x, y, z) = l̄(ψ1(t, 1, x, y), ψ2(t, 1, x, y), ψ3(t, 1, x, y), ψ4(t, 1, x, y), z),

= l̄(0, t, x, y, z),

= B̄(t, x, y, z),

= B(T (0, t, x, y), X(0, t, x, y), Y (0, t, x, y), z),

= B(t, x, y, z) .

Then l is a unique solution of (3.1). So the solution l of (3.1) can be determined in
terms of the solution l̄ of (4.2).

Acknowledgments. The authors wish to thank the anonymous referee for his/her
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